Skip to main content
Reproductive Medicine and Biology logoLink to Reproductive Medicine and Biology
. 2017 Apr 9;16(2):206–227. doi: 10.1002/rmb2.12030

Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure

Ryo Maekawa 1,, Toshiaki Taketani 1, Yumiko Mihara 1, Shun Sato 1, Maki Okada 1, Isao Tamura 1, Kosuke Jozaki 1, Takuya Kajimura 1, Hiromi Asada 1, Hiroshi Tamura 1, Akihisa Takasaki 2, Norihiro Sugino 1
PMCID: PMC5661823  PMID: 29259471

Abstract

Aim

Although a thin endometrium has been well recognized as a critical factor in implantation failure, little information is available regarding the molecular mechanisms. The present study investigated these mechanisms by using genome‐wide mRNA expression analysis.

Methods

Thin and normal endometrial tissue was obtained from a total of six women during the mid‐luteal phase of the menstrual cycle. The transcriptomes were analyzed with a microarray. Differentially expressed genes were classified according to Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

Results

The study identified 318 up‐regulated genes and 322 down‐regulated genes in the thin endometrium, compared to the control endometrium. The GO and KEGG pathway analyses indicated that the thin endometrium possessed aberrantly activated immunity and natural killer cell cytotoxicity that was accompanied by an increased number of inflammatory cytokines, such as IFN‐γ. Various genes that were related to metabolism and anti‐oxidative stress were down‐regulated in the thin endometrium.

Conclusion

Implantation failure in the thin endometrium appears to be associated with an aberrantly activated inflammatory environment and aberrantly decreased response to oxidative stress.

Keywords: implantation failure, infertility, oxidative stress, thin endometrium, uterine natural killer cells

1. Introduction

Adequate growth of the endometrium is indispensable for a successful pregnancy. Women with thin endometria have lower pregnancy rates, largely related to implantation failure.1, 2, 3, 4, 5, 6 The authors recently found high blood impedance in the uterine radial artery in patients with a thin endometrium4 and that vitamin E, L‐arginine, and sildenafil citrate treatments, which increase the blood flow of the uterine radial artery, helped to thicken the endometrium.7 This suggests that a low level of blood flow to the endometrium reduces its thickness, although it remains unclear why this would result in implantation failure. In order to answer this question, the authors compared the transcriptomes of thin and normal endometrial tissues with a microarray.

2. Materials and Methods

2.1. Tissue sampling

In total, six women with a history of infertility were recruited into the study. All the patients were diagnosed with unexplained infertility after excluding any obvious cause of infertility, such as uterine fibroid, endometriosis, tubal obstruction, and uterine malformation. The patients were classified into two groups, based on the endometrial thickness and level of blood flow impedance in the uterine radial artery. The endometrial thickness was measured at the maximal distance between each myometrial–endometrial interface by using vaginal ultrasonography in the mid‐luteal phase. The level of blood flow impedance in the uterine radial artery was measured as a resistance index with a pulsed Doppler. The cut‐off value of the endometrial thickness and level of blood flow impedance were defined as <8 mm and ≥0.81 mm, respectively, based on the authors' previous studies.4, 7, 8 Three patients had a normal‐thickness endometrium (endometrial thickness ≥8 mm) and three patients had a thin endometrium (Thin; endometrial thickness <8 mm) (Table 1). The endometrial thickness of the normal‐thickness endometrium group and the thin‐endometrium group was 9.53±0.65 and 6.33±0.68 mm, respectively. The difference in the endometrial thickness was significant (P=.0042). A high level of blood flow impedance in the uterine radial artery was confirmed only in the patients with a thin endometrium (0.86±0.04 vs 0.76±0.03; P=.027). The differences between the groups in age (31.7±3.21 vs 31.3±5.13 years), menstrual cycles (3.00±4.58 and 28.3±1.52 days), and serum levels of estradiol (171.3±16.6 vs 182.1±72.1 pg/mL) and progesterone (15.4±2.3 vs 21.5±7.6 μg/mL) were not significant. The endometrial tissue was obtained during the mid‐luteal phase of the menstrual cycle. Samples of endometrial curettings were washed with saline to remove the blood, immersed in liquid nitrogen, and stored at −80°C until RNA extraction.

Table 1.

Cases of normal‐thickness and thin endometrium

Group Age (years) Menstrual cycle (days) Endometrial thickness (mm) Sampling date (from LMP) Estradiol (pg/mL) Progesterone (μg/mL) Blood flow impedance (RI)
Control 1 34 26 9.5 20 166.0 18.0 0.823
Control 2 33 29 1.2 22 189.9 14.7 0.876
Control 3 28 35 8.9 29 158.0 13.6 0.893
Thin 1 37 27 7.1 20 247.5 26.4 0.759
Thin 2 30 30 5.8 22 193.9 25.3 0.750
Thin 3 27 28 6.1 21 104.8 12.7 0.781

Control, normal‐thickness endometrium; LMP, last menstrual period; thin, thin endometrium.

2.2. Transcriptome analysis

The total RNAs were isolated from the tissues by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and they were reverse‐transcribed by using a QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA, USA), according to the manufacturer's protocol. The transcriptome analysis gene expression was analyzed by using a GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, USA) that contained 54 120 probes supporting 18 599 genes, as previously reported.9, 10 Briefly, the target cDNA was prepared from 200 ng of total RNA with the Ambion WT Expression kit (Ambion, Austin, TX, USA) and the Affymetrix GeneChip WT Terminal Labeling kit (Affymetrix). Hybridization to the microarrays, washing, staining, and scanning were performed by using the GeneChip system (Affymetrix), which was composed of the Scanner 3000 7G Workstation Fluidics 450 (Affymetrix) and the Hybridization Oven 645 (Affymetrix). The scanned image data were processed by using a gene expression analysis with the Partek Genomics Suite 6.5 software program (Partech, Munster, Germany). Then, 2000 randomly selected genes were used for the hierarchical clustering analysis and principal component analysis (PCA). Those genes whose expressions in the thin and normal endometrium differed by at least a factor of 2 and that had a false discovery rate of <.05 were judged as showing a significant difference.

2.3. Bioinformatics

A hierarchical clustering and a PCA were conducted in R v. 3.2.4.11 DAVID Bioinformatics Resources v. 6.7 (http://david.abcc.ncifcrf.gov/home.jsp) was used to determine whether the functional annotation of the differentially expressed genes was enriched for specific Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.12 Statistical significance was assessed with a modified Fisher's exact test. In the GO and KEGG analyses, P<.01 and P<.05, respectively, were considered to indicate significant enrichment. All the information from the GO and KEGG pathway analyses is shown in Tables S1S4.

3. Results

3.1. Comparison of the whole mRNA expression profiles of the normal and thin endometrial tissues

Figure 1 shows the mRNA expression profiles in the thin and normal endometrial tissues (n=3 for each). The hierarchical dendrogram clearly separated the thin and the control endometria. The PCA (Figure 2) also clearly separated the thin and the control endometria.

Figure 1.

Figure 1

Heat map and hierarchical clustering of the mRNA expression profiles of patients with thin and normal (control) endometria. The mRNA expression profiles of the thin endometrium (Thin 1, Thin 2, and Thin 3) and the normal‐thickness endometrium (Control 1, Control 2, and Control 3) were compared. The x‐axis represents the samples and the y‐axis represents the gene clusters. The heat map in hierarchical clustering analysis indicates the mRNA expression levels from low (red) to high (yellow)

Figure 2.

Figure 2

Principal component analysis of the mRNA expression profiles of patients with thin and normal (control) endometria. The mRNA expression profiles of the thin endometrium (Thin 1, Thin 2, and Thin 3) and the normal‐thickness endometrium (Control 1, Control 2, and Control 3) were compared. The y‐axis and the x‐axis show the principal component numbers, respectively

3.2. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the up‐regulated genes in the thin endometrium

In the thin‐endometrium group, 318 genes were up‐regulated and 322 genes were down‐regulated, compared to the control endometrium group (Tables S5 and S6). The up‐regulated genes in the thin endometrium were related to immunity processes, such as the “response to external stimulus,” “defense response,” “leukocyte mediated immunity,” “immune response,” “immune effector process,” and “regulation of immune system process” (Tables 2 and S1). These GO terms included genes for interferon gamma (IFN‐γ), cytotoxic T‐lymphocyte proteinase 1 (GZMA) and 2 (GZMB), tumor necrosis factor ligand superfamily member 6 (FASLG), and tumor necrosis factor alpha (TNF‐α)‐induced genes, such as TNF‐α‐induced protein 2 (TNFAIP2) and 6 (TNFAIP6).

Table 2.

Gene ontology analysis for the genes that were up‐regulated in the thin endometrium

Category Term Count P value Gene
GOTERM_BP_FAT Response to external stimulus 70 1.16E‐09 ARSB, FGF18, NRP1, MMP7,FASLG, PMAIP1, FOS, CD96, MYOCD, APOD, HPSE, RNASE7,IFNG, SLC2A1, CALCRL, CFI, LBP, MX1, ANGPT2, FCGR3B, F11, ZFP36, TRPM8, KIF5A, SOCS3, GNLY, PIM1, FOSB, PLAUR,TNFAIP6, SSTR2, THBD, ADM, IL20RB, TREM1, DPF3, PRF1, RBP1, ASS1, CCR1, STATH, CXCL2, GAST, TRDC, CCL4, IRAK3, RAC2, INPP5F, ARNTL2, BHLHE40, PTPRC, ST6GAL1, SLC8A1, VAV3, AIMP1, CFB, LMCD1, NR4A1, NR4A3, COTL1, PLAC8, SOD2, CORO1A, CD55, SLC7A2, CXCL13, CMTM7, CP, XCL1, HTR2A
GOTERM_BP_FAT Defense response 56 3.70E‐09 KLRC2, IL19, PMAIP1, FOS, CD96, APOD, RNASE7,IFNG, VNN1, CALCRL, CFI, LBP, MX1, KLRD1, FCGR3B, DPP4, ZFP36, EGR1, NFKBIZ, SOCS3, GNLY,GZMB, CD84,TNFAIP6, OR2H2, CAMK4, ADM, IL20RB, TREM1, KIR3DL1, KIR2DL4, KIR3DL2, DPF3, PRF1, ASS1, CCR1, CXCL2, STATH, TRDC, C1S, CCL4, IRAK3, RASGRP1, BLNK, PTPRC, AIMP1, CFB, LMCD1, COTL1, PLAC8, CD55, CORO1A, SLC7A2, CXCL13, C1RL, XCL1
GOTERM_BP_FAT Leukocyte mediated immunity 21 1.62E‐07 PTPRC, KLRC2,GZMB, TRDC, C1S, NR4A3, CD84, CD96, CORO1A, CD55, RAC2, CAMK4, IL20RB, RASGRP1,IFNG, C1RL, TREM1, CFI, XCL1, KLRD1, KIR3DL1
GOTERM_BP_FAT Immune response 50 1.99E‐07 PRF1, KLRC2, ASS1, CCR1, IL19, CXCL2,FASLG, C1S, TRDC, ZEB1, CCL4, CD96, IRAK3, FOS, RAC2, RNASE7, RASGRP1,IFNG, VNN1, CFI, LBP, MX1, FCGR3B, KLRD1, BLNK, EGR1, PTPRC, ST6GAL1, VAV3, CFB, SOCS3,GZMA,GZMB, NR4A3, PRKCB, CTSW, CD84, CD38, CORO1A, CD55, MYO10, RGS1, IL20RB, ADM, CAMK4, CXCL13, C1RL, TREM1, XCL1, KIR3DL1
GOTERM_BP_FAT Immune effector process 34 2.07E‐07 DPF3, PRF1, RBP4, KLRC2, PMAIP1, TRDC, C1S, CD96, IRAK3, RAC2, RASGRP1,IFNG, LBP, CFI, MX1, FCGR3B, KLRD1, PTPRC, VAV3, AIMP1, CFB, LMCD1,GZMB, NR4A3, CD84, MYO10, CD55, CORO1A, IL20RB, CAMK4, C1RL, TREM1, XCL1, KIR3DL1
GOTERM_BP_FAT Regulation of immune system process 46 1.96E‐06 DPF3, RBP4, RBP1, CCR1, CXCL2, C1S, TRDC, ZEB1, CCL4, FOS, IRAK3, CD96, CDKN2A, RAC2, APOD, RASGRP1,IFNG, VNN1, LBP, CFI, FCGR3B, KLRD1, DPP4, ZFP36, PTPRC, VAV3, SOCS3, CFB, LMCD1, NR4A3, PRKCB, CD84, CD38, CD55, MYO10, CORO1A, CAMK4, IL20RB, SLC7A2, CXCL13, C1RL, TREM1, XCL1, KIR3DL1, KIR2DL4, KIR3DL2
GOTERM_CC_FAT Extracellular space 47 2.70E‐06 RBP4, FGF18, NRP1, CXCL2, IL19, MMP7,FASLG, GAST, C1S, TRDC, SFN, CCL4, MTHFD2, APOD,IFNG, SLC2A1, LBP, CFI, ANGPT2, QSOX1, SRGN, F11, AIMP1, CFB, GNLY, HSPG2, LMCD1, IGFALS, COL25A1, CTSW, PROM1, MMP10,TNFAIP6, DKK1, THBD, ADM, SERPINB5, CXCL13, FABP3, C1RL, CMTM7, VCAN, IGFBP1, CP, XCL1,TNFAIP2, HABP2
GOTERM_BP_FAT Vasculature development 26 5.11E‐06 FGFR2, ZFAND5, FGF18, NRP1, LEPR,FASLG, APOD, MYOCD, HPSE,IFNG, ROBO4, CALCRL, ANGPT2, THBS2, EGR1, VAV3, AIMP1, SOCS3, HSPG2, NR4A1, PRKCB, ADM, CXCL13, SIX1, HIF3A,TNFAIP2
GOTERM_BP_FAT Leukocyte activation 29 7.06E‐06 PRF1, LEPR, ZEB1, TRDC, CDKN2A, RAC2, RASGRP1,IFNG, VNN1, LBP, DPP4, BLNK, EGR1, PTPRC, IL2RB, VAV3, IKZF1, DOCK8, NR4A3, PRKCB, CD84, CD38, CORO1A, CD55, IL20RB, CAMK4, SLC7A2, CMTM7, XCL1
GOTERM_BP_FAT Lymphocyte mediated immunity 16 1.17E‐05 PTPRC, KLRC2,GZMB, TRDC, C1S, CD96, CORO1A, CD55, IL20RB, RASGRP1,IFNG, C1RL, CFI, XCL1, KLRD1, KIR3DL1
GOTERM_BP_FAT Inflammatory response 26 1.19E‐05 ZFP36, NFKBIZ, AIMP1, ASS1, SOCS3, CFB, CCR1, IL19, CXCL2, CCL4, FOS, CD96,TNFAIP6, CD55, CAMK4, IL20RB, APOD, SLC7A2, CXCL13, RASGRP1, VNN1, LBP, CFI, CALCRL, XCL1, BLNK
GOTERM_BP_FAT Leukocyte migration 19 1.42E‐05 VAV3, AIMP1, CCR1, CXCL2, DOCK8, CCL4, MMP1, SLC7A11, CD84, CORO1A, THBD, RAC2, APOD, CXCL13,IFNG, TREM1, LBP, XCL1, ANGPT2
GOTERM_BP_FAT Locomotion 45 1.59E‐05 ARSB, ZFAND5, FGF18, NRP1, CCR1, CXCL2, FERMT1, CCL4, MMP1, DNAH6, NPHP4, RAC2, APOD,IFNG, ROBO4, INPP5F, LBP, DEPDC1B, ANGPT2, DPP4, PTPRC, SLC8A1, ST6GAL1, SATB2, S100P, VAV3, AIMP1, KIF5A, NR4A1, DOCK7, DOCK8, NR4A3, SLC7A11, PLAUR, CD84, MMP10,TNFAIP6, CORO1A, THBD, CXCL13, SIX1, CMTM7, VCAN, TREM1, XCL1
GOTERM_BP_FAT Cell activation 32 1.61E‐05 PRF1, LEPR, ZEB1, TRDC, CDKN2A, RAC2, MYOCD, RASGRP1,IFNG, VNN1, LBP, DPP4, BLNK, EGR1, PTPRC, IL2RB, VAV3, IKZF1, DOCK8, NR4A3, SLC7A11, PRKCB, CD84, CD38, CORO1A, CD55, THBD, IL20RB, CAMK4, SLC7A2, CMTM7, XCL1
GOTERM_BP_FAT Regulation of response to external stimulus 30 1.68E‐05 FGF18, DPF3, NRP1, CCR1, CXCL2, CCL4, RAC2, APOD, HPSE, INPP5F, CALCRL, CFI, LBP, FCGR3B, ANGPT2, ZFP36, F11, ST6GAL1, CFB, SOCS3, LMCD1, PLAUR,TNFAIP6, CD55, THBD, IL20RB, CXCL13, SLC7A2, TREM1, XCL1
GOTERM_BP_FAT Blood vessel development 24 1.89E‐05 EGR1, FGFR2, FGF18, NRP1, VAV3, AIMP1, SOCS3, LEPR, HSPG2,FASLG, NR4A1, PRKCB, MYOCD, APOD, ADM, HPSE, SIX1,IFNG, ROBO4, HIF3A, CALCRL, THBS2,TNFAIP2, ANGPT2
GOTERM_BP_FAT Cardiovascular system development 32 3.29E‐05 FGFR2, ZFAND5, FGF18, RBP4, NRP1, LEPR, PDLIM3,FASLG, ZIC3, APOD, MYOCD, HPSE,IFNG, ROBO4, CALCRL, ANGPT2, THBS2, EGR1, SLC8A1, VAV3, AIMP1, SOCS3, HSPG2, NR4A1, PRKCB, SOD2, DKK1, ADM, CXCL13, SIX1, HIF3A,TNFAIP2
GOTERM_BP_FAT Circulatory system development 32 3.29E‐05 FGFR2, ZFAND5, FGF18, RBP4, NRP1, LEPR, PDLIM3,FASLG, ZIC3, APOD, MYOCD, HPSE,IFNG, ROBO4, CALCRL, ANGPT2, THBS2, EGR1, SLC8A1, VAV3, AIMP1, SOCS3, HSPG2, NR4A1, PRKCB, SOD2, DKK1, ADM, CXCL13, SIX1, HIF3A,TNFAIP2
GOTERM_BP_FAT Lymphocyte activation 25 3.54E‐05 PRF1, LEPR, TRDC, ZEB1, CDKN2A, RAC2, RASGRP1,IFNG, VNN1, DPP4, BLNK, EGR1, PTPRC, IL2RB, VAV3, IKZF1, DOCK8, PRKCB, CD38, CD55, CORO1A, IL20RB, CAMK4, CMTM7, XCL1
GOTERM_BP_FAT Blood vessel morphogenesis 21 4.88E‐05 FGFR2, FGF18, NRP1, VAV3, AIMP1, LEPR, HSPG2, NR4A1,FASLG, PRKCB, MYOCD, APOD, ADM, HPSE, SIX1, ROBO4, HIF3A, CALCRL, THBS2,TNFAIP2, ANGPT2
GOTERM_BP_FAT Angiogenesis 19 4.88E‐05 FGFR2, FGF18, NRP1, VAV3, AIMP1, LEPR, HSPG2, NR4A1,FASLG, PRKCB, APOD, ADM, HPSE, ROBO4, HIF3A, CALCRL, THBS2,TNFAIP2, ANGPT2
GOTERM_BP_FAT Negative regulation of multicellular organismal process 33 6.30E‐05 RBP4, NRP1, CCR1, STATH,FASLG, CD96, IRAK3, CDKN2A, APOD, MYOCD,IFNG, INPP5F, LBP, CALCRL, ANGPT2, THBS2, SRGN, NR2F1, ZFP36, F11, ANXA4, PLAUR, PLAC8, CD84, CD38, DKK1, THBD, ADM, IL20RB, CXCL13, SIX1, ID4, XCL1
GOTERM_BP_FAT Regulation of cell activation 21 7.32E‐05 PTPRC, VAV3, ZEB1, TRDC, NR4A3, CD84, CD38, CORO1A, CD55, THBD, CDKN2A, RAC2, CAMK4, IL20RB, SLC7A2, RASGRP1,IFNG, VNN1, LBP, XCL1, DPP4
GOTERM_BP_FAT Cell motility 39 7.52E‐05 ARSB, ZFAND5, FGF18, NRP1, CCR1, CXCL2, FERMT1, CCL4, MMP1, DNAH6, NPHP4, RAC2, APOD,IFNG, ROBO4, LBP, DEPDC1B, ANGPT2, DPP4, PTPRC, SLC8A1, SATB2, S100P, VAV3, AIMP1, NR4A1, DOCK7, DOCK8, SLC7A11, CD84, MMP10,TNFAIP6, CORO1A, THBD, CXCL13, SIX1, VCAN, TREM1, XCL1
GOTERM_BP_FAT Localization of cell 39 7.52E‐05 ARSB, ZFAND5, FGF18, NRP1, CCR1, CXCL2, FERMT1, CCL4, MMP1, DNAH6, NPHP4, RAC2, APOD,IFNG, ROBO4, LBP, DEPDC1B, ANGPT2, DPP4, PTPRC, SLC8A1, SATB2, S100P, VAV3, AIMP1, NR4A1, DOCK7, DOCK8, SLC7A11, CD84, MMP10,TNFAIP6, CORO1A, THBD, CXCL13, SIX1, VCAN, TREM1, XCL1
GOTERM_BP_FAT Regulation of leukocyte activation 20 8.61E‐05 PTPRC, VAV3, ZEB1, TRDC, NR4A3, CD84, CD38, CORO1A, CD55, CDKN2A, RAC2, CAMK4, IL20RB, SLC7A2, RASGRP1,IFNG, VNN1, LBP, XCL1, DPP4
GOTERM_BP_FAT Regulation of immune effector process 19 8.63E‐05 PTPRC, RBP4, DPF3, CFB, LMCD1, NR4A3, CD84, CD96, IRAK3, CD55, RAC2, IL20RB, RASGRP1,IFNG, TREM1, CFI, LBP, XCL1, FCGR3B
GOTERM_CC_FAT Extracellular region part 88 9.24E‐05 ARSB, FGF18, NRP1, THRB, FAM20A, IL19, MMP7,FASLG, AURKB, MMP1, MTHFD2, APOD, HPSE, RNASE7, DMKN, SLC2A1,IFNG, ROBO4, VNN1, CFI, LBP, DPP6, ANGPT2, FCGR3B, DPP4, F11, GSTT2B, GNLY, IGFALS, COL25A1, PADI1, CTSW, PLAUR, PRKCB, CD84, MMP10,TNFAIP6, CD38, THBD, CAMK4, ADM, SERPINB5, CYBRD1, VCAN, SLC38A1, COL24A1,TNFAIP2, PPFIA2, RBP4, ASS1, CXCL2, GAST, C1S, SFN, TRDC, CCL4, LAMB3, RAC2, THBS2, QSOX1, SRGN, PTPRC, GPR155, ST6GAL1, VAV3, S100P, AIMP1, CFB, LMCD1, HSPG2, COTL1, ANXA4, SOD2, PROM1, CORO1A, CD55, DKK1, C1ORF116, CXCL13, FABP3, C1RL, CMTM7, H3F3B, IGFBP1, CP, XCL1, FABP5, HABP2
GOTERM_BP_FAT Response to biotic stimulus 32 9.65E‐05 PRF1, DPF3, ASS1, CXCL2, STATH,FASLG, PMAIP1, TRDC, CCL4, FOS, CD96, IRAK3, RNASE7,IFNG, LBP, MX1, FCGR3B, ZFP36, PTPRC, AIMP1, SOCS3, GNLY, LMCD1, COTL1, PLAC8, SOD2, CD55, THBD, ADM, CXCL13, TREM1, XCL1
GOTERM_BP_FAT Anatomical structure formation involved in morphogenesis 35 9.69E‐05 FGFR2, RBP4, FGF18, NRP1, FAM20A, ABLIM3, LEPR, BBS9,FASLG, MTHFD1L, WDR74, LAMB3, APOD, HPSE, ROBO4, CALCRL, LMOD3, ANGPT2, THBS2, VAV3, AIMP1, HSPG2, NR4A1, NR4A3, PRKCB, PROM1, DUSP5, DKK1, ADM, CXCL13, ETS2, SIX1, HIF3A,TNFAIP2, DUSP6
GOTERM_BP_FAT Cell chemotaxis 14 1.00E‐04 FGF18, NRP1, VAV3, CCR1, CXCL2, NR4A1, CCL4, CORO1A, RAC2, CXCL13,IFNG, LBP, TREM1, XCL1
GOTERM_BP_FAT Response to other organism 31 1.05E‐04 PRF1, DPF3, ASS1, CXCL2, STATH,FASLG, PMAIP1, TRDC, CCL4, FOS, CD96, IRAK3, RNASE7,IFNG, LBP, MX1, FCGR3B, ZFP36, PTPRC, AIMP1, SOCS3, GNLY, LMCD1, COTL1, PLAC8, SOD2, THBD, ADM, CXCL13, TREM1, XCL1
GOTERM_BP_FAT Response to external biotic stimulus 31 1.05E‐04 PRF1, DPF3, ASS1, CXCL2, STATH,FASLG, PMAIP1, TRDC, CCL4, FOS, CD96, IRAK3, RNASE7,IFNG, LBP, MX1, FCGR3B, ZFP36, PTPRC, AIMP1, SOCS3, GNLY, LMCD1, COTL1, PLAC8, SOD2, THBD, ADM, CXCL13, TREM1, XCL1
GOTERM_BP_FAT Cell proliferation 49 1.29E‐04 FGFR2, RBP4, FGF18, NRP1, FERMT1,FASLG, PMAIP1, ZEB1, AURKB, SFN, FAM83B, CDKN2A, APOD, RAC2, MYOCD, HPSE,IFNG, MTCP1, CALCRL, QSOX1, DPP4, EGR1, ZFP36, PTPRC, ST6GAL1, VAV3, TRNP1, AIMP1, PIM1, NR4A1, DOCK7, NR4A3, DOCK8, PLAC8, SOD2, CD38, SSTR2, CORO1A, CD55, IL20RB, ADM, SERPINB5, SIX1, FABP3, H3F3B, ID4, XCL1, EMP1, HTR2A
GOTERM_CC_FAT Extracellular region 100 1.29E‐04 ARSB, FGF18, NRP1, THRB, FAM20A, LEPR, IL19, MMP7,FASLG, AURKB, MMP1, MTHFD2, APOD, HPSE, DMKN, RNASE7, SLC2A1,IFNG, ROBO4, VNN1, LBP, CFI, DPP6, GFOD1, FCGR3B, ANGPT2, CSF2RA, DPP4, F11, GSTT2B,GZMA, GNLY, IGFALS, COL25A1, PADI1, PRKCB, PLAUR, CTSW, CD84, MMP10, CD38,TNFAIP6, PSG9, THBD, ADM, CAMK4, SERPINB5, CYBRD1, VCAN, SLC38A1, TREM1, COL24A1,TNFAIP2, FGFR2, PPFIA2, PRF1, RBP4, ASS1, STATH, CXCL2, GAST, C1S, SFN, TRDC, CCL4, FAM19A5, LAMB3, RAC2, GLIPR1, QSOX1, THBS2, SRGN, PTPRC, GPR155, ST6GAL1, S100P, VAV3, AIMP1, CFB, HSPG2, LMCD1, GRIA3, COTL1, ANXA4, SOD2, PROM1, CD55, CORO1A, C1ORF116, DKK1, CXCL13, FABP3, C1RL, CMTM7, H3F3B, CP, IGFBP1, XCL1, FABP5, HABP2
GOTERM_BP_FAT Regulation of cell proliferation 43 1.36E‐04 FGFR2, RBP4, FGF18, NRP1, CXCL2,FASLG, SFN, PMAIP1, ZEB1, CDKN2A, RAC2, MYOCD, APOD, HPSE,IFNG, CHST11, CALCRL, QSOX1, DPP4, ZFP36, EGR1, PTPRC, ST6GAL1, VAV3, AIMP1, TRNP1, NR4A1, NR4A3, PLAC8, SOD2, CD38, SSTR2, CD55, CORO1A, IL20RB, ADM, SERPINB5, CXCL13, SIX1, FABP3, ID4, XCL1, HTR2A
GOTERM_BP_FAT Movement of cell or subcellular component 47 1.38E‐04 ARSB, ZFAND5, DNAH10, FGF18, NRP1, CCR1, CXCL2, FERMT1, CCL4, MMP1, DNAH6, NPHP4, RAC2, APOD, RASGRP1,IFNG, ROBO4, INPP5F, VNN1, LBP, DEPDC1B, ANGPT2, DPP4, PTPRC, SLC8A1, SATB2, S100P, VAV3, AIMP1, KIF5A, NR4A1, DOCK7, DOCK8, NR4A3, SLC7A11, PLAUR, CD84, MMP10,TNFAIP6, CORO1A, THBD, SERPINB5, CXCL13, SIX1, VCAN, TREM1, XCL1
GOTERM_MF_FAT Serine‐type peptidase activity 14 1.52E‐04 F11,GZMA, CFB, MMP7,GZMB, C1S, TMPRSS3, MMP1, MMP10, C1RL, CFI, DPP6, DPP4, HABP2
GOTERM_BP_FAT Regulation of immune response 29 1.58E‐04 TRDC, C1S, FOS, CD96, IRAK3, RAC2, RASGRP1,IFNG, LBP, CFI, KLRD1, PTPRC, VAV3, SOCS3, CFB, NR4A3, PRKCB, CD84, CD38, CD55, MYO10, IL20RB, CXCL13, C1RL, TREM1, XCL1, KIR3DL1, KIR3DL2, KIR2DL4
GOTERM_BP_FAT Cell migration 35 1.68E‐04 ARSB, ZFAND5, FGF18, NRP1, CCR1, CXCL2, FERMT1, CCL4, MMP1, RAC2, APOD,IFNG, LBP, DEPDC1B, ANGPT2, DPP4, PTPRC, SLC8A1, SATB2, S100P, VAV3, AIMP1, NR4A1, DOCK7, DOCK8, SLC7A11, CD84,TNFAIP6, CORO1A, THBD, CXCL13, SIX1, VCAN, TREM1, XCL1
GOTERM_MF_FAT Serine hydrolase activity 14 1.70E‐04 F11,GZMA, CFB, MMP7,GZMB, C1S, TMPRSS3, MMP1, MMP10, C1RL, CFI, DPP6, DPP4, HABP2
GOTERM_BP_FAT Cell adhesion 45 1.76E‐04 PPFIA2, ASS1, SNX5, CCR1, LEPR, FERMT1, CLDN10, SFN, ZEB1, CCL4, CD96, LAMB3, NPHP4, CDKN2A, RAC2, APOD, HPSE, RASGRP1,IFNG, VNN1, THBS2, ANGPT2, DPP4, EGR1, PTPRC, ST6GAL1, S100P, VAV3, AIMP1, MAGI1, IGFALS, DOCK8, NR4A3, SLC7A11, CD84,TNFAIP6, MYO10, CD55, CORO1A, CAMK4, IL20RB, CXCL13, VCAN, XCL1, HABP2
GOTERM_BP_FAT Biological adhesion 45 1.91E‐04 PPFIA2, ASS1, SNX5, CCR1, LEPR, FERMT1, CLDN10, SFN, ZEB1, CCL4, CD96, LAMB3, NPHP4, CDKN2A, RAC2, APOD, HPSE, RASGRP1,IFNG, VNN1, THBS2, ANGPT2, DPP4, EGR1, PTPRC, ST6GAL1, S100P, VAV3, AIMP1, MAGI1, IGFALS, DOCK8, NR4A3, SLC7A11, CD84,TNFAIP6, MYO10, CD55, CORO1A, CAMK4, IL20RB, CXCL13, VCAN, XCL1, HABP2
GOTERM_BP_FAT Negative regulation of response to stimulus 39 1.91E‐04 NKD2, NRP1, IL19, TMEM161A,FASLG, IRAK3, CD96, NPHP4, APOD, CHST11, INPP5F, VNN1, CALCRL, ANGPT2, F11, ZFP36, EGR1, PTPRC, ST6GAL1, SOCS3, NR4A3, RGS14, PRKCB, PLAUR, SOD2, CD84, DUSP5,TNFAIP6, CD55, RGS1, DKK1, THBD, IL20RB, ADM, CXCL13, HELB, IGFBP1, XCL1, DUSP6
GOTERM_BP_FAT Negative regulation of response to external stimulus 14 1.97E‐04 ZFP36, F11, ST6GAL1, NRP1, SOCS3, PLAUR,TNFAIP6, THBD, IL20RB, APOD, CXCL13, INPP5F, CALCRL, ANGPT2
GOTERM_MF_FAT Serine‐type endopeptidase activity 13 2.08E‐04 F11, MMP10, CFB,GZMA, C1RL, MMP7,GZMB, CFI, C1S, DPP4, MMP1, TMPRSS3, HABP2
GOTERM_BP_FAT Chemotaxis 21 2.57E‐04 FGF18, ST6GAL1, NRP1, VAV3, AIMP1, KIF5A, CCR1, CXCL2, NR4A1, NR4A3, CCL4, PLAUR, CORO1A, RAC2, CXCL13,IFNG, CMTM7, TREM1, LBP, XCL1, ANGPT2
GOTERM_BP_FAT Neutrophil chemotaxis 8 2.61E‐04 VAV3, RAC2, CXCL2,IFNG, TREM1, LBP, XCL1, CCL4
GOTERM_BP_FAT Taxis 21 2.62E‐04 FGF18, ST6GAL1, NRP1, VAV3, AIMP1, KIF5A, CCR1, CXCL2, NR4A1, NR4A3, CCL4, PLAUR, CORO1A, RAC2, CXCL13,IFNG, CMTM7, TREM1, LBP, XCL1, ANGPT2
GOTERM_BP_FAT Regulation of cell–cell adhesion 17 2.64E‐04 PTPRC, ASS1, NR4A3, ZEB1, CORO1A, CD55, MYO10, CDKN2A, RAC2, CAMK4, IL20RB, CXCL13, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT Regulation of apoptotic process 39 2.88E‐04 FGFR2, NRP1, IL19, TMEM161A,FASLG, AURKB, SFN, PMAIP1, CDKN2A, MYOCD,IFNG, CHST11, ROBO4, VNN1, PHLDA1, ZFP36, EGR1, ST6GAL1, IL2RB, VAV3, SOCS3,GZMA, BCL2A1, PIM1, NR4A1,GZMB, DOCK8, NR4A3, ANXA4, PLAUR, PLAC8, SOD2, CD38, CORO1A, ADM, SIX1, LGALS14, TNFAIP8, DUSP6
GOTERM_BP_FAT Cell killing 9 2.90E‐04 PTPRC, CORO1A, RASGRP1, GNLY,IFNG,GZMB, TREM1, XCL1, KIR3DL1
GOTERM_BP_FAT Regulation of leukocyte cell–cell adhesion 15 2.95E‐04 PTPRC, ASS1, NR4A3, ZEB1, CORO1A, CD55, CDKN2A, RAC2, CAMK4, IL20RB, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT Natural killer cell mediated immunity 7 3.01E‐04 CD96, KLRC2, CORO1A, RASGRP1,GZMB, KLRD1, KIR3DL1
GOTERM_BP_FAT Regulation of programmed cell death 39 3.49E‐04 FGFR2, NRP1, IL19, TMEM161A,FASLG, AURKB, SFN, PMAIP1, CDKN2A, MYOCD,IFNG, CHST11, ROBO4, VNN1, PHLDA1, ZFP36, EGR1, ST6GAL1, IL2RB, VAV3, SOCS3,GZMA, BCL2A1, PIM1, NR4A1,GZMB, DOCK8, NR4A3, ANXA4, PLAUR, PLAC8, SOD2, CD38, CORO1A, ADM, SIX1, LGALS14, TNFAIP8, DUSP6
GOTERM_BP_FAT Cell death 49 3.99E‐04 FGFR2, PRF1, NRP1, IL19, TMEM161A,FASLG, PMAIP1, AURKB, SFN, CDKN2A, MYOCD,IFNG, CHST11, ROBO4, VNN1, MX1, SRGN, PHLDA1, EGR1, ZFP36, ST6GAL1, IL2RB, VAV3, MAGI1, AIMP1, SOCS3,GZMA, BCL2A1, PIM1, NR4A1,GZMB, NR4A3, DOCK8, ANXA4, PLAC8, SOD2, PLAUR, PRKCB, CD38, CORO1A, ADM, SIX1, LGALS14, TNFAIP8, HIF3A, EMP1, HTR2A, DUSP6, PRODH
GOTERM_BP_FAT Regulation of T cell differentiation in thymus 5 5.38E‐04 CDKN2A, CAMK4, RASGRP1, VNN1, ZEB1
GOTERM_BP_FAT Regulation of thymocyte aggregation 5 5.38E‐04 CDKN2A, CAMK4, RASGRP1, VNN1, ZEB1
GOTERM_BP_FAT Positive regulation of chemotaxis 9 5.69E‐04 FGF18, NRP1, RAC2, CXCL13, CCR1, CXCL2, LBP, XCL1, CCL4
GOTERM_BP_FAT Regulation of chemotaxis 11 5.84E‐04 FGF18, ST6GAL1, NRP1, RAC2, CXCL13, CCR1, CXCL2, LBP, XCL1, ANGPT2, CCL4
GOTERM_BP_FAT Neutrophil migration 8 5.86E‐04 VAV3, RAC2, CXCL2,IFNG, TREM1, LBP, XCL1, CCL4
GOTERM_BP_FAT Humoral immune response 12 6.16E‐04 CD55, ST6GAL1, ADM, CFB, RNASE7,IFNG, C1RL, CFI, C1S, TREM1, TRDC, BLNK
GOTERM_BP_FAT Leukocyte chemotaxis 11 6.34E‐04 CORO1A, VAV3, RAC2, CXCL13, CCR1, CXCL2,IFNG, TREM1, LBP, XCL1, CCL4
GOTERM_BP_FAT Regulation of cell death 40 6.46E‐04 FGFR2, NRP1, IL19, TMEM161A,FASLG, AURKB, SFN, PMAIP1, CDKN2A, MYOCD,IFNG, CHST11, ROBO4, VNN1, PHLDA1, ZFP36, EGR1, ST6GAL1, IL2RB, VAV3, SOCS3,GZMA, BCL2A1, PIM1, NR4A1,GZMB, DOCK8, NR4A3, ANXA4, PLAUR, PLAC8, SOD2, CD38, CORO1A, ADM, SIX1, LGALS14, TNFAIP8, DUSP6, PRODH
GOTERM_BP_FAT Negative regulation of apoptotic process 26 6.57E‐04 FGFR2, NRP1, IL19, TMEM161A,FASLG, AURKB, SFN, MYOCD, CHST11, VNN1, ST6GAL1, IL2RB, SOCS3, BCL2A1, PIM1, NR4A1, NR4A3, DOCK8, ANXA4, SOD2, PLAC8, PLAUR, CD38, CORO1A, SIX1, TNFAIP8
GOTERM_BP_FAT Innate immune response 26 6.99E‐04 KLRC2, ASS1, TRDC, C1S, CCL4, CD96, IRAK3, RASGRP1, RNASE7,IFNG, VNN1, CFI, LBP, MX1, KLRD1, EGR1, CFB, SOCS3,GZMB, CD84, CORO1A, CD55, C1RL, TREM1, XCL1, KIR3DL1
GOTERM_BP_FAT Glycosaminoglycan metabolic process 10 7.21E‐04 ARSB, CHSY3, HPSE, CHST6, B3GNT7, CHST11, PIM1, HSPG2, VCAN, HS2ST1
GOTERM_BP_FAT Programmed cell death 46 7.29E‐04 FGFR2, PRF1, NRP1, IL19, TMEM161A,FASLG, AURKB, SFN, PMAIP1, CDKN2A, MYOCD,IFNG, CHST11, ROBO4, VNN1, MX1, SRGN, PHLDA1, ZFP36, EGR1, ST6GAL1, IL2RB, VAV3, AIMP1, SOCS3,GZMA, BCL2A1, PIM1, NR4A1,GZMB, DOCK8, NR4A3, ANXA4, PRKCB, PLAUR, PLAC8, SOD2, CD38, CORO1A, ADM, SIX1, LGALS14, TNFAIP8, HIF3A, DUSP6, PRODH
GOTERM_BP_FAT Apoptotic process 44 7.55E‐04 FGFR2, PRF1, NRP1, IL19, TMEM161A,FASLG, AURKB, SFN, PMAIP1, CDKN2A, MYOCD,IFNG, CHST11, VNN1, MX1, SRGN, PHLDA1, ZFP36, ST6GAL1, IL2RB, VAV3, AIMP1, SOCS3,GZMA, BCL2A1, PIM1, NR4A1,GZMB, DOCK8, NR4A3, ANXA4, PRKCB, PLAUR, PLAC8, SOD2, CD38, CORO1A, ADM, SIX1, LGALS14, TNFAIP8, HIF3A, DUSP6, PRODH
GOTERM_BP_FAT Negative regulation of programmed cell death 26 7.88E‐04 FGFR2, NRP1, IL19, TMEM161A,FASLG, AURKB, SFN, MYOCD, CHST11, VNN1, ST6GAL1, IL2RB, SOCS3, BCL2A1, PIM1, NR4A1, NR4A3, DOCK8, ANXA4, SOD2, PLAC8, PLAUR, CD38, CORO1A, SIX1, TNFAIP8
GOTERM_BP_FAT Granulocyte chemotaxis 8 8.39E‐04 VAV3, RAC2, CXCL2,IFNG, TREM1, LBP, XCL1, CCL4
GOTERM_BP_FAT Cytokine production involved in immune response 7 8.41E‐04 IRAK3, CD96, CD55, CAMK4, NR4A3, TREM1, XCL1
GOTERM_BP_FAT Positive regulation of immune system process 28 8.58E‐04 RBP4, PTPRC, VAV3, CFB, CCR1, CXCL2, C1S, TRDC, NR4A3, CCL4, PRKCB, CD84, FOS, IRAK3, CD38, CD55, MYO10, CORO1A, RAC2, CXCL13, RASGRP1,IFNG, C1RL, VNN1, LBP, CFI, XCL1, DPP4
GOTERM_BP_FAT Leukocyte apoptotic process 8 8.88E‐04 ST6GAL1, CDKN2A, LGALS14,IFNG,FASLG, NR4A3, DOCK8, AURKB
GOTERM_BP_FAT Production of molecular mediator of immune response 10 .001012913 PTPRC, IRAK3, CD96, RBP4, CD55, CAMK4,IFNG, NR4A3, TREM1, XCL1
GOTERM_BP_FAT Regulation of mononuclear cell proliferation 11 .001040266 PTPRC, CD38, CD55, ST6GAL1, CORO1A, VAV3, CDKN2A, RAC2, IL20RB,IFNG, XCL1
GOTERM_BP_FAT Aminoglycan metabolic process 10 .001061591 ARSB, CHSY3, HPSE, CHST6, B3GNT7, CHST11, PIM1, HSPG2, VCAN, HS2ST1
GOTERM_BP_FAT Response to bacterium 20 .001085717 ZFP36, ASS1, SOCS3, GNLY, CXCL2, STATH,FASLG, TRDC, SOD2, PLAC8, CD96, IRAK3, FOS, THBD, ADM, CXCL13, RNASE7,IFNG, TREM1, LBP
GOTERM_BP_FAT Leukocyte cell–cell adhesion 18 .001187931 EGR1, PTPRC, ASS1, LEPR, NR4A3, ZEB1, DOCK8, CORO1A, CD55, CDKN2A, RAC2, CAMK4, IL20RB, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_MF_FAT Glycosaminoglycan binding 11 .001232209 FGFR2, F11,TNFAIP6, NRP1, CXCL13, RNASE7, MMP7, COL25A1, VCAN, THBS2, HABP2
GOTERM_BP_FAT Leukocyte aggregation 17 .001364809 EGR1, PTPRC, LEPR, NR4A3, ZEB1, DOCK8, CORO1A, CD55, CDKN2A, RAC2, CAMK4, IL20RB, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT Regulation of lymphocyte activation 16 .001403667 PTPRC, VAV3, TRDC, ZEB1, CD38, CORO1A, CD55, CDKN2A, RAC2, CAMK4, IL20RB, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT Regulation of leukocyte proliferation 11 .00143279 PTPRC, CD38, CD55, ST6GAL1, CORO1A, VAV3, CDKN2A, RAC2, IL20RB,IFNG, XCL1
GOTERM_BP_FAT Leukocyte mediated cytotoxicity 7 .001521044 PTPRC, CORO1A, RASGRP1,GZMB, TREM1, XCL1, KIR3DL1
GOTERM_BP_FAT Positive regulation of leukocyte chemotaxis 7 .001521044 RAC2, CXCL13, CCR1, CXCL2, LBP, XCL1, CCL4
GOTERM_BP_FAT Response to lipopolysaccharide 14 .001525141 ZFP36, IRAK3, CD96, FOS, THBD, ADM, ASS1, SOCS3, CXCL13, CXCL2,IFNG,FASLG, LBP, SOD2
GOTERM_BP_FAT Granulocyte migration 8 .001597708 VAV3, RAC2, CXCL2,IFNG, TREM1, LBP, XCL1, CCL4
GOTERM_BP_FAT Response to lipid 27 .001721042 RBP4, THRB, ASS1, RBP1, CXCL2, TMEM161A,FASLG, CD96, IRAK3, FOS,IFNG, LBP, NR2F1, ZFP36, SOCS3, PIM1, NR4A1, FOSB, NR4A3, SOD2, CD38, SSTR2, THBD, DKK1, ADM, CXCL13, FABP3
GOTERM_BP_FAT Response to drug 17 .001755254 SLC8A1, VAV3, ASS1, CYP2B6, CYP2C9, SOCS3, FOSB, CCL4, SOD2, CD38, FOS, APOD, CD69,IFNG, FABP3, HTR2A, DUSP6
GOTERM_BP_FAT Regulation of cell adhesion 21 .001839233 PTPRC, ST6GAL1, VAV3, ASS1, ZEB1, NR4A3, CORO1A, CD55, MYO10, CDKN2A, RAC2, CAMK4, IL20RB, APOD, CXCL13, RASGRP1,IFNG, VNN1, XCL1, ANGPT2, DPP4
GOTERM_BP_FAT Regulation of T cell activation 13 .001997259 PTPRC, ZEB1, CORO1A, CD55, CDKN2A, RAC2, IL20RB, CAMK4, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT Negative regulation of cytokine production 11 .002001253 CD84, ZFP36, IRAK3, CD96, APOD, IL20RB,IFNG, LBP, XCL1, ANXA4, SRGN
GOTERM_BP_FAT Cellular defense response 6 .002050165 PRF1, KLRC2, GNLY, LBP, KIR2DL4, KIR3DL2
GOTERM_BP_FAT Inflammatory cell apoptotic process 4 .002205885 ST6GAL1, CDKN2A,IFNG,FASLG
GOTERM_BP_FAT Response to molecule of bacterial origin 14 .002213254 ZFP36, IRAK3, CD96, FOS, THBD, ADM, ASS1, SOCS3, CXCL13, CXCL2,IFNG,FASLG, LBP, SOD2
GOTERM_BP_FAT Negative regulation of cell death 26 .00245476 FGFR2, NRP1, IL19, TMEM161A,FASLG, AURKB, SFN, MYOCD, CHST11, VNN1, ST6GAL1, IL2RB, SOCS3, BCL2A1, PIM1, NR4A1, NR4A3, DOCK8, ANXA4, SOD2, PLAC8, PLAUR, CD38, CORO1A, SIX1, TNFAIP8
GOTERM_BP_FAT Mononuclear cell proliferation 12 .002460795 PTPRC, CD38, CD55, ST6GAL1, CORO1A, VAV3, CDKN2A, RAC2, IL20RB,IFNG, DOCK8, XCL1
GOTERM_BP_FAT Response to wounding 21 .002508224 ZFP36, F11, NRP1, VAV3, AIMP1, CCR1, DOCK8, SLC7A11, PRKCB, PLAUR, SOD2, THBD, RAC2, APOD, ADM, HPSE, INPP5F, H3F3B, IGFBP1, PAPSS2, FABP5
GOTERM_BP_FAT Positive regulation of cell proliferation 25 .002576078 FGFR2, FGF18, NRP1,FASLG, RAC2, MYOCD, HPSE,IFNG, CALCRL, DPP4, EGR1, PTPRC, ST6GAL1, VAV3, NR4A1, NR4A3, PLAC8, CD38, CORO1A, CD55, ADM, SIX1, ID4, XCL1, HTR2A
GOTERM_BP_FAT Myeloid leukocyte migration 9 .002633977 VAV3, RAC2, CCR1, CXCL2,IFNG, TREM1, LBP, XCL1, CCL4
GOTERM_BP_FAT Positive regulation of leukocyte activation 13 .002679897 PTPRC, CD38, CD55, CORO1A, VAV3, RASGRP1,IFNG, VNN1, LBP, NR4A3, TRDC, XCL1, DPP4
GOTERM_BP_FAT Response to extracellular stimulus 17 .002734588 ZFP36, ARSB, SLC8A1, ASS1, RBP1, SOCS3, PIM1, MMP7, GAST, PMAIP1, SOD2, FOS, SSTR2, MYOCD, ADM, SLC2A1, CP
GOTERM_BP_FAT Multi–multicellular organism process 11 .002740849 CD38, FOS, CD55, PSG9, THBD, ADM, MMP7, H3F3B, SLC38A1, FOSB, ANGPT2
GOTERM_BP_FAT Regulation of inflammatory response 13 .002812705 ZFP36,TNFAIP6, CD55, APOD, IL20RB, SOCS3, CFB, SLC7A2, CFI, CALCRL, LBP, XCL1, CCL4
GOTERM_BP_FAT Single organismal cell–cell adhesion 22 .002886539 EGR1, PTPRC, ASS1, LEPR, DOCK8, NR4A3, ZEB1, SLC7A11, NPHP4, CORO1A, CD55, MYO10, CDKN2A, RAC2, CAMK4, IL20RB, CXCL13, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_CC_FAT Cell surface 24 .002962228 PPFIA2, ARSB, FGFR2, PTPRC, IL2RB, NRP1, TRPM8, AIMP1, CCR1, MMP7,FASLG, TRDC, ANXA4, SLC7A11, PROM1, CD38, CD55, THBD, CD69,IFNG, LBP, DPP6, KLRD1, DPP4
GOTERM_BP_FAT T cell aggregation 16 .002988034 EGR1, PTPRC, LEPR, ZEB1, DOCK8, CORO1A, CD55, CDKN2A, RAC2, CAMK4, IL20RB, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT T cell activation 16 .002988034 EGR1, PTPRC, LEPR, ZEB1, DOCK8, CORO1A, CD55, CDKN2A, RAC2, CAMK4, IL20RB, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT Lymphocyte aggregation 16 .003046718 EGR1, PTPRC, LEPR, ZEB1, DOCK8, CORO1A, CD55, CDKN2A, RAC2, CAMK4, IL20RB, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT Cellular modified amino acid metabolic process 9 .003065973 CHDH, MTHFD2, MTHFS, GSTT2B, ASS1, SLCO4A1, MTHFD1L, PRODH, SOD2
GOTERM_BP_FAT Negative regulation of protein serine/threonine kinase activity 8 .003199245 DUSP5, IRAK3, CDKN2A, MYOCD, PKIB, SFN, RGS14, DUSP6
GOTERM_BP_FAT Positive regulation of cell migration 15 .003220579 PTPRC,TNFAIP6, FGF18, SLC8A1, CORO1A, NRP1, RAC2, CXCL13, CCR1, CXCL2,IFNG, DOCK7, LBP, XCL1, CCL4
GOTERM_BP_FAT Aging 13 .003269145 ASS1, SOCS3, BCL2A1, MMP7, AURKB, SOD2, FOS, CDKN2A, APOD, ADM, IGFBP1, CP, HTR2A
GOTERM_BP_FAT Positive regulation of cell activation 13 .003376692 PTPRC, CD38, CD55, CORO1A, VAV3, RASGRP1,IFNG, VNN1, LBP, NR4A3, TRDC, XCL1, DPP4
GOTERM_BP_FAT Female pregnancy 10 .003499079 CD38, FOS, PSG9, THBD, ADM, MMP7, H3F3B, SLC38A1, FOSB, ANGPT2
GOTERM_BP_FAT Regulation of lymphocyte proliferation 10 .003499079 PTPRC, CD38, CD55, CORO1A, VAV3, CDKN2A, RAC2, IL20RB,IFNG, XCL1
GOTERM_BP_FAT Leukocyte proliferation 12 .003703152 PTPRC, CD38, CD55, ST6GAL1, CORO1A, VAV3, CDKN2A, RAC2, IL20RB,IFNG, DOCK8, XCL1
GOTERM_BP_FAT Defense response to other organism 19 .003727248 PRF1, PTPRC, DPF3, AIMP1, GNLY, STATH, LMCD1, TRDC, PMAIP1, COTL1, PLAC8, ADM, CXCL13, RNASE7,IFNG, TREM1, LBP, MX1, FCGR3B
GOTERM_BP_FAT Regulation of leukocyte chemotaxis 7 .004046973 RAC2, CXCL13, CCR1, CXCL2, LBP, XCL1, CCL4
GOTERM_BP_FAT Negative regulation of immune effector process 7 .004245428 CD84, PTPRC, IRAK3, CD96, CD55, IL20RB, XCL1
GOTERM_BP_FAT Positive regulation of mononuclear cell proliferation 8 .00427214 PTPRC, CD38, CD55, ST6GAL1, CORO1A, VAV3,IFNG, XCL1
GOTERM_BP_FAT Positive regulation of cell motility 15 .004330368 PTPRC,TNFAIP6, FGF18, SLC8A1, CORO1A, NRP1, RAC2, CXCL13, CCR1, CXCL2,IFNG, DOCK7, LBP, XCL1, CCL4
GOTERM_BP_FAT Positive regulation of cell–cell adhesion 11 .004408001 PTPRC, CD55, MYO10, CORO1A, CXCL13, RASGRP1,IFNG, VNN1, NR4A3, XCL1, DPP4
GOTERM_BP_FAT Response to cold 5 .00466463 FOS, ADM, TRPM8, PLAC8, SOD2
GOTERM_BP_FAT Positive regulation of neutrophil chemotaxis 4 .005125974 RAC2, CXCL2, LBP, XCL1
GOTERM_MF_FAT Aminopeptidase activity 5 .005195241 F11, METAP1D, PHEX, DPP6, DPP4
GOTERM_BP_FAT Positive regulation of leukocyte proliferation 8 .00539139 PTPRC, CD38, CD55, ST6GAL1, CORO1A, VAV3,IFNG, XCL1
GOTERM_BP_FAT Negative regulation of leukocyte mediated immunity 5 .005435985 CD84, PTPRC, CD96, IL20RB, XCL1
GOTERM_BP_FAT Positive regulation of cellular component movement 15 .005527572 PTPRC,TNFAIP6, FGF18, SLC8A1, CORO1A, NRP1, RAC2, CXCL13, CCR1, CXCL2,IFNG, DOCK7, LBP, XCL1, CCL4
GOTERM_BP_FAT Positive regulation of locomotion 15 .005622113 PTPRC,TNFAIP6, FGF18, SLC8A1, CORO1A, NRP1, RAC2, CXCL13, CCR1, CXCL2,IFNG, DOCK7, LBP, XCL1, CCL4
GOTERM_BP_FAT Endothelial cell chemotaxis 4 .005762154 FGF18, NRP1, CXCL13, NR4A1
GOTERM_BP_FAT Myeloid leukocyte mediated immunity 6 .005944619 CD84, RAC2, CAMK4, RASGRP1, NR4A3, TREM1
GOTERM_BP_FAT Renal system vasculature development 4 .006443547 EGR1, NRP1,IFNG, ANGPT2
GOTERM_BP_FAT Kidney vasculature development 4 .006443547 EGR1, NRP1,IFNG, ANGPT2
GOTERM_BP_FAT Single organism cell adhesion 22 .006492015 EGR1, PTPRC, ASS1, LEPR, DOCK8, NR4A3, ZEB1, SLC7A11, NPHP4, CORO1A, CD55, MYO10, CDKN2A, RAC2, CAMK4, IL20RB, CXCL13, RASGRP1,IFNG, VNN1, XCL1, DPP4
GOTERM_BP_FAT Regulation of locomotion 22 .006605694 ARSB, PTPRC, FGF18, SLC8A1, ST6GAL1, NRP1, CCR1, CXCL2, DOCK7, CCL4,TNFAIP6, MMP10, CORO1A, RAC2, APOD, CXCL13,IFNG, ROBO4, INPP5F, LBP, XCL1, ANGPT2
GOTERM_BP_FAT Glycosaminoglycan biosynthetic process 7 .006645161 CHSY3, CHST6, B3GNT7, CHST11, HSPG2, VCAN, HS2ST1
GOTERM_BP_FAT Cytokine production 19 .006800751 ZFP36, EGR1, IL19, NR4A3, ANXA4, CD84, CD96, IRAK3, CD55, CAMK4, IL20RB, APOD, HPSE, RASGRP1,IFNG, TREM1, LBP, XCL1, SRGN
GOTERM_BP_FAT Lymphocyte proliferation 11 .006835525 PTPRC, CD38, CD55, CORO1A, VAV3, CDKN2A, RAC2, IL20RB,IFNG, DOCK8, XCL1
GOTERM_BP_FAT Aminoglycan biosynthetic process 7 .006929937 CHSY3, CHST6, B3GNT7, CHST11, HSPG2, VCAN, HS2ST1
GOTERM_BP_FAT Mucopolysaccharide metabolic process 7 .006929937 ARSB, CHSY3, CHST6, B3GNT7, CHST11, PIM1, VCAN
GOTERM_BP_FAT Cellular response to chemical stimulus 56 .007101409 FGF18, NRP1, THRB, LEPR, TMEM161A,FASLG, PMAIP1, ZEB1, FOS, MYOCD, CHST11,IFNG, VNN1, CALCRL, LBP, MX1, ANGPT2, CSF2RA, NR2F1, ZFP36, EGR1, SATB2, SOCS3, PIM1, FOSB, PRKCB, SSTR2, IL20RB, GUCY1B3, TREM1, PRODH, FGFR2, ASS1, CYP2B6, CCR1, CXCL2, CCL4, IRAK3, RAC2, CD69, UGT1A5, PTPRC, IL2RB, SLC8A1, VAV3, CYP2C9, NR4A1, NR4A3, SOD2, CORO1A, DKK1, CXCL13, HIF3A, IGFBP1, XCL1, DUSP6
GOTERM_BP_FAT Positive regulation of granulocyte chemotaxis 4 .007170933 RAC2, CXCL2, LBP, XCL1
GOTERM_BP_FAT Lymphocyte differentiation 12 .007197221 EGR1, PTPRC, CDKN2A, CAMK4, IKZF1, LEPR, RASGRP1,IFNG, CMTM7, VNN1, ZEB1, BLNK
GOTERM_BP_FAT Epithelial cell migration 10 .007524598 ARSB, FGF18, NRP1, S100P, CXCL13,IFNG, FERMT1, NR4A1, ANGPT2, DPP4
GOTERM_BP_FAT Positive regulation of leukocyte migration 7 .00752586 RAC2, CXCL13, CCR1, CXCL2, LBP, XCL1, CCL4
GOTERM_BP_FAT Regulation of neutrophil chemotaxis 4 .007945027 RAC2, CXCL2, LBP, XCL1
GOTERM_BP_FAT Epithelium migration 10 .008151142 ARSB, FGF18, NRP1, S100P, CXCL13,IFNG, FERMT1, NR4A1, ANGPT2, DPP4
GOTERM_BP_FAT Formation of primary germ layer 7 .008157921 FGFR2, DUSP5, LAMB3, DKK1, ETS2, NR4A3, DUSP6
GOTERM_BP_FAT Response to hypoxia 12 .008231471 EGR1, CD38, SLC8A1, ADM, MYOCD, SOCS3, HIF3A, PMAIP1, ANGPT2, DPP4, PRKCB, SOD2
GOTERM_BP_FAT Regulation of cell migration 20 .008409748 ARSB, PTPRC, FGF18, SLC8A1, NRP1, CCR1, CXCL2, DOCK7, CCL4,TNFAIP6, MMP10, CORO1A, RAC2, APOD, CXCL13,IFNG, ROBO4, LBP, XCL1, ANGPT2
GOTERM_BP_FAT Regulation of cell motility 21 .008458009 ARSB, PTPRC, FGF18, SLC8A1, NRP1, CCR1, CXCL2, DOCK7, CCL4,TNFAIP6, MMP10, CORO1A, RAC2, APOD, CXCL13,IFNG, ROBO4, INPP5F, LBP, XCL1, ANGPT2
GOTERM_BP_FAT Regulation of leukocyte apoptotic process 6 .008502574 ST6GAL1, CDKN2A, LGALS14, NR4A3, DOCK8, AURKB
GOTERM_BP_FAT Regulation of response to stress 33 .008516958 DPF3, TMEM161A, PMAIP1, CCL4, CD96, IRAK3, CDKN2A, APOD, HPSE, RASGRP1,IFNG, INPP5F, VNN1, LBP, CFI, CALCRL, FCGR3B, ZFP36, F11, SOCS3, CFB, LMCD1, NR4A3, PLAUR, SOD2,TNFAIP6, CD55, THBD, IL20RB, HELB, SLC7A2, TREM1, XCL1
GOTERM_BP_FAT Negative regulation of defense response 8 .008555067 ZFP36, IRAK3, CD96,TNFAIP6, APOD, IL20RB, SOCS3, CALCRL
GOTERM_BP_FAT Ameboidal‐type cell migration 12 .008776187 ARSB, ZFAND5, FGF18, SLC8A1, NRP1, S100P, CXCL13,IFNG, FERMT1, NR4A1, ANGPT2, DPP4
GOTERM_BP_FAT Response to oxygen‐containing compound 36 .008811937 RBP4, ASS1, CXCL2, TMEM161A,FASLG, ZEB1, FOS, CD96, IRAK3, APOD,IFNG, LBP, CALCRL, ANGPT2, EGR1, ZFP36, SLC8A1, ST6GAL1, SOCS3, PIM1, NR4A1, FOSB, NR4A3, PRKCB, SOD2, CD38, SSTR2, CD55, DKK1, THBD, ADM, CXCL13, FABP3, GUCY1B3, IGFBP1, HTR2A
GOTERM_BP_FAT Response to nutrient levels 15 .008839745 ZFP36, ARSB, SLC8A1, ASS1, RBP1, SOCS3, PIM1, MMP7, GAST, PMAIP1, SOD2, SSTR2, ADM, SLC2A1, CP
GOTERM_BP_FAT Regulation of T cell proliferation 8 .008844981 PTPRC, CD55, CORO1A, CDKN2A, RAC2, IL20RB,IFNG, XCL1
GOTERM_BP_FAT Negative regulation of transcription from RNA polymerase II promoter 21 .00904159 ZFP36, EGR1, FGFR2, SATB2, THRB, IKZF1, LMCD1,FASLG, FOSB, AURKB, NR4A3, ZEB1, DKK1, MYOCD, ETS2, SIX1,IFNG, ID4, BHLHE40, S100A1, NR2F1
GOTERM_BP_FAT Apoptotic mitochondrial changes 7 .009176322 CDKN2A, BCL2A1,GZMB, PMAIP1, SFN, SOD2, PLAUR
GOTERM_BP_FAT Regulation of leukocyte mediated immunity 8 .009445487 CD84, PTPRC, CD96, RAC2, IL20RB, RASGRP1,IFNG, XCL1
GOTERM_BP_FAT Tissue migration 10 .009536961 ARSB, FGF18, NRP1, S100P, CXCL13,IFNG, FERMT1, NR4A1, ANGPT2, DPP4
GOTERM_BP_FAT Positive regulation of neutrophil migration 4 .009635883 RAC2, CXCL2, LBP, XCL1
GOTERM_BP_FAT Urogenital system development 12 .00975718 FGFR2, PROM1, EGR1, RBP4, NRP1, ASS1, MYOCD, SERPINB5, SIX1,IFNG, ID4, ANGPT2
GOTERM_BP_FAT Negative regulation of protein kinase activity 10 .009782435 DUSP5, PTPRC, IRAK3, CDKN2A, MYOCD, SOCS3, PKIB, SFN, RGS14, DUSP6
GOTERM_BP_FAT Extracellular matrix disassembly 6 .009801526 MMP10, LAMB3, HSPG2, MMP7, DPP4, MMP1
GOTERM_BP_FAT Fat cell differentiation 9 .00988103 ZFP36, LAMB3, BBS9, NR4A1, ID4, NR4A3, PLAC8, HTR2A, SOD2
GOTERM_BP_FAT Embryonic skeletal system development 7 .009903808 FGFR2, RBP4, SATB2, SIX1, CHST11, ZEB1, MTHFD1L

Bold denotes gene names which are picked up in the results and discussion.

The KEGG pathways that were associated with these genes involved the pathways that were related to immunity, such as “natural killer cell mediated cytotoxicity,” “complement and coagulation cascades,” “antigen processing and presentation,” “Graft‐versus‐host disease,” and “allograft rejection” (Tables 3 and S2). These KEGG pathways also included IFN‐γ, GZMB, and FASLG.

Table 3.

Kyoto Encyclopedia of Genes and Genomes pathway analysis for the genes that were up‐regulated in the thin endometrium

Term Count P value Gene
Natural killer cell‐mediated cytotoxicity 10 8.21E‐04 PRF1, VAV3, RAC2,IFNG,FASLG,GZMB, FCGR3B, KLRD1, KIR2DL4, PRKCB
Complement and coagulation cascades 7 .00270751 F11, CD55, THBD, CFB, CFI, C1S, PLAUR
Transcriptional misregulation in cancer 10 .00722048 PROM1, NFKBIZ, IL2RB, UTY, SIX1, BCL2A1, GRIA3,GZMB, H3F3B, NR4A3
Antigen processing and presentation 6 .01912738 KLRC2,IFNG, KLRD1, KIR3DL1, KIR2DL4, KIR3DL2
Jak‐STAT signaling pathway 8 .02846128 IL2RB, IL20RB, SOCS3, LEPR, IL19,IFNG, PIM1, CSF2RA
Graft‐versus‐host disease 4 .02903814 PRF1,IFNG,FASLG,GZMB
Allograft rejection 4 .03900192 PRF1,IFNG,FASLG,GZMB
Amphetamine addiction 5 .04526534 FOS, CAMK4, GRIA3, FOSB, PRKCB
p53 signaling pathway 5 .04740558 CDKN2A, SERPINB5, RRM2, PMAIP1, SFN

Jak‐STAT, Janus kinase/signal transducers and activators of transcription. Bold denotes gene names which are picked up in the results and discussion.

3.3. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses for the down‐regulated genes in the thin endometrium

The down‐regulated genes in the thin endometrium were related to metabolic processes, such as “small molecule catabolic process,” “single‐organism catabolic process,” “organic acid catabolic process,” and “carboxylic acid catabolic process” (Tables 4 and S3). The GO terms included genes for carnitine palmitoyltransferase I (CPT1), 3‐hydroxy‐3‐methylglutaryl‐coenzyme A (CoA) synthase 2 (HMGCS2), and 3‐oxoacid CoA‐transferase 1 (OXCT1), which are known to play important roles in generating energy in cells and tissues.13, 14, 15

Table 4.

Gene ontology analysis for the genes that were down‐regulated in the thin endometrium

Category Term Count P value Gene
GOTERM_BP_FAT Small molecule catabolic process 21 2.80E‐07 NUDT16, ALDH6A1, ECI2, KYNU, SORD, BCKDHB, CYP26A1, ALDH3B2, HGD,CBR3, ACADL,CPT1A,OXCT1, FUT3, QPRT, GAD1, GPT2, PCCA, CROT, DCXR, XYLB
GOTERM_BP_FAT Single‐organism catabolic process 33 1.44E‐06 XDH, KYNU, SORD,OXCT1, PDE1A, FUT3,IDH1, ENTPD3, PLCB1, GAD1, GPT2, NUDT16, ECI2, ALDH6A1, HERPUD1, PLD6, BCKDHB, HGD, ALDH3B2, CYP26A1, COL25A1,CBR3, COL5A3, ACADL,CPT1A, PLA2G4A, COL1A2, ACE2, QPRT, PCCA, DCXR, CROT, XYLB
GOTERM_BP_FAT Organic acid catabolic process 16 1.58E‐06 ALDH6A1, ECI2, KYNU, SORD, BCKDHB, CYP26A1, HGD, ACADL,CPT1A, QPRT, GAD1, GPT2, PCCA, CROT, DCXR, XYLB
GOTERM_BP_FAT Carboxylic acid catabolic process 14 8.69E‐06 ALDH6A1, ECI2, SORD, HGD, CYP26A1, ACADL,CPT1A, QPRT, GAD1, GPT2, PCCA, CROT, DCXR, XYLB
GOTERM_BP_FAT Oxidation‐reduction process 33 3.78E‐05 XDH, TM7SF2, C15ORF48, PAM, STEAP4, CYP2J2, SORD, OPRK1,PPARG, DUOX1, FMO5,IDH1, NFATC4, SCD5, HHIP, ECI2, ALDH6A1, BCKDHB, HGD, ALDH3B2, CYP26A1, CYB5A,CBR3, ACADL,CPT1A, DHRS7, IYD, ACSM1, SQLE, GNAS, PHF8, CROT, DCXR
GOTERM_BP_FAT Secretion 36 4.37E‐05 XDH, COPA, PAM, NAAA, OPRK1, PML, POSTN, TPD52, TLR6, TRH, KCNS3, CASP5, NOV, WNK4,OXCT1, SYN2, SYBU, CREB3L1, CHRNA6, GAD1, MAP2K6, ABCA12, TRPM4, ACTN1, GAL, ISL1, NLRP2, PCLO,CPT1A, PLA2G4A, CHGA, STXBP6, SYTL4, GNAS, CA2, CPB2
GOTERM_BP_FAT Carboxylic acid metabolic process 29 6.36E‐05 PAM, KYNU, CYP2J2, SORD,PPARG, AGMAT,IDH1, UGT8, SCD5, GAD1, GPT2, GGTA1P, ECI2, ALDH6A1, PDK4, BCKDHB, HGD, CYP26A1, CYB5A, ACADL,CPT1A, ACSM3, ACSM1, PLA2G4A, QPRT, PCCA, DCXR, CROT, XYLB
GOTERM_BP_FAT Oxoacid metabolic process 29 7.06E‐05 PAM, KYNU, CYP2J2, SORD,PPARG, AGMAT,IDH1, UGT8, SCD5, GAD1, GPT2, GGTA1P, ECI2, ALDH6A1, PDK4, BCKDHB, HGD, CYP26A1, CYB5A, ACADL,CPT1A, ACSM3, ACSM1, PLA2G4A, QPRT, PCCA, DCXR, CROT, XYLB
GOTERM_BP_FAT Peptide transport 15 9.83E‐05 TRPM4, SLC15A2, ISL1, GAL, TRH, PCLO,CPT1A, KCNS3, NOV,OXCT1, TAP2, SYBU, SYTL4, GNAS, CA2
GOTERM_BP_FAT Transmembrane transport 39 1.02E‐04 C15ORF48, CALHM1, SLC39A14, SLC38A4, ATP1B1, MFSD3, SLC15A2, OPRK1, KCNIP4, KCNS3, SLC24A4, MCOLN3, ANK3, TAP2, WNK4, SLC25A48, TTYH2, SLC39A8, CHRNA6, SLC43A1, ANO10, ABCA12, TRPM4, TRPM6, ABCC13, CYB5A, GAL, ANKH, ABCG1,CPT1A, GJB2, SLC26A3, ATP6V0E2, ADAMTS8, CLIC5, KCNN3, SLC7A1, CA2, SLC46A2
GOTERM_BP_FAT Ion transport 42 1.10E‐04 C15ORF48, CALHM1, SLC39A14, STEAP4, SLC38A4, ATP1B1, MFSD3, SLC15A2, OPRK1,PPARG, PML, TRH, KCNIP4, SEC14L1, KCNS3, SLC24A4, MCOLN3, ANK3, WNK4, TTYH2, SLC39A8, CHRNA6, SLC43A1, MAP2K6, ANO10, TRPM4, RAMP2, TRPM6, CYB5A, GAL, ANKH,CPT1A, SLC26A3, PLA2G4A, ATP6V0E2, ADAMTS8, PKP2, CLIC5, KCNN3, SLC7A1, CA2, CROT
GOTERM_MF_FAT Cofactor binding 15 1.22E‐04 XDH, TM7SF2, ALDH6A1, ECI2, KYNU, SORD, DUOX1,CBR3, ACADL, FMO5, SQLE,IDH1, HHIP, GAD1, GPT2
GOTERM_BP_FAT Monocarboxylic acid metabolic process 22 1.29E‐04 GGTA1P, PAM, ECI2, KYNU, SORD, CYP2J2, BCKDHB,PPARG, PDK4, CYP26A1, ACADL,CPT1A, ACSM3, PLA2G4A, ACSM1,IDH1, UGT8, SCD5, PCCA, DCXR, CROT, XYLB
GOTERM_BP_FAT Organic acid metabolic process 30 1.40E‐04 PAM, KYNU, CYP2J2, SORD,PPARG, AGMAT, FOLR1,IDH1, UGT8, SCD5, GAD1, GPT2, GGTA1P, ECI2, ALDH6A1, PDK4, BCKDHB, HGD, CYP26A1, CYB5A, ACADL,CPT1A, ACSM3, ACSM1, PLA2G4A, QPRT, PCCA, DCXR, CROT, XYLB
GOTERM_BP_FAT Nitrogen compound transport 26 1.66E‐04 CALHM1, SLC38A4, SLC15A2, OPRK1, TRH, SEC14L1, KCNS3, NOV, FOLR1,OXCT1, TAP2, SYBU, CHRNA6, SLC43A1, ABCA12, TRPM4, ISL1, GAL, PCLO,CPT1A, CHGA, SLC7A1, SYTL4, ACE2, GNAS, CA2
GOTERM_BP_FAT Monocarboxylic acid catabolic process 9 1.86E‐04 ECI2, SORD, CYP26A1, ACADL, PCCA, CROT,CPT1A, DCXR, XYLB
GOTERM_BP_FAT Tissue morphogenesis 23 2.03E‐04 FRAS1, COBL, NF2, TNC, PML, NTN4, SIX3, FZD5, ISL1, MAGED1, ACTG2, EYA1, EPHA7, KRAS, PKP2, FOLR1, WNK4, TSC2, TFAP2A, NFATC4, CA2, HHIP, PRKACB
GOTERM_BP_FAT Regulation of secretion 25 2.20E‐04 PAM, OPRK1, PML, POSTN, TLR6, TRH, KCNS3, NOV, CASP5, WNK4,OXCT1, SYBU, CHRNA6, MAP2K6, TRPM4, GAL, ISL1, NLRP2, PCLO,CPT1A, CHGA, STXBP6, SYTL4, GNAS, CPB2
GOTERM_BP_FAT Epithelium development 32 3.93E‐04 FRAS1,XDH, COBL, TNC,PPARG, PML, CERS3, MAGED1, KRAS, MCOLN3, FOLR1, WNK4, UPK1B, NFATC4, HHIP, PRKACB, ABCA12, SMAD9, NF2, NTN4, SIX3, FZD5, GAL,CPT1A, EYA1, EPHA7, CLIC5, TSC2, TFAP2A, GNAS, CA2, LRP4
GOTERM_BP_FAT Odontogenesis 9 4.17E‐04 ASPN, PAM, NF2, SLC24A4, TNC, COL1A2, TFAP2A, CA2, LRP4
GOTERM_BP_FAT Regulation of secretion by cell 23 4.36E‐04 TRPM4, PAM, OPRK1, PML, POSTN, TRH, TLR6, ISL1, GAL, PCLO, NLRP2,CPT1A, KCNS3, CASP5, NOV, CHGA, STXBP6,OXCT1, SYBU, SYTL4, GNAS, CHRNA6, CPB2
GOTERM_MF_FAT Coenzyme binding 11 8.04E‐04 TM7SF2,XDH, ECI2, FMO5, ALDH6A1, SORD, SQLE, DUOX1,IDH1,CBR3, ACADL
GOTERM_BP_FAT Chemical homeostasis 31 8.72E‐04 STEAP4, SLC39A14, ATP1B1,PPARG, PML, CKB, PDE6A, SLC24A4, ANK3, TAP2,OXCT1, WNK4, SLC39A8, PRKACB, ABCA12, TRPM4, HERPUD1, PDK4, TRIM24, GJB6, ACADL, ABCG1, ACSM3, SLC26A3, ACSM1, PLA2G4A, ATP6V0E2, PKP2, GNAS, CA2, CPB2
GOTERM_BP_FAT Response to endogenous stimulus 42 8.80E‐04 ASPN, PAM, KYNU, SORD, OPRK1, TNC,PPARG, DUOX1, PML, POSTN, GNG11, TRH, GREM2, PEA15, KRAS, FOLR1, GSN,OXCT1,IDH1, CHRNA6, PRKACB, RAMP2, SMAD9, STMN2, PDK4, TRIM24, GAL, ISL1, ABCG1, GJB2, SLC26A3, PLA2G4A, ATP6V0E2,HMGCS2, TSC2, COL1A2, GNAS, CA2, BMPR1B, HDAC9, CROT, LRP4
GOTERM_CC_FAT Lamellipodium 11 8.99E‐04 ACTG2, SLC39A14, NF2, SORBS2, GSN, PLEKHH2, STMN2, NEDD9, IQGAP2, ITSN1, CTNNA2
GOTERM_BP_FAT Secretion by cell 29 .001130969 PAM, NAAA, OPRK1, PML, POSTN, TLR6, TRH, KCNS3, CASP5, NOV,OXCT1, SYN2, SYBU, CREB3L1, CHRNA6, GAD1, ABCA12, TRPM4, ACTN1, ISL1, GAL, PCLO, NLRP2,CPT1A, CHGA, STXBP6, SYTL4, GNAS, CPB2
GOTERM_BP_FAT Organ morphogenesis 29 .001210502 FRAS1, ASPN, PAM, TNC, PML, MAGED1, ACTG2, KRAS, SLC24A4, FOLR1, WNK4, HHIP, NF2, SIX3, NTN4, GJB6, FZD5, ISL1, CTNNA2, EYA1, PKP2, CLIC5, COL1A2, TFAP2A, GNAS, CA2, BMPR1B, CPB2, LRP4
GOTERM_BP_FAT Regulation of biomineral tissue development 7 .001363066 ASPN, TRPM4, PLA2G4A, TFAP2A, BMPR1B, TMEM119, ANKH
GOTERM_BP_FAT Regulation of protein secretion 16 .001462035 TRPM4, PAM, PML, POSTN, TLR6, ISL1, TRH, NLRP2,CPT1A, KCNS3, NOV, CASP5,OXCT1, SYBU, SYTL4, GNAS
GOTERM_CC_FAT Proteinaceous extracellular matrix 16 .001470486 FRAS1, ASPN, HAPLN1, TNC, OLFML2B, NTN4, POSTN, COL5A3, NOV, OGN, BGN, ADAMTS8, KAZALD1, CCBE1, COL1A2, TFPI2
GOTERM_BP_FAT Nervous system development 52 .00156293 ATL1,PPARG, POSTN, CKB, CASP5, CCDC141, OGN, PRMT1, MCOLN3, ANK3, GSN, PRKACB, HHIP, CDK5RAP2, PLCB1, ATOH7, TNIK, STMN2, SIX3, COL25A1, GAL, PCLO, CTNNA2, EYA1, CLIC5, TFAP2A, PAM, COBL, FRYL, TNC, KRAS, FOLR1,OXCT1, NFATC4, NDRG2, UGT8, DCLK1, HAPLN1, SMAD9, NF2, NTN4, FZD5, ISL1, EPHA7,HMGCS2, TSC2, MAP2, MPPED2, HDAC9, BMPR1B, PHF8, LRP4
GOTERM_BP_FAT Inorganic ion transmembrane transport 23 .001683334 CALHM1, C15ORF48, TRPM4, SLC39A14, ATP1B1, TRPM6, OPRK1, CYB5A, GAL, ANKH, KCNIP4, KCNS3SLC26A3, ATP6V0E2, ADAMTS8, SLC24A4, MCOLN3, ANK3, CLIC5, KCNN3, TTYH2, SLC39A8, ANO10
GOTERM_BP_FAT Peptide hormone secretion 12 .001842318 KCNS3, TRPM4, NOV,OXCT1, SYBU, SYTL4, GNAS, ISL1, TRH, GAL, PCLO,CPT1A
GOTERM_BP_FAT Regulation of insulin secretion 10 .001898558 KCNS3, TRPM4, NOV,OXCT1, SYBU, SYTL4, GNAS, ISL1, TRH,CPT1A
GOTERM_BP_FAT Regulation of peptide transport 11 .002159806 KCNS3, TRPM4, NOV,OXCT1, SYBU, SYTL4, GNAS, CA2, ISL1, TRH,CPT1A
GOTERM_BP_FAT Xylulose 5‐phosphate metabolic process 3 .002231113 SORD, DCXR, XYLB
GOTERM_BP_FAT Glucuronate catabolic process to xylulose 5‐phosphate 3 .002231113 SORD, DCXR, XYLB
GOTERM_BP_FAT Xylulose 5‐phosphate biosynthetic process 3 .002231113 SORD, DCXR, XYLB
GOTERM_BP_FAT Glucuronate catabolic process 3 .002231113 SORD, DCXR, XYLB
GOTERM_BP_FAT Cation transport 28 .002320182 CALHM1, C15ORF48, SLC38A4, SLC39A14, STEAP4, ATP1B1, MFSD3, SLC15A2, OPRK1, PML, SEC14L1KCNIP4, KCNS3, MCOLN3, SLC24A4, ANK3WNK4, SLC39A8, CHRNA6, ANO10, TRPM4RAMP2, TRPM6, CYB5A, GAL, ATP6V0E2, PKP2, KCNN3
GOTERM_BP_FAT Peptide secretion 12 .002431887 KCNS3, TRPM4, NOV,OXCT1, SYBU, SYTL4, GNAS, ISL1, TRH, GAL, PCLO,CPT1A
GOTERM_BP_FAT Morphogenesis of an epithelium 18 .002441073 FRAS1, COBL, TNC, PML, NTN4, FZD5, MAGED1, EPHA7, EYA1, KRAS, FOLR1, WNK4, TSC2, TFAP2A, NFATC4, CA2, PRKACB, HHIP
GOTERM_BP_FAT Anion transport 17 .002448168 SLC38A4,PPARG, TRH, ANKH,CPT1A, SLC26A3, PLA2G4A, ADAMTS8, CLIC5, TTYH2, SLC7A1, WNK4, CA2, SLC43A1, MAP2K6, CROT, ANO10
GOTERM_BP_FAT Epithelial tube morphogenesis 13 .002731156 COBL, TNC, PML, MAGED1, EYA1, EPHA7, KRAS, FOLR1, WNK4, TSC2, NFATC4, PRKACB, HHIP
GOTERM_BP_FAT Signal release 16 .002766541 TRPM4, NAAA, OPRK1, ISL1, GAL, TRH, PCLO,CPT1AKCNS3, NOV,OXCT1, SYN2, SYBU, SYTL4, GNAS, GAD1
GOTERM_BP_FAT Regulation of hormone secretion 12 .002882484 KCNS3, TRPM4, NOV, OPRK1,OXCT1, SYBU, SYTL4, GNAS, ISL1, TRH, GAL,CPT1A
GOTERM_BP_FAT Protein localization 55 .002908085 COPA, ATP1B1, SLC15A2,PPARG, VPS37B, POSTN, SELENBP1, TLR6, KCNIP4, AP1S3, NOV, CASP5, ANK3, GSN, WNK4, TTC21A, TRPM4, RAMP2, TNIK, SIX3, GAL, NLRP2, PCLO, EYA1, HEPACAM, STXBP6, CLIC5, GNAS, FRAS1, PAM, PML, RABGAP1L, TRH, KCNS3, TMED3,OXCT1, TAP2, SYBU, UGT8, DCLK1, ABCA12, HERPUD1, NF2, ITGA4, FZD5, ISL1,CPT1A, ABCG1, ATP6V0E2, PKP2, KCNN3, TSC2, SYTL4, SNX30, LRP4
GOTERM_BP_FAT Regulation of transport 44 .002936176 CALHM1, PAM, ATP1B1, OLFM4, OPRK1,PPARG, PML, VPS37B, RABGAP1L, POSTN, TLR6, TRH, KCNIP4, KCNS3, CASP5, NOV, PEA15, ANK3, WNK4,OXCT1, SYBU, CHRNA6, MAP2K6, SGIP1, ABCA12, TRPM4, FZD5, GAL, ISL1, NLRP2, PCLO, ABCG1,CPT1A, PLA2G4A, CHGA, STXBP6, PKP2, CLIC5, KCNN3, TSC2, SYTL4, GNAS, CA2, CPB2
GOTERM_BP_FAT Hormone secretion 13 .003111804 TRPM4, OPRK1, GAL, TRH, ISL1, PCLO,CPT1A, KCNS3, NOV,OXCT1, SYTL4, SYBU, GNAS
GOTERM_BP_FAT Protein secretion 17 .003213878 TRPM4, PML, POSTN, TRH, TLR6, ISL1, GAL, NLRP2, PCLO,CPT1A, KCNS3, NOV, CASP5,OXCT1, SYBU, SYTL4, GNAS
GOTERM_BP_FAT Morphogenesis of a branching structure 10 .003228966 MAGED1, EYA1, EPHA7, KRAS, TNC, PML, NTN4, NFATC4, HHIP, FZD5
GOTERM_BP_FAT Insulin secretion 9 .003253189 TRPM4, NOV,OXCT1, SYBU, SYTL4, ISL1, TRH, GAL, PCLO
GOTERM_BP_FAT Monovalent inorganic cation transport 17 .003456998 C15ORF48, TRPM4, SLC38A4, ATP1B1, MFSD3SLC15A2, OPRK1, CYB5A, GAL, KCNIP4, KCNS3, ATP6V0E2, SLC24A4, PKP2, ANK3, KCNN3WNK4
GOTERM_BP_FAT Regulation of hormone levels 17 .003534129 TRPM4, OPRK1, DUOX1, CYP26A1, TRH, ISL1, GAL, PCLO,CPT1A, IYD, KCNS3, NOV,OXCT1, SYBU, SYTL4, ACE2, GNAS
GOTERM_CC_FAT Golgi apparatus 40 .003725799 COPA, PAM, STEAP4, SLC39A14, ATL1,PPARG, NEDD9, RABGAP1L, POSTN, ST8SIA3, TLR6, SEC14L1, KCNS3, AP1S3, RNF125, OGN, GALNT10, TMED3, ANK3, FOLR1, SYBU, FUT3, CALN1, NDRG2, CDK5RAP2, MUC15, TRPM4, GGTA1P, STMN2, MUC7, FZD5, GAL, NLRP2, ABCG1, PLA2G4A, BGN, CLIC5, TSC2, TFAP2A, GNAS
GOTERM_MF_FAT Sulfur compound binding 11 .003932387 NOV, ECI2, OGN, ALDH6A1, ADAMTS8, SERPINA5, COL25A1, POSTN, COL5A3, ACADL, GREM2
GOTERM_BP_FAT Hormone transport 13 .004094245 TRPM4, OPRK1, GAL, TRH, ISL1, PCLO,CPT1A, KCNS3, NOV,OXCT1, SYTL4, SYBU, GNAS
GOTERM_BP_FAT Dorsal/ventral pattern formation 7 .00420815 SIX3, HHIP, PRKACB, BMPR1B, FZD5, GREM2, LRP4
GOTERM_CC_FAT Perinuclear region of cytoplasm 22 .004356611 DYNC1I1, CAPN6, COBL, PAM, OLFM4, TNIK, NF2, STMN2,PPARG, TPD52L1, FZD5, TPD52, CHGA, PLA2G4A, GSN, SORBS2, TSC2, GNAS, CALN1, NDRG2, CDK5RAP2, PRKACB
GOTERM_BP_FAT Fatty acid metabolic process 14 .0044624 GGTA1P, ECI2, PAM, CYP2J2,PPARG, PDK4, ACADLCPT1A, ACSM3, PLA2G4A, ACSM1, SCD5, PCCA, CROT
GOTERM_MF_FAT Active transmembrane transporter activity 14 .004482151 SLC26A3, SLC38A4, ATP1B1, ATP6V0E2, SLC24A4, MFSD3, SLC15A2, TAP2, SLC7A1, ABCC13, ANKH, ABCG1, ABCA12, SLC46A2
GOTERM_MF_FAT Ion binding 88 .004564204 ASPN, STEAP4, ATP1B1, KYNU, CYP2J2, ATL1, ZFP42, ZNF530,PPARG, DUOX1, POSTN, TPD52, ITSN1, KCNIP4, SLC24A4, GSN, SERPINA5, CCBE1, CALN1, CHRNA6, HHIP, PRKACB, SCD5, PLCB1, GPT2, NUDT16, TRPM6, PLD6, CYP26A1, ACTN1, CYB5A, PCLO, NME7, NEBL, ZNF233, EYA1, ADAMTS8, CA8, CAPN12, COL1A2, GNAS, ADAM18, CA2, ADAM12, PCCA, ZNF436, FRAS1, CAPS,XDH, PAM, SORD, YPEL4, PML, ST8SIA3, AGMAT, PDE6A, RNF125, KRAS, GALNT10, TCEA3, FOLR1, SORBS2, PDE1A,IDH1, GAD1, SMAD9, IKZF2, PDZRN4, VWCE, HGD, TRIM24, ITGA4, CSRP2, ISL1, XPNPEP2, ACSM3, PAPOLA, ACSM1, PLA2G4A, ZIC4, SYTL4, ACE2, MPPED2, HDAC9, BMPR1B, PHF8, CPB2, LRP4
GOTERM_BP_FAT Regulation of bone mineralization 6 .004761268 TRPM4, PLA2G4A, TFAP2A, BMPR1B, TMEM119, ANKH
GOTERM_BP_FAT Extracellular matrix organization 13 .005198597 RAMP2, HAPLN1, BGN, GSN, KAZALD1, TNC, OLFML2B, COL1A2, CREB3L1, POSTN, ITGA4, COL5A3, CPB2
GOTERM_BP_FAT Cellular response to chemical stimulus 58 .00526536 ASPN, CYP2J2,PPARG, DUOX1, POSTN, NOV, ANK3, GSN, CCBE1, CREB3L1, PRKACB, HHIP, PLCB1, MAP2K6, IFNGR1, TRPM4, RAMP2, STMN2, CYP26A1, SERPINB9, SLC26A3, CHGA, BGN, COL1A2, TFAP2A, GNAS, CA2,XDH, OPRK1, TNC, PML, GNG11, TRH, GREM2, KRAS, FOLR1,OXCT1, NFATC4, THPO, HERPUD1, SMAD9, PDK4, ITGA4, TRIM24, GJB6, ISL1,CPT1A, GJB2, PLA2G4A, ACSM1, ATP6V0E2, GPR37,HMGCS2, TSC2, HDAC9, BMPR1B, CPB2, LRP4
GOTERM_BP_FAT Extracellular structure organization 13 .00532233 RAMP2, HAPLN1, BGN, GSN, KAZALD1, TNC, OLFML2B, COL1A2, CREB3L1, POSTN, ITGA4, COL5A3, CPB2
GOTERM_MF_FAT Glycosaminoglycan binding 10 .005386366 NOV, OGN, HAPLN1, BGN, ADAMTS8, SERPINA5, COL25A1, POSTN, COL5A3, GREM2
GOTERM_BP_FAT Positive regulation of stress‐activated MAPK cascade 8 .005588879 XDH, PRMT1, TNIK, OPRK1, TPD52L1, TLR6, FZD5, PLCB1
GOTERM_BP_FAT Regulation of peptide hormone secretion 10 .005698819 KCNS3, TRPM4, NOV,OXCT1, SYBU, SYTL4, GNAS, ISL1, TRH,CPT1A
GOTERM_BP_FAT Morphogenesis of a branching epithelium 9 .005744299 MAGED1, EYA1, KRAS, TNC, PML, NTN4, NFATC4, HHIP, FZD5
GOTERM_BP_FAT Positive regulation of stress‐activated protein kinase signaling cascade 8 .005806735 XDH, PRMT1, TNIK, OPRK1, TPD52L1, TLR6, FZD5, PLCB1
GOTERM_MF_FAT NADP binding 5 .006314099 TM7SF2, FMO5, DUOX1,IDH1,CBR3
GOTERM_BP_FAT Ion transmembrane transport 26 .006573948 CALHM1, C15ORF48, SLC39A14, ATP1B1, OPRK1, KCNIP4, KCNS3, MCOLN3, SLC24A4, ANK3, TTYH2, WNK4, SLC39A8, CHRNA6, ANO10, TRPM4, TRPM6, CYB5A, GAL, ANKH,CPT1A, SLC26A3, ATP6V0E2, ADAMTS8, KCNN3, CLIC5
GOTERM_BP_FAT Regulation of peptide secretion 10 .006609351 KCNS3, TRPM4, NOV,OXCT1, SYBU, SYTL4, GNAS, ISL1, TRH,CPT1A
GOTERM_BP_FAT Response to hormone 25 .00677892 PAM, SORD, TNC, OPRK1,PPARG, GNG11, TRH, KRAS,OXCT1,IDH1, PRKACB, RAMP2, PDK4, TRIM24, ISL1, GAL, ABCG1, GJB2, PLA2G4A, ATP6V0E2,HMGCS2, TSC2, GNAS, CA2, HDAC9
GOTERM_BP_FAT Response to vitamin 7 .006968045 PLA2G4A, KYNU, FOLR1, GSN, TNC,PPARG, POSTN
GOTERM_BP_FAT Homeostatic process 39 .006995908 STEAP4, SLC39A14, ATP1B1, OPRK1,PPARG, PML, CKB, NOV, PDE6A, PRMT1, KRAS, SLC24A4, ANK3, TAP2, WNK4,OXCT1, SYBU, SLC39A8, PRKACB, SGIP1, ABCA12, TRPM4, HERPUD1, HMBOX1, PDK4, TRIM24, GJB6, ACADL, ABCG1, ACSM3, SLC26A3, PLA2G4A, ACSM1, ATP6V0E2, PKP2, GNAS, CA2, CPB2, SLC46A2
GOTERM_BP_FAT Tube morphogenesis 13 .00712882 COBL, TNC, PML, MAGED1, EYA1, EPHA7, KRAS, FOLR1, WNK4, TSC2, NFATC4, PRKACB, HHIP
GOTERM_BP_FAT Response to organic substance 61 .007992486 ASPN, KYNU,PPARG, DUOX1, POSTN, TLR6, GSN, CCBE1, CREB3L1, CHRNA6, PRKACB, HHIP, PLCB1, MAP2K6, IFNGR1, TRPM4, RAMP2, STMN2, GAL, SLC26A3, BGN, SQLE, COL1A2, TFAP2A, GNAS, CA2, CROT,XDH, PAM, SORD, OPRK1, TNC, PML, GNG11, TRH, GREM2, PEA15, KRAS, FOLR1,OXCT1,IDH1, THPO, HERPUD1, SMAD9, PDK4, ITGA4, TRIM24, GJB6, FZD5, ISL1,CPT1A, ABCG1, GJB2, PLA2G4A, ATP6V0E2,HMGCS2, TSC2, HDAC9, BMPR1B, CPB2, LRP4
GOTERM_CC_FAT Cell leading edge 14 .008364418 COBL, SLC39A14, NF2, STMN2, NEDD9, IQGAP2, ACTN1, ITSN1, CTNNA2, ACTG2, GSN, SORBS2, PLEKHH2, GNAS
GOTERM_BP_FAT Regulation of peptidase activity 14 .008369752 XDH, SERPINB9, HERPUD1, EPHA7, CARD16, GSN, SERPINA5,PPARG, PML, CST1, NLRP2, TFPI2, WFDC2, PI15
GOTERM_BP_FAT Macromolecule localization 59 .009247219 COPA, ATP1B1, SLC15A2,PPARG, VPS37B, POSTN, SELENBP1, TLR6, KCNIP4, CASP5, NOV, AP1S3, ANK3, GSN, SERPINA5, WNK4, TTC21A, MAP2K6, TRPM4, RAMP2, TNIK, SIX3, GAL, NLRP2, PCLO, EYA1, HEPACAM, STXBP6, CLIC5, GNAS, CROT, FRAS1, PAM, PML, RABGAP1L, TRH, KCNS3, TMED3, TAP2,OXCT1, SYBU, UGT8, DCLK1, ABCA12, HERPUD1, NF2, ITGA4, FZD5, ISL1,CPT1A, ABCG1, PLA2G4A, ATP6V0E2, PKP2, KCNN3, TSC2, SYTL4, SNX30, LRP4
GOTERM_BP_FAT Glucuronate metabolic process 4 .009462291 SORD, UGT8, DCXR, XYLB
GOTERM_BP_FAT Regulation of fatty acid oxidation 4 .009462291 PDK4,PPARG, ACADL,CPT1A
GOTERM_BP_FAT Uronic acid metabolic process 4 .009462291 SORD, UGT8, DCXR, XYLB
GOTERM_BP_FAT Response to estrogen 6 .009528125 SERPINB9, OPRK1,PPARG, TRIM24, CA2, GAL
GOTERM_BP_FAT Axon development 15 .009632965 COBL, ATL1, TNC, NTN4, COL25A1, ISL1, CTNNA2, OGN, EPHA7, KRAS, FOLR1, ANK3, BMPR1B, LRP4, DCLK1
GOTERM_BP_FAT Organonitrogen compound catabolic process 13 .009943818 XDH, NUDT16, ALDH6A1, KYNU, BCKDHB, HGD, ACADL, OGN, BGN, PDE1A, ACE2, GAD1, GPT2

MAPK, mitogen‐activated protein kinase; NADP, nicotinamide adenine dinucleotide phosphate. Bold denotes gene names which are picked up in the results and discussion.

In addition, several of the down‐regulated genes (peroxisome proliferator‐activated receptor γ [PPAR‐γ], xanthine dehydrogenase [XDH], carbonyl reductase 3 [CBR3], isocitrate dehydrogenase 1 [IDH1], and CPT1) fell under the GO term “oxidation‐reduction process” (Tables 4 and S1). These genes have essential roles in the response to oxidative stress.15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

Two KEGG pathways that have a strong association with the down‐regulated genes are “butanoate metabolism” and “metabolic pathways” (Tables 5 and S2). These pathways include HMGCS2, OXCT1, XDH, IDH1, and CBR3.

Table 5.

Kyoto Encyclopedia of Genes and Genomes pathway analysis for the genes that were down‐regulated in the thin endometrium

Term Count P value Gene
Butanoate metabolism 5 .001114534 ACSM3, ACSM1,HMGCS2,OXCT1, GAD1
Metabolic pathways 34 .005119787 TM7SF2,XDH, KYNU, SORD, CYP2J2, CERS4, CERS3, AGMAT, CKB, GALNT10, FUT3,IDH1, UGT8, PLCB1, GAD1, GPT2, ALDH6A1, BCKDHB, HGD, ALDH3B2, CYP26A1,CBR3, ACADL, NME7, ACSM3, PLA2G4A, ACSM1, ATP6V0E2,HMGCS2, SQLE, QPRT, PCCA, DCXR, XYLB
Thyroid hormone synthesis 6 .007157684 ATP1B1, CREB3L1, GNAS, PRKACB, PLCB1, IYD
Valine, leucine, and isoleucine degradation 5 .00867887 ALDH6A1,HMGCS2,OXCT1, BCKDHB, PCCA
Amoebiasis 7 .01007625 SERPINB9, COL1A2, ACTN1, GNAS, PRKACB, COL5A3, PLCB1
Serotonergic synapse 7 .012474846 PLA2G4A, CYP2J2, KRAS, GNG11, GNAS, PRKACB, PLCB1
Salivary secretion 6 .016558258 ATP1B1, CST1, GNAS, MUC7, PRKACB, PLCB1
Protein digestion and absorption 6 .018126807 ATP1B1, COL1A2, ACE2, COL5A3, CPB2, XPNPEP2
GnRH signaling pathway 6 .020659132 PLA2G4A, KRAS, GNAS, PRKACB, PLCB1, MAP2K6
Pancreatic secretion 6 .022469965 SLC26A3, ATP1B1, GNAS, CA2, PLCB1, CPB2
Inflammatory mediator regulation of TRP channels 6 .027439494 PLA2G4A, CYP2J2, GNAS, PRKACB, PLCB1, MAP2K6
Glucagon signaling pathway 6 .028510884 PRMT1, CREB3L1, GNAS, PRKACB, PLCB1, CPT1A
Melanogenesis 6 .029608533 KRAS, CREB3L1, GNAS, PRKACB, FZD5, PLCB1
Arrhythmogenic right ventricular cardiomyopathy 5 .034477703 PKP2, SGCD, ACTN1, ITGA4, CTNNA2
Gastric acid secretion 5 .037626762 ATP1B1, GNAS, PRKACB, CA2, PLCB1
Vasopressin‐regulated water reabsorption 4 .040391867 DYNC1I1, CREB3L1, GNAS, PRKACB
Endocrine and other factor‐regulated calcium reabsorption 4 .04274525 ATP1B1, GNAS, PRKACB, PLCB1
Cholinergic synapse 6 .043457379 KRAS, CREB3L1, GNG11, PRKACB, CHRNA6, PLCB1

GnRH, gonadotropin‐releasing hormone; TRP, transient receptor potential. Bold denotes gene names which are picked up in the results and discussion.

4. Discussion

4.1. Up‐regulated genes in the thin endometrium

Although a thin endometrium is known to be involved in implantation failure, the mechanism has not been elucidated. The authors recently found that a high level of blood flow impedance of the uterine radial artery underlies a thin endometrium.4 The present study investigated the cause of implantation failure in the thin endometrium by using genome‐wide mRNA expression analysis. Hierarchical clustering and a PCA demonstrated that the thin endometrium and the control endometrium clearly had different mRNA expression profiles, suggesting that aberrant gene expression is involved in implantation failure in a thin endometrium.

The GO analyses showed that the up‐regulated genes in the thin endometrium included a number of genes that are related to immunity. In fact, a KEGG pathway analysis indicated that a number of genes related to natural killer cell cytotoxicity are up‐regulated in thin endometria, suggesting the presence of a cytotoxic condition. Aberrant immunological factors play roles in recurrent miscarriage and implantation failure.6, 26, 27 Interestingly, 56.6% of the patients who experienced embryo implantation failures showed local immune overactivation in the endometrium at the mid‐luteal phase.6 An influx of immune cells and a switch of local immunity from the adaptive (Th1) type to the innate (Th2) type have been observed during the implantation window.6, 28 The Th2 cytokines allow the development of local mechanisms that promote immunotrophism and also down‐regulate the inflammation and cytotoxic pathways.6, 29 This immune switch, from a Th1 pro‐inflammatory environment to a Th2 anti‐inflammatory environment, is fundamental to the establishment of local maternal tolerance and is crucial for implantation. In this period, uterine natural killer (uNK) cells, together with macrophages and dendritic cells, increase in the endometrium and have a significant role in innate (Th2) immunity.30 Unlike peripheral natural killer cells, the uNK cells are not cytotoxic and their main biological functions are to produce immunotrophic and angiogenic cytokines. The activation of adequate uNK cells is important for maternal tolerance during the implantation window.31, 32, 33 However, once the uNK cells are highly activated, a Th1 pro‐inflammatory condition is induced, with the local production of IFN‐γ and TNF‐α.34, 35 The IFN‐γ and TNF‐α activate the uNK cells to become cytotoxic.34, 35 In fact, the present study showed that the IFN‐γ, FASLG, GZMB, and TNF‐α‐induced genes, such as TNFAIP2 and TNFAIP6, were up‐regulated and that natural killer cell cytotoxicity was elevated in the thin endometrium. These results suggest that aberrant overactivation of the uNK cells and a cytotoxic/Th1 pro‐inflammatory environment are present in a thin endometrium, which is associated with implantation failure. However, it is still unknown how impaired blood flow is associated with the aberrant immunity.

4.2. Down‐regulated genes in the thin endometrium

The GO analyses indicated that the down‐regulated genes included a number of genes related to catabolic processes, which are essential in breaking down large molecules, such as polysaccharides, lipids, and proteins, into smaller units, such as monosaccharides, fatty acids, and amino acids. These small units are used to synthesize acetyl‐CoA, which is needed to produce adenosine 5′‐triphosphate in the citrate cycle. Acetyl‐CoA is also used for the synthesis of ketone bodies, which can be an energy source. The KEGG pathway analysis showed that the genes related to butanoate metabolism were down‐regulated in the thin endometrium. Genes, such as CPT1, HMGCS2, and OXCT1, are essential for generating acetyl‐CoA and ketone bodies in butanoate metabolism.13, 14, 15 Butanoate is a substrate that is used to generate energy in both aerobic and anaerobic processes. The present findings suggest that energy synthesis in the cell is impaired in the thin endometrium. The deficiency of energy could be associated with cellular dysfunction in the endometrium, resulting in implantation failure.

The GO analyses also identified a number of genes related to oxidation‐reduction processes. These genes included PPAR‐γ, XDH, CBR3, IDH1, and CPT1, which have essential roles in the cellular responses to oxidative stress. The activation of PPAR‐γ is an important factor in the protection against oxidative stress in cells, such as vascular endothelial cells and cardiomyocytes.16, 17, 20, 21, 24, 25 Xanthine dehydrogenase reduces age‐related oxidative stress in tissues and immune cells.23 Carbonyl reductase 3 is regulated via NRF2‐dependent signaling pathways and helps to alleviate oxidative stress.18 Isocitrate dehydrogenase 1 acts as an antioxidant in melanocytes,19 and when mutated, it sensitizes cells to oxidative stress.36 Carnitine palmitoyltransferase I is involved in mitochondrial beta‐oxidation of long‐chain fatty acids.15 The inhibition of CPT1 leads to the generation of reactive oxygen species.22 Oxidative stress in the endometrium has been associated with failures of embryo implantation and embryo development.37 The fact that these anti‐oxidative stress genes were down‐regulated in the thin endometrium suggests that a decreased response to oxidative stress is associated with implantation failure.

In conclusion, the present study revealed that the thin endometrium possesses an aberrant Th1‐pro‐inflammatory/Th2‐anti‐inflammatory balance and increased cytotoxic condition and that a protective response to oxidative stress is impaired. These aberrant molecular mechanisms in the thin endometrium might be associated with implantation failure. These findings could lead to better treatments for patients with implantation failure as a result of a thin endometrium.

Disclosures

Conflict of interest: The authors declare no conflict of interest. Human Rights: The study protocol was reviewed and approved by the Institutional Review Board of Yamaguchi University Graduate School of Medicine. Informed consent was obtained from the participants before the collection of any sample. All the experiments that involved the handling of human tissues were performed in accordance with the tenets of the Declaration of Helsinki.

Supporting information

 

 

 

 

 

 

Acknowledgements

This work was supported in part by Japan Society for the Promotion of Science, Tokyo, Japan, KAKENHI grant no. 16K11091, 16K11142, 16K20191, 16K20192, 16K20194, 15K20145, 15K20146, 15K10719, 15K10720, 26462492, and 26462525 for Scientific Research from the Ministry of Education, Science, and Culture, Japan, and the New Frontier Project of Yamaguchi University, Ube, Japan.

Maekawa R, Taketani T, Mihara Y, et al. Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure. Reprod Med Biol. 2017;16:206–227. https://doi.org/10.1002/rmb2.12030

References

  • 1. Abdalla HI, Brooks AA, Johnson MR, Kirkland A, Thomas A, Studd JW. Endometrial thickness: a predictor of implantation in ovum recipients? Hum Reprod. 1994;9:363‐365. [DOI] [PubMed] [Google Scholar]
  • 2. Alam V, Bernardini L, Gonzales J, Asch RH, Balmaceda JP. A prospective study of echographic endometrial characteristics and pregnancy rates during hormonal replacement cycles. J Assist Reprod Genet. 1993;10:215‐219. [DOI] [PubMed] [Google Scholar]
  • 3. Gonen Y, Casper RF, Jacobson W, Blankier J. Endometrial thickness and growth during ovarian stimulation: a possible predictor of implantation in in vitro fertilization. Fertil Steril. 1989;52:446‐50. [DOI] [PubMed] [Google Scholar]
  • 4. Miwa I, Tamura H, Takasaki A, Yamagata Y, Shimamura K, Sugino N. Pathophysiologic features of “thin” endometrium. Fertil Steril. 2009;91:998‐1004. [DOI] [PubMed] [Google Scholar]
  • 5. Richter KS, Bugge KR, Bromer JG, Levy MJ. Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst‐stage embryos. Fertil Steril. 2007;87:53‐59. [DOI] [PubMed] [Google Scholar]
  • 6. Ledee N, Petitbarat M, Chevrier L, et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am J Reprod Immunol. 2016;75:388‐401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Takasaki A, Tamura H, Miwa I, Taketani T, Shimamura K, Sugino N. Endometrial growth and uterine blood flow: a pilot study for improving endometrial thickness in the patients with a thin endometrium. Fertil Steril. 2010;93:1851‐1858. [DOI] [PubMed] [Google Scholar]
  • 8. Takasaki A, Tamura H, Taketani T, Shimamura K, Morioka H, Sugino N. A pilot study to prevent a thin endometrium in patients undergoing clomiphene citrate treatment. J Ovarian Res. 2013;6:94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Maekawa R, Sato S, Yamagata Y, et al. Genome‐wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PLoS ONE. 2013;8:e66632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Yamagata Y, Nishino K, Takaki E, et al. Genome‐wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells. PLoS ONE. 2014;9:e83612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. R: A language and environment for statistical computing. R Core Team Web site. https://www.R-project.org/. Accessed January 16, 2017.
  • 12. Huang DW, Sherman BT, Tan Q, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169‐W175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Aledo R, Zschocke J, Pie J, et al. Genetic basis of mitochondrial HMG‐CoA synthase deficiency. Hum Genet. 2001;109:19‐23. [DOI] [PubMed] [Google Scholar]
  • 14. Fukao T, Sass JO, Kursula P, et al. Clinical and molecular characterization of five patients with succinyl‐CoA:3‐ketoacid CoA transferase (SCOT) deficiency. Biochim Biophys Acta. 2011;1812:619‐624. [DOI] [PubMed] [Google Scholar]
  • 15. Hoppel CL. Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis. Fed Proc. 1982;41:2853‐2857. [PubMed] [Google Scholar]
  • 16. Beyer AM, de Lange WJ, Halabi CM, et al. Endothelium‐specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high‐fat diet. Circ Res. 2008;103:654‐661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Blanquicett C, Kang BY, Ritzenthaler JD, Jones DP, Hart CM. Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radic Biol Med. 2010;48:1618‐1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Ebert B, Kisiela M, Malatkova P, El‐Hawari Y, Maser E. Regulation of human carbonyl reductase 3 (CBR3; SDR21C2) expression by Nrf2 in cultured cancer cells. Biochemistry. 2010;49:8499‐8511. [DOI] [PubMed] [Google Scholar]
  • 19. Kim JY, Shin JY, Kim M, Hann SK, Oh SH. Expression of cytosolic NADP(+)‐dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant. J Dermatol Sci. 2012;65:118‐125. [DOI] [PubMed] [Google Scholar]
  • 20. Li J, Dai A, Hu R, Zhu L, Tan S. Positive correlation between PPARgamma/PGC‐1alpha and gamma‐GCS in lungs of rats and patients with chronic obstructive pulmonary disease. Acta Biochim Biophys Sin (Shanghai). 2010;42:603‐614. [DOI] [PubMed] [Google Scholar]
  • 21. Ren Y, Sun C, Sun Y, et al. PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl‐2 upregulation. Vascul Pharmacol. 2009;51:169‐174. [DOI] [PubMed] [Google Scholar]
  • 22. Setoyama D, Fujimura Y, Miura D. Metabolomics reveals that carnitine palmitoyltransferase‐1 is a novel target for oxidative inactivation in human cells. Genes Cells. 2013;18:1107‐1119. [DOI] [PubMed] [Google Scholar]
  • 23. Vida C, Rodriguez‐Teres S, Heras V, Corpas I, De la Fuente M, Gonzalez E. The aged‐related increase in xanthine oxidase expression and activity in several tissues from mice is not shown in long‐lived animals. Biogerontology. 2011;12:551‐564. [DOI] [PubMed] [Google Scholar]
  • 24. Zhang Q, Seltmann H, Zouboulis CC, Konger RL. Involvement of PPARgamma in oxidative stress‐mediated prostaglandin E(2) production in SZ95 human sebaceous gland cells. J Invest Dermatol. 2006;126:42‐48. [DOI] [PubMed] [Google Scholar]
  • 25. Zhang T, Wang F, Xu HX, et al. Activation of nuclear factor erythroid 2‐related factor 2 and PPARgamma plays a role in the genistein‐mediated attenuation of oxidative stress‐induced endothelial cell injury. Br J Nutr. 2013;109:223‐235. [DOI] [PubMed] [Google Scholar]
  • 26. Timeva T, Shterev A, Kyurkchiev S. Recurrent implantation failure: the role of the endometrium. J Reprod Infertil. 2014;15:173‐183. [PMC free article] [PubMed] [Google Scholar]
  • 27. Granot I, Gnainsky Y, Dekel N. Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction. 2012;144:661‐668. [DOI] [PubMed] [Google Scholar]
  • 28. Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med. 2007;25:445‐453. [DOI] [PubMed] [Google Scholar]
  • 29. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14:353‐356. [DOI] [PubMed] [Google Scholar]
  • 30. Hanna J, Goldman‐Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med. 2006;12:1065‐1074. [DOI] [PubMed] [Google Scholar]
  • 31. Croy BA, Esadeg S, Chantakru S, et al. Update on pathways regulating the activation of uterine natural killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J Reprod Immunol. 2003;59:175‐191. [DOI] [PubMed] [Google Scholar]
  • 32. Eriksson M, Meadows SK, Wira CR, Sentman CL. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF‐beta. J Leukoc Biol. 2004;76:667‐675. [DOI] [PubMed] [Google Scholar]
  • 33. Goldman‐Wohl DS, Ariel I, Greenfield C, Lavy Y, Yagel S. Tie‐2 and angiopoietin‐2 expression at the fetal–maternal interface: a receptor ligand model for vascular remodelling. Mol Hum Reprod. 2000;6:81‐87. [DOI] [PubMed] [Google Scholar]
  • 34. Hayakawa S, Nagai N, Kanaeda T, et al. Interleukin‐12 augments cytolytic activity of peripheral and decidual lymphocytes against choriocarcinoma cell lines and primary culture human placental trophoblasts. Am J Reprod Immunol. 1999;41:320‐329. [DOI] [PubMed] [Google Scholar]
  • 35. Petitbarat M, Rahmati M, Serazin V, et al. TWEAK appears as a modulator of endometrial IL‐18 related cytotoxic activity of uterine natural killers. PLoS ONE. 2011;6:e14497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Mohrenz IV, Antonietti P, Pusch S, et al. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU‐induced oxidative stress and cell death. Apoptosis. 2013;18:1416‐1425. [DOI] [PubMed] [Google Scholar]
  • 37. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre‐implantation embryo and its surroundings. Hum Reprod Update. 2001;7:175‐189. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

 

 

 

 

 

 


Articles from Reproductive Medicine and Biology are provided here courtesy of John Wiley & Sons Australia, Ltd on behalf of Japan Society for Reproductive Medicine.

RESOURCES