Skip to main content
Data in Brief logoLink to Data in Brief
. 2017 Aug 10;14:566–572. doi: 10.1016/j.dib.2017.08.011

Atomoxetine in abstinent cocaine users: Sex differences

Elise E DeVito a,b,, Aryeh I Herman a,b, Noah S Konkus a, Huiping Zhang a, Mehmet Sofuoglu a,b
PMCID: PMC5568877  PMID: 28861456

Abstract

Data presented are from a sex-differences secondary analysis of a human laboratory investigation of single doses of atomoxetine (40 mg and 80 mg) versus placebo in abstinent individuals with cocaine use disorders (CUD). Subjective drug effects, cognitive performance and cardiovascular measures were assessed. The primary atomoxetine dose analyses (which do not consider sex as a factor) are reported in full elsewhere (DeVito et al., 2017) [1].


Specifications Table

Subject area Pharmacology
More specific subject area Pharmacotherapy for Cocaine Use Disorder (CUD)
Type of data Text file, table
How data was acquired Human laboratory setting. Self-report questionnaires, computerized cognitive testing, heart rate and blood pressure measurements.
Data format Analyzed
Experimental factors Within-subject fixed factor of ‘dose’ (placebo, 40 mg, 80 mg atomoxetine); between-subject factor of ‘sex’ (male, female)
Experimental features Double-blind, placebo-controlled, within-subject cross-over design with one pill condition (placebo, 40 mg or 80 mg atomoxetine) on each test day, with washout time between test days. Participants met criteria for cocaine use disorder but were abstinent from cocaine for 1-12 months.
Data source location West Haven, CT
Data accessibility Data is not available in a public repository.

Value of the data

  • There are no pharmacotherapies currently approved for the treatment of CUD. Pharmacotherapies with low abuse potential but cognitive enhancing properties could be effective adjunct therapies for CUD, since poorer cognitive function has been linked with worse clinical outcomes including risk of relapse [2], [3], [4], [5], [6], [7].

  • A norephinephrine transporter inhibitor, atomoxetine, has been proposed as a candidate treatment for CUD, based on its efficacy as a cognitive enhancer in other clinical populations [8], [9] and its impact on addictive processes in preclinical [10], [11], [12], [13], [14] and human laboratory studies [15], [16], [17].

  • Sex is a potentially important factor which could contribute to individual variability in response to medication [18]. Sex differences have been demonstrated in the etiology, disease course, health consequences and treatment response of CUDs (e.g. [19], [20], [21], [22], [23]), including poorer clinical outcomes for women in trials of medications for CUDs (e.g. disulfiram [24], modafinil [25], naltrexone [26]). There is mixed evidence of sex differences in response to atomoxetine for attention deficit hyperactivity disorder (ADHD) ([27], but see also [28]). Preclinical research indicates greater efficacy for atomoxetine in males than females [29], [30]. Although data specifically testing sex differences in atomoxetine response is limited, convergent evidence underlines the likelihood of sex-sensitive effects of noradrenergic medication for substance use disorders (e.g. [31]).

  • The sample size in the current data was underpowered to investigate sex differences properly. These preliminary data may be hypothesis-generating for future studies of atomoxetine in men and women with CUD.

1. Data

Data presented are from a secondary analyses of sex differences. Data are subjective drug effects, cardiovascular response, and computerized cognitive task outcomes in abstinent individuals with cocaine use disorder (CUD) who received placebo, 40 mg atomoxetine and 80 mg atomoxetine. The detailed methods and primary dose effects analyses from this dataset are reported elsewhere [1].

Baseline and demographics data are reported in full in Table 1. Data for the effects of atomoxetine by sex on cardiovascular responses, subjective drug responses, mood and cognitive function are reported in Table 2. Briefly, treatment-by-sex interactions on drug-like effects showed more positive (euphoria) and less negative (dysphoria, sedation) subjective effects in women relative to men in response to the medication versus placebo. For mood, treatment-by-sex interactions reflected atomoxetine dose-related decreases in ‘fatigue’ and ‘depression’ in men, but increases in women. Furthermore, treatment-by-sex interaction indicated reduced ‘tension’ at the low-dose (relative to placebo or high-dose) condition, in men but not women. In terms of cognitive function, a treatment-by-sex interaction on Immediate Memory Task (IMT) revealed dose-related improvements (e.g., faster correct responses) in men, but a trend of dose-related decrements in performance in women.

Table 1.

Baseline measures by sex.

Measures Sex
Male (N=29)
Female (N=10)
Statistics (by Sex)
N (%) N (%) Wald (p)
Demographics
Race 1.37 0.242
 African American/Black 14 48.28% 7 70.00%
  Not of Hispanic Origin 14 48.28% 7 70.00%
  Hispanic Origin 0 0.00% 0 0.00%
 European American 15 51.72% 3 30.00%
  Not of Hispanic Origin 14 48.28% 1 10.00%
  Hispanic Origin 1 3.45% 2 20.00%
Highest level of completed education 5.34 0.021
 College/University graduate 1 3.45% 0 0.00%
 Partial college training 10 34.48% 1 10.00%
 High School graduate/GED 17 58.62% 6 60.00%
 Partial high school 1 3.45% 3 30.00%
Marital status 1.85 0.605
 Never married 16 55.17% 6 60.00%
 Married 5 17.24% 1 10.00%
 Separated 2 6.90% 2 20.00%
 Divorced 6 20.69% 1 10.00%
Employment status 1.42 0.492
 Full-time (35 or more hours per week) 5 17.24% 2 20.00%
 Unemployed less than one month 2 6.90% 2 20.00%
 Unemployed greater than one month 22 75.86% 6 60.00%
Sex N/A N/A
 Male 29 100.00% 0 0.00%
 Female 0 0.00% 10 100.00%


 

 

 

 

 

 


Mean (SD) Mean (SD) F (p)
Age, years 40.93 7.62 42.00 7.36 0.15 0.702
Self-reported measures at baseline
CES-D summary score 8.95 7.15 8.20 5.63 0.09 0.766
CTQ
 Physical Abuse 7.79 4.19 10.40 5.76 2.35 0.134
 Physical Neglect 7.79 3.16 9.60 4.62 1.91 0.176
 Emotional Abuse 8.45 4.70 10.00 4.27 0.85 0.364
 Emotional Neglect 9.93 5.44 11.22 4.94 0.40 0.530
 Sexual Abuse 7.00 4.89 7.90 4.77 0.25 0.617

Statistics (F(p)) or Wald (p) as appropriate, are reported. Results reaching the statistical significance at p≤0.05 level are considered statistically significant (bold). CES-D: Center for Epidemiologic Studies Depression Scale; CTQ: Childhood Trauma Questionnaire; SD: Standard Deviation.

Table 2.

Sex analyses.

Sex
Statistic
Outcome Measures Women (N=10)
Men (N=29)
Dose
Sex
Sex by Dose
Placebo
40 mg
80 mg
Placebo
40 mg
80 mg
F(p) F(p) F(p)
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Cardiovascular
  Heart Rate 73.53 9.05 78.20 9.99 78.53 12.55 71.69 10.69 74.51 11.50 76.57 12.66 30.51 (<0.0001); 40,80ATX>PLA
  Systolic BP 118.60 10.15 122.53 11.89 121.58 11.29 119.92 11.07 123.17 12.65 124.03 11.98 10.45 (<0.0001); 40,80ATX>PLA
  Diastolic BP 71.80 8.30 72.97 7.80 74.07 7.89 71.03 8.86 72.45 11.23 73.17 10.19 5.35 (0.005); 80 ATX>PLA
Subjective drug effects
 ARCI
  Sedation (PCAG) 4.83 3.64 4.49 3.16 4.05 3.02 3.13 2.02 2.97 1.88 3.62 2.86 4.77 (0.009); M: 80ATX>PLA,40ATX; W: NS
  Dysphoria (LSD) 3.08 1.94 3.33 1.75 3.08 1.62 2.44 1.27 2.64 1.57 3.25 2.15 3.45 (0.033); M: 80ATX>PLA,40ATX; W: NS
  Euphoria (MBG) 5.18 4.68 5.87 4.62 6.40 4.63 6.31 4.80 6.02 4.73 5.49 4.29 3.92 (0.021); M: NS; W: 80ATX>PLA
  Stimulant-Like Effects (A) 3.93 2.48 4.10 2.72 4.28 2.72 4.10 2.58 4.23 2.48 4.03 2.34
  Intellectual Efficiency and Energy (BG) 6.63 2.87 6.64 3.01 6.78 3.17 6.83 2.28 6.82 2.01 6.42 2.31
 DEQ
  Feel Good Factor 0.67 0.93 0.87 1.13 0.62 0.86 0.68 1.06 1.12 1.30 0.88 1.01 5.92 (0.003); 40ATX>PLA, 80ATX
  Negative Factor 0.53 0.89 0.69 0.81 0.61 0.80 0.62 0.71 0.86 0.89 0.78 0.85 5.40 (0.005); 40 ATX>PLA
  Stimulatory Factor 0.60 0.83 1.19 1.10 1.03 1.17 0.89 1.16 1.22 1.65 1.12 1.09 9.75 (<0.0001); 40,80ATX>PLA


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Mood
 POMS
  Anger 1.18 1.39 1.43 1.93 1.73 1.68 2.25 1.65 2.60 2.17 2.43 2.54
  Depression 2.50 2.00 2.65 2.00 3.15 2.24 3.84 2.55 3.63 2.37 3.81 2.61 4.28 (0.045); M>W
  Fatigue 4.22 3.11 3.83 2.84 4.88 2.92 6.63 3.11 6.11 3.24 6.17 3.03 4.27 (0.015); PLA,80ATX>40ATX 6.67 (0.013); M>W 3.54 (0.030); M: PLA>40,80ATX; W: 80ATX>40ATX; M>W at PLA, 40ATX but not 80ATX
  Confusion 4.73 0.88 5.04 1.47 4.70 1.02 4.48 1.25 4.67 1.20 4.64 1.55
  Tension 3.83 1.89 4.38 2.25 4.25 2.32 5.59 2.06 5.44 2.22 5.62 2.01 8.70 (0.005); M>W 3.24 (0.040); M: PLA>40ATX; W: NS; M>W at PLA, 80ATX but not 40ATX
  Vigor 2.13 2.19 2.20 2.42 2.70 2.20 2.69 1.64 2.90 2.11 2.97 2.19
Cognitive
 IMT
  Discriminability (d') 0.70 0.52 0.86 0.95 0.73 0.70 1.16 0.82 1.24 0.96 1.29 0.91
Response Bias (Beta) 1.21 0.36 1.77 2.25 1.16 0.39 1.13 0.48 1.18 0.61 1.09 0.65
  Mean Correct RT 537.35 75.56 556.96 63.48 540.41 55.84 544.67 84.88 520.09 86.73 530.83 90.67 3.84 (0.026); M: PLA>40ATX; W: NS
 RVP
  Discriminability (A') 0.87 0.05 0.87 0.04 0.88 0.07 0.87 0.11 0.89 0.06 0.89 0.07
  Response Bias (B'') 0.77 0.19 0.81 0.18 0.82 0.20 0.85 0.23 0.89 0.12 0.87 0.14
  Mean Correct RT 520.65 103.83 520.01 126.21 565.78 183.42 442.82 110.75 420.52 87.35 410.74 78.63
 SST
  SSRT 255.78 155.57 250.90 174.04 292.30 156.95 215.87 75.00 211.07 79.29 192.99 84.54
  Median Correct RT 688.90 227.89 653.95 164.26 642.05 203.94 656.69 169.64 657.45 212.92 636.59 186.16
  Mean Correct RT 742.82 242.90 721.26 186.97 698.29 218.80 735.18 222.37 724.19 256.57 684.82 197.88
  SD of Correct RT 318.79 171.65 391.27 300.21 320.29 248.84 437.87 417.17 384.95 301.41 290.72 198.74

Raw means and standard deviations are reported by sex. ATX: atomoxetine; PLA: Placebo; SD: Standard Deviation; POMS: Profile of Mood States; ARCI: Addiction Research Center Inventory; DEQ: Drug Effects Questionnaire; BP: blood pressure; RT: response time (ms); SSRT: Stop-Signal Reaction-Time; RVP: Rapid Visual Processing; SST: Stop Signal Task; IMT: Immediate Memory Task.

Missing data by sex and dose visit: No missing data for women (N=10 at each dose visit); Men Placebo visit (5 missing DEQ, ARCI, Physiological; 4 missing SST, RVP; 3 missing IMT); Men 40ATX visit (2 missing RVP, SST, IMT); Men 80ATX visit (3 missing DEQ, ARCI, POMS, Physiological, Cognitive).

Statistics that did not reach at least significance level of p<0.05 are not reported (indicated by '-')

Indicates dose by sex interaction effect (uncorrected p<0.05).

2. Experimental design, materials and methods

Methods are described in detail elsewhere [1]. Participants were otherwise healthy individuals (N=39) who met diagnostic criteria for cocaine dependence in early remission (i.e., abstinent >30 days, <1 year).

In this randomized, double-blind, placebo-controlled, within-subject crossover design participants received 40 mg, 80 mg atomoxetine, and placebo treatment, one pill per day, over three test days. Test days were scheduled approximately 6 days apart. Order of treatment condition (across test days) was randomly assigned and counter-balanced across individuals.

Outcome measures included cardiovascular (heart rate, blood pressure), subjective drug effects (Drug Effects Questionnaire (DEQ) [32]; Addiction Research Center Inventory (ARCI) [33]), mood Profile of Mood States (POMS) [34], and cognitive tasks measuring memory, attention and response inhibition performance (Immediate Memory Task (IMT) [35], [36], [37]; CANTAB Rapid Visual Information Processing (RVP) [38]; CANTAB Stop Signal Task (SST) [39]).

For demographic and baseline data, men and women were compared using analysis of variance (ANOVA) for continuous, or logistic regression for categorical variables. A mixed-effect repeated-measures analysis assessed in JMP (version 11.0) for treatment effect; including a fixed main effect for treatment (placebo, 40 or 80 mg atomoxetine), a random effect for participant, and a between subject factor of sex (men, women) and sex by treatment effect interaction term. When data was collected across multiple time points, all post-pill administration time-points were included in the analyses. To account for possible carryover effects of the medication or learning/test-retest effects across testing days, analyses were re-run including test day (1,2,3) and test day interactions. Findings (i.e., significance level) remained stable with and without test day, therefore data are presented from the simpler analysis excluding day. Bonferroni corrections were applied for the number of outcomes tested within each domain (cardiovascular, subjective drug effect, mood, cognition). Reported data survive Bonferroni corrections unless otherwise stated.

Acknowledgements

We thank Stacy Minnix, Ellen Mitchell, Lance Barnes and Chris Cryan for their contributions to data collection and management.

Footnotes

Transparency document

Transparency document associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.08.011.

Transparency document. Supplementary material

Transparency document

mmc1.docx (11.6KB, docx)

.

References

  • 1.E.E. DeVito, A.I. Herman, N.S. Konkus, H. Zhang, M. Sofuoglu, Atomoxetine in abstinent cocaine users: cognitive, subjective and cardiovascular effects, Pharmacol. Biochem. Behav. (2017) 159, 2017, 55-61. doi: 10.1016/j.pbb.2017.07.002. Epub 2017 Jul 14. PubMed PMID: 28716656. (inpress). [DOI] [PMC free article] [PubMed]
  • 2.Sofuoglu M. Cognitive enhancement as a pharmacotherapy target for stimulant addiction. Addiction. 2010;105:38–48. doi: 10.1111/j.1360-0443.2009.02791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Carroll K.M., Kiluk B.D., Nich C., Babuscio T.A., Brewer J.A., Potenza M.N., Ball S.A., Martino S., Rounsaville B.J., Lejuez C.W. Cognitive function and treatment response in a randomized clinical trial of computer-based training in cognitive-behavioral therapy. Subst. Use Misuse. 2011;46:23–34. doi: 10.3109/10826084.2011.521069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kiluk B.D., Nich C., Carroll K.M. Relationship of cognitive function and the acquisition of coping skills in computer assisted treatment for substance use disorders. Drug Alcohol Depend. 2011;114:169–176. doi: 10.1016/j.drugalcdep.2010.09.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Streeter C.C., Terhune D.B., Whitfield T.H., Gruber S., Sarid-Segal O., Silveri M.M., Tzilos G., Afshar M., Rouse E.D., Tian H., Renshaw P.F., Ciraulo D.A., Yurgelun-Todd D.A. Performance on the Stroop predicts treatment compliance in cocaine-dependent individuals. Neuropsychopharmacol.: Off. Publ. Am. Coll. Neuropsychopharmacol. 2008;33:827–836. doi: 10.1038/sj.npp.1301465. [DOI] [PubMed] [Google Scholar]
  • 6.Teichner G., Horner M.D., Harvey R.T. Neuropsychological predictors of the attainment of treatment objectives in substance abuse patients. Int. J. Neurosci. 2001;106:253–263. doi: 10.3109/00207450109149753. [DOI] [PubMed] [Google Scholar]
  • 7.Fox H.C., Jackson E.D., Sinha R. Elevated cortisol and learning and memory deficits in cocaine dependent individuals: relationship to relapse outcomes. Psychoneuroendocrinology. 2009;34:1198–1207. doi: 10.1016/j.psyneuen.2009.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Fredriksen M., Halmoy A., Faraone S.V., Haavik J. Long-term efficacy and safety of treatment with stimulants and atomoxetine in adult ADHD: a review of controlled and naturalistic studies. Eur. Neuropsychopharmacol.: J. Eur. Coll. Neuropsychopharmacol. 2013;23:508–527. doi: 10.1016/j.euroneuro.2012.07.016. [DOI] [PubMed] [Google Scholar]
  • 9.Simpson D., Plosker G.L. Atomoxetine: a review of its use in adults with attention deficit hyperactivity disorder. Drugs. 2004;64:205–222. doi: 10.2165/00003495-200464020-00005. [DOI] [PubMed] [Google Scholar]
  • 10.Brenhouse H.C., Dumais K., Andersen S.L. Enhancing the salience of dullness: behavioral and pharmacological strategies to facilitate extinction of drug-cue associations in adolescent rats. Neuroscience. 2010;169:628–636. doi: 10.1016/j.neuroscience.2010.05.063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Broos N., Loonstra R., van Mourik Y., Schetters D., Schoffelmeer A.N., Pattij T., Vries T.J. De. Subchronic administration of atomoxetine causes an enduring reduction in context-induced relapse to cocaine seeking without affecting impulsive decision making. Addict. Biol. 2015;20:714–723. doi: 10.1111/adb.12168. [DOI] [PubMed] [Google Scholar]
  • 12.Economidou D., Dalley J.W., Everitt B.J. Selective norepinephrine reuptake inhibition by atomoxetine prevents cue-induced heroin and cocaine seeking. Biol. Psychiatry. 2011;69:266–274. doi: 10.1016/j.biopsych.2010.09.040. [DOI] [PubMed] [Google Scholar]
  • 13.Jordan C.J., Harvey R.C., Baskin B.B., Dwoskin L.P., Kantak K.M. Cocaine-seeking behavior in a genetic model of attention-deficit/hyperactivity disorder following adolescent methylphenidate or atomoxetine treatments. Drug Alcohol Depend. 2014;140:25–32. doi: 10.1016/j.drugalcdep.2014.04.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zlebnik N.E., Carroll M.E. Effects of the combination of wheel running and atomoxetine on cue- and cocaine-primed reinstatement in rats selected for high or low impulsivity. Psychopharmacology. 2015;232:1049–1059. doi: 10.1007/s00213-014-3744-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Cantilena L., Kahn R., Duncan C.C., Li S.H., Anderson A., Elkashef A. Safety of atomoxetine in combination with intravenous cocaine in cocaine-experienced participants. J. Addict. Med. 2012;6:265–273. doi: 10.1097/ADM.0b013e31826b767f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Stoops W.W., Blackburn J.W., Hudson D.A., Hays L.R., Rush C.R. Safety, tolerability and subject-rated effects of acute intranasal cocaine administration during atomoxetine maintenance. Drug Alcohol Depend. 2008;92:282–285. doi: 10.1016/j.drugalcdep.2007.07.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Sofuoglu M., Poling J., Hill K., Kosten T. Atomoxetine attenuates dextroamphetamine effects in humans. Am. J. Drug Alcohol Abus. 2009;35:412–416. doi: 10.3109/00952990903383961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Wetherington C.L. Sex-gender differences in drug abuse: a shift in the burden of proof? Exp. Clin. Psychopharmacol. 2007;15:411–417. doi: 10.1037/1064-1297.15.5.411. [DOI] [PubMed] [Google Scholar]
  • 19.Brady T.M., Ashley O.S. SAMHSA, Office of Applied Studies; 2005. Women in Substance Abuse Treatment: Results from the Alcohol and Drug Services Study (ADSS) http://www.samhsa.gov/data/womentx/womentx.pdf. [Google Scholar]
  • 20.Lynch W.J., Roth M.E., Carroll M.E. Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology. 2002;164:121–137. doi: 10.1007/s00213-002-1183-2. [DOI] [PubMed] [Google Scholar]
  • 21.McCance-Katz E.F., Carroll K.M., Rounsaville B.J. Gender differences in treatment-seeking cocaine abusers--implications for treatment and prognosis. Am. J. Addict./Am. Acad. Psychiatr. Alcohol. Addict. 1999;8:300–311. doi: 10.1080/105504999305703. [DOI] [PubMed] [Google Scholar]
  • 22.Becker J.B., Hu M. Sex differences in drug abuse. Front. Neuroendocr. 2008;29:36–47. doi: 10.1016/j.yfrne.2007.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.DeVito E.E., Herman A.I., Waters A.J., Valentine G.W., Sofuoglu M. Subjective, physiological, and cognitive responses to intravenous nicotine: effects of sex and menstrual cycle phase. Neuropsychopharmacol.: Off. Publ. Am. Coll. Neuropsychopharmacol. 2014;39:1431–1440. doi: 10.1038/npp.2013.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.DeVito E.E., Babuscio T.A., Nich C., Ball S.A., Carroll K.M. Gender differences in clinical outcomes for cocaine dependence: randomized clinical trials of behavioral therapy and disulfiram. Drug Alcohol Depend. 2014;145:156–167. doi: 10.1016/j.drugalcdep.2014.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Dackis C.A., Kampman K.M., Lynch K.G., Plebani J.G., Pettinati H.M., Sparkman T., O'Brien C.P. A double-blind, placebo-controlled trial of modafinil for cocaine dependence. J. Subst. Abus. Treat. 2012;43:303–312. doi: 10.1016/j.jsat.2011.12.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Pettinati H.M., Kampman K.M., Lynch K.G., Suh J.J., Dackis C.A., Oslin D.W., O'Brien C.P. Gender differences with high-dose naltrexone in patients with co-occurring cocaine and alcohol dependence. J. Subst. Abus. Treat. 2008;34:378–390. doi: 10.1016/j.jsat.2007.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Marchant B.K., Reimherr F.W., Halls C., Williams E.D., Strong R.E., Kondo D., Soni P., Robison R.J. Long-term open-label response to atomoxetine in adult ADHD: influence of sex, emotional dysregulation, and double-blind response to atomoxetine. Atten. Deficit Hyperact. Disord. 2011;3:237–244. doi: 10.1007/s12402-011-0054-2. [DOI] [PubMed] [Google Scholar]
  • 28.Wehmeier P.M., Schacht A., Escobar R., Hervas A., Dickson R. Health-related quality of life in ADHD: a pooled analysis of gender differences in five atomoxetine trials. Atten. Defic. Hyperact Disord. 2012;4:25–35. doi: 10.1007/s12402-011-0070-2. [DOI] [PubMed] [Google Scholar]
  • 29.Smethells J.R., Swalve N.L., Eberly L.E., Carroll M.E. Sex differences in the reduction of impulsive choice (delay discounting) for cocaine in rats with atomoxetine and progesterone. Psychopharmacology. 2016 doi: 10.1007/s00213-016-4345-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Swalve N., Smethells J.R., Zlebnik N.E., Carroll M.E. Sex differences in reinstatement of cocaine-seeking with combination treatments of progesterone and atomoxetine. Pharmacol. Biochem. Behav. 2016;145:17–23. doi: 10.1016/j.pbb.2016.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Verplaetse T.L., Weinberger A.H., Smith P.H., Cosgrove K.P., Mineur Y.S., Picciotto M.R., Mazure C.M., McKee S.A. Targeting the noradrenergic system for gender-sensitive medication development for tobacco dependence. Nicotine Tob. Res. 2015;17:486–495. doi: 10.1093/ntr/ntu280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Jensen K.P., DeVito E.E., Herman A.I., Valentine G.W., Gelernter J., Sofuoglu M., CHRNA5 Smoking A. Risk variant decreases the aversive effects of nicotine in humans. Neuropsychopharmacol.: Off. Publ. Am. Coll. Neuropsychopharmacol. 2015;40:2813–2821. doi: 10.1038/npp.2015.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Martin W.R., Sloan J.W., Sapira J.D., Jasinski D.R. Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin. Pharmacol. Ther. 1971;12:245–258. doi: 10.1002/cpt1971122part1245. [DOI] [PubMed] [Google Scholar]
  • 34.McNair D.M., Lorr M., Droppleman L.F. Educational and Industrial Testing Services; San Diego, CA: 1971. Manual for the Profile of Mood States. [Google Scholar]
  • 35.Dougherty D.M., Marsh D.M., Moeller F.G., Chokshi R.V., Rosen V.C. Effects of moderate and high doses of alcohol on attention, impulsivity, discriminability, and response bias in immediate and delayed memory task performance. Alcohol. Clin. Exp. Res. 2000;24:1702–1711. [PubMed] [Google Scholar]
  • 36.Dougherty D.M., Mathias C.W., Marsh D.M., Greve K.W., Bjork J.M., Moeller F.G. Commission error rates on a continuous performance test are related to deficits measured by the Benton Visual Retention Test. Assessment. 2003;10:3–12. doi: 10.1177/1073191102250526. [DOI] [PubMed] [Google Scholar]
  • 37.Dougherty D.M., Mathias C.W., Tester M.L., Marsh D.M. Age at first drink relates to behavioral measures of impulsivity: the immediate and delayed memory tasks. Alcohol. Clin. Exp. Res. 2004;28:408–414. doi: 10.1097/01.alc.0000117834.53719.a8. [DOI] [PubMed] [Google Scholar]
  • 38.Sahakian B.J., Owen A.M. Computerized assessment in neuropsychiatry using CANTAB: discussion paper. J. R. Soc. Med. 1992;85:399–402. [PMC free article] [PubMed] [Google Scholar]
  • 39.Aron A.R., Fletcher P.C., Bullmore E.T., Sahakian B.J., Robbins T.W. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat. Neurosci. 2003;6:115–116. doi: 10.1038/nn1003. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Transparency document

mmc1.docx (11.6KB, docx)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES