Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1984 Dec 20;3(13):3075–3078. doi: 10.1002/j.1460-2075.1984.tb02261.x

Purified phytochrome influences in vitro transcription in rye nuclei

Dietrich Ernst 1, Dieter Oesterhelt 1
PMCID: PMC557820  PMID: 16453588

Abstract

Nuclei isolated from dark-grown seedlings of rye by Percoll density gradient centrifugation incorporate radioactive UTP into RNA. Transcription is reduced to ˜50% by the addition of α-amanitin (5 μg/ml) and correspondingly a decrease of the label in the mRNA fraction is seen on agarose gels. Purified 124-kd phytochrome in its far-red absorbing form (Pfr) increases the incorporation of labeled UTP by 40-70% above untreated controls, whereas pre-illumination with far-red light or addition of α-amanitin prevents this effect. Nuclei isolated from light-grown seedlings show only an increase of ˜5% upon addition of Pfr. Other proteins such as bovine serum albumin or cytochrome c do not enhance the rate of transcription. We conclude that the accumulation of mRNA species is influenced by phytochrome in its Pfr form.

Keywords: nuclei, phytochrome, rye, transcription

Full text

PDF
3078

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apel K. Phytochrome-induced appearance of mRNA activity for the apoprotein of the light-harvesting chlorophyll a/b protein of barley (Hordeum vulgare). Eur J Biochem. 1979 Jun;97(1):183–188. doi: 10.1111/j.1432-1033.1979.tb13101.x. [DOI] [PubMed] [Google Scholar]
  2. Apel K. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem. 1981 Nov;120(1):89–93. doi: 10.1111/j.1432-1033.1981.tb05673.x. [DOI] [PubMed] [Google Scholar]
  3. Colbert J. T., Hershey H. P., Quail P. H. Autoregulatory control of translatable phytochrome mRNA levels. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2248–2252. doi: 10.1073/pnas.80.8.2248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cuming A. C., Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Control of messenger RNA activity by light. Eur J Biochem. 1981 Aug;118(1):71–80. doi: 10.1111/j.1432-1033.1981.tb05487.x. [DOI] [PubMed] [Google Scholar]
  5. Gallagher T. F., Ellis R. J. Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J. 1982;1(12):1493–1498. doi: 10.1002/j.1460-2075.1982.tb01345.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gollmer I., Apel K. The phytochrome-controlled accumulation of mRNA sequences encoding the light-harvesting chlorophyll a/b protein of barley (Hordeum vulgare L.). Eur J Biochem. 1983 Jun 15;133(2):309–313. doi: 10.1111/j.1432-1033.1983.tb07463.x. [DOI] [PubMed] [Google Scholar]
  7. Jendrisak J., Guilfoyle T. J. Eukaryotic RNA polymerase: comparative subunit structures, immunological properties, and alpha-amanitin sensitivities of the class II enzymes from higher plants. Biochemistry. 1978 Apr 4;17(7):1322–1327. doi: 10.1021/bi00600a029. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Litts J. C., Kelly J. M., Lagarias J. C. Structure-function studies on phytochrome. Preliminary characterization of highly purified phytochrome from Avena sativa enriched in the 124-kilodalton species. J Biol Chem. 1983 Sep 25;258(18):11025–11031. [PubMed] [Google Scholar]
  10. Livingston D. M. Immunoaffinity chromatography of proteins. Methods Enzymol. 1974;34:723–731. doi: 10.1016/s0076-6879(74)34094-3. [DOI] [PubMed] [Google Scholar]
  11. Quail P. H., Schäfer E., Marmé D. Turnover of phytochrome in pumpkin cotyledons. Plant Physiol. 1973 Aug;52(2):128–131. doi: 10.1104/pp.52.2.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sasaki Y., Ishiye M., Sakihama T., Kamikubo T. Light-induced increase of mRNA activity coding for the small subunit of ribulose-1,5-bisphosphate carboxylase. J Biol Chem. 1981 Mar 10;256(5):2315–2320. [PubMed] [Google Scholar]
  13. Sasaki Y., Sakihama T., Kamikubo T., Shinozaki K. Phytochrome-mediated regulation of two mRNAs, encoded by nuclei and chloroplasts of ribulose-1,5-bisphosphate carboxylase/oxygenase. Eur J Biochem. 1983 Jul 1;133(3):617–620. doi: 10.1111/j.1432-1033.1983.tb07507.x. [DOI] [PubMed] [Google Scholar]
  14. Schäfer E., Lassig T. U., Schopfer P. Photocontrol of phytochrome destruction in grass seedlings. The influence of wavelength and irradiance. Photochem Photobiol. 1975 Nov;22(5):193–202. doi: 10.1111/j.1751-1097.1975.tb06736.x. [DOI] [PubMed] [Google Scholar]
  15. Silverthorne J., Tobin E. M. Demonstration of transcriptional regulation of specific genes by phytochrome action. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1112–1116. doi: 10.1073/pnas.81.4.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stiekema W. J., Wimpee C. F., Silverthorne J., Tobin E. M. Phytochrome Control of the Expression of Two Nuclear Genes Encoding Chloroplast Proteins in Lemna gibba L. G-3. Plant Physiol. 1983 Jul;72(3):717–724. doi: 10.1104/pp.72.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vierstra R. D., Quail P. H. Native phytochrome: Inhibition of proteolysis yields a homogeneous monomer of 124 kilodaltons from Avena. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5272–5276. doi: 10.1073/pnas.79.17.5272. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES