Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2019 Jan 1.
Published in final edited form as: Pharmacol Res. 2017 Jun 13;127:110–115. doi: 10.1016/j.phrs.2017.06.007

Chasing c-Kit through the heart: taking a broader view

Natalie A Gude 1, Mark A Sussman 1
PMCID: PMC5729070  NIHMSID: NIHMS885997  PMID: 28627370

Graphical abstract

graphic file with name nihms885997u1.jpg

Keywords: c-Kit, cardiac, transgenic, knock-in, reporter


Limited regenerative capacity of the mammalian heart was long thought to reflect lack of a cellular reservoir for new heart muscle tissue, but over the last decade a substantial body of literature has emerged documenting the contribution of stem or progenitor cells to cardiogenesis in the postnatal heart (122). Numerous cell types have been identified as potential sources of de novo cardiomyogenesis in the adult organism, and the significance of their role in cardiac repair is the subject of ongoing intense debate. Whether cardiac regeneration occurs through proliferation of existing myocytes or differentiation of stem cells into cardiac tissue, or both, continues to be intensively studied (2346). Identification of resident cardiac stem cells coupled with awareness that myocyte turnover is an ongoing process throughout life provide a rationale for new stem and regenerative therapies for diseased hearts. Clinical trials using bone marrow derived cell therapies have led the way and shown modest improvements in clinical endpoints (4749), while further results from Phase I trials using the well characterized cardiac c-Kit+ stem cells and cardiosphere derived cells demonstrate promising improvement in cardiac function and/or structure (50, 51). Engineering c-Kit+ cardiac progenitors with Pim1 kinase to improve their reparative capacity has been validated in animal models and offers a path forward for clinical applications (5256).

As a marker in the cardiac context, c-Kit is expressed by multiple cell types, including myocytes (22, 5759), endothelial cells (60, 61), and cardiac stem cells such as mesenchymal and progenitor cells (1, 2, 57, 62). Debate over the contribution of c-Kit+ cells to cardiac repair and their utility in cell-based therapy applications is summarized briefly in Table 1 (13, 5, 8, 22, 50, 5255, 5761, 6374). This overview of key publications highlights the diversity of viewpoints in the ongoing discussion among cardiac researchers regarding c-Kit+ cells. A more complex and heterogeneous expression pattern for c-Kit is emerging, as revealed by studies using various genetic animal models developed to determine which cell types participate in cardiac regeneration. Initial fate mapping models created to identify which cell types participate in cardiac repair include the αMyHCmER-Cre-mER/ZEG mouse, in which cardiomyocytes are tagged upon administration of tamoxifen, and transgenic c-KitGFP reporter mouse lines, in which GFP expression diminishes upon loss of c-Kit promoter activity (25, 31, 35, 57, 70, 72, 75). These animal models provide valuable information regarding dynamics of cardiomyocyte turnover and replacement, however they do not definitively identify the specific contribution made to these processes by the c-Kit+ cell population throughout the life of the organism. More recently, direct tagging of c-Kit expressing cells using the endogenous c-Kit promoter validated that c-Kit cells contribute to the cardiomyocyte population, albeit at a very low level, and more extensively to the endothelial and interstitial cell pools (5961). Intriguingly, studies using a similar lineage-tracing model demonstrated cardiomyogenic capability in c-Kit+ cardiac neural crest progenitors, positing a non-permissive cardiac environment to explain low contribution of these cells to the cardiomyocyte population (22).

Table 1.

Summary of c-Kit+ cardiac stem cell debate.

CURRENT CARDIAC c-KIT FINDINGS SPECIES REFERENCES
c-Kit YES Mammalian hearts possess c-Kit+ adult stem cells that contribute to cardiac formation, homeostasis and repair. mouse Beltrami et al, Cell, 2003
Ellison et al, Cell, 2013
Nadal-Ginard et al, Stem Cell Res, 2014
Anversa et al, JCI, 2013
Hatzistergos et al, PNAS 2015
Tallini et al, 2009
(13,5,22,57)
Adoptive transfer of autologous cardiac c-Kit+ cells improves cardiac function in heart failure patients. human, pig Bolli et al, Lancet, 2011
Chugh et al, Circulation, 2012
Quevedo et al, PNAS, 2009
Schuleri et al, Eur Heart J, 2009
McCall et al, Nature protocols, 2012
(50,63,64,8,65)
Cardiac c-Kit+ progenitor cells engineered to overexpress Pim1 engraft, differentiate and improve cardiac function better than non-engineered cells upon adoptive transfer into infarcted myocardium. mouse, pig Fisher et al, Circulation, 2009
Mohsin et al, Circ Res, 2011
Mohsin et al, JACC, 2012
Mohsin et al, Circ Res, 2013
(5255)
c-Kit+ cell fate mapping models show that c-Kit+ cells contribute to cardiogenesis during development and repair. mouse Hatzistergos et al, PNAS, 2015
van Berlo et al, Nature, 2014
(22,60)
c-Kit is expressed in neonatal myocytes during terminal differentiation mouse Li et al, Circ Res, 2008
Naqvi et al, Ped cardiol, 2009
(58,66)
c-Kit No c-Kit+ cells are not adult cardiac stem cells and do not contribute to cardiac formation, homeostasis or repair. mouse, Balsam et al, Nature, 2004
Sultana et al, Nat Comm, 2015
Zaruba et al, Circulation, 2010
(74,61,67)
Exogenous c-Kit+ cells do not repair injured myocardium through de novo formation of cardiac tissue. mouse Murry et al, Nature, 2004
(68)
c-Kit+ cells are irrelevant in human cardiosphere cell therapy applications. human Cheng et al, JAHA, 2014
(69)
c-Kit MAYBE Cardiomyocyte fate mapping models suggest that c-Kit+ cells could contribute to cardiogenesis following injury. mouse Hsieh et al, Nat Med, 2007
(70)
c-Kit+ cells contribute to neonatal but not adult cardiac repair in mouse. mouse Jesty et al, PNAS, 2012
(71)
Normal, injured or dedifferentiated cardiomyocytes may express c-Kit. mouse Liu et al, Cell Res, 2016
Tallini et al, PNAS, 2009
Zhang et al, PloS One, 2010
Kubin et al, Cell Stem Cell, 2011
(59,57,72,73)

Genetic reporter models are imperfect reproductions of endogenous gene expression, whether employing an exogenous promoter segment or exploiting the endogenous gene via knock-in recombination. Transgenic promoter segments may lack important regulatory elements, while knock-in reporters often disable one allele of the gene-of- interest. Specifically, applying knock-in technology for c-Kit lineage tracing silences at least one allele of the c-Kit gene and has been reported to disrupt known regulatory elements in exon 1, thereby perturbing endogenous c-Kit biology with potentially significant consequences for stem cell function (76). c-Kit signaling has been shown to promote growth, survival and proliferation in human CPCs in vitro (77), while W locus mouse mutants (W/Wv) exhibit c-Kit cell dysfunction (78, 79). W/Wv mice display impaired cardiac recovery after infarction (80), diminished cardiac function with advanced age (81), and compromised c-Kit cell differentiation into cardiomyocytes (58, 82). Bone marrow c-Kit+ cells from W locus mutants or cells in which c-Kit has been molecularly silenced in vitro exhibit blunted reparative responses to myocardial injury (80, 8284). Given the importance of functional c-Kit in cardiac maintenance and repair, current c-Kit knock-in mice may harbor similar c-Kit cell related defects. Additionally, reporter expression constrained to one allele of the endogenous promoter, coupled with decreased c-Kit function, could manifest as decreased reporter sensitivity and consequent underrepresentation of the tagged c-Kit cell population (85, 86). Recently, levels of c-Kit expression were shown to influence hematopoietic stem cell (HSC) function and regenerative capacity such that HSCs with relatively low c-Kit surface expression exhibited more stem-like properties of self-renewal and multipotency, whereas high c-Kit surface expression corresponded to compromised self-renewal and a propensity toward megakaryocyte differentiation (87). Low expressing c-Kit cells that constitute a more stem-like population would likely be under-represented in genetic tagging systems with an inherent bias toward high expressing cells. Finally, given the potentially compromised function of the c-Kit population in hemizygous reporter models, they cannot be used to assess the contribution of c-Kit+ cells that have been isolated according to c-Kit expression, then expanded and modified by passaging in vitro, as the selection pressures of tissue culture likely favor a subpopulation with enhanced survival and proliferative potential relative to the initial isolates. As such, knock-in studies do not inform upon the role of c-Kit+ cells in adoptive transfer therapeutic applications in the clinical context, where cardiomyogenic and regenerative potential are undoubtedly much different from endogenous repair alone.

C-Kit as a cardiac cell marker. The hematopoetic stem cell marker c-Kit has been used to isolate and characterize adult cardiac stem cells in numerous studies. c-Kit expressing cells derived from adult cardiac tissue exhibit stem cell properties of self renewal, clonogenicity, and ability to differentiate into adult cardiac lineages (1, 2, 26, 88). The SCIPIO trial provides compelling clinical evidence that autologous c-Kit expressing adult cardiac stem cells function in a cell therapy application to improve cardiac performance in patients suffering from severe heart disease (50, 63). Direct comparison between human c-Kit+ cardiac progenitors (hCPCs) and bone marrow derived mesenchymal stem cells (hMSCs) reveals a 30 fold greater potency in cardiac repair of hCPCs over hMSCs after adoptive transfer into infarcted hearts of SCID mice, further illustrating the efficacy of c-Kit+ cells in therapeutic applications (89). Distribution of c-Kit expressing cells in the developing heart and their response to pathologic cardiac injury in the adult heart have been monitored using transgenic reporter lines expressing enhanced green fluorescent protein (EGFP) under control of the c-Kit promoter (25, 26, 57, 90). In addition to purported contributions of c-Kit+ stem cells to myocardial adaptation and repair, cardiomyocyte de-differentiation and proliferation may also represent important mechanisms of cardiac regeneration. However, interpretations of the role for myocytes as contributors to cardiomyogenesis in the adult vary from little or none to substantial (30, 70, 9193). For example, two separate studies from the same laboratory assert that multi-isotope mass spectrometry performed with mice demonstrates pre-existing cardiomyocytes are the dominant source of cardiomyocyte replacement in the adult mammalian heart following injury (93), while a prior report supports the possibility that nonmyocyte cells contribute to cardiac repair (70). Similarly, in lower vertebrate species such as zebrafish that exhibit remarkable myocardial regenerative potential throughout life, the robust reparative response after injury occurs via de-differentiation and proliferation of existing cardiomyocytes (34, 94). Myocardial regeneration of this magnitude can also occur in mice, but only during fetal and very early neonatal development where c-Kit+ cells predominate (37, 95). Treatments that induce cardiomyocyte de-differentiation with c-Kit+ re-expression (72) and proliferation (32, 96, 97) in adult mice have been described, and expression of c-Kit has been reported in neonatal mouse cardiomyocytes undergoing terminal differentiation a few days after birth (58, 66). These “noncanonical” expression patterns of c-Kit have profound implications for lineage tracing studies employing c-Kit promoters. As traditional lines continue to blur between differentiated cardiomyocytes and the resident cardiac stem cell pool, with both populations potentially contributing to expansion and deployment of c-Kit+ cells engaging in heart growth and repair, more nuanced interpretation of results utilizing genetic models for c-Kit cell labeling becomes essential.

Beyond c-Kit+ stem cells and myocytes, cardiac interstitial cells, which comprise vascular and perivascular cells of the coronary circulation, and stromal and immune cells, represent the majority cell types of the heart within a dynamic and interconnected environment supporting cardiomyocyte function, homeostasis and repair. In addition to structural, sensing and adaptive functions, these cells are governed by their own stem cell hierarchies, and help to configure the niche for all stem cell populations of the heart. The adult epicardium, where c-Kit+ cells are known to reside (98, 99), is also emerging as a potentially significant player in heart repair. In the injured adult heart the epicardium reactivates its developmental transcriptional program (100, 101) and contributes new fibroblasts, perivascular cells and potentially cardiomyocytes to the injury site, stimulating angiogenesis and repair processes (102104).

New approaches are needed to identify the distribution and proportion of all adult cardiac cell types expressing c-Kit or derived from c-Kit progenitors, establishing a direct readout of c-Kit+ cell participation in cardiac homeostasis and repair. An undeniable need exists for a better understanding of c-Kit+ as a marker of the regenerative cell population in the adult mouse. Although the list of candidate cardiac stem cells continues to grow, there is no clear understanding of whether these populations are inter-related functionally, or if a cellular stem cell hierarchy exists within the adult mammalian heart. As regenerative medicine further expands to embrace novel approaches for treatment of cardiovascular disease, robust, reliable, and consensual experimental models to study the cellular basis of tissue repair are needed now more than ever. As one of the very first endogenous cardiogenic cell populations identified in the adult mammalian heart, c-Kit+ stem cells have been advanced to clinical implementation for treatment of heart failure even as their role in myocardial repair continues to be contested.

Possession of fate mapping information for c-Kit+ cells in the adult mammalian heart represents powerful methodology as well as an important conceptual advance for revealing the true basis of endogenous c-Kit+ cell biology in the myocardium. Tagging of c-Kit+ can be performed during development, after injury, or in the aged heart to assess the incorporation of c-Kit+ cells, and to resolve longstanding debates resulting from indirect assessment of c-Kit+-based myocardial biology, or studies performed in models with potentially compromised endogenous c-Kit function. Recently, an inducible transgenic overexpression model has been developed to tag all various c-Kit+ cells including cardiomyocytes and stem cells either reversibly or permanently, thereby circumventing disruption of the endogenous c-Kit gene and potentially identifying cells within a broader range of c-Kit expression. Findings using this model are expected to reveal previously unrecognized aspects of c-Kit expression and biology that will contribute to the overall understanding of cardiac c-Kit cell function and therefore improve the potential for use of these cells in the treatment of heart disease (unpublished observations). Likewise, it is possible to envision reporter models targeting the endogenous c-Kit locus without disrupting native expression using new gene editing technologies such CRISPR/Cas9 to insert an IRES-EGFP in the 3’-UTR, or to generate a reporter fused to the endogenous c-Kit protein. Studies based on these mouse models will add missing information to the cardiac c-Kit cell literature and address important questions regarding the relevance of the c-Kit+ stem cell and c-Kit expression in the adult heart.

Acknowledgments

Funding Sources:

N.A. Gude is supported by the National Institutes of Health (NIH) grants R37HL091102, R01HL117163, R01HL105759, U54CA132384. M.A. Sussman is supported by NIH grants R37HL091102, R01HL113647, R01HL117163, P01HL085577, R01HL122525, R01HL105759, U54CA132384 and the Leducq Foundation Transatlantic Network of Excellence Program.

Footnotes

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Bibliography and References Cited

  • 1.Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–776. doi: 10.1016/s0092-8674(03)00687-1. [DOI] [PubMed] [Google Scholar]
  • 2.Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfo M, Agosti V, Viglietto G, Condorelli G, Indolfi C, Ottolenghi S, Torella D, Nadal-Ginard B. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154(4):827–842. doi: 10.1016/j.cell.2013.07.039. [DOI] [PubMed] [Google Scholar]
  • 3.Nadal-Ginard B, Ellison GM, Torella D. The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Res. 2014;13(3 Pt B):615–630. doi: 10.1016/j.scr.2014.04.008. [DOI] [PubMed] [Google Scholar]
  • 4.Solloway MJ, Harvey RP. Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc Res. 2003;58(2):264–277. doi: 10.1016/s0008-6363(03)00286-4. [DOI] [PubMed] [Google Scholar]
  • 5.Anversa P, Kajstura J, Rota M, Leri A. Regenerating new heart with stem cells. J Clin Invest. 2013;123(1):62–70. doi: 10.1172/JCI63068. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 6.Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006;113(11):1451–1463. doi: 10.1161/CIRCULATIONAHA.105.595181. [DOI] [PubMed] [Google Scholar]
  • 7.Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res. 2011;109(8):941–961. doi: 10.1161/CIRCRESAHA.111.243154. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 8.Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, Kellner J, Zviman MM, Hatzistergos KE, Detrick B, Conte JV, McNiece I, Steenbergen C, Lardo AC, Hare JM. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J. 2009;30(22):2722–2732. doi: 10.1093/eurheartj/ehp265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Kajstura J, Urbanek K, Rota M, Bearzi C, Hosoda T, Bolli R, Anversa P, Leri A. Cardiac stem cells and myocardial disease. J Mol Cell Cardiol. 2008;45(4):505–513. doi: 10.1016/j.yjmcc.2008.05.025. [DOI] [PubMed] [Google Scholar]
  • 10.Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 2013;12(6):689–698. doi: 10.1016/j.stem.2013.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Garbern JC, Mummery CL, Lee RT. Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med. 2013;3(4):a014019. doi: 10.1101/cshperspect.a014019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Koudstaal S, Jansen Of Lorkeers SJ, Gaetani R, Gho JM, van Slochteren FJ, Sluijter JP, Doevendans PA, Ellison GM, Chamuleau SA. Concise review: heart regeneration and the role of cardiac stem cells. Stem Cells Transl Med. 2013;2(6):434–443. doi: 10.5966/sctm.2013-0001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Soonpaa MH, Rubart M, Field LJ. Challenges measuring cardiomyocyte renewal. Biochim Biophys Acta. 2013;1833(4):799–803. doi: 10.1016/j.bbamcr.2012.10.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells: at the heart of regeneration. J Mol Cell Cardiol. 2011;50(2):296–303. doi: 10.1016/j.yjmcc.2010.07.006. [DOI] [PubMed] [Google Scholar]
  • 15.Penn MS, Mangi AA. Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ Res. 2008;102(12):1471–1482. doi: 10.1161/CIRCRESAHA.108.175174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Schulman IH, Hare JM. Key developments in stem cell therapy in cardiology. Regen Med. 2012;7(6 Suppl):17–24. doi: 10.2217/rme.12.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007;4(Suppl 1):S21–26. doi: 10.1038/ncpcardio0770. [DOI] [PubMed] [Google Scholar]
  • 18.Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109(8):923–940. doi: 10.1161/CIRCRESAHA.111.243147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Terrovitis JV, Smith RR, Marban E. Assessment and optimization of cell engraftment after transplantation into the heart. Circ Res. 2010;106(3):479–494. doi: 10.1161/CIRCRESAHA.109.208991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Chong JJ. Cell therapy for left ventricular dysfunction: an overview for cardiac clinicians. Heart Lung Circ. 2012;21(9):532–542. doi: 10.1016/j.hlc.2012.04.020. [DOI] [PubMed] [Google Scholar]
  • 21.Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454(7200):109–113. doi: 10.1038/nature07060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Hatzistergos KE, Takeuchi LM, Saur D, Seidler B, Dymecki SM, Mai JJ, White IA, Balkan W, Kanashiro-Takeuchi RM, Schally AV, Hare JM. cKit+ cardiac progenitors of neural crest origin. Proc Natl Acad Sci U S A. 2015;112(42):13051–13056. doi: 10.1073/pnas.1517201112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Zhang Y, Mignone J, MacLellan WR. Cardiac Regeneration and Stem Cells. Physiol Rev. 2015;95(4):1189–1204. doi: 10.1152/physrev.00021.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, Yellon D, Riegler J, Price AN, Lythgoe MF, Pu WT, Riley PR. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474(7353):640–644. doi: 10.1038/nature10188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Craven M, Kotlikoff MI, Nadworny AS. C-kit expression identifies cardiac precursor cells in neonatal mice. Methods Mol Biol. 2012;843:177–189. doi: 10.1007/978-1-61779-523-7_17. [DOI] [PubMed] [Google Scholar]
  • 26.Ferreira-Martins J, Ogorek B, Cappetta D, Matsuda A, Signore S, D'Amario D, Kostyla J, Steadman E, Ide-Iwata N, Sanada F, Iaffaldano G, Ottolenghi S, Hosoda T, Leri A, Kajstura J, Anversa P, Rota M. Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res. 2012;110(5):701–715. doi: 10.1161/CIRCRESAHA.111.259507. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 27.Leri A, Hosoda T, Kajstura J, Anversa P, Rota M. Identification of a coronary stem cell in the human heart. J Mol Med (Berl) 2011;89(10):947–959. doi: 10.1007/s00109-011-0769-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127(6):1151–1165. doi: 10.1016/j.cell.2006.10.029. [DOI] [PubMed] [Google Scholar]
  • 29.Kajstura J, Rota M, Cappetta D, Ogorek B, Arranto C, Bai Y, Ferreira-Martins J, Signore S, Sanada F, Matsuda A, Kostyla J, Caballero MV, Fiorini C, D'Alessandro DA, Michler RE, del Monte F, Hosoda T, Perrella MA, Leri A, Buchholz BA, Loscalzo J, Anversa P. Cardiomyogenesis in the aging and failing human heart. Circulation. 2012;126(15):1869–1881. doi: 10.1161/CIRCULATIONAHA.112.118380. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 30.Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102. doi: 10.1126/science.1164680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marban E. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med. 2013;5(2):191–209. doi: 10.1002/emmm.201201737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Beigi F, Schmeckpeper J, Pow-Anpongkul P, Payne JA, Zhang L, Zhang Z, Huang J, Mirotsou M, Dzau VJ. C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circ Res. 2013;113(4):372–380. doi: 10.1161/CIRCRESAHA.113.301075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497(7448):249–253. doi: 10.1038/nature12054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–605. doi: 10.1038/nature08804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, Yelon D, Chi NC. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 2013;498(7455):497–501. doi: 10.1038/nature12322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Jopling C, Sune G, Faucherre A, Fabregat C, Izpisua Belmonte JC. Hypoxia induces myocardial regeneration in zebrafish. Circulation. 2012;126(25):3017–3027. doi: 10.1161/CIRCULATIONAHA.112.107888. [DOI] [PubMed] [Google Scholar]
  • 37.Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–1080. doi: 10.1126/science.1200708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Singh BN, Koyano-Nakagawa N, Garry JP, Weaver CV. Heart of newt: a recipe for regeneration. J Cardiovasc Transl Res. 2010;3(4):397–409. doi: 10.1007/s12265-010-9191-9. [DOI] [PubMed] [Google Scholar]
  • 39.Kuhl SJ, Kuhl M. Improving cardiac regeneration after injury: are we a step closer? Bioessays. 2011;33(9):669–673. doi: 10.1002/bies.201100046. [DOI] [PubMed] [Google Scholar]
  • 40.Chimenti I, Forte E, Angelini F, Giacomello A, Messina E. From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells. Prog Mol Biol Transl Sci. 2012;111:109–137. doi: 10.1016/B978-0-12-398459-3.00005-8. [DOI] [PubMed] [Google Scholar]
  • 41.Zebrowski DC, Engel FB. The cardiomyocyte cell cycle in hypertrophy, tissue homeostasis, and regeneration. Rev Physiol Biochem Pharmacol. 2013;165:67–96. doi: 10.1007/112_2013_12. [DOI] [PubMed] [Google Scholar]
  • 42.Porrello ER, Olson EN. A neonatal blueprint for cardiac regeneration. Stem Cell Res. 2014;13(3 Pt B):556–570. doi: 10.1016/j.scr.2014.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Leone M, Magadum A, Engel FB. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am J Physiol Heart Circ Physiol. 2015;309(8):H1237–1250. doi: 10.1152/ajpheart.00559.2015. [DOI] [PubMed] [Google Scholar]
  • 44.White IA, Gordon J, Balkan W, Hare JM. Sympathetic Reinnervation Is Required for Mammalian Cardiac Regeneration. Circ Res. 2015;117(12):990–994. doi: 10.1161/CIRCRESAHA.115.307465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Uygur A, Lee RT. Mechanisms of Cardiac Regeneration. Dev Cell. 2016;36(4):362–374. doi: 10.1016/j.devcel.2016.01.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Lin Z, Pu WT. Strategies for cardiac regeneration and repair. Sci Transl Med. 2014;6(239):239rv231. doi: 10.1126/scitranslmed.3006681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Kovacic JC, Macdonald P, Feneley MP, Muller DW, Freund J, Dodds A, Milliken S, Tao H, Itescu S, Moore J, Ma D, Graham RM. Safety and efficacy of consecutive cycles of granulocyte-colony stimulating factor, and an intracoronary CD133+ cell infusion in patients with chronic refractory ischemic heart disease: the G-CSF in angina patients with IHD to stimulate neovascularization (GAIN I) trial. Am Heart J. 2008;156(5):954–963. doi: 10.1016/j.ahj.2008.04.034. [DOI] [PubMed] [Google Scholar]
  • 48.Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schachinger V, Lehmann R, Martin H, Burck I, Urbich C, Dimmeler S, Zeiher AM, Assmus B. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol. 2011;100(10):925–934. doi: 10.1007/s00392-011-0327-y. [DOI] [PubMed] [Google Scholar]
  • 49.Behbahan IS, Keating A, Gale RP. Bone Marrow Therapies for Chronic Heart Disease. Stem Cells. 2015;33(11):3212–3227. doi: 10.1002/stem.2080. [DOI] [PubMed] [Google Scholar]
  • 50.Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–1857. doi: 10.1016/S0140-6736(11)61590-0. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 51.Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marban E. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. doi: 10.1016/S0140-6736(12)60195-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, Quijada P, Collins BL, Fransioli J, Sussman MA. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation. 2009;120(21):2077–2087. doi: 10.1161/CIRCULATIONAHA.109.884403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Mohsin S, Siddiqi S, Collins B, Sussman MA. Empowering adult stem cells for myocardial regeneration. Circ Res. 2011;109(12):1415–1428. doi: 10.1161/CIRCRESAHA.111.243071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Mohsin S, Khan M, Toko H, Bailey B, Cottage CT, Wallach K, Nag D, Lee A, Siddiqi S, Lan F, Fischer KM, Gude N, Quijada P, Avitabile D, Truffa S, Collins B, Dembitsky W, Wu JC, Sussman MA. Human cardiac progenitor cells engineered with Pim-I kinase enhance myocardial repair. J Am Coll Cardiol. 2012;60(14):1278–1287. doi: 10.1016/j.jacc.2012.04.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Mohsin S, Khan M, Nguyen J, Alkatib M, Siddiqi S, Hariharan N, Wallach K, Monsanto M, Gude N, Dembitsky W, Sussman MA. Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ Res. 2013;113(10):1169–1179. doi: 10.1161/CIRCRESAHA.113.302302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kulandavelu S, Karantalis V, Fritsch J, Hatzistergos KE, Loescher VY, McCall F, Wang B, Bagno L, Golpanian S, Wolf A, Grenet J, Williams A, Kupin A, Rosenfeld A, Mohsin S, Sussman MA, Morales A, Balkan W, Hare JM. Pim1 Kinase Overexpression Enhances ckit+ Cardiac Stem Cell Cardiac Repair Following Myocardial Infarction in Swine. J Am Coll Cardiol. 2016;68(22):2454–2464. doi: 10.1016/j.jacc.2016.09.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Tallini YN, Greene KS, Craven M, Spealman A, Breitbach M, Smith J, Fisher PJ, Steffey M, Hesse M, Doran RM, Woods A, Singh B, Yen A, Fleischmann BK, Kotlikoff MI. c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A. 2009;106(6):1808–1813. doi: 10.1073/pnas.0808920106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Li M, Naqvi N, Yahiro E, Liu K, Powell PC, Bradley WE, Martin DI, Graham RM, Dell'Italia LJ, Husain A. c-kit is required for cardiomyocyte terminal differentiation. Circ Res. 2008;102(6):677–685. doi: 10.1161/CIRCRESAHA.107.161737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, Tian X, Nie Y, Hu S, Yan Y, Zhang L, Qiao Z, Wang QD, Lui KO, Zhou B. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 2016;26(1):119–130. doi: 10.1038/cr.2015.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, Middleton RC, Marban E, Molkentin JD. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–341. doi: 10.1038/nature13309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, Jeong D, Sheng W, Bu L, Xu M, Huang GY, Hajjar RJ, Zhou B, Moon A, Cai CL. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:8701. doi: 10.1038/ncomms9701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D'Amario D, D'Alessandro DA, Michler RE, Dimmeler S, Zeiher AM, Urbanek K, Hintze TH, Kajstura J, Anversa P. Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A. 2009;106(37):15885–15890. doi: 10.1073/pnas.0907622106. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 63.Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, Pappas P, Tatooles A, Stoddard MF, Lima JA, Slaughter MS, Anversa P, Bolli R. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126(11 Suppl 1):S54–64. doi: 10.1161/CIRCULATIONAHA.112.092627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, Pattany PM, Zambrano JP, Hu Q, McNiece I, Heldman AW, Hare JM. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A. 2009;106(33):14022–14027. doi: 10.1073/pnas.0903201106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.McCall FC, Telukuntla KS, Karantalis V, Suncion VY, Heldman AW, Mushtaq M, Williams AR, Hare JM. Myocardial infarction and intramyocardial injection models in swine. Nat Protoc. 2012;7(8):1479–1496. doi: 10.1038/nprot.2012.075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Naqvi N, Li M, Yahiro E, Graham RM, Husain A. Insights into the characteristics of mammalian cardiomyocyte terminal differentiation shown through the study of mice with a dysfunctional c-kit. Pediatr Cardiol. 2009;30(5):651–658. doi: 10.1007/s00246-008-9366-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Zaruba MM, Soonpaa M, Reuter S, Field LJ. Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation. 2010;121(18):1992–2000. doi: 10.1161/CIRCULATIONAHA.109.909093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428(6983):664–668. doi: 10.1038/nature02446. [DOI] [PubMed] [Google Scholar]
  • 69.Cheng K, Ibrahim A, Hensley MT, Shen D, Sun B, Middleton R, Liu W, Smith RR, Marban E. Relative roles of CD90 and c-kit to the regenerative efficacy of cardiosphere-derived cells in humans and in a mouse model of myocardial infarction. J Am Heart Assoc. 2014;3(5):e001260. doi: 10.1161/JAHA.114.001260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13(8):970–974. doi: 10.1038/nm1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Jesty SA, Steffey MA, Lee FK, Breitbach M, Hesse M, Reining S, Lee JC, Doran RM, Nikitin AY, Fleischmann BK, Kotlikoff MI. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A. 2012;109(33):13380–13385. doi: 10.1073/pnas.1208114109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Zhang Y, Li TS, Lee ST, Wawrowsky KA, Cheng K, Galang G, Malliaras K, Abraham MR, Wang C, Marban E. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One. 2010;5(9):e12559. doi: 10.1371/journal.pone.0012559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lorchner H, Schimanski S, Szibor M, Warnecke H, Braun T. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9(5):420–432. doi: 10.1016/j.stem.2011.08.013. [DOI] [PubMed] [Google Scholar]
  • 74.Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428(6983):668–673. doi: 10.1038/nature02460. [DOI] [PubMed] [Google Scholar]
  • 75.Chan SS, Shueh YZ, Bustamante N, Tsai SJ, Wu HL, Chen JH, Hsieh PC. Genetic fate-mapping for studying adult cardiomyocyte replenishment after myocardial injury. Methods Mol Biol. 2010;660:201–211. doi: 10.1007/978-1-60761-705-1_13. [DOI] [PubMed] [Google Scholar]
  • 76.Wouters M, Smans K, Vanderwinden JM. WZsGreen/+: a new green fluorescent protein knock-in mouse model for the study of KIT-expressing cells in gut and cerebellum. Physiol Genomics. 2005;22(3):412–421. doi: 10.1152/physiolgenomics.00105.2005. [DOI] [PubMed] [Google Scholar]
  • 77.Vajravelu BN, Hong KU, Al-Maqtari T, Cao P, Keith MC, Wysoczynski M, Zhao J, Moore JBt, Bolli R. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS One. 2015;10(10):e0140798. doi: 10.1371/journal.pone.0140798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988;335(6185):88–89. doi: 10.1038/335088a0. [DOI] [PubMed] [Google Scholar]
  • 79.Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, Besmer P. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice--evidence for an impaired c-kit kinase in mutant mice. Genes Dev. 1989;3(6):816–826. doi: 10.1101/gad.3.6.816. [DOI] [PubMed] [Google Scholar]
  • 80.Cimini M, Fazel S, Zhuo S, Xaymardan M, Fujii H, Weisel RD, Li RK. c-kit dysfunction impairs myocardial healing after infarction. Circulation. 2007;116(11 Suppl):I77–82. doi: 10.1161/CIRCULATIONAHA.107.708107. [DOI] [PubMed] [Google Scholar]
  • 81.Ye L, Zhang EY, Xiong Q, Astle CM, Zhang P, Li Q, From AH, Harrison DE, Zhang JJ. Aging Kit mutant mice develop cardiomyopathy. PLoS One. 2012;7(3):e33407. doi: 10.1371/journal.pone.0033407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Shahzad U, Li G, Zhang Y, Li RK, Rao V, Yau TM. Transmyocardial Revascularization Enhances Bone Marrow Stem Cell Engraftment in Infarcted Hearts Through SCF-C-kit and SDF-1-CXCR4 Signaling Axes. Stem Cell Rev. 2015;11(2):332–346. doi: 10.1007/s12015-014-9571-7. [DOI] [PubMed] [Google Scholar]
  • 83.Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, Verma S, Weisel RD, Keating A, Li RK. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest. 2006;116(7):1865–1877. doi: 10.1172/JCI27019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Fazel SS, Chen L, Angoulvant D, Li SH, Weisel RD, Keating A, Li RK. Activation of c-kit is necessary for mobilization of reparative bone marrow progenitor cells in response to cardiac injury. FASEB J. 2008;22(3):930–940. doi: 10.1096/fj.07-8636com. [DOI] [PubMed] [Google Scholar]
  • 85.Nadal-Ginard B, Ellison GM, Torella D. Absence of evidence is not evidence of absence: pitfalls of cre knock-ins in the c-Kit locus. Circ Res. 2014;115(4):415–418. doi: 10.1161/CIRCRESAHA.114.304676. [DOI] [PubMed] [Google Scholar]
  • 86.Keith MC, Bolli R. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res. 2015;116(7):1216–1230. doi: 10.1161/CIRCRESAHA.116.305557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Shin JY, Hu W, Naramura M, Park CY. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med. 2014;211(2):217–231. doi: 10.1084/jem.20131128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Smith AJ, Lewis FC, Aquila I, Waring CD, Nocera A, Agosti V, Nadal-Ginard B, Torella D, Ellison GM. Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart. Nat Protoc. 2014;9(7):1662–1681. doi: 10.1038/nprot.2014.113. [DOI] [PubMed] [Google Scholar]
  • 89.Oskouei BN, Lamirault G, Joseph C, Treuer AV, Landa S, Da Silva J, Hatzistergos K, Dauer M, Balkan W, McNiece I, Hare JM. Increased potency of cardiac stem cells compared with bone marrow mesenchymal stem cells in cardiac repair. Stem Cells Transl Med. 2012;1(2):116–124. doi: 10.5966/sctm.2011-0015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Fransioli J, Bailey B, Gude NA, Cottage CT, Muraski JA, Emmanuel G, Wu W, Alvarez R, Rubio M, Ottolenghi S, Schaefer E, Sussman MA. Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells. 2008;26(5):1315–1324. doi: 10.1634/stemcells.2007-0751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, Abderrahman Y, Chen R, Garcia JA, Shelton JM, Richardson JA, Ashour AM, Asaithamby A, Liang H, Xing C, Lu Z, Zhang CC, Sadek HA. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523(7559):226–230. doi: 10.1038/nature14582. [DOI] [PubMed] [Google Scholar]
  • 92.Kajstura J, Gurusamy N, Ogorek B, Goichberg P, Clavo-Rondon C, Hosoda T, D'Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P. Myocyte turnover in the aging human heart. Circ Res. 2010;107(11):1374–1386. doi: 10.1161/CIRCRESAHA.110.231498. [DOI] [PubMed] [Google Scholar]
  • 93.Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–436. doi: 10.1038/nature11682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–609. doi: 10.1038/nature08899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H, Ming Z, Harvey RP, Du XJ, Thorburn DR, Cox TC. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell. 2008;15(4):521–533. doi: 10.1016/j.devcel.2008.09.005. [DOI] [PubMed] [Google Scholar]
  • 96.Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–969. doi: 10.1038/nm1619. [DOI] [PubMed] [Google Scholar]
  • 97.Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–270. doi: 10.1016/j.cell.2009.04.060. [DOI] [PubMed] [Google Scholar]
  • 98.Limana F, Zacheo A, Mocini D, Mangoni A, Borsellino G, Diamantini A, De Mori R, Battistini L, Vigna E, Santini M, Loiaconi V, Pompilio G, Germani A, Capogrossi MC. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007;101(12):1255–1265. doi: 10.1161/CIRCRESAHA.107.150755. [DOI] [PubMed] [Google Scholar]
  • 99.Limana F, Capogrossi MC, Germani A. The epicardium in cardiac repair: from the stem cell view. Pharmacol Ther. 2011;129(1):82–96. doi: 10.1016/j.pharmthera.2010.09.002. [DOI] [PubMed] [Google Scholar]
  • 100.Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127(3):607–619. doi: 10.1016/j.cell.2006.08.052. [DOI] [PubMed] [Google Scholar]
  • 101.Limana F, Bertolami C, Mangoni A, Di Carlo A, Avitabile D, Mocini D, Iannelli P, De Mori R, Marchetti C, Pozzoli O, Gentili C, Zacheo A, Germani A, Capogrossi MC. Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol. 2010;48(4):609–618. doi: 10.1016/j.yjmcc.2009.11.008. [DOI] [PubMed] [Google Scholar]
  • 102.Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, Poss KD. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development. 2011;138(14):2895–2902. doi: 10.1242/dev.067041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Zhou B, Honor LB, He H, Ma Q, Oh JH, Butterfield C, Lin RZ, Melero-Martin JM, Dolmatova E, Duffy HS, Gise A, Zhou P, Hu YW, Wang G, Zhang B, Wang L, Hall JL, Moses MA, McGowan FX, Pu WT. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011;121(5):1894–1904. doi: 10.1172/JCI45529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445(7124):177–182. doi: 10.1038/nature05383. [DOI] [PubMed] [Google Scholar]

RESOURCES