Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1983;2(4):485–491. doi: 10.1002/j.1460-2075.1983.tb01451.x

Sex determination and dosage compensation in Drosophila melanogaster: production of male clones in XX females

L Sánchez 1,1, R Nöthiger 1,*
PMCID: PMC555049  PMID: 16453442

Abstract

Sex determination and dosage compensation in Drosophila are implemented by the ratio of X-chromosomes to sets of autosomes (X:A ratio). Our aim was to change this X:A ratio during development, and to assess the response of the affected cells in sexually dimorphic structures. For this purpose, clones of XO constitution were produced in female embryos and larvae of two genotypes in which almost the entire euchromatic arm of one X-chromosome was translocated to the third chromosome. Genotype I was heterozygous for the X-linked recessive mutations SxlfLS, genotype II was homozygous for Sxl+. The Sxl+ gene (sex-lethal) is involved in mediating sex determination and dosage compensation. In genotype I (SxlfLS), male clones could be generated up to 48 h in genitalia and analia, up to 72 h in the sex comb region and up to 96 h in 5th and 6th tergites. In genotype II (Sxl+), male clones only appeared in the tergites, and only up to 24 h. The difference in these results is ascribed to the presence of SxlfLS in genotype I: when homozygous, this mutation causes XX clones to differentiate male structures; most of the male clones produced in genotype I must therefore be XX. In contrast, male clones produced in genotype II must be XO. Since these were only found when generated in embryos we conclude that the X:A ratio expresses itself autonomously in clones by setting the state of activity of the Sxl gene around blastoderm stage. Once this is achieved, the X:A signal is no longer needed, and the state of activity of the Sxl+ gene determines sex and dosage compensation.

Keywords: clonal analysis, dosage compensation, Drosophila, sex determination, X-chromosomes

Full text

PDF
490

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bridges C. B. TRIPLOID INTERSEXES IN DROSOPHILA MELANOGASTER. Science. 1921 Sep 16;54(1394):252–254. doi: 10.1126/science.54.1394.252. [DOI] [PubMed] [Google Scholar]
  2. Cline T. W. Two closely linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics. 1978 Dec;90(4):683–698. doi: 10.1093/genetics/90.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Directory of members, Genetics Society of America. Genetics. 1980;94(4 Pt 2 Suppl):135–175. [PMC free article] [PubMed] [Google Scholar]
  4. Epper F. Morphological analysis and fate map of the intersexual genital disc of the mutant doublesex-dominant in Drosophila melanogaster. Dev Biol. 1981 Nov;88(1):104–114. doi: 10.1016/0012-1606(81)90222-0. [DOI] [PubMed] [Google Scholar]
  5. Epper F., Nöthiger R. Genetic and developmental evidence for a repressed genital primordium in Drosophila melanogaster. Dev Biol. 1982 Nov;94(1):163–175. doi: 10.1016/0012-1606(82)90079-3. [DOI] [PubMed] [Google Scholar]
  6. Garcia-Bellido A., Merriam J. R. Clonal parameters of tergite development in Drosophila. Dev Biol. 1971 Oct;26(2):264–276. doi: 10.1016/0012-1606(71)90126-6. [DOI] [PubMed] [Google Scholar]
  7. Garcia-Bellido A., Merriam J. R. Genetic analysis of cell heredity in imaginal discs of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2222–2226. doi: 10.1073/pnas.68.9.2222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guerra M., Postlethwait J. H., Schneiderman H. A. The development of the imaginal abdomen of Drosophila melanogaster. Dev Biol. 1973 Jun;32(2):361–372. doi: 10.1016/0012-1606(73)90247-9. [DOI] [PubMed] [Google Scholar]
  9. Illmensee K. Drosophila chimeras and the problem of determination. Results Probl Cell Differ. 1978;9:51–69. doi: 10.1007/978-3-540-35803-9_3. [DOI] [PubMed] [Google Scholar]
  10. Lucchesi J. C., Skripsky T. The link between dosage compensation and sex differentiation in Drosophila melanogaster. Chromosoma. 1981;82(2):217–227. doi: 10.1007/BF00286106. [DOI] [PubMed] [Google Scholar]
  11. Morata G., Ripoll P. Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol. 1975 Feb;42(2):211–221. doi: 10.1016/0012-1606(75)90330-9. [DOI] [PubMed] [Google Scholar]
  12. Ripoll P. Behavior of somatic cells homozygous for zygotic lethals in Drosophila melanogaster. Genetics. 1977 Jun;86(2 Pt 1):357–376. [PMC free article] [PubMed] [Google Scholar]
  13. Simpson P. Parameters of cell competition in the compartments of the wing disc of Drosophila. Dev Biol. 1979 Mar;69(1):182–193. doi: 10.1016/0012-1606(79)90284-7. [DOI] [PubMed] [Google Scholar]
  14. Szabad J., Schüpbach T., Wieschaus E. Cell lineage and development in the larval epidermis of Drosophila melanogaster. Dev Biol. 1979 Dec;73(2):256–271. doi: 10.1016/0012-1606(79)90066-6. [DOI] [PubMed] [Google Scholar]
  15. TOKUNAGA C. Cell lineage and differentiation on the male foreleg of Drosophila melanogaster. Dev Biol. 1962 Jun;4:489–516. doi: 10.1016/0012-1606(62)90054-4. [DOI] [PubMed] [Google Scholar]
  16. TOKUNAGA C., STERN C. THE DEVELOPMENTAL AUTONOMY OF EXTRA SEX COMBS IN DROSOPHILA MELANOGASTER. Dev Biol. 1965 Feb;11:50–81. doi: 10.1016/0012-1606(65)90037-0. [DOI] [PubMed] [Google Scholar]
  17. Wieschaus E., Nöthiger R. The role of the transformer genes in the development of genitalia and analia of Drosophila melanogaster. Dev Biol. 1982 Apr;90(2):320–334. doi: 10.1016/0012-1606(82)90381-5. [DOI] [PubMed] [Google Scholar]
  18. Zalokar M., Erk I., Santamaría P. Distribution of ring-X chromosomes in the blastoderm of gynandromorphic D. melanogaster. Cell. 1980 Jan;19(1):133–141. doi: 10.1016/0092-8674(80)90394-3. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES