Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1992 Dec;11(12):4323–4328. doi: 10.1002/j.1460-2075.1992.tb05531.x

Cytokine effects of CD23 are mediated by an epitope distinct from the IgE binding site.

M D Mossalayi 1, M Arock 1, G Delespesse 1, H Hofstetter 1, B Bettler 1, A H Dalloul 1, E Kilchherr 1, F Quaaz 1, P Debré 1, M Sarfati 1
PMCID: PMC557005  PMID: 1385115

Abstract

Human CD23 and its soluble forms (sCD23) display various biological activities, in addition to their IgE binding function (IgE/BF). The IgE binding domain was recently mapped to residues between Cys163 and Cys282 but its involvement in IgE-independent, CD23 functions remains unknown. In order to clarify this point, a series of N-terminal, C-terminal and internal deletion mutants of CD23 or sCD23 were expressed in CHO cells and tested for their ability (i) to bind to IgE, (ii) to induce colony formation by human myeloid precursor cells, (iii) to promote mature T cell marker expression by early prothymocytes, and (iv) to regulate IgE synthesis. The present study indicates that cytokine activities require the presence of Cys288, while this amino acid is not necessary for IgE/BF. Blocking experiments using various conformation-sensitive monoclonal antibodies further suggest that active epitope(s) of CD23 in cytokine assays is(are) distinct from those involved in IgE/BF.

Full text

PDF
4323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertho J. M., Fourcade C., Dalloul A. H., Debré P., Mossalayi M. D. Synergistic effect of interleukin 1 and soluble CD23 on the growth of human CD4+ bone marrow-derived T cells. Eur J Immunol. 1991 Apr;21(4):1073–1076. doi: 10.1002/eji.1830210433. [DOI] [PubMed] [Google Scholar]
  2. Bertho J. M., Mossalayi M. D., Dalloul A. H., Mouterde G., Debre P. Isolation of an early T-cell precursor (CFU-TL) from human bone marrow. Blood. 1990 Mar 1;75(5):1064–1068. [PubMed] [Google Scholar]
  3. Bettler B., Maier R., Rüegg D., Hofstetter H. Binding site for IgE of the human lymphocyte low-affinity Fc epsilon receptor (Fc epsilon RII/CD23) is confined to the domain homologous with animal lectins. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7118–7122. doi: 10.1073/pnas.86.18.7118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bettler B., Texido G., Raggini S., Rüegg D., Hofstetter H. Immunoglobulin E-binding site in Fc epsilon receptor (Fc epsilon RII/CD23) identified by homolog-scanning mutagenesis. J Biol Chem. 1992 Jan 5;267(1):185–191. [PubMed] [Google Scholar]
  5. Bonnefoy J. Y., Aubry J. P., Peronne C., Wijdenes J., Banchereau J. Production and characterization of a monoclonal antibody specific for the human lymphocyte low affinity receptor for IgE: CD 23 is a low affinity receptor for IgE. J Immunol. 1987 May 1;138(9):2970–2978. [PubMed] [Google Scholar]
  6. Brandley B. K., Swiedler S. J., Robbins P. W. Carbohydrate ligands of the LEC cell adhesion molecules. Cell. 1990 Nov 30;63(5):861–863. doi: 10.1016/0092-8674(90)90487-y. [DOI] [PubMed] [Google Scholar]
  7. Conrad D. H. Low affinity IgE receptors (Fc epsilon RII). Clin Rev Allergy. 1989 Summer;7(2):165–192. doi: 10.1007/BF02914465. [DOI] [PubMed] [Google Scholar]
  8. Dalloul A. H., Fourcade C., Debré P., Mossalayi M. D. Thymic epithelial cell-derived supernatants sustain the maturation of human prothymocytes: involvement of interleukin 1 and CD23. Eur J Immunol. 1991 Oct;21(10):2633–2636. doi: 10.1002/eji.1830211050. [DOI] [PubMed] [Google Scholar]
  9. Delespesse G., Suter U., Mossalayi D., Bettler B., Sarfati M., Hofstetter H., Kilcherr E., Debre P., Dalloul A. Expression, structure, and function of the CD23 antigen. Adv Immunol. 1991;49:149–191. doi: 10.1016/s0065-2776(08)60776-2. [DOI] [PubMed] [Google Scholar]
  10. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem. 1988 Jul 15;263(20):9557–9560. [PubMed] [Google Scholar]
  11. Gonzalez-Molina A., Spiegelberg H. L. Binding of IgE myeloma proteins to human cultured lymphoblastoid cells. J Immunol. 1976 Nov;117(5 PT2):1838–1845. [PubMed] [Google Scholar]
  12. Gordon J., Flores-Romo L., Cairns J. A., Millsum M. J., Lane P. J., Johnson G. D., MacLennan I. C. CD23: a multi-functional receptor/lymphokine? Immunol Today. 1989 May;10(5):153–157. doi: 10.1016/0167-5699(89)90171-0. [DOI] [PubMed] [Google Scholar]
  13. Ikuta K., Takami M., Kim C. W., Honjo T., Miyoshi T., Tagaya Y., Kawabe T., Yodoi J. Human lymphocyte Fc receptor for IgE: sequence homology of its cloned cDNA with animal lectins. Proc Natl Acad Sci U S A. 1987 Feb;84(3):819–823. doi: 10.1073/pnas.84.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kikutani H., Inui S., Sato R., Barsumian E. L., Owaki H., Yamasaki K., Kaisho T., Uchibayashi N., Hardy R. R., Hirano T. Molecular structure of human lymphocyte receptor for immunoglobulin E. Cell. 1986 Dec 5;47(5):657–665. doi: 10.1016/0092-8674(86)90508-8. [DOI] [PubMed] [Google Scholar]
  15. Kikutani H., Suemura M., Owaki H., Nakamura H., Sato R., Yamasaki K., Barsumian E. L., Hardy R. R., Kishimoto T. Fc epsilon receptor, a specific differentiation marker transiently expressed on mature B cells before isotype switching. J Exp Med. 1986 Nov 1;164(5):1455–1469. doi: 10.1084/jem.164.5.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Letellier M., Nakajima T., Delespesse G. IgE receptor on human lymphocytes. IV. Further analysis of its structure and of the role of N-linked carbohydrates. J Immunol. 1988 Oct 1;141(7):2374–2381. [PubMed] [Google Scholar]
  17. Letellier M., Nakajima T., Pulido-Cejudo G., Hofstetter H., Delespesse G. Mechanism of formation of human IgE-binding factors (soluble CD23): III. Evidence for a receptor (Fc epsilon RII)-associated proteolytic activity. J Exp Med. 1990 Sep 1;172(3):693–700. doi: 10.1084/jem.172.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu Y. J., Cairns J. A., Holder M. J., Abbot S. D., Jansen K. U., Bonnefoy J. Y., Gordon J., MacLennan I. C. Recombinant 25-kDa CD23 and interleukin 1 alpha promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur J Immunol. 1991 May;21(5):1107–1114. doi: 10.1002/eji.1830210504. [DOI] [PubMed] [Google Scholar]
  19. Lüdin C., Hofstetter H., Sarfati M., Levy C. A., Suter U., Alaimo D., Kilchherr E., Frost H., Delespesse G. Cloning and expression of the cDNA coding for a human lymphocyte IgE receptor. EMBO J. 1987 Jan;6(1):109–114. doi: 10.1002/j.1460-2075.1987.tb04726.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mossalayi M. D., Arock M., Bertho J. M., Blanc C., Dalloul A. H., Hofstetter H., Sarfati M., Delespesse G., Debré P. Proliferation of early human myeloid precursors induced by interleukin-1 and recombinant soluble CD23. Blood. 1990 May 15;75(10):1924–1927. [PubMed] [Google Scholar]
  21. Mossalayi M. D., Lecron J. C., Dalloul A. H., Sarfati M., Bertho J. M., Hofstetter H., Delespesse G., Debre P. Soluble CD23 (Fc epsilon RII) and interleukin 1 synergistically induce early human thymocyte maturation. J Exp Med. 1990 Mar 1;171(3):959–964. doi: 10.1084/jem.171.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pardo J. P., Slayman C. W. Cysteine 532 and cysteine 545 are the N-ethylmaleimide-reactive residues of the Neurospora plasma membrane H+-ATPase. J Biol Chem. 1989 Jun 5;264(16):9373–9379. [PubMed] [Google Scholar]
  23. Rector E., Nakajima T., Rocha C., Duncan D., Lestourgeon D., Mitchell R. S., Fischer J., Sehon A. H., Delespesse G. Detection and characterization of monoclonal antibodies specific to IgE receptors on human lymphocytes by flow cytometry. Immunology. 1985 Jul;55(3):481–488. [PMC free article] [PubMed] [Google Scholar]
  24. Sarfati M., Delespesse G. Possible role of human lymphocyte receptor for IgE (CD23) or its soluble fragments in the in vitro synthesis of human IgE. J Immunol. 1988 Oct 1;141(7):2195–2199. [PubMed] [Google Scholar]
  25. Sarfati M., Rector E., Wong K., Rubio-Trujillo M., Sehon A. H., Delespesse G. In vitro synthesis of IgE by human lymphocytes. II. Enhancement of the spontaneous IgE synthesis by IgE-binding factors secreted by RPMI 8866 lymphoblastoid B cells. Immunology. 1984 Oct;53(2):197–205. [PMC free article] [PubMed] [Google Scholar]
  26. Stanley E. R., Bartocci A., Patinkin D., Rosendaal M., Bradley T. R. Regulation of very primitive, multipotent, hemopoietic cells by hemopoietin-1. Cell. 1986 Jun 6;45(5):667–674. doi: 10.1016/0092-8674(86)90781-6. [DOI] [PubMed] [Google Scholar]
  27. Stoolman L. M. Adhesion molecules controlling lymphocyte migration. Cell. 1989 Mar 24;56(6):907–910. doi: 10.1016/0092-8674(89)90620-x. [DOI] [PubMed] [Google Scholar]
  28. Suter U., Bastos R., Hofstetter H. Molecular structure of the gene and the 5'-flanking region of the human lymphocyte immunoglobulin E receptor. Nucleic Acids Res. 1987 Sep 25;15(18):7295–7308. doi: 10.1093/nar/15.18.7295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vercelli D., Helm B., Marsh P., Padlan E., Geha R. S., Gould H. The B-cell binding site on human immunoglobulin E. Nature. 1989 Apr 20;338(6217):649–651. doi: 10.1038/338649a0. [DOI] [PubMed] [Google Scholar]
  30. de Villartay J. P., Mossalayi D., de Chasseval R., Dalloul A., Debré P. The differentiation of human pro-thymocytes along the TCR-alpha/beta pathway in vitro is accompanied by the site-specific deletion of the TCR-delta locus. Int Immunol. 1991 Dec;3(12):1301–1305. doi: 10.1093/intimm/3.12.1301. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES