Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Feb 2;27(1):45–52. doi: 10.1007/s12264-011-1045-1

Down syndrome cell adhesion molecule and its functions in neural development

唐氏综合征细胞黏附分子及其神经发育功能

Kun Zhu 1, Yiliang Xu 2, Jianghong Liu 1, Qi Xu 2, Haihong Ye 1,
PMCID: PMC5560281  PMID: 21270903

Abstract

The nervous system is a complex network with many types of neurons and numerous synaptic connections. The present knowledge on how neurons recognize specific targets and form such an intricate network is still limited. The Down syndrome cell adhesion molecule (DSCAM) belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. DSCAM plays important roles in neural development, including dendritic patterning and self-avoidance, axon guidance and branching, axon target recognition and synaptic formation. However, the functional mechanisms and the underlying signaling pathways are still largely unknown. Here the functions of DSCAM in neural development were reviewed. Future research for better understanding DSCAM function and the relevance of DSCAM to human diseases was also discussed.

Keywords: Down syndrome cell adhesion molecule, neural development, Down syndrome

Footnotes

These two authors contributed equally to this work.

References

  • [1].Yamakawa K., Huot Y.K., Haendelt M.A., Hubert R., Chen X.N., Lyons G.E., et al. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum Mol Genet. 1998;7:227–237. doi: 10.1093/hmg/7.2.227. [DOI] [PubMed] [Google Scholar]
  • [2].Agarwala K.L., Nakamura S., Tsutsumi Y., Yamakawa K. Down syndrome cell adhesion molecule DSCAM mediates homophilic intercellular adhesion. Brain Res Mol Brain Res. 2000;79:118–126. doi: 10.1016/S0169-328X(00)00108-X. [DOI] [PubMed] [Google Scholar]
  • [3].Schmucker D., Clemens J.C., Shu H., Worby C.A., Xiao J., Muda M., et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000;101:671–684. doi: 10.1016/S0092-8674(00)80878-8. [DOI] [PubMed] [Google Scholar]
  • [4].Agarwala K.L., Ganesh S., Tsutsumi Y., Suzuki T., Amano K., Yamakawa K. Cloning and functional characterization of DSCAML1, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion. Biochem Biophys Res Commun. 2001;285:760–772. doi: 10.1006/bbrc.2001.5214. [DOI] [PubMed] [Google Scholar]
  • [5].Millard S.S., Flanagan J.J., Pappu K.S., Wu W., Zipursky S.L. Dscam2 mediates axonal tiling in the Drosophila visual system. Nature. 2007;447:720–724. doi: 10.1038/nature05855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Celotto A.M., Graveley B.R. Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics. 2001;159:599–608. doi: 10.1093/genetics/159.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Neves G., Zucker J., Daly M., Chess A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nat Genet. 2004;36:240–246. doi: 10.1038/ng1299. [DOI] [PubMed] [Google Scholar]
  • [8].Wojtowicz W.M., Flanagan J.J., Millard S.S., Zipursky S.L., Clemens J.C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell. 2004;118:619–633. doi: 10.1016/j.cell.2004.08.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Brites D., McTaggart S., Morris K., Anderson J., Thomas K., Colson I., et al. The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol. 2008;25:1429–1439. doi: 10.1093/molbev/msn087. [DOI] [PubMed] [Google Scholar]
  • [10].Yu H.H., Yang J.S., Wang J., Huang Y., Lee T. Endodoamin diversity in the Drosophila Dscam and its roles in neuronal morphogenesis. J Neurosci. 2009;29:1904–1914. doi: 10.1523/JNEUROSCI.5743-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Graveley B.R. Mutually exclusive splicing of the insect Dscam premRNA directed by competing intronic RNA secondary structures. Cell. 2005;123:65–73. doi: 10.1016/j.cell.2005.07.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Watson F.L., Püttmann-Holgado R., Thomas F., Lamar D.L., Hughes M., Kondo M., et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 2005;309:1874–1878. doi: 10.1126/science.1116887. [DOI] [PubMed] [Google Scholar]
  • [13].Wojtowicz W.M., Wu W., Andre I., Qian B., Baker D., Zipursky S.L. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell. 2007;130:1134–1145. doi: 10.1016/j.cell.2007.08.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Meijers R., Puettmann-Holgado R., Skiniotis G., Liu J.H., Walz T., Wang J.H., et al. Structural basis of Dscam isoform specificity. Nature. 2007;449:487–491. doi: 10.1038/nature06147. [DOI] [PubMed] [Google Scholar]
  • [15].Hattori D., Demir E., Kim H.W., Viragh E., Zipursky S.L., Dickson B.J. Dscam diversity is essential for neuronal wiring and self-recognition. Nature. 2007;449:223–227. doi: 10.1038/nature06099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Sawaya M.R., Wojtowicz W.M., Andre I., Qian B., Wu W., Baker D., et al. A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms. Cell. 2008;134:1007–1018. doi: 10.1016/j.cell.2008.07.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Hummel T., Vasconcelos M.L., Clemens J.C., Fishilevich Y., Vosshall L.B., Zipursky S.L. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron. 2003;37:221–231. doi: 10.1016/S0896-6273(02)01183-2. [DOI] [PubMed] [Google Scholar]
  • [18].Chen B.E., Kondo M., Garnier A., Watson F.L., Püettmann-Holgado R., Lamar D.R., et al. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell. 2006;125:607–620. doi: 10.1016/j.cell.2006.03.034. [DOI] [PubMed] [Google Scholar]
  • [19].Wang J., Zugates C.T., Liang I.H., Lee C.H., Lee T. Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron. 2002;33:559–571. doi: 10.1016/S0896-6273(02)00570-6. [DOI] [PubMed] [Google Scholar]
  • [20].Hughes M.E., Bortnick R., Tsubouchi A., Bäumer P., Kondo M., Uemura T., et al. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron. 2007;54:417–427. doi: 10.1016/j.neuron.2007.04.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Matthews B.J., Kim M.E., Flanagan J.J., Hattori D., Clemens J.C., Zipursky S.L., et al. Dendrite self-avoidance is controlled by Dscam. Cell. 2007;129:593–604. doi: 10.1016/j.cell.2007.04.013. [DOI] [PubMed] [Google Scholar]
  • [22].Soba P., Zhu S., Emoto K., Younger S., Yang S.J., Yu H.H., et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron. 2007;54:403–416. doi: 10.1016/j.neuron.2007.03.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Hattori D., Chen Y., Matthews B.J., Salwinski L., Sabatti C., Grueber W.B., et al. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature. 2009;461:644–648. doi: 10.1038/nature08431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Millard S.S., Lu Z., Zipursky S.L., Meinertzhagen I.A. Drosophila dscam proteins regulate postsynaptic specificity at multiple-contact synapses. Neuron. 2010;67:761–768. doi: 10.1016/j.neuron.2010.08.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Fuerst P.G., Koizumi A., Masland R.H., Burgess R.W. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature. 2008;451:470–474. doi: 10.1038/nature06514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Fuerst P.G., Bruce F., Tian M., Wei W., Elstrott J., Feller M.B., et al. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron. 2009;64:484–497. doi: 10.1016/j.neuron.2009.09.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Yamagata M., Sanes J.R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature. 2008;451:465–469. doi: 10.1038/nature06469. [DOI] [PubMed] [Google Scholar]
  • [28].Hong K., Hinck L., Nishiyama M., Poo M.M., Tessier-Lavigne M., Stein E. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell. 1999;97:927–941. doi: 10.1016/S0092-8674(00)80804-1. [DOI] [PubMed] [Google Scholar]
  • [29].Nishiyama M., Hoshino A., Tsai L., Henley J.R., Goshima Y., Tessier-Lavigne M., et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature. 2003;423:990–995. doi: 10.1038/nature01751. [DOI] [PubMed] [Google Scholar]
  • [30].Tessier-Lavigne M., Placzek M., Lumsden A.G., Dodd J., Jessell T.M. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature. 1988;336:775–778. doi: 10.1038/336775a0. [DOI] [PubMed] [Google Scholar]
  • [31].Hedgecock E.M., Culotti J.G., Hall D.H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990;4:61–85. doi: 10.1016/0896-6273(90)90444-K. [DOI] [PubMed] [Google Scholar]
  • [32].Kennedy T.E., Serafini T., de la Torre J.R., Tessier-Lavigne M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell. 1994;78:425–435. doi: 10.1016/0092-8674(94)90421-9. [DOI] [PubMed] [Google Scholar]
  • [33].Kolodziej P.A., Timpe L.C., Mitchell K.J., Fried S.R., Goodman C.S., Jan L.Y., et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell. 1996;87:197–204. doi: 10.1016/S0092-8674(00)81338-0. [DOI] [PubMed] [Google Scholar]
  • [34].Mitchell K.J., Doyle J.L., Serafini T., Kennedy T.E., Tessier-Lavigne M., Goodman C.S., et al. Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons. Neuron. 1996;17:203–215. doi: 10.1016/S0896-6273(00)80153-1. [DOI] [PubMed] [Google Scholar]
  • [35].Leung-Hagesteijn C., Spence A.M., Stern B.D., Zhou Y., Su M.W., Hedgecock E.M., et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell. 1992;71:289–299. doi: 10.1016/0092-8674(92)90357-I. [DOI] [PubMed] [Google Scholar]
  • [36].Chan S.S., Zheng H., Su M.W., Wilk R., Killeen M.T., Hedgecock E.M., et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell. 1996;87:187–195. doi: 10.1016/S0092-8674(00)81337-9. [DOI] [PubMed] [Google Scholar]
  • [37].Deiner M.S., Kennedy T.E., Fazeli A., Serafini T., Tessier-Lavigne M., Sretavan D.W. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron. 1997;19:575–589. doi: 10.1016/S0896-6273(00)80373-6. [DOI] [PubMed] [Google Scholar]
  • [38].Keino-Masu K., Masu M., Hinck L., Leonardo E.D., Chan S.S., Culotti J.G., et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell. 1996;87:175–185. doi: 10.1016/S0092-8674(00)81336-7. [DOI] [PubMed] [Google Scholar]
  • [39].Ly A., Nikolaev A., Suresh G., Zheng Y., Tessier-Lavigne M., Stein E. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell. 2008;133:1241–1254. doi: 10.1016/j.cell.2008.05.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Liu G., Li W., Wang L., Kar A., Guan K.L., Rao Y., et al. DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc Natl Acad Sci U S A. 2009;106:2951–2956. doi: 10.1073/pnas.0811083106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Amano K., Fujii M., Arata S., Tojima T., Ogawa M., Morita N., et al. DSCAM deficiency causes loss of pre-inspiratory neuron synchroneity and perinatal death. J Neurosci. 2009;29:2984–2996. doi: 10.1523/JNEUROSCI.3624-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [42].Jacobs P.A., Baikie A.G., Court Brown W.M., Strong J.A. The somatic chromosomes in mongolism. Lancet. 1959;1:710. doi: 10.1016/S0140-6736(59)91892-6. [DOI] [PubMed] [Google Scholar]
  • [43].Lejeune J., Gautier M., Turpin M.R. Etude des chromosomes somatiques de neuf enfants mongoliens. C R Acad Sci. 1959;248:1721–1722. [PubMed] [Google Scholar]
  • [44].Alves-Sampaio A., Troca-Marín J.A., Montesinos M.L. NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of Down’s syndrome. J Neurosci. 2009;30:13537–13548. doi: 10.1523/JNEUROSCI.3457-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Marinpad M. Structural abnormalities of cerebral cortex in human chromosomal aberrations golgi study. Brain Res. 1972;44:625–629. doi: 10.1016/0006-8993(72)90324-1. [DOI] [PubMed] [Google Scholar]
  • [46].Hattori D., Millard S.S., Wojtowicz W.M., Zipursky S.L. Dscammediated cell recognition regulates neural circuit formation. Annu Rev Cell Dev Biol. 2008;24:597–620. doi: 10.1146/annurev.cellbio.24.110707.175250. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES