Skip to main content
International Journal of Molecular Sciences logoLink to International Journal of Molecular Sciences
. 2018 May 14;19(5):1459. doi: 10.3390/ijms19051459

Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus

Bahare Salehi 1,2, Nanjangud V Anil Kumar 3, Bilge Şener 4, Mehdi Sharifi-Rad 5,*, Mehtap Kılıç 4, Gail B Mahady 6, Sanja Vlaisavljevic 7, Marcello Iriti 8,*, Farzad Kobarfard 9,10, William N Setzer 11,*, Seyed Abdulmajid Ayatollahi 9,12,13, Athar Ata 13, Javad Sharifi-Rad 9,13,*
PMCID: PMC5983620  PMID: 29757986

Abstract

Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside is sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo.

Keywords: acquired immune deficiency syndrome, phytochemistry, pharmacognosy, antiviral, drug discovery

1. Introduction

The World Health Organisation estimates that over 75 million people globally have been infected with the human immunodeficiency virus (HIV), of which approximately 37 million are still alive and living with the infection [1,2]. It is currently estimated that ~26 million of these patients reside in Africa; 3.3 million in the Americas; 3.5 million in Southeast Asia; 2.4 million in Europe; 360,000 in the eastern Mediterranean; and 1.5 million in the western Pacific [2]. Data from 2016 indicates that there were approximately two million new cases of HIV infections, and as many as one million deaths due to the disease [2]. Importantly, these annual numbers are much reduced, as the numbers of newly infected patients has declined by 35% since 2000, and the mortality rate has also declined by almost 50%. The decline in HIV infections is thought to be due to increased use of condoms, a reduction in the prevalence of sexually transmitted infection, and the increased use of effective therapies, such as the three-drug therapy anti-retroviral therapy (ART). The number of HIV patients now receiving antiretroviral therapy has increased from ~685,000 in 2000 to 20.9 million in 2017 [2].

While HIV is a significant cause of morbidity and mortality worldwide, the sub-Sahara region of Africa is burdened with the largest number of HIV cases [2]. Of the 37 million cases of HIV, the sub-Saharan Africa is home to ~70%, although it has only 21% of the world’s population. In fact, African men and women worldwide are more affected by this disease than any other race [2,3]. Only ten countries in southern and eastern Africa, including South Africa (25%), Nigeria (13%), Mozambique (6%), Uganda (6%), Tanzania (6%), Zambia (4%), Zimbabwe (6%), Kenya (6%), Malawi (4%) and Ethiopia (3%), account for approximately 80% of HIV patients [2,3]; In most countries, the prevalence of HIV is the highest in specific groups including men who have sex with men, intravenous drug users, people in prisons and other confined settings, sex workers and transgender individuals. However, unlike other countries, the primary HIV transmission mode in sub-Saharan Africa is through heterosexual sex, with a concomitant epidemic in children through vertical transmission [3]. As a consequence, African women are disproportionately affected and make up ~58% of the total number of people living with HIV, have the highest number of children living with HIV and the highest number of AIDS related deaths [2].

New data from coding complete genome analyses of US serum samples from 1978 to 1979 revealed that the US HIV-1 epidemic that occurred in the 1970s was extensively genetically diverse [4]. Bayesian phylogentic analyses of HIV-1 genomes suggest that the US epidemic emerged from a preexisting Caribbean epidemic with the place of the ancestral US virus being New York City [4]. The analysis of gag, pol and env RNA sequences placed the US sequences in a monophyletic clade nested within Caribbean subtype B sequences from Haiti, and other Caribbean countries, as well as Haitian immigrants in the US [4]. The data further suggested that the US clade emerged from the early growth phase of the Caribbean epidemic (1969–1973), which began after the introduction of the subtype B lineage from Africa about 1967 [4]. The Centers for Disease Control eventually made the connections between homosexual men with AIDS and Kaposi’s syndrome and sexual transmission of an infectious agent [5,6].

1.1. Pathophysiology

The HIV virus is a retrovirus that is able to integrate a DNA copy of the viral genome into the DNA of the host cells. The virus enters the cell through receptors that are expressed on the surface of T lymphocytes (activated T lymphocytes are preferred targets), monocytes, macrophages and dendritic cells [1,7]. To gain entry to the host cell, HIV-1 binds to the chemokine receptor 5 or the CXC chemokine receptor 4 through interactions with the envelope proteins. After fusion and uncoating, single stranded RNA is reverse transcribed into HIV DNA, and then integrated into the host DNA. HIV DNA is transcribed to viral mRNA and exported to the cytoplasm where it is translated to viral Gag, Gag-Pol, and Nef polyproteins, which are then cleaved later during virion assembly and maturation at the cell surface or after relase of the new viral particles. Current therapies inhibit many of the steps in this process, such as entry inhibitors, reverse transcriptase inhibitors, integrase strand transfer inhibitors and protease inhibitors [1,7].

1.2. Diagnosis

Detection of the HIV virus in the blood is usually measured as viral RNA load and infection is associated with an acute symptomatic period that includes fever, general malaise, lymphadenopathy, rash, myalgias, however serious consequences such as meningitis have also been reported [7,8]. During the period of acute infection, the plasma levels of HIV RNA are at their highest and the severity of symptoms is associated with the level of viral load. It has been suggested that viral characteristics and viral load determine both the replication and pathogenesis. Thus, the clinical outcomes and disease progression are dependent not only on the host, but also on the viral genotype [7]. HIV is difficult to completely eradicate as it establishes a quiescent or latent infection within the memory CD4+ T cells, which have a stem-cell-like capacity for self-renewal. Once the HIV DNA is integrated into the host chromatin, the virus can repeatedly initiate replication as long as that cell exists. While ART can prevent new cells from becoming infected, it cannot eliminate infection once the DNA has successfully integrated into the target cell. The lymph nodes harbor the virus because of limited antiretroviral drug penetration, and limited host clearance mechanisms, and serves as a source of virus recrudescence in individuals who stop or interrupt their therapy. It has been suggested that ART therapy may be needed for several decades before the viral reservoir might decay to negligible levels.

1.3. Current Treatments for HIV/AIDS

Although HIV was recognized early in the 1980s, there is still no cure or an effective vaccine for HIV infection, but there have been some significant advances in treatment, control, and prevention [9]. The introduction of anti-retroviral agents and highly active antiretroviral therapy (HAART) in 1996 significantly reduced the morbidity and mortality of HIV/AIDS. Antiretroviral therapy is currently recommended for all adults with HIV. Recommendations for initial regimens include two nucleoside reverse transcriptase inhibitors (NRTIs; abacavir with lamivudine or tenofovir disoproxil fumarate with emtricitabine) and an integrase strand transfer inhibitor, such as dolutegravir, elvitegravir, or raltegravir; a nonnucleoside reverse transcriptase inhibitor (efavirenz or rilpivirine) or a boosted protease inhibitor (darunavir or atazanavir) [10]. Alternative regimens are also available. Protease inhibitor monotherapy is generally not recommended, but NRTI-sparing approaches may be considered. Suspected treatment failure warrants rapid confirmation, performance of resistance testing while the patient is receiving the failing regimen, and evaluation of reasons for failure before consideration of switching therapy. Alterations in therapeutic regimens due to adverse effects, convenience, or to reduce costs should be carefully considered so as not to jeopardize antiretroviral potency. Research continues into HIV vaccines and antimicrobial agents, however other major advances in HIV prevention has been voluntary male medical circumcision [11,12], as well as antiretrovirals for the prevention of mother to child transmission [13,14,15,16].

The reduction in the morbidity and mortality of the disease has changed it from a fatal disease to a chronic, manageable condition [2,3,11,12]. Interestingly, the increased survival rate has resulted in an aging HIV/AIDS population, which has presented a whole new set of issues including a higher prevalence of chronic diseases in this population, such as cardiovascular and pulmonary diseases, malignancies and even a unique set of comorbidities, which are now designated as HIV-associated non-AIDS (HANA) conditions.

Antiretroviral agents remain the cornerstone of HIV treatment and prevention [17]. It is currently recommended that all HIV-infected patients with detectable virus, regardless of their CD4 cell count, should be treated with anti-retroviral therapy (ART) soon after diagnosis to prevent disease progression, improve clinical outcomes including reducing AIDS-associated events, non-AIDS-related events, and all-cause mortality, as well as to decrease transmission [17]. These recommendations are supported by large randomized controlled clinical trials it is recommended that all HIV-infected individuals with detectable plasma virus receive treatment with recommended initial regimens consisting of an integrase strand transfer inhibitors (InSTI) plus two nucleoside reverse transcriptase inhibitors (NRTIs). When used effectively, the anti-retroviral agents suppress HIV and prevent new HIV infections. It has been suggested that with these treatment regimens, that survival rates among HIV-infected adults can approach those of uninfected adults [17].

1.4. New Drug Therapies for HIV

A recent review of HIV therapies with new mechanisms of action in phase 2 clinical trials has reported on drugs with new mechanisms of action, including histone deacetylase (HDAC) inhibitors, gene therapies, broadly neutralizing anti-HIV antibodies, immune modulation, and drugs with new mechanisms to block HIV entry [18]. The new therapies are being developed for both as add-on therapy to existing combination antiretroviral therapy and as agents to be used during treatment interruption. The current drugs in development have had varying degrees of success in the early trials. Each of these new drugs may potentially fill a void in current antiretroviral therapy (ART) therapies, which will ultimately lead to improved outcomes in HIV-infected individuals.

1.5. Natural Products and Herbal Medicines for HIV

Although effective, ART is not without serious adverse events, which is especially evident in persons undergoing long-term treatment. In addition, the current therapies are limited by emergence of multidrug resistance [19], and new drugs and novel targets are needed to overcome the issues of HIV reservoirs in the body in order to have the complete eradication of HIV and AIDS. Latently infected cells remain a primary barrier to eradication of HIV-1. Over the last ten years the molecular mechanism by which HIV latency persists has led to the discovery of a number of drugs that are able to selectively reactivate latent proviruses without inducing polyclonal T cell activation [20]. Interestingly, histone deacetylase (HDAC) inhibitors, including vorinostat are able to induce HIV transcription from latently infected cells. Vorinostat has been shown to increase the susceptibility of CD4+ T cells to infection by HIV in a dose- and time-dependent manner, does not enhance viral fusion with cells, but increases reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a “shock-and-kill” strategy to purge latent reservoirs of HIV [20].

Since new drugs will be needed for the management of HIV, the World Health Organization (WHO) has suggested the that ethnomedicines and other natural products should be systematically tested against HIV as they may yield effective and more affordable therapeutic agents (World Health Organization [21,22]. Interestingly, a significant amount of work in this area was performed in the 1990s, particularly investigations of natural products with activities against HIV-1 reverse transcriptase, HIV-1 and -2 proteases and integrases (extensively reviewed by Kurapati et al. [23]). The natural products calanolides (coumarins), ursolic and betulinic acids (triterpenes), baicalin (flavonoid), polycitone A (alkaloid), lithospermic acid (phenolic compound) have been proposed as promising candidates for anti-HIV agents [23]. However, most of these studies are in vitro, and too few investigations have been performed in vivo or in human studies. In terms of clinical data, a meta-analysis assessed 12 clinical trials involving 881 patients with AIDS to determine the efficacy of traditional Chinese medicines (TCM). The results showed that TCM interventions were associated with significantly reduced plasma viral load compared with placebo. This study further suggested that TCM interventions were significantly more effective than placebo for reducing plasma viral load and increasing CD4+ T lymphocyte count in patients with AIDS. However, when compared with conventional Western medicine, TCM interventions were significantly less effective in reducing viral load, but were associated with improved symptoms in a larger number of patients, with fewer adverse events [24]. Thus, there is significant potential for natural products and traditional medicines for the management of HIV infections and symptoms but in vivo and human studies are lacking.

2. Traditional Knowledge on Plants Used against HIV

Medicinal plants can be a promising alternative for various diseases and conditions [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46]. The 717 species belonging to 151 families are reported in this article. The taxonomy of the plant species plays a significant role in the proper identification. The website, http://www.theplantlist.org and http://www.tropicos.org/Home.aspx were considered as the authentic sources of information in resolving the ambiguity of the names related to plants. A list of plant species with inhibition studies is summarized in Table 1. A majority of the inhibition studies are carried out on the crude extracts of the plant material by various solvents, while limited literature is available on the isolated natural products for different inhibition studies. Table 2 lists all the names which are reported in this article and their synonyms are reported in the literature.

Table 1.

List of plant species exhibiting different human immunodeficiency virus (HIV)-inhibition activities.

Family Plant Plant Part HIV-RT HIV-PR HIV-IN Anti-HIV
Acanthaceae Andrographis paniculata (Burm. f.) Wall. ex Nees Aerial part Crude [51,52]
Acanthaceae Avicennia marina var. rumphiana (Hallier f.) Bakh. Seed Iridoid glycoside [53]
Acanthaceae Avicennia officinalis L. Leaf Crude [54] Crude [55]
Acanthaceae Justicia adhatoda L. Crude [56]
Acanthaceae Justicia gendarussa Burm.f. Aerial part Crude [57]
Acanthaceae Rhinacanthus nasutus (L.) Kurz Aerial part Crude [58] Crude [59]
Acanthaceae Strobilanthes cusia (Nees) Kuntze Crude [60]
Acoraceae Acorus calamus L. Rhizome Crude [58]
Adoxaceae Sambucus ebulus L. Whole plant Crude [61]
Adoxaceae Sambucus nigra L. Whole plant Crude [62] Crude [61,63]
Adoxaceae Sambucus racemosa L. Leaf, Fruit Crude [62,64]
Adoxaceae Sambucus williamsii Hance Roots , Fruits Crude [65,66]
Adoxaceae Viburnum opulus L. Leaf, Fruit Crude [62]
Aizoaceae Sceletium tortuosum (L.) N.E. Br. Crude [67] Crude [67] Crude [67]
Alismataceae Alisma plantago-aquatica L. Rhizome Crude [68]
Amaranthaceae Achyranthes bidentata Blume Crude [66,69]
Amaranthaceae Achyranthes japonica (Miq.) Nakai Root Crude [66]
Amaranthaceae Aerva lanata (L.) Juss. ex Schult. Root Phytotesrols [70]
Amaranthaceae Alternanthera brasiliana (L.) Kuntze Crude [71]
Amaranthaceae Alternanthera philoxeroides (Mart.) Griseb. Aerial part Crude [72,73]
Amaryllidaceae Allium sativum L. Bulb Crude [58] Crude [56]
Amaryllidaceae Crinum amabile Donn ex Ker Gawl. Bulb Crude [74]
Amaryllidaceae Crinum macowanii Baker Bulb Crude [75] Crude [75]
Amaryllidaceae Haemanthus albiflos Jacq. Crude [76]
Amaryllidaceae Leucojum vernum L. Bulb Alkaloids [77]
Amaryllidaceae Pamianthe peruviana Anonymous Bulb Crude [74]
Amaryllidaceae Tulbaghia alliacea L. f. Bulb Crude [78]
Amaryllidaceae Tulbaghia violacea Harv. Bulb Crude [75] Crude [75]
Anacardiaceae Lannea edulis (Sond.) Engl. Bulb Crude [79]
Anacardiaceae Mangifera indica L. Stem bark Crude [80]
Anacardiaceae Rhus chinensis Mill. Leaf, Root, Stem, Bark, Fruit Read phyto [81]
Anacardiaceae Schinus molle L. Leaf Crude [82]
Anacardiaceae Spondias pinnata (L. f.) Kurz Fruit Crude [58]
Anacardiaceae Toxicodendron acuminatum (DC.) C.Y. Wu & T.L. Ming Gall Crude [83]
Ancistrocladaceae Ancistrocladus korupensis D.W. Thomas & Gereau Root Naphthylisoquinoline alkaloids [84] Crude [85]
Naphthylisoquinoline alkaloids [86]
Annonaceae Annona glabra L. Fruit Alkaloids [87]
Annonaceae Annona senegalensis Pers. Leaf Crude [80]
Annonaceae Annona squamosa L. Fruit Diterpenoids [88]
Annonaceae Dasymaschalon rostratum Merr. & Chun Stem Phenylpropanoid derivatives [89]
Annonaceae Dasymaschalon sootepense Craib Leaf Alkaloids, Flavonoid [90]
Annonaceae Polyalthia suberosa (Roxb.) Thwaites Stem bark Crude [57] Triterpene [91] and 2-substituted furans [92]
Annonaceae Xylopia frutescens Aubl. Bark Crude [93]
Apiaceae Alepidea amatymbica Eckl. & Zeyh. Rosmarinic acid [94]
Apiaceae Ammi visnaga (L.) Lam. Fruit Crude [95]
Apiaceae Anethum graveolens L. Seed Crude [83]
Apiaceae Angelica dahurica (Fisch.) Benth. & Hook. f. Root Crude [66]
Apiaceae Angelica grosseserrata Maxim. Aerial part Crude [96]
Apiaceae Apium graveolens L. Fruit Crude [83]
Apiaceae Cryptotaenia japonica Hassk. Aerial part Crude [96]
Apiaceae Foeniculum vulgare Mill. Fruit Crude [66]
Apiaceae Lomatium suksdorfii (S. Watson) J.M. Coult. & Rose Fruit Coumarin [97]
Apiaceae Mulinum ulicinum Gillet & Hook. Leaf, Stem Crude [82]
Apiaceae Ridolfia segetum (L.) Moris Essential oils [98]
Apiaceae Saposhnikovia divaricate (Turcz.) Schischk. Crude [60,68] Crude [66]
Apiaceae Torilis japonica (Houtt.) DC. Seed Crude [96]
Apocynaceae Alstonia scholaris (L.) R. Br. Stem bark Crude [56]
Apocynaceae Carissa bispinosa Desf. ex Brenan Roots Crude [99]
Apocynaceae Catharanthus roseus (L.) G. Don Leaf Crude [56]
Apocynaceae Cynanchum atratum Bunge Root Crude [66]
Apocynaceae Cynanchum paniculatum (Bunge) Kitag. Root Crude [66]
Apocynaceae Gymnema sylvestre (Retz.) R. Br. ex Schult. Crude [99]
Apocynaceae Hemidesmus indicus (L.) R. Br. ex Schult. Crude [100]
Apocynaceae Hoodia gordonii (Masson) Sweet ex Decne. Crude [101] Crude [101] Crude [101]
Apocynaceae Parameria laevigata (Juss.) Moldenke Bark Crude [68]
Apocynaceae Rauvolfia serpentine (L.) Benth. ex Kurz Crude [56]
Apocynaceae Solenostemma argel (Delile) Hayne Root Crude [95]
Apocynaceae Tabernaemontana stapfiana Britten Crude [102]
Araceae Alocasia odora (Roxb.) K. Koch Rhizome Crude [68]
Araliaceae Acanthopanax koreanum Nakai Stem bark Crude [96] Crude [96]
Araliaceae Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y. Hu Crude [66]
Araliaceae Kalopanax pictus (Thunb.) Nakai Stem bark Crude [66]
Araliaceae Panax ginseng C.A. Mey. Root Triterpenoids [103] Saponin [104]
Araliaceae Panax notoginseng (Burkill) F.H. Chen ex C.H. Chow Crude [60] Crude [105]
Araliaceae Panax zingiberensis C.Y. Wu & K.M. Feng Rhizome Zingibroside [106]
Arecaceae Areca catechu L. Seed Crude [60,83]
Arecaceae Attalea tessmannii Burret Seed Crude [82]
Aristolochiaceae Aristolochia bracteolate Lam. Fruit Crude [74] Crude [95]
Aristolochiaceae Aristolochia contorta Bunge Fruit Crude [66]
Aristolochiaceae Aristolochia manshuriensis Kom. Stem Oxoperezinone [107]
Aristolochiaceae Asarum sieboldii Miq. Root Crude [66]
Asparagaceae Anemarrhena asphodeloides Bunge Rhizome Crude [68]
Asparagaceae Asparagus cochinchinensis (Lour.) Merr. Root Crude [66]
Asparagaceae Asparagus racemosus Willd. Root Crude [56]
Asparagaceae Dracaena cochinchinensis (Lour.) S.C. Chen Crude [58]
Asteraceae Acanthospermum hispidum DC. Aerial part Crude [74]
Asteraceae Achyrocline alata (Kunth) DC. Flower, Stem Crude [82]
Asteraceae Achyrocline flaccida (Weinm.) DC. Crude [108]
Asteraceae Achyrocline satureioides (Lam.) DC. Flower Crude [82]
Asteraceae Ainsliaea acerifolia Sch. Bip. Whole plant Crude [96]
Asteraceae Ambrosia artemisiifolia L. Whole plant Crude [96]
Asteraceae Ambrosia maritima L. Aerial part Crude [95]
Asteraceae Ambrosia peruviana All. Leaf, stem Crude [82]
Asteraceae Anvillea garcinii (Burm. f.) DC. Aerial part Germacranolides [109]
Asteraceae Arctium lappa L. Aerial part Crude [60] Crude [105] Crude [51,66,72]
Asteraceae Artemisia absinthium L. Leaf Crude [82]
Asteraceae Artemisia annua L. Aerial part Crude [66]
Asteraceae Artemisia capillaris Thunb. Aerial part, Seed Crude [68] Crude [66]
Asteraceae Artemisia princeps Pamp. Leaf Crude [68,96]
Asteraceae Artemisia verlotorum Lamotte Crude [110]
Asteraceae Aspilia pluriseta Schweinf. ex Schweinf. Crude [111]
Asteraceae Aster tataricus L. f. Root Crude [68]
Asteraceae Atractylodes japonica Koidz. Root Crude [96] Crude [66]
Asteraceae Atractylodes lancea (Thunb.) DC. Rhizome Crude [68] Crude [112]
Asteraceae Atractylodes ovate (Thunb.) DC. Rhizome Crude [68]
Asteraceae Baccharis genistelloides (Lam.) Pers. Leaf, stem Crude [82]
Asteraceae Baccharis latifolia (Ruiz & Pav.) Pers. Leaf, stem Crude [82]
Asteraceae Baccharis trimera (Less.) DC. Leaf, stem Crude [82]
Asteraceae Baccharis trinervis Pers. Aerial part Crude [93]
Asteraceae Bidens pilosa L. Aerial part Crude [93]
Asteraceae Blumea balsamifera (L.) DC. Crude [113] Crude [113]
Asteraceae Breea segeta (Bunge) Kitam. Aerial part Crude [66]
Asteraceae Calea jamaicensis (L.) L. Root Crude [93]
Asteraceae Calendula officinalis L. Leaf Crude [114] Crude [115]
Asteraceae Carlina acaulis L. Leaf Crude [62]
Asteraceae Carpesium abrotanoides L. Crude [96]
Asteraceae Carthamus tinctorius L. Flower Crude [66]
Asteraceae Centratherum punctatum Cass. Leaf Crude [114]
Asteraceae Chrysanthemum indicum L. Capitulum Crude [60] Crude [105]
Asteraceae Chrysanthemum morifolium Ramat. Capitulum Flavonoids [116] Crude [60,68] Crude [105]
Flavonoid [117]
Crude [117,118]
Asteraceae Cirsium japonicum DC. Crude [96]
Asteraceae Eclipta prostrate (L.) L. Whole plant Lactone [119] Crude [120]
Lactone [119]
Asteraceae Elephantopus scaber L. Leaf Crude [68]
Asteraceae Eupatorium lindleyanum DC. Aerial part Crude [96]
Asteraceae Francoeuria crispa (Forssk.) Cass. Crude [121]
Asteraceae Franseria artemisioides Willd. Leaf, stem Crude [82]
Asteraceae Gamochaeta simplicicaulis (Willd. ex Spreng.) Cabrera Crude [122] Crude [108]
Asteraceae Geigeria alata (DC.) Oliv. & Hiern Crude [121]
Asteraceae Gnaphalium sylvaticum L. Leaf Crude [62]
Asteraceae Gynura pseudochina (L.) DC. Leaf Crude [57]
Asteraceae Helianthus tuberosus L. Whole plant Crude [96]
Asteraceae Helichrysum acutatum DC. Aerial part Crude [123]
Asteraceae Helichrysum allioides Less. Aerial part Crude [123]
Asteraceae Helichrysum anomalum Less. Aerial part Crude [123]
Asteraceae Helichrysum appendiculatum (L. f.) Less. Aerial part Crude [123]
Asteraceae Helichrysum auronitens Sch. Bip. Aerial part Crude [123]
Asteraceae Helichrysum cephaloideum DC. Aerial part Crude [123]
Asteraceae Helichrysum chionosphaerum DC. Aerial part Crude [123]
Asteraceae Helichrysum confertum N.E. Br. Aerial part Crude [123]
Asteraceae Helichrysum cymosum (L.) D. Don ex G. Don Aerial part Crude [123]
Asteraceae Helichrysum difficile Hilliard Aerial part Crude [123]
Asteraceae Helichrysum drakensbergense Killick Aerial part Crude [123]
Asteraceae Helichrysum herbaceum (Andrews) Sweet Aerial part Crude [123]
Asteraceae Helichrysum melanacme DC. Aerial part Crude [123]
Asteraceae Helichrysum miconiifolium DC. Aerial part Crude [123]
Asteraceae Helichrysum natalitium DC. Aerial part Crude [123]
Asteraceae Helichrysum nudifolium (L.) Less. Aerial part Crude [123]
Asteraceae Helichrysum odoratissimum (L.) Sweet Aerial part Crude [123]
Asteraceae Helichrysum oreophilum Dinter Aerial part Crude [123]
Asteraceae Helichrysum oxyphyllum DC. Aerial part Crude [123]
Asteraceae Helichrysum pallidum DC. Aerial part Crude [123]
Asteraceae Helichrysum panduratum O. Hoffm. Aerial part Crude [123]
Asteraceae Helichrysum pannosum DC. Aerial part Crude [123]
Asteraceae Helichrysum pilosellum (L. f.) Less. Aerial part Crude [123]
Asteraceae Helichrysum populifolium DC. Aerial part Crude [123]
Asteraceae Helichrysum rugulosum Less. Aerial part Crude [123]
Asteraceae Helichrysum splendidum (Thunb.) Less. Aerial part Crude [123]
Asteraceae Helichrysum subluteum Burtt Davy Aerial part Crude [123]
Asteraceae Helichrysum sutherlandii Harv. Aerial part Crude [123]
Asteraceae Helichrysum umbraculigerum Less. Aerial part Crude [123]
Asteraceae Helichrysum vernum Hilliard Aerial part Crude [123]
Asteraceae Hieracium pilosella L. Whole plant Crude [61]
Asteraceae Hieracium umbellatum L. Whole plant Crude [96]
Asteraceae Inula britannica L. Flower Crude [66]
Asteraceae Inula helenium L. Root Crude [66]
Asteraceae Ixeris tamagawaensis (Makino) Kitam. Aerial part Crude [124]
Asteraceae Lactuca raddeana Maxim. Whole plant Crude [96]
Asteraceae Miyamayomena koraiensis (Nakai) Kitam. Root Crude [96]
Asteraceae Mutisia acuminata Ruiz & Pav. Leaf Crude [82]
Asteraceae Perezia multiflora (Bonpl.) Less. Leaf Crude [82]
Asteraceae Pilosella officinarum F.W. Schultz & Sch. Bip. Whole plant Crude [61]
Asteraceae Psiadia dentata (Cass.) DC. Coumarin [125]
Asteraceae Santolina oblongifolia Boiss. Whole plant Crude [61]
Asteraceae Saussurea seoulensis Nakai Whole plant Crude [96]
Asteraceae Schkuhria pinnata (Lam.) Kuntze ex Thell. Leaf Crude [82]
Asteraceae Senecio comosus Sch. Bip. Leaf Crude [82]
Asteraceae Senecio mathewsii Wedd. Leaf Crude [82]
Asteraceae Senecio rhizomatus Rusby Leaf Crude [82]
Asteraceae Senecio scandens Buch.-Ham. ex D. Don Whole plant Crude [60] Crude [105] Crude [72]
Asteraceae Serratula coronate L. Aerial part Crude [96]
Asteraceae Sigesbeckia glabrescens (Makino) Makino Whole plant Crude [66]
Asteraceae Sonchus oleraceus L. Leaf Crude [82]
Asteraceae Symphyotrichum undulatum (L.) G.L.Nesom Aerial part Quinic acid [126]
Asteraceae Tagetes riojana M. Ferraro Leaf Crude [82]
Asteraceae Tanacetum microphyllum DC. Whole plant Crude [61]
Asteraceae Taraxacum mongolicum Hand.-Mazz. Whole plant Crude [68]
Asteraceae Xanthium spinosum L. Flower Crude [82]
Berberidaceae Berberis holstii Engl. Root and Leaf Crude [127]
Berberidaceae Epimedium grandiflorum C. Morren Aerial part Crude [21,72]
Berberidaceae Epimedium sagittatum (Siebold & Zucc.) Maxim. Leaf Crude [68]
Berberidaceae Nandina domestica Thunb. Leaf Crude [68]
Betulaceae Alnus firma Siebold & Zucc. Leaf Triterpenoids [128]
Betulaceae Alnus incana (L.) Moench Leaf Crude [62]
Bignoniaceae Kigelia Africana (Lam.) Benth. Fruit Crude [102]
Bignoniaceae Spathodea campanulata P. Beauv. Stem bark Crude [129]
Bignoniaceae Tecomella undulata (Sm.) Seem. Aerial part Crude [130]
Blechnaceae Blechnum spicant (L.) Sm. Leaf Crude [62]
Blechnaceae Brainea insignis (Hook.) J. Sm. Rhizome Crude [68]
Blechnaceae Woodwardia orientalis Sw. Rhizome Crude [68]
Blechnaceae Woodwardia unigemmata (Makino) Nakai Rhizome Crude [60] Crude [105] Crude [72]
Boraginaceae Brachybotrys paridiformis Maxim. ex Oliv. Leaf Crude [96]
Boraginaceae Cordia spinescens L. Leaf Crude [93] Crude [93]
Boraginaceae Lithospermum erythrorhizon Siebold & Zucc. Root Crude [60,68] Crude [105] Crude [72,131]
Boraginaceae Lobostemon trigonus H. Buek Crude [132]
Brassicaceae Brassica juncea (L.) Czern. Semen Crude [133] Crude [66]
Brassicaceae Brassica oleracea L. Crude [134]
Brassicaceae Brassica rapa L. Crude [134]
Brassicaceae Capsella bursa-pastoris (L.) Medik. Whole plant Crude [82]
Brassicaceae Lepidium abrotanifolium Turcz. Leaf Crude [82]
Brassicaceae Raphanus raphanistrum L. Crude Inhibition [66]
Cactaceae Pereskia bleo (Kunth) DC. Whole plant Crude [93]
Calophyllaceae Marila pluricostata Standl. & L.O. Williams Phenylcoumarins [135]
Campanulaceae Adenophora triphylla (Thunb.) A. DC. Root Crude [66]
Campanulaceae Platycodon grandiflorus (Jacq.) A. DC. Root Crude [68]
Cannabinaceae Cannabis sativa L. Fruit Crude [68]
Cannabinaceae Humulus lupulus L. Flavonoid [136]
Cannaceae Canna indica L. Rhizome Crude [57]
Canellaceae Warburgia ugandensis Sprague Crude [102]
Capparaceae Boscia senegalensis (Pers.) Lam. ex Poir. Leaf Crude [74]
Capparaceae Capparis decidua (Forssk.) Edgew. Stem Crude [74]
Capparaceae Crateva religiosa G. Forst. Bark Crude [83]
Caprifoliaceae Lonicera japonica Thunb. Flower bud Crude [137] Crude [60,68] Crude [105] Crude [66,72]
Caprifoliaceae Patrinia scabiosifolia Link Root Crude [96] Crude [66]
Caprifoliaceae Patrinia villosa (Thunb.) Dufr. Root Crude [68,96]
Caprifoliaceae Valeriana coarctata Ruiz & Pav. Leaf Crude [82]
Caprifoliaceae Valeriana micropterina Wedd. Crude [82]
Caprifoliaceae Valeriana thalictroides Graebn. Root Crude [82]
Caprifoliaceae Weigela subsessilis L.H. Bailey Stem Crude [96]
Caryophyllaceae Drymaria cordata (L.) Willd. ex Schult. Leaf Crude [138]
Caryophyllaceae Drymaria diandra Blume Alkaloid [139]
Caryophyllaceae Silene seoulensis Nakai Aerial part Crude [96]
Celastraceae Cassine crocea (Thunb.) C.Presl Glycoside [140]
Celastraceae Cassine schlechteriana Loes. Crude [141]
Celastraceae Celastrus hindsii Benth. triterpene [142]
Celastraceae Celastrus orbiculatus Thunb. Root Crude [96] Crude [143]
Celastraceae Euonymus alatus (Thunb.) Siebold Leaf Crude [96]
Celastraceae Gymnosporia buchananii Loes. Crude [102]
Celastraceae Gymnosporia senegalensis (Lam.) Loes. Crude [102]
Celastraceae Maytenus buchananii (Loes.) R. Wilczek Root, bark Crude [102]
Celastraceae Maytenus macrocarpa (Ruiz & Pav.) Briq. Triterpenes [144]
Celastraceae Maytenus senegalensis (Lam.) Exell Stem Crude [102] Crude [95]
Celastraceae Salacia chinensis L. Stem Crude [58]
Celastraceae Tripterygium wilfordii Hook. f. Root Salaspermic acid [145] Crude [146,147]
Diterpene [146,148]
Sesquiterpene pyridine Alkaloids [147]
Chenopodiaceae Chenopodium ambrosioides L. Leaf Crude [82]
Chloranthaceae Chloranthus japonicas Siebold Whole plant Disesquiterpenoids [149] Crude [96] Crude [150]
Cistaceae Whole plant Whole plant Crude [61]
Cistaceae Tuberaria lignose Samp. Whole plant Crude [61]
Cleomaceae Cleome viscosa L. Seed Nevirapine [151] Crude [83]
Clusiaceae Allanblackia stuhlmannii (Engl.) Engl. Benzophenone [152]
Clusiaceae Calophyllum brasiliense Cambess. Leaf Crude [153]
Dipyranocoumarins [154]
Coumrains [155]
Clusiaceae Calophyllum cerasiferum Vesque Coumarins [156]
Clusiaceae Calophyllum cordato-oblongum Thwaites Cordatolide [157]
Clusiaceae Calophyllum inophyllum L. Bark Crude [158] Crude [158] Crude [158] Dipyranocoumarins [159]
Inophyllum [160]
Clusiaceae Calophyllum lanigerum Miq. Calanolide [161] Calanolide [162]
Coumarin [163]
Pyranocoumarins [164]
Clusiaceae Calophyllum rubiginosum M.R. Hend. & Wyatt-Sm. Stem bark Crude [165]
Clusiaceae Calophyllum teysmannii Miq. Pyranocoumarins [141]
Clusiaceae Clusia quadrangular Bartlett Crude [153]
Clusiaceae Garcinia buchneri Engl. Stem bark Crude [166]
Clusiaceae Garcinia gummi-gutta Roxb. Leaf Crude [158] Crude [158] Crude [158]
Clusiaceae Garcinia hanburyi Hook. f. Root Xanthone [167]
Clusiaceae Garcinia indica Choisy Leaf Crude [158] Crude [158] Crude [158]
Clusiaceae Garcinia kingaensis Engl. Stem bark Crude [166]
Clusiaceae Garcinia livingstonei T. Anderson Fruit Crude [168]
Clusiaceae Garcinia mangostana L. Fruit bark Crude [58] Crude [169]
Clusiaceae Garcinia semseii Verdc. Stem bark Crude [166] Crude [168]
Clusiaceae Garcinia smeathmanii (Planch. & Triana) Oliv. Stem bark Crude [166]
Colchicaceae Colchicum luteum Baker Bulb Crude [56]
Combretaceae Anogeissus acuminata (Roxb. ex DC.) Guill., Perr. & A. Rich. Lignans [170] Crude [170]
Combretaceae Combretum adenogonium Steud. ex A. Rich. Root, Leaf and Stem bark Crude [171]
Combretaceae Combretum hartmannianum C. Schweinf. Stem Crude [74]
Combretaceae Combretum molle R. Br. ex G. Don Root Crude [172] Crude [173]
Combretaceae Combretum paniculatum Vent. Leaf Crude [174]
Combretaceae Terminalia arjuna (Roxb. ex DC.) Wight & Arn. Stem bark Crude [68,83] Crude [56]
Combretaceae Terminalia bellirica (Gaertn.) Roxb. Fruit Crude [58,175] Crude [68] Crude [176]
Combretaceae Terminalia chebula Retz. Fruit Crude [58,175] Crude [68,83] Galloyl glycosides [177] Crude [175]
Combretaceae Terminalia sericea Burch. ex DC. Crude [178] Crude [179]
Convolvulaceae Argyreia nervosa (Burm. f.) Bojer Aerial part Crude [57]
Convolvulaceae Calystegia soldanella (L.) R. Br. Leaf, Stem Crude [96]
Convolvulaceae Cuscuta chinensis Lam. Fruit, Stem Crude [96]
Convolvulaceae Cuscuta japonica Choisy Semen Crude [96] Crude [66]
Convolvulaceae Ipomoea aquatic Forssk. Whole plant Crude [57]
Convolvulaceae Ipomoea cairica (L.) Sweet Whole plant Crude [57] Lignans [180]
Convolvulaceae Ipomoea carnea Jacq. Aerial part Crude [57]
Convolvulaceae Merremia peltata (L.) Merr. Crude [181]
Cornaceae Cornus walteri Wangerin Aerial part Crude [96]
Cornaceae Camptotheca acuminata Decne Rubitecan [182]
Crassulaceae Orostachys japonica A. Berger Aerial part Crude [183]
Crassulaceae Sedum album L. Whole plant Crude [61]
Crassulaceae Sedum maximum Hoffm. Leaf Crude [62]
Crassulaceae Sedum polytrichoides Hemsl. Whole plant Crude [96]
Crassulaceae Sedum roseum Scop. Crude [96]
Cucurbitaceae Citrullus colocynthis (L.) Schrad. Fruit peel Crude [74]
Cucurbitaceae Gynostemma pentaphyllum (Thunb.) Makino Crude [184]
Cucurbitaceae Hemsleya endecaphylla C.Y. Wu Tuber Crude [185]
Cucurbitaceae Momordica balsamina L. Leaf Crude [186]
Cucurbitaceae Momordica charantia L. Seed, Fruit Crude [187]
Cucurbitaceae Momordica cochinchinensis (Lour.) Spreng. Semen Crude [96] Crude [66]
Cucurbitaceae Trichosanthes kirilowii Maxim. Semen Crude [66,188]
Cupressaceae Cupressus sempervirens L. Crude [189]
Cupressaceae Platycladus orientalis (L.) Franco Crude [66]
Cupressaceae Thuja occidentalis L. Crude [190]
Cyperaceae Bolboschoenus maritimus (L.) Palla Crude [66]
Cyperaceae Cyperus rotundus L. Rhizome Crude [68]
Davalliaceae Davallia mariesii T. Moore ex Baker Root Crude [66]
Dioscoreaceae Dioscorea bulbifera L. Flavonoid [191]
Dioscoreaceae Dioscorea hispida Dennst. Rhizome Crude Protease [68]
Dioscoreaceae Dioscorea polystachya Turcz. Crude inhibition [66]
Dioscoreaceae Dioscorea tokoro Makino Root Crude inhibition [66]
Dipterocarpaceae Monotes africana A. DC. Crude [192]
Dryopteridaceae Cyrtomium fortune J. Sm. Rhizome Crude Protease [68]
Dryopteridaceae Dryopteris crassirhizoma Nakai Rhizome Flavonoid [193] Triterpenes [194]
Ebenaceae Euclea natalensis A. DC. Naphthoquinone [195]
Ebenaceae Diospyros mollis Griff. Stem Crude [58]
Elaeocarpaceae Elaeocarpus grandiflorus Sm. Fruit Crude [68]
Ephedraceae Ephedra americana Humb. & Bonpl. ex Willd. Stem Crude [82]
Ephedraceae Ephedra sinica Stapf Stem Crude [196] Crude [68] Crude [196]
Equisetaceae Equisetum arvense L. Stem Crude [82]
Equisetaceae Equisetum giganteum L. Stem Crude [82]
Equisetaceae Equisetum hyemale L. Aerial part Crude [66]
Erythroxylaceae Erythroxylum citrifolium A. St.-Hil. Trunk Crude [93]
Eucommiaceae Eucommia ulmoides Oliv. Stem bark Crude [66]
Euphorbiaceae Acalypha macrostachya Jacq. Leaf Crude [93]
Euphorbiaceae Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. Leaf Crude [80]
Euphorbiaceae Baliospermum solanifolium (Geiseler) Suresh Crude [99]
Euphorbiaceae Chamaesyce hyssopifolia (L.) Small Whole plant Crude [93] Crude [93]
Euphorbiaceae Croton billbergianus Müll. Arg. Trunk Crude [93]
Euphorbiaceae Croton gratissimus Burch. Crude [74]
Euphorbiaceae Croton tiglium L. Seed Crude [197]
Euphorbiaceae Croton zambesicus Müll. Arg. Seed Crude [74] Crude [95]
Euphorbiaceae Euphorbia erythradenia Boiss. Aerial part Triterpene [198]
Euphorbiaceae Euphorbia granulate Forssk. Leaf Crude [95]
Euphorbiaceae Euphorbia hirta L. Whole plant Crude [58]
Euphorbiaceae Euphorbia hyssopifolia L. Whole plant Crude [93] Crude [93]
Euphorbiaceae Euphorbia kansui T.N. Liou ex S.B. Ho Crude [199]
Euphorbiaceae Euphorbia neriifolia L. Stem bark Diterpenoids [200,201]
Euphorbiaceae Euphorbia polyacantha Boiss. Crude [74]
Euphorbiaceae Euphorbia prostrate Aiton Crude [95]
Euphorbiaceae Euphorbia thi Schweinf. Aerial part Crude [74]
Euphorbiaceae Homalanthus nutans (G. Forst.) Guill. Prostratin [202]
Euphorbiaceae Jatropha curcas L. Leaf Crude [93] Crude [93] Crude [80,93]
Euphorbiaceae Mallotus japonicus (L.f.) Müll.Arg. Tannins [203]
Euphorbiaceae Mallotus philippensis (Lam.) Müll. Arg. Flower Crude [58]
Euphorbiaceae Maprounea africana Müll. Arg. Leaf Xanthone [204] Triterpene [205] Crude [80] Triterpene [205]
Euphorbiaceae Neoshirakia japonica (Siebold & Zucc.) Esser Leaf Crude [96]
Euphorbiaceae Ricinus communis L. Leaf Lectins [206] Crude [83] Crude [207]
Euphorbiaceae Sapium indicum Willd. Fruit Crude [58]
Euphorbiaceae Shirakiopsis indica (Willd.) Esser Crude [58]
Euphorbiaceae Trigonostemon thyrsoideus Stapf Stem Diterpenoid [208,209]
Fabaceae Abrus precatorius L. Seed Saponins [210] Crude [211]
Fabaceae Acacia catechu (L. f.) Willd. Resin Crude [58] Crude [212]
Fabaceae Acacia mellifera (Vahl) Benth. Stem bark Crude [102]
Fabaceae Acacia nilotica (L.) Willd. ex Delile Bark Crude [95]
Fabaceae Albizia gummifera (J.F. Gmel.) C.A. Sm. Stem bark Crude [102]
Fabaceae Albizia procera (Roxb.) Benth. Crude [113] Crude [113]
Fabaceae Astragalus propinquus Schischk. Aerial part Crude [68] Crude [51]
Fabaceae Astragalus spinosus Muschl. Aerial part Triterpene [213]
Fabaceae Bauhinia strychnifolia Craib Crude [113]
Fabaceae Bauhinia variegata L. Crude [134]
Fabaceae Butea monosperma (Lam.) Taub. Root Crude [56]
Fabaceae Caesalpinia bonduc (L.) Roxb. Seed Crude [83]
Fabaceae Caesalpinia sappan L. Stem Crude [58] Crude [113] Crude [66]
Fabaceae Canavalia gladiate (Jacq.) DC. Crude [134]
Fabaceae Cassia fistula L. Bark Crude [68,83]
Fabaceae Castanospermum austral A. Cunn. & C. Fraser Alkaloid [214]
Fabaceae Cullen corylifolium (L.) Medik. Crude [66]
Fabaceae Detarium microcarpum Guill. & Perr. Flavonoids [215]
Fabaceae Elephantorrhiza elephantine (Burch.) Skeels Bulb Crude [79]
Fabaceae Erythrina abyssinica Lam. Bark Crude [74] [102] Alkaloids [216]
Fabaceae Erythrina senegalensis DC. Flavonoids [217]
Fabaceae Euchresta formosana (Hayata) Ohwi Crude [218]
Fabaceae Gleditsia japonica Miq. Fruit Saponin [219]
Fabaceae Glycine max (L.) Merr. Crude [134]
Fabaceae Glycyrrhiza glabra L. Crude [220] Crude [56,221]
Fabaceae Glycyrrhiza uralensis Fisch. ex DC. Crude [222]
Fabaceae Gymnocladus chinensis Baill. Fruit Saponin [219]
Fabaceae Hylodendron gabunense Taub. Crude [223]
Fabaceae Lespedeza juncea (L. f.) Pers. Whole plant Crude [96]
Fabaceae Lespedeza tomentosa (Thunb.) Siebold ex Maxim. Leaf Crude [96]
Fabaceae Melilotus suaveolens Ledeb. Whole plant Crude [96]
Fabaceae Millettia erythrocalyx Gagnep. Leaf Flavonoid [224]
Fabaceae Peltophorum africanum Sond. Stem bark Crude [172] Crude [172] Betulinic acid [225]
Fabaceae Phaseolus vulgaris L. Seed Lectin [226] [223]
Fabaceae Pongamia pinnata (L.) Pierre Bark Flavonoids [227] Crude [83]
Fabaceae Prosopis glandulosa Torr. Leaf Oleanolic acid [228]
Fabaceae Psoralea glandulosa L. Leaf Crude [82]
Fabaceae Pterocarpus marsupium Roxb. Crude [229]
Fabaceae Pueraria montana (Lour.) Merr. Crude [60] Crude [66]
Fabaceae Saraca indica L. Bark Crude [83]
Fabaceae Securigera securidaca (L.) Degen & Dorfl. Kaempferol [230]
Fabaceae Senna alata Roxb. Aerial part Crude [57]
Fabaceae Senna garrettiana (Craib) H.S.Irwin & Barneby Crude [113]
Fabaceae Senna obtusifolia (L.) H.S. Irwin & Barneby Aerial part Crude [95] Crude [231]
Fabaceae Senna occidentalis (L.) Link Leaf Crude [56]
Fabaceae Sophora flavescens Aiton Root Crude [196] Crude [60,96] Crude [105] Crude [196]
Fabaceae Sophora japonica L. Flower Crude [66]
Fabaceae Sophora tonkinensis Gagnep. Root Crude [60,68]
Fabaceae Spatholobus suberectus Dunn Rhizome Crude [60,68] Crude [105]
Fabaceae Styphnolobium japonicum (L.) Schott Flower bud Crude [68] Crude [66]
Fabaceae Sutherlandia frutescens (L.) R. Br. Crude [132]
Fabaceae Tephrosia purpurea (L.) Pers. Root Crude [83]
Fabaceae Vigna unguiculata (L.) Walp. Seed Crude [83]
Fagaceae Quercus infectoria Olivier Fruit Crude [58]
Fagaceae Quercus robur L. Crude [175]
Flacourtiaceae Hydnocarpus anthelminthicus Pierre ex Laness. Semen Crude [66]
Gentianaceae Gentiana asclepiadea L. Leaf Crude [62]
Gentianaceae Gentiana macrophylla Pall. Root Crude [68]
Gentianaceae Gentiana scabra Bunge Root Crude [68]
Gentianaceae Swertia bimaculata (Siebold & Zucc.) Hook. f. & Thomson ex C.B. Clarke Sesterterpenoid [232]
Gentianaceae Swertia franchetiana Harry Sm. Root Xanthone [204] Xanthone [233]
Gentianaceae Swertia punicea Hemsl. Xanthone [234]
Gentianaceae Tripterospermum lanceolatum (Hayata) H. Hara ex Satake Crude [235]
Gesneriaceae Drymonia serrulata (Jacq.) Mart. Leaf Crude [93]
Ginkgoaceae Ginkgo biloba L. Semen Crude [236] Crude [236]
Ginkgolic acid [237]
Crude [66]
Gunneraceae Gunnera magellanica Lam. Stem Crude [82]
Hydrangeaceae Philadelphus schrenkii Rupr. Stem Crude [96]
Hydrocharitaceae Thalassia testudunum Banks & Sol. ex K.D. Koenig Crude [238]
Hypericaceae Cratoxylum arborescens Blume Leaf Xanthones [239]
Hypericaceae Hypericum capitatum Choisy Crude [240]
Hypericaceae Hypericum hircinum L. Crude [241]
Hypericaceae Hypericum perforatum L. Crude [242]
Hypericaceae Vismia baccifera (L.) Triana & Planch. Crude [155]
Hypericaceae Vismia cayennensis (Jacq.) Pers. Leaf Crude [243]
Hypoxidaceae Hypoxis hemerocallidea Fisch., C.A. Mey. & Avé-Lall. Crude [244]
Hypoxidaceae Hypoxis sobolifera Jacq. Corm Crude [75] Crude [75]
Iridaceae Aristea ecklonii Baker
Iridaceae Eleutherine bulbosa (Mill.) Urb. Bulb Naphthoquinone [245]
Iridaceae Iris domestica (L.) Goldblatt & Mabb. Crude [68]
Juglandaceae Juglans mandshurica Maxim. Bark Crude [96] Glycosides [246]
Lamiaceae Aegiphila anomala Pittier Leaf Crude [93]
Lamiaceae Agastache rugosa (Fisch. & C.A. Mey.) Kuntze Whole plant Crude [60,96] Crude [247] Crude [248]
Lamiaceae Ajuga decumbens Thunb. Crude [249]
Lamiaceae Anisomeles indica (L.) Kuntze Diterpenoid [250]
Lamiaceae Clinopodium bolivianum (Benth.) Kuntze Leaf Crude [82]
Lamiaceae Clinopodium chinense (Benth.) Kuntze Whole plant Crude [96]
Lamiaceae Coleus forskohlii (Willd.) Briq. Aerial part Crude [56,251]
Lamiaceae Cornutia grandifolia (Schltdl. & Cham.) Schauer Trunk Crude [93]
Lamiaceae Cornutia pyramidata L. Crude [93]
Lamiaceae Hyptis capitata Jacq. Whole plant Oleanolic acid [228]
Lamiaceae Hyptis lantanifolia Poit. Aerial part Crude [93] Crude [93]
Lamiaceae Hyssopus officinalis L. Leaf Crude [252]
Lamiaceae Isodon excisus (Maxim.) Kudô Whole plant Crude [96]
Lamiaceae Isodon inflexus (Thunb.) Kudô Crude [96]
Lamiaceae Leonotis leonurus (L.) R. Br. Leaf Crude [75] Crude [75]
Lamiaceae Leonurus japonicas Houtt. Semen Crude [66]
Lamiaceae Leonurus sibiricus L. Aerial part Crude [96]
Lamiaceae Lycopus lucidus Turcz. ex Benth. Whole plant Crude [68]
Lamiaceae Marrubium vulgare L. Leaf Crude [82]
Lamiaceae Meehania urticifolia (Miq.) Makino Whole plant Crude [96]
Lamiaceae Melissa officinalis L. Whole plant Crude [253]
Lamiaceae Mentha arvensis L. Leaf Crude [66]
Lamiaceae Mentha canadensis L. Whole plant Crude [60,68]
Lamiaceae Mentha longifolia (L.) Huds. Crude [254]
Lamiaceae Minthostachys mollis Griseb. Leaf Crude [82]
Lamiaceae Mosla scabra (Thunb.) C.Y. Wu & H.W. Li Whole plant Crude [96]
Lamiaceae Ocimum basilicum L. Leaf Crude [58] Crude [255]
Lamiaceae Ocimum kilimandscharicum Baker ex Gürke Crude [255]
Lamiaceae Ocimum labiatum (N.E. Br.) A.J. Paton Triterpenoid [256]
Lamiaceae Ocimum tenuiflorum L. Leaf Crude [54,58]
Lamiaceae Perilla frutescens (L.) Britton Leaf Crude [60] Crude [66]
Lamiaceae Plectranthus amboinicus (Lour.) Spreng. Leaf Crude [229] Crude [83,99]
Lamiaceae Plectranthus barbatus Andrews Crude [257]
Lamiaceae Pogostemon heyneanus Benth. Leaf Crude [83]
Lamiaceae Prunella vulgaris L. Whole plant Crude [60] Crude [105] Crude [51,72,258]
Lamiaceae Rosmarinus officinalis L. Crude [259]
Lamiaceae Salvia haenkei Benth. Crude [82]
Lamiaceae Salvia miltiorrhiza Bunge Root Crude [260] Crude Protease [68] Crude [261]
Lamiaceae Salvia officinalis L. Leaf Crude [262] Coumarin [263] Crude [264]
Lamiaceae Salvia punctate Ruiz & Pav. Crude [82]
Lamiaceae Salvia revolute Ruiz & Pav. Crude [82]
Lamiaceae Salvia yunnanensis C.H. Wright Root Polyphenol [265]
Lamiaceae Satureja cuneifolia Ten. Whole plant Crude [61]
Lamiaceae Satureja obovate Lag. Whole plant Crude [61]
Lamiaceae Scutellaria baicalensis Georgi Root Crude [60,68] Flavonoid [266]
Lamiaceae Teucrium buxifolium Schreb. Whole plant Crude [61]
Lamiaceae Vitex glabrata R. Br. Branche Crude [57]
Lamiaceae Vitex negundo L. Aerial part Crude [57]
Lamiaceae Vitex trifolia L. Aerial part Crude [57] Crude [66]
Lardizabalaceae Akebia quinata (Houtt.) Decne. Lignum Crude [66]
Lardizabalaceae Stauntonia obovatifoliola Hayata Triterpenoid [267]
Lauraceae Cinnamomum loureiroi Nees Stem bark Crude [58]
Lauraceae Cinnamomum verum J. Presl Leaf Crude [83]
Lauraceae Lindera aggregate (Sims) Kosterm. Stem Crude [60] Crude [268] Crude [66]
Lauraceae Lindera chunii Merr. Sesquiterpenoid [269]
Lauraceae Lindera erythrocarpa Makino Leaf Crude [270]
Lauraceae Lindera obtusiloba Blume Leaf, Stem Crude [96]
Lauraceae Litsea glutinosa (Lour.) C.B. Rob. Bark Crude [83]
Lauraceae Litsea verticillata Hance Leaf Crude [58] Crude [271]
Liliaceae Amana edulis (Miq.) Honda Crude [196] Crude [96] Crude [196]
Liliaceae Fritillaria cirrhosa D. Don Rhizome Crude [60] Crude [105]
Liliaceae Fritillaria thunbergii Miq. Rhizome Crude [68]
Loasaceae Caiophora pentlandii (Paxton ex Graham) G. Don ex Loudon Leaf Crude [82]
Loganiaceae Strychnos ignatii P.J. Bergius Semen Crude [66]
Loganiaceae Strychnos nuxvomica L. Seed Crude [58]
Loganiaceae Strychnos potatorum L. f. Seed Crude [83]
Loranthaceae Scurrula parasitica L. Aerial part Crude [68]
Lycopodiaceae Lycopodium japonicum Thunb. Alkaloids [272]
Lythraceae Lawsonia inermis L. Aerial part Crude [58]
Lythraceae Lythrum salicaria L. Leaf Crude [62]
Lythraceae Punica granatum L. Fruit bark Crude [58] Crude [68,83]
Lythraceae Woodfordia fruticosa (L.) Kurz Flower Crude [68]
Magnoliaceae Magnolia biondii Pamp. Flower bud Crude [68]
Magnoliaceae Magnolia denudate Desr. Flower Crude [96]
Magnoliaceae Magnolia obovate Thunb. Bark Crude [68]
Magnoliaceae Magnolia officinalis Rehder & E.H. Wilson Bark Crude [68]
Malpighiaceae Tetrapterys goudotiana Triana & Planch. Crude [93] Crude [93]
Malvaceae Adansonia digitata L. Leaf Crude [273] Crude [273]
Malvaceae Corchoropsis tomentosa (Thunb.) Makino Aerial part Crude [96]
Malvaceae Grewia mollis Juss. Root Crude [102]
Malvaceae Hibiscus sabdariffa L. Flower Crude [58]
Malvaceae Pavonia schiedeana Steud. Aerial part Crude [93]
Malvaceae Sida cordata (Burm. f.) Borss. Waalk. Root Crude [83] Polyphenols [274]
Malvaceae Sida mysorensis Wight & Arn. Seed Crude [68] Polyphenols [274]
Malvaceae Sida rhombifolia L. Leaf Crude [80]
Polyphenols [274]
Malvaceae Thespesia populnea (L.) Sol. ex Corrêa Crude [275]
Malvaceae Tilia amurensis Rupr. Leaf, Stem Crude [96]
Malvaceae Waltheria indica Branch Crude [93]
Meliaceae Aglaia lawii (Wight) C.J. Saldanha Leaf Crude [276]
Meliaceae Azadirachta indica A. Juss. Leaf Crude [58,102] Crude [83,95]
Meliaceae Khaya senegalensis (Desr.) A. Juss. Crude [95]
Meliaceae Melia azedarach L. Fruit Crude [102] Crude [66]
Meliaceae Swietenia macrophylla King Crude [277]
Meliaceae Swietenia mahagoni (L.) Jacq. Bark Crude [278]
Meliaceae Trichilia emetic Vahl Crude [95]
Melianthaceae Bersama abyssinica Fresen. Root Crude [174]
Menispermaceae Coscinium fenestratum Colebr. Gall Crude [158] Crude [83,158] Crude [158]
Menispermaceae Pericampylus glaucus (Lam.) Merr. Aerial part Alkaloids [279]
Menispermaceae Sinomenium acutum (Thunb.) Rehder & E.H. Wilson Root Crude [96]
Menispermaceae Stephania cephalantha Hayata Root Crude [280]
Menispermaceae Tinospora crispa (L.) Hook. f. & Thomson Vine Crude [57] Crude [281]
Menispermaceae Tinospora sinensis (Lour.) Merr. Stem bark Crude [54] Crude [56]
Menyanthaceae Nymphoides peltata (S.G. Gmel.) Kuntze Whole plant Crude [66]
Monimiaceae Boldea fragrans Endl. Crude [82]
Moraceae Artocarpus heterophyllus Lam. Seed Crude [58]
Moraceae Ficus carica L. Leaf Crude [124]
Moraceae Ficus edelfeltii King Bark Crude [68]
Moraceae Ficus racemosa L. Bark Crude [282]
Moraceae Ficus religiosa L. Bark Crude [83]
Moraceae Maclura cochinchinensis (Lour.) Corner Stem Crude [58]
Moraceae Maclura tinctoria (L.) D. Don ex Steud. Xanthones [283]
Moraceae Morus alba L. Stem bark Crude [66]
Moringaceae Moringa oleifera Lam. Seed Crude [58,74]
Musaceae Musa acuminata Colla Fruit Lectin [284]
Myricaceae Morella salicifolia (Hochst. ex A. Rich.) Verdc. & Polhill Root bark Crude [102]
Myricaceae Myrica salicifolia Hochst. ex A. Rich. Root bark Crude [102]
Myristicaceae Myristica fragrans Houtt. Stem Crude [58] Crude [83]
Myrothamnaceae Myrothamnus flabellifolius Welw. Leaf Polyphenol [285]
Myrtaceae Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson Crude [80]
Myrtaceae Eucalyptus citriodora Hook. Leaf Crude [80]
Myrtaceae Eugenia hiemalis Cambess. Glycosides [286]
Myrtaceae Psidium guajava L. Saponin [287]
Myrtaceae Syzygium aromaticum (L.) Merr. & L.M. Perry Crude [288]
Myrtaceae Syzygium claviflorum (Roxb.) Wall. ex A.M. Cowan & Cowan Leaf Oleanolic acid [228]
Myrtaceae Syzygium cumini (L.) Skeels Bark Crude [83]
Nelumbonaceae Nelumbo nucifera Gaertn. Leaf Crude [289]
Nyctaginaceae Boerhavia caribaea Jacq. Root Crude [82]
Nyctaginaceae Boerhavia diffusa L. Crude [290]
Nyctaginaceae Boerhavia erecta L. Glycosides [291]
Ochnaceae Ochna integerrima (Lour.) Merr. Leaf Flavonoids [292]
Olacaceae Heisteria spruceana Engl. Bark Crude [82]
Olacaceae Ximenia americana L. Stem bark Crude [174]
Olacaceae Ximenia caffra Sond. Crude [293]
Oleaceae Chionanthus retusus Lindl. & Paxton Crude [96]
Oleaceae Ligustrum lucidum W.T. Aiton Fruit Crude [60] Crude [105]
Onagraceae Epilobium angustifolium L. Leaf Crude [62]
Onagraceae Oenothera erythrosepala (Borbás) Borbás Leaf Oenothein [294]
Onocleaceae Matteuccia struthiopteris (L.) Tod. Rhizome Crude [68]
Orchidaceae Arundina graminifolia (D. Don) Hochr. Whole plant Crude [295]
Orchidaceae Bletilla striata (Thunb.) Rchb. f. Root Crude [66]
Orchidaceae Dendrobium moniliforme (L.) Sw. Whole plant Crude [66]
Orobanchaceae Melampyrum roseum Maxim. Whole plant Crude [96]
Orobanchaceae Pedicularis resupinata L. Whole plant Crude [96]
Orobanchaceae Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C.A. Mey. Root Crude [66]
Paeoniaceae Paeonia lactiflora Pall. Crude [66]
Paeoniaceae Paeonia suffruticosa Andrews Root Crude [60,68] Crude [105]
Papaveraceae Argemone mexicana L. Leaf Crude [56]
Papaveraceae Papaver somniferum L. Seed Crude [56]
Parmeliaceae Usnea florida (L.) Weber ex F.H. Wigg. Whole plant Crude [82]
Pentaphylacaceae Ternstroemia gymnanthera (Wight & Arn.) Sprague Aerial part Oleanolic acid [228]
Phrymaceae Phryma leptostachya L. Whole plant Crude [96]
Phyllanthaceae Aporosa cardiosperma (Gaertn.) Merr. Crude [99]
Phyllanthaceae Bridelia ferruginea Benth. Stem bark Crude [80]
Phyllanthaceae Bridelia micrantha (Hochst.) Baill. Root Crude [296]
Phyllanthaceae Hymenocardia acida Tul. Leaf Crude [80]
Phyllanthaceae Phyllanthus amarus Schumach. & Thonn. Crude [297]
Phyllanthaceae Phyllanthus emblica L. Fruit Crude [83] Crude [175]
Phyllanthaceae Phyllanthus myrtifolius Moon ex Hook. f. Lignans [137]
Phyllanthaceae Phyllanthus niruri L. Crude [298]
Phyllanthaceae Phyllanthus sellowianus (Klotzsch) Müll. Arg. Crude [122] Crude [108]
Pinaceae Pinus nigra J.F. Arnold Seed Crude [299]
Pinaceae Pinus parviflora Siebold & Zucc. Cone Crude [300]
Piperaceae Piper aduncum L. Crude [82]
Piperaceae Piper elongatum Vahl Leaf Crude [82]
Piperaceae Piper longum L. Fruit Crude c
Plantaginaceae Digitalis purpurea L. Leaf Crude [82]
Plantaginaceae Scoparia dulcis L. Leaf Crude [301]
Plumbaginaceae Plumbago indica L. Root Crude [58]
Poaceae Chrysopogon zizanioides (L.) Roberty Root Crude [83]
Poaceae Coix lacryma L. Seed Crude [68]
Poaceae Cortaderia rudiuscula Stapf Leaf Crude [82]
Poaceae Saccharum officinarum L. Stem Crude [58]
Poaceae Sasa borealis (Hack.) Makino & Shibata Whole plant Crude [96]
Polemoniaceae Cantua hibrida Herrera Leaf Crude [82]
Polygalaceae Polygala tenuifolia Willd. Root Crude [66]
Polygonaceae Muehlenbeckia fruticulosa (Walp.) Standl. Leaf Crude [82]
Polygonaceae Persicaria tinctoria (Aiton) H. Gross Whole plant Crude [96]
Polygonaceae Polygonum aviculare L. Aerial part Crude [66]
Polygonaceae Polygonum senticosum (Meisn.) Franch. & Sav. Whole plant Crude [96]
Polygonaceae Reynoutria japonica Houtt. Root Crude [68]
Polygonaceae Reynoutria multiflora (Thunb.) Moldenke Crude [60] Crude [105]
Polygonaceae Rheum palmatum L. Rhizome Sennoside [302] Crude [68] Sennoside [302] Sennoside [302]
Polygonaceae Rheum tanguticum Maxim. ex Balf. Glycosides [303]
Polygonaceae Rumex crispus L. Root Crude [82]
Polygonaceae Rumex cyprius Murb. Crude [175]
Polygonaceae Rumex frutescens Thouars Root Crude [82]
Polygonaceae Rumex nepalensis Spreng. Crude [111]
Polygonaceae Rumex peruanus Rech. f. Leaf Crude [82]
Polypodiaceae Drynaria roosii Nakaike Rhisome Crude [68]
Polypodiaceae Pleopeltis pycnocarpa (C. Chr.) A.R. Sm. Crude [82]
Polypodiaceae Polypodium pycnocarpum C. Chr. Root Crude [82]
Polypodiaceae Pyrrosia lingua (Thunb.) Farw. Aerial part Crude [66]
Polypodiaceae Polytrichum commune Hedw. Crude [62]
Portulacaceae Portulaca oleracea L. Aerial part Crude [68]
Primulaceae Ardisia japonica (Thunb.) Blume Aerial part Crude [304]
Primulaceae Embelia ribes Burm. f. Fruit Crude [56]
Proteaceae Conospermum incurvum Lindl. Crude [305]
Ranunculaceae Aconitum ferox Wall. ex Ser. Tuber Crude [83]
Ranunculaceae Aconitum jaluense Kom. Root Crude [66]
Ranunculaceae Aconitum uchiyamai Nakai Root Crude [96]
Ranunculaceae Actaea heracleifolia (Kom.) J. Compton Rhizome Crude [68]
Ranunculaceae Anemone chinensis Bunge Root Crude [68]
Ranunculaceae Clematis chinensis Osbeck Root Crude [60,68]
Ranunculaceae Clematis mandschurica Max. Crude [96]
Ranunculaceae Coptis chinensis Franch. Rhizome Crude [60,68] Crude [105] Crude [72]
Ranunculaceae Nigella sativa L. Seed Crude [83]
Ranunculaceae Pulsatilla cernua (Thunb.) Bercht. ex J. Presl Root Crude [66]
Resedaceae Reseda lutea L. Whole plant Crude [61]
Resedaceae Reseda suffruticosa Loefl. Whole plant Crude [61]
Rhamnaceae Berchemia berchemiifolia (Makino) Koidz. Bark Crude [96,270]
Rhamnaceae Rhamnus staddo A. Rich. Crude [102]
Rhamnaceae Ziziphus spina-christi (L.) Desf. Fruit Crude [74]
Rhizophoraceae Rhizophora mucronata Lam. Leaf Crude [54] Crude [55]
Rosaceae Agrimonia pilosa Ledeb. Whole plant Crude [96]
Rosaceae Alchemilla andina (L.M. Perry) J.F. Macbr. Stem Crude [82]
Rosaceae Chaenomeles sinensis (Thouin) Koehne Fruit Crude [66]
Rosaceae Crataegus pinnatifida Bunge Leaf Crude [96] Triterpenes [306]
Rosaceae Eriobotrya japonica (Thunb.) Lindl. Leaf Crude [96] Crude [66]
Rosaceae Geum macrophyllum Willd. Whole plant Crude [68]
Rosaceae Malus baccata (L.) Borkh. Stem Crude [96]
Rosaceae Malus sieboldii (Regel) Rehder Stem Crude [96]
Rosaceae Prunus africana (Hook. f.) Kalkman Stem bark Crude [102]
Rosaceae Prunus armeniaca L. Seed Crude [68]
Rosaceae Prunus mume (Siebold) Siebold & Zucc. Fruit Crude [68]
Rosaceae Prunus persica (L.) Batsch Semen Crude [66]
Rosaceae Prunus yedoensis Matsum. Stem bark Crude [66]
Rosaceae Rosa damascena Mill. Crude [307]
Rosaceae Rosa davurica Pall. Crude [308]
Rosaceae Rosa laevigata Michx. Fruit Crude [66]
Rosaceae Rosa woodsii Lindl. Leaf Oleanolic acid [228]
Rosaceae Sanguisorba minor Scop. Whole plant Crude [61]
Rosaceae Sanguisorba officinalis L. Root Crude [96] Crude [309]
Rosaceae Sorbus commixta Hedl. Stem Crude [96]
Rosaceae Stephanandra incise (Thunb.) Siebold & Zucc. ex Zabel Crude [96]
Rubiaceae Canthium coromandelicum (Burm.f.) Alston Leaf Crude [310]
Rubiaceae Cinchona pubescens Vahl Bark Crude [82]
Rubiaceae Cruciata glabra Ehrend. Crude [62]
Rubiaceae Galium aparine L. Leaf Crude [62]
Rubiaceae Galium mollugo L. Leaf Crude [62]
Rubiaceae Galium verum L. Whole plant Crude [96]
Rubiaceae Gardenia ternifolia Schumach. & Thonn. Crude [74]
Rubiaceae Gardenia tubifera Wall. ex Roxb. Leaf Cycloartanes [311]
Rubiaceae Hedyotis corymbosa (L.) Lam. Crude [99]
Rubiaceae Hedyotis diffusa Willd. Aerial part Crude [66]
Rubiaceae Morinda citrifolia L. Leaf Crude [158] Crude [158] Crude [158]
Rubiaceae Oldenlandia diffusa (Willd.) Roxb. Whole plant Crude [60,68] Crude [105]
Rubiaceae Oldenlandia herbacea (L.) Roxb. Root Crude [83]
Rubiaceae Rubia cordifolia L. Root Crude [229] Crude [56]
Rubiaceae Sarcocephalus latifolius (Sm.) Bruce Crude [95] Crude [312]
Rutaceae Aegle marmelos (L.) Corrêa Leaf Crude [83] Crude [56]
Rutaceae Citrus hystrix DC. Fruit bark Crude [58]
Rutaceae Clausena anisata root Crude [102] Crude [313]
Rutaceae Clausena excavate (Willd.) Hook. f. ex Benth. Aerial part Crude [57] Limonoid [314]
Rutaceae Dictamnus albus L. Root bark Crude [68]
Rutaceae Murraya koenigii (L.) Spreng. Aerial part Crude [57]
Rutaceae Phellodendron amurense Rupr. Bark Crude [68]
Rutaceae Tetradium ruticarpum (A. Juss.) T.G. Hartley Crude [68]
Rutaceae Toddalia asiatica (L.) Lam. Root Crude [102] Alkaloid [315]
Rutaceae Vepris simplicifolia (Engl.) Mziray Crude [102]
Rutaceae Zanthoxylum bungeanum Maxim. Fruit peel Crude [68] Crude [66]
Rutaceae Zanthoxylum chalybeum Engl. Root bark Crude [102] Crude [211]
Rutaceae Zanthoxylum schinifolium Siebold & Zucc. Fruit peel Crude [68,96]
Salvadoraceae Salvadora persica L. Stem Crude [74] Crude [95]
Santalaceae Phoradendron juniperinum Engelm. ex A. Gray Whole plant Oleanolic acid [228]
Santalaceae Viscum album L. Flower Crude [118]
Sapindaceae Acer okamotoanum Nakai Leaf Flavonoid [316]
Sapindaceae Acer pictum Thunb. Stem Crude [96]
Sapindaceae Aesculus chinensis Bunge Seed Triterpenoid [317]
Sapindaceae Aesculus turbinate Blume Fruit Crude [96]
Sapindaceae Allophylus cobbe (L.) Raeusch. Leaf Crude [318]
Sapindaceae Dodonaea viscosa Jacq. Leaf Crude [82,174]
Sapindaceae Koelreuteria paniculata Laxm. Stem Crude [96]
Sapindaceae Nephelium lappaceum L. Seed Crude [319]
Sapindaceae Serjania mexicana (L.) Willd. Whole plant Crude [93]
Sapotaceae Madhuca longifolia (J. Koenig ex L.) J.F. Macbr. Bark Crude [56]
Sapotaceae Mimusops elengi L. Bark Crude [320] Crude [83] Saponin [321]
Sapotaceae Tieghemella heckelii Pierre ex A. Chev. Leaf Crude [318]
Sauruaceae Houttuynia cordata Thunb. Aerial part Crude [66,322]
Sauruaceae Saururus chinensis (Lour.) Baill. Rhizome Lignans [323]
Saxifragaceae Astilbe grandis Stapf ex E.H. Wilson Aerial part Crude [96]
Saxifragaceae Astilbe rubra Hook. f. & Thomson ex Hook. Whole plant Crude [96]
Schisandraceae Illicium verum Hook. f. Root Phytochemicals [324]
Schisandraceae Kadsura angustifolia A.C. Sm. Lignans [325]
Schisandraceae Kadsura heteroclite (Roxb.) Craib Triterpenoid [326] Crude [327]
Schisandraceae Kadsura longipedunculata Finet & Gagnep. Lignans [328]
Schisandraceae Schisandra chinensis (Turcz.) Baill. Fruit Protease [68]
Schisandraceae Schisandra lancifolia (Rehder & E.H. Wilson) A.C. Sm. Leaf, Stem Triterpenoid [329]
Nortriterpenoid [330]
Schisandraceae Schisandra propinqua Hook. f. & Thomson Aerial part Lignans [331]
Schisandraceae Schisandra rubriflora (Franch.) Rehder & E.H. Wilson Lignans [332]
Schisandraceae Schisandra sphaerandra Stapf Stem Triterpenoid [333] Triterpenoid [333]
Schisandraceae Schisandra sphenanthera Rehder & E.H. Wilson Leaf, Stem Nortriterpenoid [334]
Triterpenoids [335]
Schisandraceae Schisandra wilsoniana A.C. Sm. Fruit Lignans [336]
Scrophulariaceae Buddleja officinalis Maxim. Flower Crude [66]
Scrophulariaceae Scrophularia buergeriana Miq. Root Crude [96]
Scrophulariaceae Scrophularia kakudensis Franch. Aerial part Crude [96]
Scrophulariaceae Verbascum densiflorum Bertol. Crude [62]
Scrophulariaceae Verbascum thapsiforme Schrad. Crude [62]
Selaginellaceae Selaginella tamariscina (P. Beauv.) Spring Aerial part Crude [66]
Simaroubaceae Ailanthus altissima (Mill.) Swingle Stem bark Crude [66]
Simaroubaceae Brucea javanica (L.) Merr. Seed Crude [58] Crude [68]
Simaroubaceae Leitneria floridana Chapm. Crude [337]
Simaroubaceae Quassia amara L. Bark Crude [82]
Smilacacea Smilax campestris Griseb. Root Crude [82]
Smilacacea Smilax china L. Fruit Crude [96] Crude [338]
Solanaceae Cestrum parqui L’Hér. Leaf Crude [82]
Solanaceae Lycium chinense Mill. Fruit Crude [66]
Solanaceae Physaliastrum japonicum (Franch. & Sav.) Honda Aerial part Crude [96]
Solanaceae Solanum incanum L. Betulinic acid [339]
Solanaceae Solanum tomentosum L. Crude [340]
Solanaceae Solanum virginianum L. Crude [341]
Solanaceae Withania somnifera (L.) Dunal Root Crude [54] Crude [342]
Staphyleaceae Staphylea bumalda DC. Whole plant Crude [96]
Styracaceae Styrax japonicas Siebold & Zucc. Stem Lignins [343]
Styracaceae Styrax obassis Siebold & Zucc. Stem Crude [96]
Tamaricaceae Tamarix senegalensis DC. Crude [74]
Taxaceae Taxus caespitosa Nakai Stem Crude [96]
Taxaceae Taxus cuspidate Siebold & Zucc. Crude [96]
Theaceae Camellia japonica L. Leaf Crude [344]
Theaceae Stewartia koreana Nakai ex Rehder Leaf Crude [96]
Thymelaeaceae Daphne acutiloba Rehder Diterpene [345]
Thymelaeaceae Daphne feddei H.Lév. Leaf, Stem Lignans [346]
Thymelaeaceae Wikstroemia indica (L.) C.A. Mey. Crude [347]
Typhaceae Typha domingensis Pers. Crude [102]
Ulmaceae Ulmus davidiana Planch. Leaf, Stem Crude [96]
Ulmaceae Ulmus pumila L. Bark Crude [66]
Urticaceae Myrianthus holstii Engl. Lectin [348]
Urticaceae Phenax angustifolius (Kunth) Wedd. Leaf Lignans [349]
Urticaceae Urtica dioica L. Rhizome Crude [62] Crude [350]
Urticaceae Urtica magellanica Juss. ex Poir. Leaf Crude [82]
Urticaceae Urtica urens L. Leaf Crude [82]
Verbenaceae Lampaya medicinalis Phil. Leaf Crude [82]
Verbenaceae Lippia javanica (Burm f.) Spreng. Phytochemicals [351]
Verbenaceae Stachytarpheta jamaicensis (L.) Vahl Whole plant Crude [57]
Violaceae Viola yedoensis Makino Whole plant Crude [60] Crude [105] Crude [72]
Vitaceae Cissus quadrangularis L. Stem Crude [74]
Vitaceae Vitis vinifera L. Phytochemicals [352]
Xanthorrhoeaceae Aloe ferox Mill. Crude [353]
Xanthorrhoeaceae Aloe vera (L.) Burm. f. Crude [354]
Xanthorrhoeaceae Asphodelus ramosus L. Whole plant Crude [61]
Xanthorrhoeaceae Bulbine alooides Willd. Roots Crude [75] Crude [75]
Zingiberaceae Alpinia galangal (L.) Willd. Crude [355] Crude [356]
Zingiberaceae Alpinia officinarum Hance Root Crude [68] Crude [66]
Zingiberaceae Boesenbergia rotunda (L.) Mansf. Phytochemicals [357] Flavonoid [358]
Zingiberaceae Curcuma longa L. Rhizome Crude [58] Crude [83] Crude [359] Crude [66]
Zingiberaceae Curcuma zanthorrhiza Roxb. Crude [58]
Zingiberaceae Elettaria cardamomum (L.) Maton Fruit Crude [83]
Zingiberaceae Kaempferia parviflora Wall. ex Baker Crude [355]
Zygophyllaceae Balanites aegyptiacus (L.) Delile Bark Crude [95]
Zygophyllaceae Larrea tridentata (Sessé & Moc. ex DC.) Coville Lignan [360]
Zygophyllaceae Tribulus terrestris L. Fruit Crude [95] Crude [66]

Table 2.

Plant names which are having synonyms found in theplantlist.org.

Reported Name Accepted Name
Aglaia andamanica Hiern Aglaia lawii (Wight) C.J. Saldanha
Andropogon muricatus Retz. Chrysopogon zizanioides (L.) Roberty
Angelica koreana Maxim. Angelica grosseserrata Maxim.
Aporosa lindleyana (Wight) Baill. Aporosa cardiosperma (Gaertn.) Merr.
Aster koraiensis Nakai Miyamayomena koraiensis (Nakai) Kitam.
Aster scaber Elliott Symphyotrichum undulatum (L.) G.L. Nesom
Astilbe chinensis (Maxim.) Franch. & Sav. Astilbe rubra Hook. f. & Thomson ex Hook.
Astilbe koreana (Kom.) Nakai Astilbe grandis Stapf ex E.H. Wilson
Astragalus membranaceus Moench Astragalus propinquus Schischk.
Baliospermum montanum (Willd.) Müll. Arg. Baliospermum solanifolium (Geiseler) Suresh
Baphicacanthus cusia (Nees) Bremek. Strobilanthes cusia (Nees) Kuntze
Belamcanda chinensis (L.) Redouté Saposhnikovia divaricate (Turcz.) Schischk.
Boesenbergia pandurata (Roxb.) Schltr. Boesenbergia rotunda (L.) Mansf.
Brassica alboglabra L.H. Bailey Brassica oleracea L.
Brassica campestris L. Brassica rapa L.
Caesalpinia bonducella (L.) Fleming Caesalpinia bonduc (L.) Roxb.
Carissa edulis (Forssk.) Vahl Carissa spinarum L.
Cassia garrettiana Craib Senna garrettiana (Craib) H.S. Irwin & Barneby
Cassia occidentalis L. Senna occidentalis (L.) Link
Chamaesyce hyssopifolia (L.) Small Euphorbia hyssopifolia L.
Cimicifuga heracleifolia Kom. Actaea heracleifolia (Kom.) J. Compton
Clerodendrum inerme (L.) Gaertn. Volkameria inermis L.
Coleus amboinicus Lour. Plectranthus amboinicus (Lour.) Spreng.
Curcuma domestica Valeton Curcuma longa L.
Cydonia vulgaris Pers. Chaenomeles sinensis (Thouin) Koehne
Dictamnus dasycarpus Turcz. Dictamnus albus L.
Dodonaea angustifolia L. f. Dodonaea viscosa Jacq.
Dolichos biflorus L. Vigna unguiculata (L.) Walp.
Drymaria diandra Blume Drymaria cordata (L.) Willd. ex Schult.
Drynaria fortunei (Kunze ex Mett.) J. Sm. Drynaria roosii Nakaike
Elaeodendron croceum (Thunb.) DC. Cassine crocea (Thunb.) C. Presl
Eleutherine americana (Aubl.) Merr. ex K. Heyne Eleutherine bulbosa (Mill.) Urb.
Enantia chlorantha Oliv. Annickia chlorantha (Oliv.) Setten & Maas
Epinetrum villosum Troupin Albertisia villosa Forman
Erythroxylum lucidum Kunth Erythroxylum macrophyllum Cav.
Eugenia caryophyllata Thunb. Syzygium aromaticum (L.) Merr. & L.M. Perry
Eugenia jambolana Lam. Syzygium cumini (L.) Skeels
Eupatorium buniifolium Hook. ex Arn. Acanthostyles buniifolius (Hook. ex Arn.) R.M. King & H. Rob.
Euodia ruticarpa (A. Juss.) Benth. Tetradium ruticarpum (A. Juss.) T.G. Hartley
Ferula sumbul (Kauffm.) Hook. f. Ferula moschata (H. Reinsch) Koso-Pol.
Garcinia cambogia Roxb. Garcinia gummi-gutta Roxb.
Garcinia edulis Exell Garcinia buchneri Engl.
Garcinia polyantha Oliv. Garcinia smeathmannii (Planch. & Triana) Oliv.
Geum japonicum Thunb. Geum macrophyllum Willd.
Ginkgo biloba L. Salisburia ginkgo (L.) Rich.
Glycosmis montana Pierre Glycosmis lanceolata (Blume) Teijsm. & Binn. ex Kurz
Kadsura interior A.C. Sm. Kadsura heteroclite (Roxb.) Craib
Kalopanax pictus (Thunb.) Nakai Acer pictum Thunb.
Ledebouriella divaricate (Turcz.) Hiroë Saposhnikovia divaricate (Turcz.) Schischk.
Lespedeza cuneata (Dum. Cours.) G. Don Lespedeza juncea (L. f.) Pers.
Lindera glauca (Siebold & Zucc.) Blume Lindera communis Hemsl.
Litsea sebifera Pers. Litsea glutinosa (Lour.) C.B. Rob.
Loranthus parasiticus (L.) Merr. Scurrula parasitica L.
Madhuca indica J.F. Gmel. Madhuca longifolia (J. Koenig ex L.) J.F. Macbr.
Magnolia fargesii (Finet & Gagnep.) W.C. Cheng Magnolia biondii Pamp.
Margyricarpus setosus Ruiz & Pav. Margyricarpus pinnatus (Lam.) Kuntze
Maytenus heterophylla (Eckl. & Zeyh.) N. Robson Gymnosporia heterophylla (Eckl. & Zeyh.) Loes.
Maytenus senegalensis (Lam.) Exell Gymnosporia senegalensis (Lam.) Loes.
Melandrium seoulense (Nakai) Nakai Silene seoulensis Nakai
Mentha haplocalyx Briq. Mentha canadensis L.
Mosla punctulata (J.F. Gmel.) Nakai Mosla scabra (Thunb.) C.Y. Wu & H.W. Li
Mutisia viciifolia fo. intermedia Cuatrec. Mutisia acuminata Ruiz & Pav.
Orthosiphon labiatus N.E. Br. Ocimum labiatum (N.E. Br.) A.J. Paton
Persicaria senticosa (Meisn.) H. Gross ex Nakai Polygonum senticosum (Meisn.) Franch. & Sav.
Peucedanum graveolens (L.) Hiern Anethum graveolens L.
Phoradendron juniperinum Engelm. ex A. Gray Phoradendron ligatum Trel.
Polanisia icosandra (L.) Wight & Arn. Cleome viscosa L.
Polygonum cuspidatum Sieb. et Zucc. Reynoutria japonica Houtt.
Polygonum multiflorum (Meisn.) H. Gross ex Nakai Reynoutria multiflora (Thunb.) Moldenke
Pongamia glabra Vent. Pongamia pinnata (L.) Pierre
Pulsatilla chinensis (Bunge) Regel Anemone chinensis Bunge
Quercus pedunculata Hoffm. Quercus robur L.
Rhodiola rosea L. Sedum rosea (L.) Scop.
Rhus acuminata DC. Toxicodendron acuminatum (DC.) C.Y. Wu & T.L. Ming
Rhus javanica L. Brucea javanica (L.) Merr.
Rhodiola rosea L. Sedum rosea (L.) Scop.
Rumex bequaertii De Wild. Rumex nepalensis Spreng.
Rumex cuneifolius Campd. Rumex frutescens Thouars
Sapium japonicum (Siebold & Zucc.) Pax & K. Hoffm. Neoshirakia japonica (Siebold & Zucc.) Esser
Satureja boliviana (Benth.) Briq. Clinopodium bolivianum (Benth.) Kuntze
Scrophularia koraiensis Nakai Scrophularia kakudensis Franch.
Senecio culcitioides Sch. Bip. Senecio comosus Sch. Bip.
Scutellaria baicalensis Georgi Scutellaria macrantha Fisch. ex Rchb.
Sophora angustifolia Siebold & Zucc. Sophora flavescens Aiton
Sophora japonica L. Styphnolobium japonicum (L.) Schott
Sophora subprostrata Chun & T.C. Chen Sophora tonkinensis Gagnep.
Syringa dilatata Nakai Syringa oblata var. dilatata (Nakai) Rehder
Teclea simplicifolia (Engl.) I. Verd. Vepris simplicifolia (Engl.) Mziray
Tinospora cordifolia (Willd.) Miers ex Hook. f. & Thomson Tinospora sinensis (Lour.) Merr.
Trigonostemon lii Y.T. Chang Trigonostemon bonianus Gagnep.
Tripterygium hypoglaucum (H. Lév.) Hutch. Tripterygium wilfordii Hook. f.
Tulipa edulis (Miq.) Baker Amana edulis (Miq.) Honda
Veronica linariifolia Pall. ex Link Pseudolysimachion linariifolium (Pall. ex Link) Holub
Wedelia chinensis (Osbeck) Merr. Sphagneticola calendulacea (L.) Pruski
Werneria ciliolate A. Gray Xenophyllum ciliolatum (A. Gray) V.A. Funk
Werneria dactylophylla Sch. Bip. Xenophyllum dactylophyllum (Sch. Bip.) V.A. Funk
Woodfordia floribunda Salisb. Woodfordia fruticosa (L.) Kurz

The Food and Drug Administration (FDA or USFDA) classifies antiretroviral drugs for HIV infection into the following categories:

  • (1)

    Multi-class Combination Products,

  • (2)

    Nucleoside Reverse Transcriptase Inhibitors (NRTIs),

  • (3)

    Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs),

  • (4)

    Protease Inhibitors (PIs),

  • (5)

    Fusion Inhibitors,

  • (6)

    Entry Inhibitors—CCR5 co-receptor antagonist and

  • (7)

    HIV integrase strand transfer inhibitors.

For better understanding, 1st, 5th and 6th types are not explicitely mentioned in this article. 2nd and 3rd classes are categorized into HIV-reverse transcription (HIV-RT), 4th type as HIV-protease (HIV-PR) and 7th type as HIV-integrase (HIV-IN). Painter et al. [47] Konvalinka et al. [48] and Blanco et al. [49] have reviewed the roles of HIV-RT, HIV-PR and HIV-IN, respectively. Also, Matthée et al. [50] have discussed the natural inhibitors of HIV-RT.

Of these 717 species, HIV-RT, HIV-PR, and HIV-IN are reported for 206, 254 and 43 species, respectively. Apart from these three inhibitor studies, researchers have also evaluated 390 species for other enzyme inhibition studies which are grouped under anti-HIV activities.

3. Plant Extracts and Some Secondary Metabolites with Anti-HIV Activity

Most of the world’s cultures have centuries of tradition in the use of plant materials in order to control diseases. With recent advancement in pharmacognosy and technology along with the current trends of a more health-conscious general public, natural products are becoming a popular resource for researchers to discover novel and more effective antiviral drugs, considering the relatively reduced adverse effects and cost effectiveness of natural products in commercial scale [361]. Plants, as evolutionary responses to infections by fungi, nematodes, and other organisms, to avoid herbivory, and to comptete for light and space, produce numerous secondary metabolites such as phenolics, glycosides, alkaloids, coumarins, terpenoids, essential oils and peptides. These metabolites have been identified with different biological activities. Some of them play an important role in immune system enhancement, exhibiting antiviral potential [362], including viral infections associated with Human Immunodeficiency Virus type 1 (HIV-1) and 2 (HIV-2) as genetic variabilities. An increasing number of patients with HIV infection cannot use the currently approved anti-HIV drugs including the reverse transcriptase and protease inhibitors, due to the adverse reactions, particularly liver diseases, that have been reported for antiretroviral drugs. The best antiretroviral therapy (HAART) has also fallen short of completely suppressing HIV replication [363]. Therefore, the discovery and development of new anti-HIV agents or new mechanisms of activity from medicinal plants are required to reduce toxicity in drug application and to minimize side effects when compared with current synthetic drugs [364]. The potential utilization of plant extracts and their secondary metabolites to combat the development of anti-HIV agents is considered to be one of the most important approaches toward effective therapy for AIDS [365]. Bioassay-guided fractionation and isolation of secondary metabolites from medicinal plants according to their preliminary high throughput screenings provide systematic source to the novel compounds. The in vitro and in vivo evaluation affirmed the therapeutic potentials in these chemical compounds. Thus, traditional medicines can serve as sources of potential new drug candidates and initial research has focused on the isolation of bioactive lead compounds [366].

Many compounds with anti-HIV-1 effects have been screened and isolated from natural sources and discovered to inhibit HIV at nearly all stages of the viral life cycle. They include alkaloids, sulfated polysaccharides, polyphenolics, flavonoids, coumarins, phenolics, tannins, triterpenes, lectins, phloroglucinols, lactones, iridoids, depsidones, O-caffeoyl derivatives, lignans, ribosome inactivating proteins, saponins, xanthones, naphthodianthrones, photosensitisers, phosholipids, quinones and peptides [367]. Natural products provide a large reservoir for screening of anti-HIV agents with novel structures and anti-viral mechanisms because of their structural diversity. A variety of natural products have been found to inhibit unique enzymes and proteins crucial to the life cycle of HIV including efficient intervention with the reverse transcription process, virus entry, and integrase and protease inhibition [368]. However the mechanism of anti-HIV activities of many natural products is still unknown. Some of the plant extracts have significantly inhibited the enzyme activity of HIV-1 replication and protected cells infected with HIV-1. These extracts with anti-HIV activity are also active against other retroviruses such as Herpes Simplex Virus (HSV). Most studies have used in vitro test systems for anti-HIV-1 enzyme assays such as HIV-1 reverse transcriptase colorimetric assay, HIV-1 integrase assay, and HIV-1 protease fluorogenic assay, but a few in vivo studies have been carried out using compounds isolated from natural sources [369]. The anti-HIV activities of extracts from some medicinal plants have been reviewed.

3.1. Artemisia annua L. (Asteraceae)

The anti-HIV activity of the tea infusion prepared from the Chinese medicinal plant identified as Artemisia annua L. by using the validated cellular systems were examined. The tea infusion of Artemisia annua was found to be highly active with IC50 values as low as 2.0 μg/mL. In addition, artemisinin was found as inactive at 25 μg/mL and the related species Artemisia afra (not containing artemisinin) has also shown a similar level of activity [370].

3.2. Astragalus membranaceus Bunge (Fabaceae)

Astragalus membranaceus is well-known Chinese traditional medicine as an immunostimulant. Studies in immune-suppressed and immune-competent human patients have demonstrated restoration or augmentation of local graft versus host rejection using Astragalus extracts. These extracts have improved symptomology in HIV-infected patients. These results are suggested that the extracts of Astragalus to be safe, however mutagenecity has yet to be examined [115].

3.3. Calendula officinalis L. (Asteraceae)

In India, the flowers of Calendula officinalis are used in ointments for treating wounds, herpes, ulcers, frostbite, skin damage, scars and blood purification. The infusions prepared from the leaves have been used for treating varicose veins in traditional use. Dichloromethane-methanol (1:1) extract of Calendula officinalis flowers exhibited potent anti-HIV activity in in vitro (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide)(MTT)/tetrazolium-based assay. This activity was attributed to inhibition of HIV1-RT at a concentration of 1000 μg/mL as well as suppression of the HIV mediated fusion at 500 μg/mL [371]. The organic and aqueous extracts of dried flowers from Calendula officinalis were examined for their ability to inhibit the human immunodeficiency virus type 1 (HIV-l) replication. Both extracts were relatively nontoxic to human lymphocytic Molt-4 cells, but only the organic one exhibited potent anti-HIV activity in an in vitro MTT ketrazolium-based assay. In addition, in the presence of the organic extract (500 pg/mL), the uninfected Molt-4 cells were completely protected for up to 24 h from fusion and subsequent death, caused by cocultivation with persistently infected U-937/HIV-1 cells. It was also found that the organic extract from Calendula officinalis flowers caused a significant dose- and time-dependent reduction of HIV-l reverse transcription (RT) activity. An 85% RT inhibition was achieved after a 30 min treatment of partially purified enzyme in a cell-free system. These results suggested that organic extract of flowers from Calendula oflicinalis are possessed anti-HIV properties of therapeutic interest [163].

3.4. Calophyllum lanigerum Miq. var. austrocoriaceum (T.C. Whitmore) P.F. Stevens (Clusiaceae)

Calophyllum lanigerum var. austrocoriaceum has been found to inhibit the cytopathic effects of in vitro HIV infection. Bioassay-guided fractionation of the extract and the chemical along with biological characterization of active constituents as coumarine derivatives have been reported [372]. The latex of Calophyllum teysmanni L. has shown to be active against HIV-1 reverse transcriptase mediated by soulattrolide, a coumarin isolated from the latex of Calophyllum teysmanni [373].

3.5. Cassia abbreviata Oliv. Oliv., C. sieberiana D.C. (Fabaceae)

Cassia abbreviata growing in Botswana used by traditional healers to manage HIV/AIDS, was tested for their inhibitory effects on HIV replication against a clone of HIV-1c (MJ4) measuring cytopathic effect protection and levels of viral p24 antigen in infected PBMCs. Cassia sieberiana and Cassia abbreviata extracts have shown significant inhibition of HIV-1c (MJ4) replication. Anti-HIV activity of Cassia sieberiana root and bark extracts, and Cassia abbreviata root extracts were occurred in a concentration-dependent manner with an effective concentration (EC50) of 65.1 μg/mL, 85.3 μg/mL and 102.8 μg/mL, respectively [374].

3.6. Chelidonium majus L. (Papaveraceae)

The anti-retroviral activity of the freshly prepared crude extract of Chelidonium majus L. was examined and a low-sulfated poly-glycosaminoglycan moiety with molecular weight of ~3800 Da. was isolated from the extract [173]. The substance prevented infection of human CD4+ T-cell lines AA2 and H9 with HIV-1 at concentration of 25 μg/mL as well as the cell-to-cell virus spread in H9 cells continuously infected with HIV-1 were determined by the measurement of reverse transcriptase activity and p24 content in cell cultures. In addition, in a murine AIDS model that the treatment with purified substance significantly prevented splenomegaly and the enlargement of cervical lymph nodes in C57Bl/6 mice chronically infected with the pool of murine leukemia retroviruses were also reported [173].

3.7. Combretum molle (R. Br. ex. G. Don.) Engl & Diels (Combretaceae)

In vitro anti-HIV activity of various extracts prepared from the stem bark of Combretum molle widely used in Ethiopian traditional medicine for the treatment of liver diseases, malaria and tuberculosis has been assessed against human imnmuunodeficiencvy virus type 1 (HIV-1) and type 2 (HIV-2). The extracts were prepared by percolation with petroleum ether, chloroform, acetone and the methanol extract was obtained by successive hot extraction using Soxhlet apparatus. Selective inhibition of viral growth was assessed by the simultaneous determination of the in vitro cytotoxicity of each of the extracts against MT-4 cells [375]. The results obtained in this study indicate that the acetone fraction possessed the highest selective inhibition of HIV-1 replication. Phytochemical investigation of the acetone fraction has resulted in the isolation of two tannins and two oleanane-type pentacyclic triterpene glycosides. One of the tannins was identified as punicalagin (an ellagitannin), while the structure of the other (CM-A) has not yet been fully elucidated. On the other hand, both punicalagin and CM-A had displayed selective inhibition of HIV-1 replication with selectivity indices (ratio of 50% cytotoxic concentration to 50% effective antiviral concentration) of 16 and 25, respectively and afforded cell protection of viral induced cytopathic effect of 100% when compared with control samples.

3.8. Diospyros lotus L. (Ebenaceae)

Methanol extract of the fruits of Diospyros lotus were tested for anti-HIV-1 activity. Gallic acid was found the most active compound against HIV-1 with Therapeutic Index (TI) value of >32.84 and the other compounds were less potent active. Diospyros lotus fruits could provide a chemical reservoir of anti-HIV agents. All identified compounds were tested for their cytotoxicity and anti-HIV-1 activities. For positive control, the marketed drug azido-thymidine (AZT) was also tested as a reference according to the same methods. The activity data were described as 50% cytotoxicity concentration (CC50), 50% effective concentration (EC50%), and therapeutic index (TI), the ratio of CC50/EC50). Seven isolated phenolic compounds (CC50 > 200 μg/mL) have shown less toxicity to C8166 cells compared to ellagic acid (CC50 = 35.84 μg/mL). Gallic acid inhibited HIV-1 replication with EC50 value of 6.09 μg/mL and TI value of > 32.84, higher than any other compounds. The anti-HIV-1 activity assay was performed by syncytia formation. The seven phenolic compounds showed a good anti-HIV-1 activity and compound gallic acid, a simple tannin compound was the most active and its TI value was the highest [376].

3.9. Dittrichia viscosa (L.) Greuter (Asteraceae)

The aqueous extract of Dittrichia viscosa was tested for its ability to inhibit the HIV replication. HIV infection of MT-2 cells was used for evaluating antiviral test as rapid and sensitive assay system for the detection of potential antiviral drugs effective against AIDS. The aqueous extract of Dittrichia viscosa has showed inhibitory effects against HIV-1 induced infections in MT-2 cells at concentrations ranging from 25 to 400 μg/mL of therapeutic interest [377].

3.10. Galanthus nivalis L. (Amaryllidaceae)

Agglutinin isolated from Galanthus nivalis (GNA) is a member of a superfamily of strictly mannose-binding specific lectins widespread among monocotyledonous plants, and is well-known to possess a broad range of biological functions such as anti-tumor, anti-viral and anti-fungal activities [378]. The molecular mechanisms of GNA exerting anti-viral activities by blocking the entry of the virus into its target cells, preventing transmission of the virus as well as forcing virus to delete glycan in its envelope protein and triggering neutralizing antibody were discussed. These findings may provide a new perspective of GNA-related lectins as potential drugs for virus therapeutics in the future.

3.11. Garcinia edulis Exell (Clusiaceae)

The isoprenylated xanthone derivative determined as 1,4,6-trihydroxy-3-methoxy-2-(3-methyl-2-butenyl)-5-(1,1-dimethyl-prop-2-enyl)xanthone was isolated from the ethanolic extract of the root bark of Garcinia edulis. It exhibited anti-HIV-1 protease activity with IC50 value of 11.3 μg/mL in vitro while acetyl pepstatin was used as a positive control possessing an anti-HIV-1 PR activity of IC50 value of 2.2 μg/mL [379]. However, this compound has also showed potent lethality with LC50 value of 2.36 μg/mL against brine shrimp larvae in vitro.

3.12. Helichrysum populifolium (Asteraceae)

The methanol:water (1:1) extract of the aerial parts of Helichrysum populifolium growing in South Africa was tested for the anti-HIV test by using HeLa-SXR5 expressed the CD4 receptor and the CXCR4/CCR5 chemokine receptors and the extract was found to be active (IC50 value of 12 μg/mL) [123]. The anti-HIV compounds identified from H. populifolium were three dicaffeoylquinic acid derivatives, i.e., 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid as well as two tricaffeoylquinic acid derivatives, i.e., 1,3,5-tricaffeoylquinic acid and either 5-malonyl-1,3,4-tricaffeoylquinic or 3-malonyl-1,4,5-tricaffeoylquinic acid.

3.13. Hoodia gordonii (Masson) Sweet ex Decne (Apocynaceae)

The in vitro anti-HIV potential of the ethanol and ethylacetate extracts of Hoodia gordonii was examined. Both extracts had shown good inhibition in a dose-dependent manner against HIV-1 reverse transcriptase (RT) with IC50 values of 73.55 ± 0.04 and 69.81 ± 9.45 μg/mL, respectively. Doxorubicin, a known RT inhibitor was used as a positive control and inhibited HIV RT by 68% at 25 μg/mL (IC50 < 25 μg/mL). Both extracts also demonstrated inhibitory activity against HIV protease (PR) with IC50 values of 97.29 ± 0.01 and 63.76 ± 9.01 μg/mL for ethanol and ethyl acetate extracts, respectively. Acetyl pepstatin was used as a known PR inhibitor and inhibited HIV PR by as much as 82% at 50 μg/mL (IC50 < 50 μg/mL). In addition, both ethanol and ethyl acetate extracts had weak inhibition against HIV-1 integrase (IN) with <50% inhibition at the highest concentration tested of 400 μg/mL. Sodium azide was used as a positive control compound for IN inhibition [101]. In the same study, phytochemical screening of Hoodia gordonii was revealed the presence of phenolics, alkaloids, terpenes, steroids, cardiac glycosides and tannins in the ethanolic extract, while the ethyl acetate extract only showed the presence of phenolics, cardiac glycosides and steroids.

3.14. Hypericum perforatum L. (Hypericaceae)

Hypericum perforatum, known as St. John’s Wort, has been used for medicinal purposes, particularly wound healing, since the Middle Ages. It was also used in treatment of AIDS [380]. In a clinical trial, hypericin and pseudohypericin isolated from this plant have shown antiretroviral activity in HIV-infected patients [381].

3.15. Hyssopus officinalis L. (Lamiaceae)

Hyssopus officinalis has been used as herbal medicine and the extracts of this species have demonstrated strong activity against HIV-1 due to the content of polysaccharide-type compounds [252]. The 50% hydroalcoholic extract of Hysoppus officinalis was examined for its ability to inhibit HIV replication. Among the variety of assays for evaluating antiviral tests, HIV infection of MT-2 cells was used as a rapid and sensitive assay system for the detection of potential antiviral drugs effective against AIDS. This extract had shown inhibitory effects against HIV-1 induced infections in MT-2 cells at concentrations ranging from 50 to 100 μg/mL.

3.16. Justicia gendarussa Burm. f. (syn: Gendarussa vulgaris Nees) (Acanthaceae)

Justicia gendarussa was identified as a potent anti-HIV-1 active lead from the evaluation of over 4500 plant species growing in Vietnam and Laos by showing complete inhibition against HIV replication at a concentration 20 μg/mL. The methanol extract of the stems and barks of the plant have led to the isolation of justiprocumins A and B as new arylnaphthalide lignan glycosides by using bioassay-guided isolation. Justiprocumin B has shown potent activity against a broad spectrum of HIV strains with IC50 values in the range of 15–21 nM (AZT, IC50 77–95 nM, as positive control). Justiprocumin B also displayed potent inhibitory activity against the NRTI (nucleoside reverse transcriptase inhibitor)-resistant isolate (HIV-11617-1) of the analogue (AZT) as well as the NNRTI (non-nucleoside reverse transcriptase inhibitor)-resistant isolate (HIV-1N119) of the analogue (nevaripine) [382]. The dichloromethane plant extract has shown complete inhibition of HIV replication at a concentration of 20 μg/mL. This bioactivity was confirmed by the evaluation of the MeOH extract prepared from a re-collected sample of the same plant, with HIV-1 replication inhibition at an IC50 value of 40 ng/mL. Bioassay-guided separation of the extracts of the stems and roots of this plant led to the isolation of an anti-HIV arylnaphthalene lignan (ANL) glycoside, patentiflorin A. Evaluation of the compound against both the M- and T-tropic HIV-1 isolates showed it to possess a significantly higher inhibition effect than the clinically used anti-HIV drugs known as the nucleotide analogue (AZT) and non-nucleotide analogue (nevaripine). Thus, patentiflorin A has the potential to be developed as a novel anti-HIV drug [382]. Patentiflorin A showed anti-HIV-1 activity with an IC50 value of 26.9 nM in the defective HIV-based pseudotyped assay. The results clearly showed that patentiflorin A has broad-spectrum activity against both M-tropic and T-tropic HIV-1 isolates with IC50 values lower than that of AZT, the first anti-HIV drug developed and still used in the treatment of HIV/AIDS. Like AZT, it inhibited the particle production of all four HIV-1 isolates effectively in a dose-dependent manner. Patentiflorin A gave an IC50 value of 24–37 nM, compared to 77–95 nM for AZT.

3.17. Momordica charantia L. (Cucurbitacae)

Momordica charantia, known as bitter melon and widely exploited in folkloric medicine, has been shown to inhibit HIV-1 reverse transcriptase due to its protein coded as MRK29 [383]. The efficacies and molecular mechanisms of bitter gourd-induced anti-diabetic, anti-HIV, and antitumor activities contributed by over twenty active components were determined. Therefore, bitter gourd is a cornucopia of health and it has been deserved in-depth investigations for clinical application in the future.

Anti-HIV properties of the fruit pulp extract of Momordica balsamina, commonly used in the northern part of Nigeria for its anti-viral efficacy in poultry, was studied in vitro and was found as a potent inhibitor of HIV-1 replication; further research on fruit pulp extract should be pursued for its potential in the prophylaxis and therapy of retroviral infections in humans [384].

3.18. Pachyma hoelen Rumph (Polyporaceae)

The hexane extract of Pachyma hoelen Rumph used in folk medicine in Korea was shown to have the best anti-HIV-1 activity compared to the other extracts tested. This extract had 37.3 μg/mL (EC50) on the p24 antigen assay as the highest value, 36.8% on the RT activity test (at 200 μg/mL). In addition, this extract had shown protective effects on infected MT-4 cells; the protection was the highest observed at 58.2%. The 50% cytotoxic concentration (CC50) of the hexane extract of this plant species was found 100.6 μg/mL [196].

3.19. Phyllanthus pulcher (Euphorbiaceae)

The methanol extract of Phyllanthus species growing in Malaysia was evaluated for anti-HIV-1 reverse transcriptase (RT) activity using the HIV-RT assay by inhibition of the HIV-1 RT enzyme based on their IC50 values. Azido-deoxythymidine-triphosphate (AZT151TP) was used as a positive control. The inhibition of HIV-RT for P. pulcher was IC50 of 5.9 μg/mL [385].

3.20. Rhus chinensis Mill (Anacardiaceae)

The anti-HIV-1 activities of the petroleum ether, ethyl acetate, butanol and aqueous extracts of Rhus chinensis growing in China and Japan where it is known as Chinese Sumac were examined. The petroleum ether extract had significantly suppressed HIV-1 activity in vitro and was found to inhibit syncytium formation and HIV-1 p24 antigen at non-cytotoxic concentrations, the EC50 were 0.71 and 0.93 μg/mL respectively. The petroleum ether extract had no activity on inhibiting HIV-1 recombinant RT or HIV-1 entry into host cells cycle. R. chinensis would be a useful medicinal plant for the chemotherapy of HIV-1 infection. The petroleum ether extract of this plant likely inhibit the post entry steps or target the new sites of HIV-1 replication [386].

3.21. Sceletium tortuosum (L.) N.E. Brown (Aizoaceae)

The ethanolic and ethyl acetate extracts prepared from the whole part of Sceletium tortuosum, distributed throughout southern Africa, were investigated for their inhibitory activity against HIV-1 enzymes including protease (PR), reverse transcriptase (RT) and integrase (IN) [172]. The HIV-1 RT inhibition testing had IC50 values of <50 and 121.7 ± 2.5 μg/mL for ethanol and ethyl acetate extracts, respectively. In addition, both extracts had also inhibited HIV-1 PR with IC50 values < 100 μg/mL. Sceletium tortuosum might be a potential source of new lead compounds in the development of new anti-HIV compounds [67].

3.22. Smilax corbularia Kunth (Smilaceae)

The ethanolic and aqueous extracts were tested for their inhibitory effects against HIV-1 protease (HIV-PR) and HIV-1 integrase (HIV-1 IN). The results indicated that the ethanolic extract of S. corbularia exhibited anti-HIV-1 IN activity with an IC50 value of 1.9 μg/mL, approximately two-fold lower than that of suramin (IC50 = 3.4 μg/mL) as the positive control. The value of IC50 = 5.4 μg/mL was determined for the water extract of Smilax corbularia [120].

3.23. Terminalia paniculata (Combretaceae)

The in vitro anti-HIV1 activity of acetone and methanol extracts prepared from the fruits of Terminalia paniculata was examined. The EC50 values of the acetone and methanol extracts of T. paniculata were ≤10.3 μg/mL. The enzymatic assays were performed to determine the mechanism of action and indicated that the anti-HIV1 activity might be due to inhibition of reverse transcriptase (≥77.7% inhibition) and protease (≥69.9% inhibition) enzymes [387].

3.24. Tuberaria lignosa (Sweet) Sampaio (Asteraceae)

Tuberaria lignosa was widely used in the folk medicine to treat diseases of viral origin of the Iberian Peninsula and the ethanolic and aqueous extracts were evaluated for its anti-HIV activity by inhibiting HIV replication. The toxicity of the extracts to MT-2 cells was also investigated. The ethanolic extract was especially toxic, which prevented the evaluation of their potential antiviral effects at higher concentrations. However, the aqueous extract of T. lignosa tested was relatively nontoxic to human lymphocytic MT-2 cells, but did show anti-HIV activity at concentrations ranging from 12.5 to 50 μg/mL [61].

In conclusion, terrestrial plants produce secondary metabolites for their chemical defense, which possess unique chemical structures and have played pivotal roles in human health. There is continuous need to introduce new drug candidates to treat diseases and the drug discovery process can be realized using both ancient and modern research methodologies in a complementary manner. Some medicinal plants are still unexplored; therefore there are numerous avenues of research for the determination of their biological activities. In this review, the anti-HIV activity of some plant extracts and their potential utilization for anti-HIV agents have been summarized. Among them Calendula officinalis, Justicia gendarussa and Sceletium tortuosum might be useful potential sources for new lead compounds in the development of new candidates with anti-HIV properties of therapeutic interest. These studies are considered to be one of the most important approaches toward effective therapy for AIDS.

4. Human Clinical Trials

There are few reports about using the herbal medicine in clinical studies and treatment for HIV/AIDS. This area is not well researched. But, in Africa, where HIV, AIDS and HIV related diseases are the most widespread problems, herbal medicines are used as primary treatment for them. Highly active antiretroviral therapy is also applied in China and implies three types of treatment systems. One of them is traditional Chinese medicine provided by trained Chinese herbalists. There are several randomized studies related to beneficial effects of traditional medical plants on patients with HIV or AIDS which were compared with control group (without treatment and placebo). The effects in promoting CD4+ cells were followed. Based on selected, different, studies approximately eleven different Chinese traditional medical plants such as Panax ginseng, Astragalus membranaceus, Lycium barbarum, Trichosanthis kirilowii, and Viola mandshurica were tested in about 1000 patients within different studies. Compared with placebo, treatment with traditional medical plants showed positive effect, increasing CD4 cells, but studies need to be improved [388].

Some Chinese herbal preparation which consists of 14 plants (Coptis chinensis, Jasminum officinale, Wolfiporia extensa, Sparganium stoloniferum, Polygonatum odoratum, and Scrophularia buergeriana was investigated during 24 weeks and observed to have increased plasma CD4 count and also showed inhibition of HIV growth [389]. According to one US study, 26% of HIV-infected people use herbal medicine as part of their treatment. A European study showed that herbal medicines are used by approximately 25% of HIV infected people [390].

The study, which included 366 HIV-positive African-American women who were enrolled in herbal medicine therapy, showed that in these patients experienced 1.69 time stronger anti-retroviral effect compered to women not using the therapy based on medical plants [391]. Thirty-three HIV-positive volunteers (7 men and 26 women between 22 and 43 years of age) who used Calendula officinalis or Agastache rugosa were evaluated in South Africa. There was a significant decrease in viral loads and in CD4 T-cell counts [392].

The Ministry of Health of South Africa is actively promoting the use of traditional medicines with antiretroviral treatments and recommended two plants remedies which have been used for HIV/AIDS treatment: Hypoxis hemerocallidea and Sutherlandia frutescens [393]. Also, in Romania it was noticed that children with AIDS who were treated with natural herbal remedies showed a decrease in mortality rate [393]. Furthermore, in blood samples of 30 adults who used an extract of Alternanthera pungens, a significant increase of CD4 and CD8 lymphocytes was observed [394].

The study which was conducted to demonstrate using medical plants in different districts in Uganda, where this disease first described and one million habitants are infected, 25 traditional medicine practitioners were interviewed. The practitioners received on average 29 (range, 2–250) patients each year. They mentioned 145 belong to families Asteraceae, Fabaceae and Euphorbiaceae. It was also noted that the most used plants were Aloe spp., Erythrina abyssinica, Sarcocephalus latifolius, Psorospermum febrifugum, Mangifera indica, and Warburgia salutaris. In patients involved in herbal medicine treatment progressive loss of CD4 positive T-cell lymphocytes in the blood was observed [311].

5. Conclusions

Focusing on phytochemicals that have reached clinical trials, if there are any; highlighting medicinal plants where high level of scientific evidence has been reached; future perspectives.

Although there have been major accomplishments in HIV chemotherapy, there remains a need for new anti-HIV drug discovery, and medicinal plants can play an important role in this endeavor. Several plant species have shown remarkable anti-HIV activity, especially Artemisia annua, Garcinia edulis, Justicia gendarussa, Phyllanthus pulcher, Rhus chinensis, Smilax corbularia, Terminalia paniculata, and Tuberaria lignosa. These plant species are worthy of further study for the development of new anti-HIV chemotherapeutic options. In particular, in vivo testing and, ultimately, human clinical trials need to be carried out on key lead plants and phytochemical isolates. In addition, continuous evaluation of medicinal plants for anti-HIV activity should be pursued.

Acknowledgments

The authors are grateful to Marzieh Sharifi-Rad, Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran, for critically reading the manuscript.

Author Contributions

All authors contributed equally in the preparation of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Deeks S.G., Overbaugh J., Phillips A., Buchbinder S. HIV infection. Nat. Rev. Dis. Prim. 2015;1:15035. doi: 10.1038/nrdp.2015.35. [DOI] [PubMed] [Google Scholar]
  • 2.World Health Organization (WHO) [(accessed on 1 December 2017)];2017 Available online: http://www.who.int/hiv/data/epi_plhiv_2016_regions.png?ua=1.
  • 3.Kharsany A.B., Karim Q.A. HIV infection and AIDS in sub-saharan Africa: Current status, challenges and opportunities. Open AIDS J. 2016;10:34–48. doi: 10.2174/1874613601610010034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Worobey M., Watts T.D., McKay R.A., Suchard M.A., Granade T., Teuwen D.E., Koblin B.A., Heneine W., Lemey P., Jaffe H.W. 1970s and ‘patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in north america. Nature. 2016;539:98–101. doi: 10.1038/nature19827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Auerbach D.M., Darrow W.W., Jaffe H.W., Curran J.W. Cluster of cases of the acquired immune deficiency syndrome: Patients linked by sexual contact. Am. J. Med. 1984;76:487–492. doi: 10.1016/0002-9343(84)90668-5. [DOI] [PubMed] [Google Scholar]
  • 6.Centers for Disease Control A cluster of Kaposi’s sarcoma and Pneumocystis carinii pneumonia among homosexual male residents of Los Angeles and Orange Counties, California. MMWR Morb. Mortal. Wkly. Rep. 1982;31:305–307. [PubMed] [Google Scholar]
  • 7.Moir S., Chun T.-W., Fauci A.S. Pathogenic mechanisms of HIV disease. Annu. Rev. Pathol. Mech. Dis. 2011;6:223–248. doi: 10.1146/annurev-pathol-011110-130254. [DOI] [PubMed] [Google Scholar]
  • 8.Harden V.A., Fauci A. AIDS at 30: A History. Potomac Books, Inc.; Lincoln, NE, USA: 2012. [Google Scholar]
  • 9.Piot P., Karim S.S.A., Hecht R., Legido-Quigley H., Buse K., Stover J., Resch S., Ryckman T., Møgedal S., Dybul M. Defeating AIDS—Advancing global health. Lancet. 2015;386:171–218. doi: 10.1016/S0140-6736(15)60658-4. [DOI] [PubMed] [Google Scholar]
  • 10.Günthard H.F., Aberg J.A., Eron J.J., Hoy J.F., Telenti A., Benson C.A., Burger D.M., Cahn P., Gallant J.E., Glesby M.J. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society—USA panel. JAMA. 2014;312:410–425. doi: 10.1001/jama.2014.8722. [DOI] [PubMed] [Google Scholar]
  • 11.Auvert B., Taljaard D., Lagarde E., Sobngwi-Tambekou J., Sitta R., Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: The ANRS 1265 trial. PLoS Med. 2005;2:e298. doi: 10.1371/journal.pmed.0020298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Bailey R.C., Moses S., Parker C.B., Agot K., Maclean I., Krieger J.N., Williams C.F., Campbell R.T., Ndinya-Achola J.O. Male circumcision for HIV prevention in young men in Kisumu, Kenya: A randomised controlled trial. Lancet. 2007;369:643–656. doi: 10.1016/S0140-6736(07)60312-2. [DOI] [PubMed] [Google Scholar]
  • 13.Anderson S.-J., Cherutich P., Kilonzo N., Cremin I., Fecht D., Kimanga D., Harper M., Masha R.L., Ngongo P.B., Maina W. Maximising the effect of combination HIV prevention through prioritisation of the people and places in greatest need: A modelling study. Lancet. 2014;384:249–256. doi: 10.1016/S0140-6736(14)61053-9. [DOI] [PubMed] [Google Scholar]
  • 14.Cohen M.S., Chen Y.Q., McCauley M., Gamble T., Hosseinipour M.C., Kumarasamy N., Hakim J.G., Kumwenda J., Grinsztejn B., Pilotto J.H. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 2011;365:493–505. doi: 10.1056/NEJMoa1105243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Guay L.A., Musoke P., Fleming T., Bagenda D., Allen M., Nakabiito C., Sherman J., Bakaki P., Ducar C., Deseyve M. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet. 1999;354:795–802. doi: 10.1016/S0140-6736(99)80008-7. [DOI] [PubMed] [Google Scholar]
  • 16.Maartens G., Celum C., Lewin S.R. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. Lancet. 2014;384:258–271. doi: 10.1016/S0140-6736(14)60164-1. [DOI] [PubMed] [Google Scholar]
  • 17.Günthard H.F., Saag M.S., Benson C.A., Del Rio C., Eron J.J., Gallant J.E., Hoy J.F., Mugavero M.J., Sax P.E., Thompson M.A. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society—USA panel. JAMA. 2016;316:191–210. doi: 10.1001/jama.2016.8900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Gravatt L.A.H., Leibrand C.R., Patel S., McRae M. New drugs in the pipeline for the treatment of HIV: A review. Curr. Infect. Dis. Rep. 2017;19:42. doi: 10.1007/s11908-017-0601-x. [DOI] [PubMed] [Google Scholar]
  • 19.Sharifi-Rad J. Herbal antibiotics: Moving back into the mainstream as an alternative for “superbugs”. Cell. Mol. Biol. 2016;62:1–2. [PubMed] [Google Scholar]
  • 20.Lucera M.B., Tilton C.A., Mao H., Dobrowolski C., Tabler C.O., Haqqani A.A., Karn J., Tilton J.C. The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events. J. Virol. 2014;88:10803–10812. doi: 10.1128/JVI.00320-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.WHO In vitro screening of traditional medicines for anti-HIV activity: Memorandum from a WHO meeting. Bull. World Health Organ. 1989;87:613–618. [PMC free article] [PubMed] [Google Scholar]
  • 22.WHO . Report of a Who Informal Consultation on Traditional Medicine and AIDS: In Vitro Screening for Anti-HIV Activity. WHO; Geneva, Switzerland: 1989. [Google Scholar]
  • 23.Kurapati K.R.V., Atluri V.S., Samikkannu T., Garcia G., Nair M.P. Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (hand): A brief overview. Front. Microbiol. 2016;6:1444. doi: 10.3389/fmicb.2015.01444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Deng X., Jiang M., Zhao X., Liang J. Efficacy and safety of traditional Chinese medicine for the treatment of acquired immunodeficiency syndrome: A systematic review. J. Tradit. Chin. Med. 2014;34:1–9. doi: 10.1016/S0254-6272(14)60046-7. [DOI] [PubMed] [Google Scholar]
  • 25.Sharifi-Rad M., Varoni E.M., Salehi B., Sharifi-Rad J., Matthews K.R., Ayatollahi S.A., Kobarfard F., Ibrahim S.A., Mnayer D., Zakaria Z.A. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules. 2017;22:2145. doi: 10.3390/molecules22122145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Sharifi-Rad J., Salehi B., Varoni E.M., Sharopov F., Yousaf Z., Ayatollahi S.A., Kobarfard F., Sharifi-Rad M., Afdjei M.H., Sharifi-Rad M. Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy. Phytother. Res. 2017;31:1475–1494. doi: 10.1002/ptr.5880. [DOI] [PubMed] [Google Scholar]
  • 27.Salehi B., Ayatollahi S., Segura-Carretero A., Kobarfard F., Contreras M., Faizi M., Sharifi-Rad M., Tabatabai S., Sharifi-Rad J. Bioactive chemical compounds in Eremurus persicus (Joub. & Spach) Boiss. Essential oil and their health implications. Cell. Mol. Biol. 2017;63:1–7. doi: 10.14715/cmb/2017.63.9.1. [DOI] [PubMed] [Google Scholar]
  • 28.Sharifi-Rad J., Salehi B., Schnitzler P., Ayatollahi S., Kobarfard F., Fathi M., Eisazadeh M., Sharifi-Rad M. Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn. Cell. Mol. Biol. 2017;63:42–47. doi: 10.14715/cmb/2017.63.8.10. [DOI] [PubMed] [Google Scholar]
  • 29.Sharifi-Rad J., Ayatollahi S.A., Varoni E.M., Salehi B., Kobarfard F., Sharifi-Rad M., Iriti M., Sharifi-Rad M. Chemical composition and functional properties of essential oils from Nepeta schiraziana Boiss. Farmacia. 2017;65:802–812. [Google Scholar]
  • 30.Sharifi-Rad J., Salehi B., Stojanović-Radić Z.Z., Fokou P.V.T., Sharifi-Rad M., Mahady G.B., Sharifi-Rad M., Masjedi M.-R., Lawal T.O., Ayatollahi S.A. Medicinal plants used in the treatment of tuberculosis-ethnobotanical and ethnopharmacological approaches. Biotechnol. Adv. 2017 doi: 10.1016/j.biotechadv.2017.07.001. [DOI] [PubMed] [Google Scholar]
  • 31.Salehi B., Zucca P., Sharifi-Rad M., Pezzani R., Rajabi S., Setzer W., Varoni E., Iriti M., Kobarfard F., Sharifi-Rad J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res. 2018:1–25. doi: 10.1002/ptr.6087. [DOI] [PubMed] [Google Scholar]
  • 32.Sahraie-Rad M., Izadyari A., Rakizadeh S., Sharifi-Rad J. Preparation of strong antidandruff shampoo using medicinal plant extracts: A clinical trial and chronic dandruff treatment. Jundishapur J. Nat. Pharm. Prod. 2015;10:e21517. doi: 10.17795/jjnpp-21517. [DOI] [Google Scholar]
  • 33.Bagheri G., Mirzaei M., Mehrabi R., Sharifi-Rad J. Cytotoxic and antioxidant activities of Alstonia scholaris, Alstonia venenata and Moringa oleifera plants from India. Jundishapur J. Nat. Pharm. Prod. 2016;11:e31129. doi: 10.17795/jjnpp-31129. [DOI] [Google Scholar]
  • 34.Stojanović-Radić Z., Pejčić M., Stojanović N., Sharifi-Rad J., Stanković N. Potential of Ocimum basilicum L. and Salvia officinalis L. essential oils against biofilms of P. aeruginosa clinical isolates. Cell. Mol. Biol. 2016;62:27–32. [PubMed] [Google Scholar]
  • 35.Sharifi-Rad J., Hoseini-Alfatemi S., Sharifi-Rad M., Miri A. Phytochemical screening and antibacterial activity of different parts of the Prosopis farcta extracts against methicillin-resistant Staphylococcus aureus (MRSA) Min. Biotecnol. 2014;26:287–293. [Google Scholar]
  • 36.Sharifi-Rad J., Sureda A., Tenore G.C., Daglia M., Sharifi-Rad M., Valussi M., Tundis R., Sharifi-Rad M., Loizzo M.R., Ademiluyi A.O. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules. 2017;22:70. doi: 10.3390/molecules22010070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Sharifi-Rad J., Fallah F., Setzer W., Entezari R.H., Sharifi-Rad M. Tordylium persicum Boiss. & Hausskn extract: A possible alternative for treatment of pediatric infectious diseases. Cell. Mol. Biol. 2016;62:20–26. [PubMed] [Google Scholar]
  • 38.Sharifi-Rad M., Tayeboon G., Sharifi-Rad J., Iriti M., Varoni E., Razazi S. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts. Cell. Mol. Biol. 2016;62:80–85. [PubMed] [Google Scholar]
  • 39.Sharifi-Rad J., Mnayer D., Roointan A., Shahri F., Ayatollahi S., Sharifi-Rad M., Molaee N. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing Escherichia coli. Cell. Mol. Biol. 2016;62:75–82. [PubMed] [Google Scholar]
  • 40.Snow Setzer M., Sharifi-Rad J., Setzer W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics. 2016;5:30. doi: 10.3390/antibiotics5030030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Sharifi-Rad M., Mnayer D., Flaviana Bezerra Morais-Braga M., Nályda Pereira Carneiro J., Fonseca Bezerra C., Douglas Melo Coutinho H., Salehi B., Martorell M., del Mar Contreras M., Soltani-Nejad A., et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother. Res. 2018 doi: 10.1002/ptr.6101. [DOI] [PubMed] [Google Scholar]
  • 42.Sharifi-Rad M., Varoni E.M., Iriti M., Martorell M., Setzer W.N., del Mar Contreras M., Salehi B., Soltani-Nejad A., Rajabi S., Tajbakhsh M., et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018 doi: 10.1002/ptr.6103. [DOI] [PubMed] [Google Scholar]
  • 43.Salehi B., Mishra A.P., Shukla I., Sharifi-Rad M., del Mar Contreras M., Segura-Carretero A., Fathi H., Nasri Nasrabadi N., Kobarfard F., Sharifi-Rad J. Thymol, thyme and other plant sources: Health and potential uses. Phytother. Res. 2018 doi: 10.1002/ptr.6109. [DOI] [PubMed] [Google Scholar]
  • 44.Sharifi-Rad J., Mnayer D., Tabanelli G., Stojanović-Radić Z., Sharifi-Rad M., Yousaf Z., Vallone L., Setzer W., Iriti M. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cell. Mol. Biol. 2016;62:57–68. [PubMed] [Google Scholar]
  • 45.Sharifi-Rad M., Iriti M., Gibbons S., Sharifi-Rad J. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of Rubiaceae, Fabaceae and Poaceae plants: A search for new sources of useful alternative antibacterials against MRSA infections. Cell. Mol. Biol. 2016;62:39–45. [PubMed] [Google Scholar]
  • 46.Sharifi-Rad J., Soufi L., Ayatollahi S., Iriti M., Sharifi-Rad M., Varoni E.M., Shahri F., Esposito S., Kuhestani K. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli. Cell. Mol. Biol. 2016;62:69–74. [PubMed] [Google Scholar]
  • 47.Painter G., Almond M., Mao S., Liotta D. Biochemical and mechanistic basis for the activity of nucleoside analogue inhibitors of HIV reverse transcriptase. Curr. Top. Med. Chem. 2004;4:1035–1044. doi: 10.2174/1568026043388358. [DOI] [PubMed] [Google Scholar]
  • 48.Konvalinka J., Kräusslich H.-G., Müller B. Retroviral proteases and their roles in virion maturation. Virology. 2015;479–480:403–417. doi: 10.1016/j.virol.2015.03.021. [DOI] [PubMed] [Google Scholar]
  • 49.Blanco J.L., Whitlock G., Milinkovic A., Moyle G. HIV integrase inhibitors: A new era in the treatment of HIV. Expert Opin. Pharmacother. 2015;16:1313–1324. doi: 10.1517/14656566.2015.1044436. [DOI] [PubMed] [Google Scholar]
  • 50.Matthée G., Wright A.D., König G.M. HIV reverse transcriptase inhibitors of natural origin. Planta Med. 1999;65:493–506. doi: 10.1055/s-1999-14004. [DOI] [PubMed] [Google Scholar]
  • 51.Yao X.J., Wainberg M.A., Parniak M.A. Mechanism of inhibition of HIV-1 infection in vitro by purified extract of Prunella vulgaris. Virology. 1992;187:56–62. doi: 10.1016/0042-6822(92)90294-Y. [DOI] [PubMed] [Google Scholar]
  • 52.Reddy V.L.N., Reddy S.M., Ravikanth V., Krishnaiah P., Goud T.V., Rao T.P., Ram T.S., Gonnade R.G., Bhadbhade M., Venkateswarlu Y. A new BIS-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. Nat. Prod. Res. 2005;19:223–230. doi: 10.1080/14786410410001709197. [DOI] [PubMed] [Google Scholar]
  • 53.Behbahani M. Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. Int. Immunopharmacol. 2014;23:262–266. doi: 10.1016/j.intimp.2014.09.003. [DOI] [PubMed] [Google Scholar]
  • 54.Rege A.A., Ambaye R.Y., Deshmukh R.A. Evaluation of in vitro inhibitory effect of selected plants and Shilajit on HIV-reverse transcriptase. Indian J. Nat. Prod. Res. 2012;3:145–151. [Google Scholar]
  • 55.Rege A.A., Chowdhary A.S. Evaluation of mangrove plants as putative HIV-protease inhibitors. Indian Drugs. 2013;50:41–44. [Google Scholar]
  • 56.Sabde S., Bodiwala H.S., Karmase A., Deshpande P.J., Kaur A., Ahmed N., Chauthe S.K., Brahmbhatt K.G., Phadke R.U., Mitra D., et al. Anti-HIV activity of indian medicinal plants. J. Nat. Med. 2011;65:662–669. doi: 10.1007/s11418-011-0513-2. [DOI] [PubMed] [Google Scholar]
  • 57.Woradulayapinij W., Soonthornchareonnon N., Wiwat C. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J. Ethnopharmacol. 2005;101:84–89. doi: 10.1016/j.jep.2005.03.030. [DOI] [PubMed] [Google Scholar]
  • 58.Silprasit K., Seetaha S., Pongsanarakul P., Hannongbua S., Choowongkomon K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J. Med. Plants Res. 2011;5:4194–4201. [Google Scholar]
  • 59.Blignaut E., Patton L.L., Nittayananta W., Ramirez-Amador V., Ranganathan K., Chattopadhyay A. (A3) HIV phenotypes, oral lesions, and management of HIV-related disease. Adv. Dent. Res. 2006;19:122–129. doi: 10.1177/154407370601900123. [DOI] [PubMed] [Google Scholar]
  • 60.Lam T.L., Lam M.L., Au T.K., Ip D.T., Ng T.B., Fong W.P., Wan D.C. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci. 2000;67:2889–2896. doi: 10.1016/S0024-3205(00)00864-X. [DOI] [PubMed] [Google Scholar]
  • 61.Bedoya L.M., Sanchez-Palomino S., Abad M.J., Bermejo P., Alcami J. Anti-HIV activity of medicinal plant extracts. J. Ethnopharmacol. 2001;77:113–116. doi: 10.1016/S0378-8741(01)00265-3. [DOI] [PubMed] [Google Scholar]
  • 62.Grzybek J., Wongpanich V., Mata-Greenwood E., Angerhofer C.K., Pezzuto J.M., Cordell G.A. Biological evaluation of selected plants from Poland. Pharm. Biol. 1997;35:1–5. doi: 10.1076/phbi.35.1.1.13269. [DOI] [Google Scholar]
  • 63.Uncini Manganelli R.E., Zaccaro L., Tomei P.E. Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L. J. Ethnopharmacol. 2005;98:323–327. doi: 10.1016/j.jep.2005.01.021. [DOI] [PubMed] [Google Scholar]
  • 64.Mlinarič A., Kreft S., Umek A., Štrukelj B. Screening of selected plant extracts for in vitro inhibitory activity on HIV-1 reverse transcriptase (HIV-1 RT) Pharmazie. 2000;55:75–77. [PubMed] [Google Scholar]
  • 65.Ma Y.M., Wu H. Chemical constituents of Sambucus L. Chin. J. Org. Chem. 2012;32:2063–2072. doi: 10.6023/cjoc201204025. [DOI] [Google Scholar]
  • 66.Chang Y.S., Woo E.R. Korean medicinal plants inhibiting to human immunodeficiency virus type 1 (HIV-1) fusion. Phytother. Res. 2003;17:426–429. doi: 10.1002/ptr.1155. [DOI] [PubMed] [Google Scholar]
  • 67.Kapewangolo P., Tawha T., Nawinda T., Knott M., Hans R. Sceletium tortuosum demonstrates in vitro anti-HIV and free radical scavenging activity. S. Afr. J. Bot. 2016;106:140–143. doi: 10.1016/j.sajb.2016.06.009. [DOI] [Google Scholar]
  • 68.Xu H.-X., Wan M., Loh B.-N., Kon O.-L., Chow P.-W., Sim K.-Y. Screening of traditional medicines for their inhibitory activity against HIV-1 protease. Phytother. Res. 1996;10:207–210. doi: 10.1002/(SICI)1099-1573(199605)10:3&#x0003c;207::AID-PTR812&#x0003e;3.0.CO;2-U. [DOI] [Google Scholar]
  • 69.Peng Z.G., Chen H.S., Guo Z.M., Dong B., Tian G.Y., Wang G.Q. Anti-HIV activities of Achyranthes bidentata polysaccharide sulfate in vitro and in vivo. Yaoxue Xuebao. 2008;43:702–706. [PubMed] [Google Scholar]
  • 70.Gujjeti R.P., Mamidala E. Anti-HIV activity of phytosterol isolated from Aerva lanata roots. Pharmacogn. J. 2017;9:112–116. doi: 10.5530/pj.2017.1.19. [DOI] [Google Scholar]
  • 71.Lagrota M.H.C., Wigg M.D., Santos M.M.G., Miranda M.M.F.S., Camara F.P., Couceiro J.N.S.S., Costa S.S. Inhibitory activity of extracts of Alternanthera brasiliana (Amaranthaceae) against the herpes simplex virus. Phytother. Res. 1994;8:358–361. doi: 10.1002/ptr.2650080609. [DOI] [Google Scholar]
  • 72.Chang R.S., Yeung H.W. Inhibition of growth of human immunodeficiency virus in vitro by crude extracts of Chinese medicinal herbs. Antivir. Res. 1988;9:163–175. doi: 10.1016/0166-3542(88)90001-0. [DOI] [PubMed] [Google Scholar]
  • 73.Zhang S.M., He Y.S., Tabba H.D., Smith K.M. Inhibitor against the human immunodeficiency virus in aqueous extracts of Alternanthera philoxeroides. Chin. Med. J. 1988;101:861–866. [PubMed] [Google Scholar]
  • 74.Ali H., Konig G.M., Khalid S.A., Wright A.D., Kaminsky R. Evaluation of selected sudanese medicinal plants for their in vitro activity against hemoflagellates, selected bacteria, HIV-1-RT and tyrosine kinase inhibitory, and for cytotoxicity. J. Ethnopharmacol. 2002;83:219–228. doi: 10.1016/S0378-8741(02)00245-3. [DOI] [PubMed] [Google Scholar]
  • 75.Klos M., van de Venter M., Milne P.J., Traore H.N., Meyer D., Oosthuizen V. In vitro anti-HIV activity of five selected South African medicinal plant extracts. J. Ethnopharm. 2009;124:182–188. doi: 10.1016/j.jep.2009.04.043. [DOI] [PubMed] [Google Scholar]
  • 76.Husson G.P., Subra F., Lai-Kuen R., Vilagines R. Antiviral activity of hydroalcoholic extract from Haemanthus albiflos on the moloney murine leukemia virus and the human immunodeficiency virus. C. R. Seances Soc. Biol. Fil. 1997;191:473–485. [PubMed] [Google Scholar]
  • 77.Szlavik L., Gyuris A., Minarovits J., Forgo P., Molnar J., Hohmann J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med. 2004;70:871–873. doi: 10.1055/s-2004-827239. [DOI] [PubMed] [Google Scholar]
  • 78.Thamburan S., Klaasen J., Mabusela W.T., Cannon J.F., Folk W., Johnson Q. Tulbaghia alliacea phytotherapy: A potential anti-infective remedy for candidiasis. Phytother. Res. 2006;20:844–850. doi: 10.1002/ptr.1945. [DOI] [PubMed] [Google Scholar]
  • 79.Sigidi M.T., Traoré A.N., Boukandou M.M., Tshisikhawe M.P., Ntuli S.S., Potgieter N. Anti-HIV, pro-inflammatory and cytotoxicity properties of selected Venda plants. Indian J. Tradit. Knowl. 2017;16:545–552. [Google Scholar]
  • 80.Muanza D.N., Euler K.L., Williams L., Newman D.J. Screening for antitumor and anti-HIV activities of nine medicinal plants from Zaire. Pharm. Biol. 1995;33:98–106. doi: 10.3109/13880209509055207. [DOI] [Google Scholar]
  • 81.Djakpo O., Yao W. Rhus chinensis and Galla chinensis—Folklore to modern evidence: Review. Phytother. Res. 2010;24:1739–1747. doi: 10.1002/ptr.3215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Abdel-Malek S., Bastien J.W., Mahler W.F., Jia Q., Reinecke M.G., Robinson W.E., Shu Y.-H., Zalles-Asin J. Drug leads from the Kallawaya herbalists of Bolivia. 1. Background, rationale, protocol and anti-HIV activity. J. Ethnopharmacol. 1996;50:157–166. doi: 10.1016/0378-8741(96)01380-3. [DOI] [PubMed] [Google Scholar]
  • 83.Kusumoto I.T., Nakabayashi T., Kida H., Miyashiro H., Hattori M., Namba T., Shimotohno K. Screening of various plant-extracts used in ayurvedic medicine for inhibitory effects on human-immunodeficiency-virus type-1 (HIV-1) protease. Phytother. Res. 1995;9:180–184. doi: 10.1002/ptr.2650090305. [DOI] [Google Scholar]
  • 84.McMahon J.B., Currens M.J., Gulakowski R.J., Buckheit R.W., Jr., Lackman-Smith C., Hallock Y.F., Boyd M.R. Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. Antimicrob. Agents Chemother. 1995;39:484–488. doi: 10.1128/AAC.39.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Thomas D.W., Boyd M.R., Cardellina J.H., Gereau R.E., Jato J., Symonds P. Notes on economic plants. Econ. Bot. 1994;48:413–414. doi: 10.1007/BF02862237. [DOI] [Google Scholar]
  • 86.Bringmann G., Steinert C., Feineis D., Mudogo V., Betzin J., Scheller C. HIV-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the central African liana Ancistrocladus congolensis. Phytochemistry. 2016;128:71–81. doi: 10.1016/j.phytochem.2016.04.005. [DOI] [PubMed] [Google Scholar]
  • 87.Hien N.T.T., Nhiem N.X., Yen D.T.H., Hang D.T.T., Tai B.H., Quang T.H., Anh H.L.T., Van Kiem P., Van Minh C., Kim E.J., et al. Chemical constituents of the Annona glabra fruit and their cytotoxic activity. Pharm. Biol. 2015;53:1602–1607. doi: 10.3109/13880209.2014.993042. [DOI] [PubMed] [Google Scholar]
  • 88.Wu Y.C., Hung Y.C., Chang F.R., Cosentino M., Wang H.K., Lee K.H. Identification of ent-16β,17-dihydroxykauran-19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annosquamosins A and B from Annona squamosa. J. Nat. Prod. 1996;59:635–637. doi: 10.1021/np960416j. [DOI] [PubMed] [Google Scholar]
  • 89.Yu Z.X., Niu Z.G., Li X.B., Zheng C.J., Song X.M., Chen G.Y., Song X.P., Han C.R., Wu S.X. New phenylpropanoid and 6H-dibenzo(b,d)pyran-6-one derivatives from the stems of Dasymaschalon rostratum. Fitoterapia. 2017;118:27–31. doi: 10.1016/j.fitote.2017.02.003. [DOI] [PubMed] [Google Scholar]
  • 90.Hongthong S., Kuhakarn C., Jaipetch T., Prabpai S., Kongsaeree P., Piyachaturawat P., Jariyawat S., Suksen K., Limthongkul J., Panthong A., et al. Polyoxygenated cyclohexene derivatives isolated from Dasymaschalon sootepense and their biological activities. Fitoterapia. 2015;106:158–166. doi: 10.1016/j.fitote.2015.09.001. [DOI] [PubMed] [Google Scholar]
  • 91.Li H.Y., Sun N.J., Kashiwada Y., Sun L., Snider J.V., Cosentino L.M., Lee K.H. Anti-AIDS agents, 9. Suberosol, a new C31 lanostane-type triterpene and anti-HIV principle from Polyalthia suberosa. J. Nat. Prod. 1993;56:1130–1133. doi: 10.1021/np50097a017. [DOI] [PubMed] [Google Scholar]
  • 92.Tuchinda P., Pohmakotr M., Reutrakul V., Thanyachareon W., Sophasan S., Yoosook C., Santisuk T., Pezzuto J.M. 2-substituted furans from Polyalthia suberosa. Planta Med. 2001;67:572–575. doi: 10.1055/s-2001-16469. [DOI] [PubMed] [Google Scholar]
  • 93.Matsuse I.T., Lim Y.A., Hattori M., Correa M., Gupta M.P. A search for anti-viral properties in Panamanian medicinal plants. J. Ethnopharmacol. 1998;64:15–22. doi: 10.1016/S0378-8741(98)00099-3. [DOI] [PubMed] [Google Scholar]
  • 94.Louvel S., Moodley N., Seibert I., Steenkamp P., Nthambeleni R., Vidal V., Maharaj V., Klimkait T. Identification of compounds from the plant species Alepidea amatymbica active against HIV. S. Afr. J. Bot. 2013;86:9–14. doi: 10.1016/j.sajb.2013.01.009. [DOI] [Google Scholar]
  • 95.Hussein G., Miyashiro H., Nakamura N., Hattori M., Kawahata T., Otake T., Kakiuchi N., Shimotohno K. Inhibi HIV-1 protease. Phytother. Res. 1999;13:31–36. doi: 10.1002/(SICI)1099-1573(199902)13:1&#x0003c;31::AID-PTR381&#x0003e;3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 96.Min B.S., Bae K.H., Kim Y.H., Miyashiro H., Hattori M., Shimotohno K. Screening of Korean plants against human immunodeficiency virus type 1 protease. Phytother. Res. 1999;13:680–682. doi: 10.1002/(SICI)1099-1573(199912)13:8&#x0003c;680::AID-PTR501&#x0003e;3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 97.Lee T.T.Y., Kashiwada Y., Huang L., Snider J., Cosentino M., Lee K.H. Suksdorfin: An anti-HIV principle from Lomatium suksdorfii, its structure-activity correlation with related coumarins, and synergistic effects with anti-AIDS nucleosides. Bioorgan. Med. Chem. 1994;2:1051–1056. doi: 10.1016/S0968-0896(00)82054-4. [DOI] [PubMed] [Google Scholar]
  • 98.Bicchi C., Rubiolo P., Ballero M., Sanna C., Matteodo M., Esposito F., Zinzula L., Tramontano E. HIV-1-inhibiting activity of the essential oil of Ridolfia segetum and Oenanthe crocata. Planta Med. 2009;75:1331–1335. doi: 10.1055/s-0029-1185546. [DOI] [PubMed] [Google Scholar]
  • 99.Chingwaru W., Vidmar J., Kapewangolo P.T. The potential of sub-Saharan African plants in the management of human immunodeficiency virus infections: A review. Phytother. Res. 2015;29:1452–1487. doi: 10.1002/ptr.5433. [DOI] [PubMed] [Google Scholar]
  • 100.Esposito F., Mandrone M., Del Vecchio C., Carli I., Distinto S., Corona A., Lianza M., Piano D., Tacchini M., Maccioni E., et al. Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of lupeol mode of action. Pathog. Dis. 2017;75 doi: 10.1093/femspd/ftx065. [DOI] [PubMed] [Google Scholar]
  • 101.Kapewangolo P., Knott M., Shithigona R.E.K., Uusiku S.L., Kandawa-Schulz M. In vitro anti-HIV and antioxidant activity of Hoodia gordonii (Apocynaceae), a commercial plant product. BMC Complement. Altern. Med. 2016;16:411. doi: 10.1186/s12906-016-1403-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Rukunga G.M., Kofi-Tsekpo M.W., Kurokawa M., Kageyama S., Mungai G.M., Muli J.M., Tolo F.M., Kibaya R.M., Muthaura C.N., Kanyara J.N., et al. Evaluation of the HIV-1 reverse transcriptase inhibitory properties of extracts from some medicinal plants in Kenya. Afr. J. Health Sci. 2002;9:81–90. doi: 10.4314/ajhs.v9i1.30758. [DOI] [PubMed] [Google Scholar]
  • 103.Wei Y., Ma C.-M., Hattori M. Anti-HIV protease triterpenoids from the acid hydrolysate of Panax ginseng. Phytochem. Lett. 2009;2:63–66. doi: 10.1016/j.phytol.2008.12.001. [DOI] [Google Scholar]
  • 104.Zhang H., Lu Z., Tan G.T., Qiu S., Farnsworth N.R., Pezzuto J.M., Fong H.H.S. Polyacetyleneginsenoside-Ro, a novel triterpene saponin from Panax ginseng. Tetrahedron Lett. 2002;43:973–977. doi: 10.1016/S0040-4039(01)02310-3. [DOI] [Google Scholar]
  • 105.Au T.K., Lam T.L., Ng T.B., Fong W.P., Wan D.C.C. A Comparison of HIV-1 Integrase Inhibition by Aqueous and Methanol Extracts of Chinese Medicinal Herbs. Life Sci. 2001;68:1687–1694. doi: 10.1016/S0024-3205(01)00945-6. [DOI] [PubMed] [Google Scholar]
  • 106.Hasegawa H., Matsumiya S., Uchiyama M., Kurokawa T., Inouye Y., Kasai R., Ishibashi S., Yamasaki K. Inhibitory effect of some triterpenoid saponins on glucose transport in tumor cells and its application to in vitro cytotoxic and antiviral activities. Planta Med. 1994;60:240–243. doi: 10.1055/s-2006-959467. [DOI] [PubMed] [Google Scholar]
  • 107.Wu P.-L., Su G.-C., Wu T.-S. Constituents from the stems of Aristolochia manshuriensis. J. Nat. Prod. 2003;66:996–998. doi: 10.1021/np0301238. [DOI] [PubMed] [Google Scholar]
  • 108.Salomón H., Pampuro S., Cavallaro L., García G., Coussio J., Campos R. Anti-human immunodeficiency virus type 1 (HIV-1) activity of Achyrocline flaccida Wein DC and Gamochaeta simplicicaulis aqueous extracts. Phytother. Res. 1997;11:82–83. doi: 10.1002/(SICI)1099-1573(199702)11:1&#x0003c;82::AID-PTR35&#x0003e;3.0.CO;2-S. [DOI] [Google Scholar]
  • 109.Sattar E.A., Galal A.M., Mossa G.S. Antitumor germacranolides from Anvillea garcinii. J. Nat. Prod. 1996;59:403–405. doi: 10.1021/np960064g. [DOI] [PubMed] [Google Scholar]
  • 110.Martinotti E., Calderone V., Breschi M.C., Bandini P., Cioni P.L. Pharmacological action of aqueous crude extracts of Artemisia verlotorum Lamotte (Compositae) Phytother. Res. 1997;11:612–614. doi: 10.1002/(SICI)1099-1573(199712)11:8&#x0003c;612::AID-PTR167&#x0003e;3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  • 111.Cos P., Hermans N., De Bruyne T., Apers S., Sindambiwe J.B., Witvrouw M., De Clercq E., Vanden Berghe D., Pieters L., Vlietinck A.J. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1) Phytomedicine. 2002;9:62–68. doi: 10.1078/0944-7113-00083. [DOI] [PubMed] [Google Scholar]
  • 112.Kato T., Horie N., Matsuta T., Naoki U., Shimoyama T., Kaneko T., Kanamoto T., Terakubo S., Nakashima H., Kusama K., et al. Anti-UV/HIV activity of kampo medicines and constituent plant extracts. In Vivo. 2012;26:1007–1014. [PubMed] [Google Scholar]
  • 113.Bunluepuech K., Tewtrakul S. Anti-HIV-1 integrase activity of Thai medicinal plants in longevity preparations. Songklanakarin J. Sci. Technol. 2011;33:693–697. [Google Scholar]
  • 114.Chukwujekwu J.C., Ndhlala A.R., de Kock C.A., Smith P.J., Van Staden J. Antiplasmodial, HIV-1 reverse transcriptase inhibitory and cytotoxicity properties of Centratherum punctatum Cass. and its fractions. S. Afr. J. Bot. 2014;90:17–19. doi: 10.1016/j.sajb.2013.10.001. [DOI] [Google Scholar]
  • 115.Muley B.P., Khadabadi S.S., Banarase N.B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review. Trop. J. Pharm. Res. 2009;8:455–465. doi: 10.4314/tjpr.v8i5.48090. [DOI] [Google Scholar]
  • 116.Wang H.K., Xia Y., Yang Z.Y., Morris Natschke S.L., Lee K.H. Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. Adv. Exp. Med. Biol. 1998;439:191–225. doi: 10.1007/978-1-4615-5335-9_15. [DOI] [PubMed] [Google Scholar]
  • 117.Lee J.S., Kim H.J., Lee Y.S. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med. 2003;69:859–861. doi: 10.1055/s-2003-43207. [DOI] [PubMed] [Google Scholar]
  • 118.Hu C.-Q., Chen K., Shi Q., Kilkuskie R.E., Cheng Y.-C., Lee K.-H. Anti-AIDS agents, 10. Acacetin-7-o-β-d-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. J. Nat. Prod. 1994;57:42–51. doi: 10.1021/np50103a006. [DOI] [PubMed] [Google Scholar]
  • 119.Tewtrakul S., Subhadhirasakul S., Cheenpracha S., Karalai C. HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata. Phytother. Res. 2007;21:1092–1095. doi: 10.1002/ptr.2252. [DOI] [PubMed] [Google Scholar]
  • 120.Tewtrakul S., Subhadhirasakul S., Kummee S. Anti-HIV-1 integrase activity of medicinal plants used as self medication by AIDS patients. Songklanakarin J. Sci. Technol. 2006;28:785–790. [Google Scholar]
  • 121.Ross S., El Sayed K., El Sohly M., Hamann M., Abdel-Halim O., Ahmed A., Ahmed M. Phytochemical analysis of Geigeria alata and Francoeuria crispa essential oils. Planta Med. 1997;63:479–482. doi: 10.1055/s-2006-957743. [DOI] [PubMed] [Google Scholar]
  • 122.Hnatyszyn O., Broussalis A., Herrera G., Muschietti L., Coussio J., Martino V., Ferraro G., Font M., Monge A., Martínez-Irujo J.J., et al. Argentine plant extracts active against polymerase and ribonuclease h activities of HIV-1 reverse transcriptase. Phytother. Res. 1999;13:206–209. doi: 10.1002/(SICI)1099-1573(199905)13:3&#x0003c;206::AID-PTR409&#x0003e;3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  • 123.Heyman H.M., Senejoux F., Seibert I., Klimkait T., Maharaj V.J., Meyer J.J.M. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation. Fitoterapia. 2015;103:155–164. doi: 10.1016/j.fitote.2015.03.024. [DOI] [PubMed] [Google Scholar]
  • 124.Yu Y.B., Park J.C., Lee J.H., Kim G.E., Jo S.K., Byun M.W., Miyashiro H., Hattori M. Screening of some plant extracts for inhibitory effects on HIV-1 and its essential enzymes. Korean J. Pharmacogn. 1998;29:338–346. [Google Scholar]
  • 125.Fortin H., Tomasi S., Jaccard P., Robin V., Boustie J. A prenyloxycoumarin from Psiadia dentata. Chem. Pharm. Bull. 2001;49:619–621. doi: 10.1248/cpb.49.619. [DOI] [PubMed] [Google Scholar]
  • 126.Kwon H.C., Jung C.M., Shin C.G., Lee J.K., Choi S.U., Kim S.Y., Lee K.R. A new caffeoyl quinic acid from aster scaber and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. Chem. Pharm. Bull. 2000;48:1796–1798. doi: 10.1248/cpb.48.1796. [DOI] [PubMed] [Google Scholar]
  • 127.Ngwira K.J., Maharaj V.J., Mgani Q.A. In vitro antiplasmodial and HIV-1 neutralization activities of root and leaf extracts from Berberis holstii. J. Herb. Med. 2015;5:30–35. doi: 10.1016/j.hermed.2014.12.001. [DOI] [Google Scholar]
  • 128.Yu Y.B., Miyashiro H., Nakamura N., Hattori M., Jong C.P. Effects of triterpenoids and flavonoids isolated from Alnus firma on HIV-1 viral enzymes. Arch. Pharm. Res. 2007;30:820–826. doi: 10.1007/BF02978831. [DOI] [PubMed] [Google Scholar]
  • 129.Niyonzima G., Laekeman G., Witvrouw M., Van Poel B., Pieters L., Paper D., De Clercq E., Franz G., Vlietinck A.J. Hypoglycemic, anticomplement and anti-HIV activities of Spathodea campanulata stem bark. Phytomedicine. 1999;6:45–49. doi: 10.1016/S0944-7113(99)80034-8. [DOI] [PubMed] [Google Scholar]
  • 130.Jain M., Kapadia R., Jadeja R.N., Thounaojam M.C., Devkar R.V., Mishra S.H. Traditional uses, phytochemistry and pharmacology of Tecomella undulata—A review. Asian Pac. J. Trop. Biomed. 2012;2:S1918–S1923. doi: 10.1016/S2221-1691(12)60521-8. [DOI] [Google Scholar]
  • 131.Yamasaki K., Otake T., Mori H., Morimoto M., Ueba N., Kurokawa Y., Shiota K., Yuge T. Screening test of crude drug extract on anti-HIV activity. Yakugaku Zasshi. 1993;113:818–824. doi: 10.1248/yakushi1947.113.11_818. [DOI] [PubMed] [Google Scholar]
  • 132.Harnett S.M., Oosthuizen V., Van De Venter M. Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J. Ethnopharmacol. 2005;96:113–119. doi: 10.1016/j.jep.2004.08.038. [DOI] [PubMed] [Google Scholar]
  • 133.Ye X., Ng T.B. Isolation and characterization of juncin, an antifungal protein from seeds of Japanese takana (Brassica juncea var. Integrifolia) J. Agric. Food Chem. 2009;57:4366–4371. doi: 10.1021/jf8035337. [DOI] [PubMed] [Google Scholar]
  • 134.Jiang Y., Ng T.B., Wang C.R., Zhang D., Cheng Z.H., Liu Z.K., Qiao W.T., Geng Y.Q., Li N., Liu F. Inhibitors from natural products to HIV-1 reverse transcriptase, protease and integrase. Mini-Rev. Med. Chem. 2010;10:1331–1344. doi: 10.2174/138955710793564133. [DOI] [PubMed] [Google Scholar]
  • 135.Bedoya L.M., Beltrán M., Sancho R., Olmedo D.A., Sánchez-Palomino S., Del Olmo E., López-Pérez J.L., Muñoz E., San Feliciano A., Alcamí J. 4-phenylcoumarins as HIV transcription inhibitors. Bioorgan. Med. Chem. Lett. 2005;15:4447–4450. doi: 10.1016/j.bmcl.2005.07.041. [DOI] [PubMed] [Google Scholar]
  • 136.Wang Q., Ding Z.H., Liu J.K., Zheng Y.T. Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus. Antivir. Res. 2004;64:189–194. doi: 10.1016/S0166-3542(04)00201-3. [DOI] [PubMed] [Google Scholar]
  • 137.Chang C.W., Lin M.T., Lee S.S., Liu K.C.S.C., Hsu F.L., Lin J.Y. Differential inhibition of reverse transcriptase and cellular DNA polymerase-α activities by lignans isolated from Chinese herbs, Phyllanthus myrtifolius Moon, and tannins from Lonicera japonica Thunb and Castanopsis hystrix. Antivir. Res. 1995;27:367–374. doi: 10.1016/0166-3542(95)00020-M. [DOI] [PubMed] [Google Scholar]
  • 138.Kashyap K., Sarkar P., Kalita M.C., Banu S. A review on the widespread therapeutic application of the traditional herb Drymaria cordata. Int. J. Pharma Bio Sci. 2014;5:P696–P705. [Google Scholar]
  • 139.Hsieh P.W., Chang F.R., Lee K.H., Hwang T.L., Chang S.M., Wu Y.C. A new anti-HIV alkaloid, drymaritin, and a new C-glycoside flavonoid, diandraflavone, from Drymaria diandra. J. Nat. Prod. 2004;67:1175–1177. doi: 10.1021/np0400196. [DOI] [PubMed] [Google Scholar]
  • 140.Prinsloo G., Meyer J.J.M., Hussein A.A., Munoz E., Sanchez R. A cardiac glucoside with in vitro anti-HIV activity isolated from Elaeodendron croceum. Nat. Prod. Res. 2010;24:1743–1746. doi: 10.1080/14786410903211912. [DOI] [PubMed] [Google Scholar]
  • 141.Maregesi S.M., Hermans N., Dhooghe L., Cimanga K., Ferreira D., Pannecouque C., Berghe D.A.V., Cos P., Maes L., Vlietinck A.J., et al. Phytochemical and biological investigations of Elaeodendron schlechteranum. J. Ethnopharmacol. 2010;129:319–326. doi: 10.1016/j.jep.2010.03.034. [DOI] [PubMed] [Google Scholar]
  • 142.Kuo Y.H., Kuo L.M.Y. Antitumour and anti-AIDS triterpenes from Celastrus hindsii. Phytochemistry. 1997;44:1275–1281. doi: 10.1016/s0031-9422(96)00719-4. [DOI] [PubMed] [Google Scholar]
  • 143.Tai B.H., Nhut N.D., Nhiem N.X., Quang T.H., Thanh Ngan N.T., Thuy Luyen B.T., Huong T.T., Wilson J., Beutler J.A., Ban N.K., et al. An evaluation of the RNase H inhibitory effects of Vietnamese medicinal plant extracts and natural compounds. Pharm. Biol. 2011;49:1046–1051. doi: 10.3109/13880209.2011.563316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Piacente S., Dos Santos L.C., Mahmood N., Pizza C. Triterpenes from Maytenus mWacrocarpa and evaluation of their anti-HIV activity. Nat. Prod. Commun. 2006;1:1073–1078. [Google Scholar]
  • 145.Chen K., Shi Q., Kashiwada Y., Hu C.Q., Zhang D.C., Jin J.Q., Nozaki H., Kilkuskie R.E., Tramontano E., Cheng Y.C., et al. Anti-AIDS agents, 6. Salaspermic acid, an anti-HIV principle from Tripterycium wilfordii, and the structure-activity correlation with its related compounds. J. Nat. Prod. 1992;55:340–346. doi: 10.1021/np50081a010. [DOI] [PubMed] [Google Scholar]
  • 146.Chen K., Shi Q., Fujioka T., Zhang D.-C., Hu C.-Q., Jin J.-Q., Kilkuskie R.E., Lee K.-H. Anti-AIDS agents, 4. Tripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: Isolation and structural elucidation. J. Nat. Prod. 1992;55:88–92. doi: 10.1021/np50079a013. [DOI] [PubMed] [Google Scholar]
  • 147.Duan H., Takaishi Y., Imakura Y., Jia Y., Li D., Cosentino L.M., Lee K.-H. Sesquiterpene alkaloids from Tripterygium hypoglaucum and Tripterygium wilfordii:  A new class of potent anti-HIV agents. J. Nat. Prod. 2000;63:357–361. doi: 10.1021/np990281s. [DOI] [PubMed] [Google Scholar]
  • 148.Chen K., Shi Q., Fujioka T., Nakano T., Hu C.Q., Jin J.Q., Kilkuskie R.E., Lee K.H. Anti-AIDS agents-XIX. Neotripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: Isolation and structural elucidation. Bioorgan. Med. Chem. 1995;3:1345–1348. doi: 10.1016/0968-0896(95)00114-V. [DOI] [PubMed] [Google Scholar]
  • 149.Fang P.L., Cao Y.L., Yan H., Pan L.L., Liu S.C., Gong N.B., Lü Y., Chen C.X., Zhong H.M., Guo Y., et al. Lindenane disesquiterpenoids with anti-HIV-1 activity from Chloranthus japonicus. J. Nat. Prod. 2011;74:1408–1413. doi: 10.1021/np200087d. [DOI] [PubMed] [Google Scholar]
  • 150.Yan H., Ba M.Y., Li X.H., Guo J.M., Qin X.J., He L., Zhang Z.Q., Guo Y., Liu H.Y. Lindenane sesquiterpenoid dimers from Chloranthus japonicus inhibit HIV-1 and HCV replication. Fitoterapia. 2016;115:64–68. doi: 10.1016/j.fitote.2016.09.023. [DOI] [PubMed] [Google Scholar]
  • 151.Chattopadhyay S.K., Chatterjee A., Tandon S., Maulik P.R., Kant R. Isolation of optically active nevirapine, a dipyridodiazepinone metabolite from the seeds of Cleome viscosa. Tetrahedron. 2011;67:452–454. doi: 10.1016/j.tet.2010.11.020. [DOI] [Google Scholar]
  • 152.Fuller R.W., Blunt J.W., Boswell J.L., Cardellina J.H., Boyd M.R. Guttiferone F, the first prenylated benzophenone from Allanblackia stuhlmannii. J. Nat. Prod. 1999;62:130–132. doi: 10.1021/np9801514. [DOI] [PubMed] [Google Scholar]
  • 153.Huerta-Reyes M., Basualdo M.D.C., Lozada L., Jimenez-Estrada M., Soler C., Reyes-Chilpa R. HIV-1 inhibition by extracts of Clusiaceae species from Mexico. Biol. Pharm. Bull. 2004;27:916–920. doi: 10.1248/bpb.27.916. [DOI] [PubMed] [Google Scholar]
  • 154.Huerta-Reyes M., Basualdo M.D.C., Abe F., Jimenez-Estrada M., Soler C., Reyes-Chilpa R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol. Pharm. Bull. 2004;27:1471–1475. doi: 10.1248/bpb.27.1471. [DOI] [PubMed] [Google Scholar]
  • 155.Gomez-Verjan J.C., Estrella-Parra E.A., Gonzalez-Sanchez I., Rivero-Segura N.A., Vazquez-Martinez R., Magos-Guerrero G., Mendoza-Villanueva D., Cerbón-Cervantes M.A., Reyes-Chilpa R. Toxicogenomic analysis of pharmacological active coumarins isolated from Calophyllum brasiliense. Genom. Data. 2015;6:258–259. doi: 10.1016/j.gdata.2015.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Spino C., Dodier M., Sotheeswaran S. Anti-HIV coumarins from Calophyllum seed oil. Bioorgan. Med. Chem. Lett. 1998;8:3475–3478. doi: 10.1016/S0960-894X(98)00628-3. [DOI] [PubMed] [Google Scholar]
  • 157.Dharmaratne H., Wanigasekera W., Mata-Greenwood E., Pezzuto J. Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated from Calophyllum cordato-oblongum. Planta Med. 2007;64:460–461. doi: 10.1055/s-2006-957483. [DOI] [PubMed] [Google Scholar]
  • 158.Chaitra Narayan L., Ravishankar Rai V., Tewtrakul S. A screening strategy for selection of anti-HIV-1 integrase and anti-HIV-1 protease inhibitors from extracts of Indian medicinal plants. Int. J. Phytomed. 2011;3:312–318. [Google Scholar]
  • 159.Pawar K.D., Joshi S.P., Bhide S.R., Thengane S.R. Pattern of anti-HIV dipyranocoumarin expression in callus cultures of Calophyllum inophyllum linn. J. Biotechnol. 2007;130:346–353. doi: 10.1016/j.jbiotec.2007.04.024. [DOI] [PubMed] [Google Scholar]
  • 160.Laure F., Raharivelomanana P., Butaud J.F., Bianchini J.P., Gaydou E.M. Screening of anti-HIV-1 inophyllums by HPLC-DAD of Calophyllum inophyllum leaf extracts from French Polynesia islands. Anal. Chim. Acta. 2008;624:147–153. doi: 10.1016/j.aca.2008.06.046. [DOI] [PubMed] [Google Scholar]
  • 161.Currens M.J., Mariner J.M., McMahon J.B., Boyd M.R. Kinetic analysis of inhibition of human immunodeficiency virus type-1 reverse transcriptase by calanolide a. J. Pharmacol. Exp. Ther. 1996;279:652–661. [PubMed] [Google Scholar]
  • 162.Galinis D.L., Fuller R.W., McKee T.C., Cardellina J.H., Gulakowski R.J., McMahon J.B., Boyd M.R. Structure−activity modifications of the HIV-1 inhibitors (+)-calanolide a and (−)-calanolide b1. J. Med. Chem. 1996;39:4507–4510. doi: 10.1021/jm9602827. [DOI] [PubMed] [Google Scholar]
  • 163.Kashman Y., Gustafson K.R., Fuller R., Cardellina J., 2nd, McMahon J., Currens M., Buckheit R., Jr., Hughes S., Cragg G., Boyd M. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem. 1992;35:2735–2743. doi: 10.1021/jm00093a004. [DOI] [PubMed] [Google Scholar]
  • 164.McKee T.C., Fuller R.W., Covington C.D., Cardellina Ii J.H., Gulakowski R.J., Krepps B.L., McMahon J.B., Boyd M.R. New pyranocoumarins isolated from Calophyllum lanigerum and Calophyllum teysmannii. J. Nat. Prod. 1996;59:754–758. doi: 10.1021/np9603784. [DOI] [PubMed] [Google Scholar]
  • 165.Alkhamaiseh S.I., Taher M., Ahmad F. The phytochemical contents and antimicrobial activities of Malaysian Calophyllum rubiginosum. Am. J. Appl. Sci. 2011;8:201–205. doi: 10.3844/ajassp.2011.201.205. [DOI] [PubMed] [Google Scholar]
  • 166.Magadula J.J., Tewtrakul S. Anti-HIV-1 protease activities of crude extracts of some Garcinia species growing in Tanzania. Afr. J. Biotechnol. 2010;9:1848–1852. [Google Scholar]
  • 167.Zhou P., Takaishi Y., Duan H., Chen B., Honda G., Itoh M., Takeda Y., Kodzhimatov O.K., Lee K.H. Coumarins and bicoumarin from Ferula sumbul: Anti-HIV activity and inhibition of cytokine release. Phytochemistry. 2000;53:689–697. doi: 10.1016/S0031-9422(99)00554-3. [DOI] [PubMed] [Google Scholar]
  • 168.Magadula J.J., Suleimani H.O. Cytotoxic and anti-HIV activities of some Tanzanian Garcinia species. Tanzania J. Health Res. 2010;12 doi: 10.4314/thrb.v12i2.56402. [DOI] [Google Scholar]
  • 169.Chen S.X., Wan M., Loh B.N. Active constituents against HIV-1 protease from Garcinia mangostana. Planta Med. 1996;62:381–382. doi: 10.1055/s-2006-957916. [DOI] [PubMed] [Google Scholar]
  • 170.Rimando A.M., Pezzuto J.M., Farnsworth N.R., Santisuk T., Reutrakul V., Kawanishi K. New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J. Nat. Prod. 1994;57:896–904. doi: 10.1021/np50109a004. [DOI] [PubMed] [Google Scholar]
  • 171.Mushi N.F., Mbwambo Z.H., Innocent E., Tewtrakul S. Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud. Ex A. Rich (Combretaceae) BMC Complement. Altern. Med. 2012;12 doi: 10.1186/1472-6882-12-163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Bessong P.O., Obi C.L., Andréola M.L., Rojas L.B., Pouységu L., Igumbor E., Meyer J.J.M., Quideau S., Litvak S. Evaluation of selected south african medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005;99:83–91. doi: 10.1016/j.jep.2005.01.056. [DOI] [PubMed] [Google Scholar]
  • 173.Asres K., Bucar F. Anti-HIV activity against immunodeficiency virus type 1 (HIV-I) and type II (HIV-II) of compounds isolated from the stem bark of Combtetum molle. Ethiop. Med. J. 2005;43:15–20. [PubMed] [Google Scholar]
  • 174.Asres K., Bucar F., Kartnig T., Witvrouw M., Pannecouque C., De Clercq E. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother. Res. 2001;15:62–69. doi: 10.1002/1099-1573(200102)15:1&#x0003c;62::AID-PTR956&#x0003e;3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  • 175.El-Mekkawy S., Meselhy M.R., Kusumoto I.T., Kadota S., Hattori M., Namba T. Inhibitory effects of Egyptian folk medicines on human immunodeficiency virus (HIV) reverse transcriptase. Chem. Pharm. Bull. 1995;43:641–648. doi: 10.1248/cpb.43.641. [DOI] [PubMed] [Google Scholar]
  • 176.Valsaraj R., Pushpangadan P., Smitt U.W., Adsersen A., Christensen S.B., Sittie A., Nyman U., Nielsen C., Olsen C.E. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica. J. Nat. Prod. 1997;60:739–742. doi: 10.1021/np970010m. [DOI] [PubMed] [Google Scholar]
  • 177.Ahn M.J., Chul Y.K., Ji S.L., Tae G.K., Seung H.K., Lee C.K., Lee B.B., Shin C.G., Huh H., Kim J. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 2002;68:457–459. doi: 10.1055/s-2002-32070. [DOI] [PubMed] [Google Scholar]
  • 178.Chauke M.A., Shai L.J., Mogale M.A., Mokgotho M.P. Antibacterial and anti HIV 1 reverse transcriptase activity of selected medicinal plants from Phalaborwa, South Africa. Res. J. Med. Plant. 2016;10:388–395. [Google Scholar]
  • 179.Tshikalange T.E., Meyer J.J.M., Lall N., Muñoz E., Sancho R., Van de Venter M., Oosthuizen V. In vitro anti-HIV-1 properties of ethnobotanically selected South African plants used in the treatment of sexually transmitted diseases. J. Ethnopharmacol. 2008;119:478–481. doi: 10.1016/j.jep.2008.08.027. [DOI] [PubMed] [Google Scholar]
  • 180.Schröder H.C., Merz H., Steffen R., Müller W.E.G., Sarin P.S., Trumm S., Schulz J., Eich E. Differential in vitro anti-HIV activity of natural lignans. Z. Naturforsch. C. 1990;45:1215–1221. doi: 10.1515/znc-1990-11-1222. [DOI] [PubMed] [Google Scholar]
  • 181.Yamamoto T., Takahashi H., Sakai K., Kowithayakorn T., Koyano T. Screening of Thai plants for anti-HIV-1 activity. Nat. Med. 1997;51:541–546. [Google Scholar]
  • 182.Anonymous. Rubitecan: 9-NC, 9-Nitro-20(S)-Camptothecin, 9-Nitro-Camptothecin, 9-Nitrocamptothecin, RFS 2000, RFS2000. Drugs R D. 2004;5:305–311. doi: 10.2165/00126839-200405050-00007. [DOI] [PubMed] [Google Scholar]
  • 183.Ju Gwon P., Jong Cheol P., Jong Moon H., Sung Jong P., Da Rae C., Dong Young S., Ky Young P., Hyun Wook C., Moon Sung K. Phenolic compounds from Orostachys japonicus having anti-HIV-1 protease activity. Nat. Prod. Sci. 2000;6:117–121. [Google Scholar]
  • 184.Okoye E.L., Nworu C.S., Ezeifeka G.O., Esimone C.O. Inhibition of HIV-1 lentiviral particles infectivity by Gynostemma pentaphyllum extracts in a viral vectorbased assay. Afr. J. Biotechnol. 2012;11:1782–1788. doi: 10.5897/AJB11.2841. [DOI] [Google Scholar]
  • 185.Chen J.C., Zhang G.H., Zhang Z.Q., Qiu M.H., Zheng Y.T., Yang L.M., Yu K.B. Octanorcucurbitane and cucurbitane triterpenoids from the tubers of Hemsleya endecaphylla with HIV-1 inhibitory activity. J. Nat. Prod. 2008;71:153–155. doi: 10.1021/np0704396. [DOI] [PubMed] [Google Scholar]
  • 186.Thakur G.S., Bag M., Sanodiya B.S., Bhadauriya P., Debnath M., Prasad G.B.K.S., Bisen P.S. Momordica balsamina: A medicinal and neutraceutical plant for health care management. Curr. Pharm. Biotechnol. 2009;10:667–682. doi: 10.2174/138920109789542066. [DOI] [PubMed] [Google Scholar]
  • 187.Lee-Huang S., Huang P.L., Nara P.L., Chen H.-C., Kung H.-F., Huang P., Huang H.I., Huang P.L. A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Lett. 1990;272:12–18. doi: 10.1016/0014-5793(90)80438-O. [DOI] [PubMed] [Google Scholar]
  • 188.Lee-Huang S., Huang P.L., Kung H.F., Li B.Q., Huang P.L., Huang P., Huang H.I., Chen H.C. Tap 29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. USA. 1991;88:6570–6574. doi: 10.1073/pnas.88.15.6570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Amouroux P., Jean D., Lamaison J.L. Antiviral activity in vitro of Cupressus sempervirens on two human retroviruses HIV and htlv. Phytother. Res. 1998;12:367–368. doi: 10.1002/(SICI)1099-1573(199808)12:5&#x0003c;367::AID-PTR301&#x0003e;3.0.CO;2-N. [DOI] [Google Scholar]
  • 190.Offergeld R., Reinecker C., Gumz E., Schrum S., Treiber R., Neth R.D., Gohla S.H. Mitogenic activity of high molecular polysaccharide fractions isolated from the Cuppressaceae Thuja occidentalis L. Enhanced cytokine-production by thyapolysaccharide, g-fraction (TPSg) Leukemia. 1992;6(Suppl. 3):189S–191S. [PubMed] [Google Scholar]
  • 191.Chaniad P., Wattanapiromsakul C., Pianwanit S., Tewtrakul S. Anti-HIV-1 integrase compounds from Dioscorea bulbifera and molecular docking study. Pharm. Biol. 2016;54:1077–1085. doi: 10.3109/13880209.2015.1103272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Meragelman K.M., McKee T.C., Boyd M.R. Anti-HIV prenylated flavonoids from Monotes africanus. J. Nat. Prod. 2001;64:546–548. doi: 10.1021/np0005457. [DOI] [PubMed] [Google Scholar]
  • 193.Min B.S., Tomiyama M., Ma C.M., Nakamura N., Hattori M. Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus-1 reverse transcriptase. Chem. Pharm. Bull. 2001;49:546–550. doi: 10.1248/cpb.49.546. [DOI] [PubMed] [Google Scholar]
  • 194.Lee J.S., Miyashiro H., Nakamura N., Hattori M. Two new triterpenes from the rhizome of Dryopteris crassirhizoma, and inhibitory activities of its constituents on human immunodeficiency virus-1 protease. Chem. Pharm. Bull. 2008;56:711–714. doi: 10.1248/cpb.56.711. [DOI] [PubMed] [Google Scholar]
  • 195.Mahapatra A., Tshikalange T.E., Meyer J.J.M., Lall N. Synthesis and HIV-1 reverse transcriptase inhibition activity of 1,4-naphthoquinone derivatives. Chem. Nat. Compd. 2012;47:883–887. doi: 10.1007/s10600-012-0094-7. [DOI] [Google Scholar]
  • 196.Lee S.-A., Hong S.-K., Suh C.-I., Oh M.-H., Park J.-H., Choi B.-W., Park S.-W., Paik S.-Y. Anti-HIV-1 efficacy of extracts from medicinal plants. J. Microbiol. 2010;48:249–252. doi: 10.1007/s12275-009-0176-9. [DOI] [PubMed] [Google Scholar]
  • 197.El-Mekkawy S., Meselhy M.R., Nakamura N., Hattori M., Kawahata T., Otake T. Anti-HIV-1 phorbol esters from the seeds of Croton tiglium. Phytochemistry. 2000;53:457–464. doi: 10.1016/S0031-9422(99)00556-7. [DOI] [PubMed] [Google Scholar]
  • 198.Ayatollahi A.M., Zarei S.M., Memarnejadian A., Ghanadian M., Moghadam M.H., Kobarfard F. Triterpene constituents of Euphorbia erythradenia Bioss. And their anti-HIV activity. Iran. J. Pharm. Res. 2016;15:19–27. [PMC free article] [PubMed] [Google Scholar]
  • 199.Zheng W., Cui Z., Zhu Q. Cytotoxicity and antiviral activity of the compounds from Euphorbia kansui. Planta Med. 2007;64:754–756. doi: 10.1055/s-2006-957574. [DOI] [PubMed] [Google Scholar]
  • 200.Zhao J.X., Liu C.P., Qi W.Y., Han M.L., Han Y.S., Wainberg M.A., Yue J.M. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia Neriifolia. J. Nat. Prod. 2014;77:2224–2233. doi: 10.1021/np5004752. [DOI] [PubMed] [Google Scholar]
  • 201.Yan S.L., Li Y.H., Chen X.Q., Liu D., Chen C.H., Li R.T. Diterpenes from the stem bark of Euphorbia neriifolia and their in vitro anti-HIV activity. Phytochemistry. 2018;145:40–47. doi: 10.1016/j.phytochem.2017.10.006. [DOI] [PubMed] [Google Scholar]
  • 202.Cox P.A. Saving the ethnopharmacological heritage of Samoa. J. Ethnopharmacol. 1993;38:181–188. doi: 10.1016/0378-8741(93)90014-V. [DOI] [PubMed] [Google Scholar]
  • 203.Arisawa M. A review of the biological activity and chemistry of Mallotus japonicus (Euphorbiaceae) Phytomedicine. 1994;1:261–269. doi: 10.1016/S0944-7113(11)80074-7. [DOI] [PubMed] [Google Scholar]
  • 204.Pengsuparp T., Cai L., Constant H., Fong H.H.S., Lin L.Z., Kinghorn A.D., Pezzuto J.M., Cordell G.A., Ingolfsdóttir K., Wagner H., et al. Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. J. Nat. Prod. 1995;58:1024–1031. doi: 10.1021/np50121a006. [DOI] [PubMed] [Google Scholar]
  • 205.Pengsuparp T., Cai L., Fong H.H.S., Kinghorn A.D., Pezzuto J.M., Wani M.C., Wall M.E. Pentacyclic triterpenes derived from Maprounea africana are potent inhibitors of HIV-1 reverse transcriptase. J. Nat. Prod. 1994;57:415–418. doi: 10.1021/np50105a017. [DOI] [PubMed] [Google Scholar]
  • 206.Wang H.X., Ng T.B. Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases. Planta Med. 2001;67:669–672. doi: 10.1055/s-2001-17359. [DOI] [PubMed] [Google Scholar]
  • 207.Ranki A., Nyberg M., Ovod V., Haltia M., Elovaara I., Raininko R., Haapasalo H., Krohn K. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS. 1995;9:1001–1008. doi: 10.1097/00002030-199509000-00004. [DOI] [PubMed] [Google Scholar]
  • 208.Zhang L., Luo R.-H., Wang F., Jiang M.-Y., Dong Z.-J., Yang L.-M., Zheng Y.-T., Liu J.-K. Highly functionalized daphnane diterpenoids from Trigonostemon thyrsoideum. Organ. Lett. 2010;12:152–155. doi: 10.1021/ol9025638. [DOI] [PubMed] [Google Scholar]
  • 209.Cheng Y.-Y., Chen H., He H.-P., Zhang Y., Li S.-F., Tang G.-H., Guo L.-L., Yang W., Zhu F., Zheng Y.-T., et al. Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum. Phytochemistry. 2013;96:360–369. doi: 10.1016/j.phytochem.2013.10.005. [DOI] [PubMed] [Google Scholar]
  • 210.Ma C.-M., Nakamura N., Hattori M. Saponins and C-glycosyl flavones from the seeds of Abrus precatorius. Chem. Pharm. Bull. 1998;46:982–987. doi: 10.1248/cpb.46.982. [DOI] [Google Scholar]
  • 211.Chinsembu K.C. Ethnobotanical study of plants used in the management of HIV/AIDS-related diseases in Livingstone, Southern Province, Zambia. J. Evid.-Based Complement. Altern. Med. 2016;2016:4238625. doi: 10.1155/2016/4238625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Nutan S.K., Modi M., Dezzutti C.S., Kulshreshtha S., Rawat A.K.S., Srivastava S.K., Malhotra S., Verma A., Ranga U., Gupta S.K. Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and tat. J. Virol. 2013;10:309. doi: 10.1186/1743-422X-10-309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Abdallah R.M., Ghazy N.M., El-Sebakhy N., Pirillo A., Verotta L. Astragalosides from Egyptian Astragalus spinosus Vahl. Pharmazie. 1993;48:452–454. [PubMed] [Google Scholar]
  • 214.Taylor D.L., Nash R., Fellows L.E., Kang M.S., Tyms A.S. Naturally occurring pyrrolizidines: Inhibition of α-glucosidase 1 and anti-HIV activity of one steroisomer. Antivir. Chem. Chemother. 1992;3:273–277. doi: 10.1177/095632029200300504. [DOI] [Google Scholar]
  • 215.Mahmood N., Pizza C., Aquino R., De Tommasi N., Piacente S., Colman S., Burke A., Hay A.J. Inhibition of HIV infection by flavanoids. Antivir. Res. 1993;22:189–199. doi: 10.1016/0166-3542(93)90095-Z. [DOI] [PubMed] [Google Scholar]
  • 216.Mohammed M.M.D., Ibrahim N.A., Awad N.E., Matloub A.A., Mohamed-Ali A.G., Barakat E.E., Mohamed A.E., Colla P.L. Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. growing in Sudan. Nat. Prod. Res. 2012;26:1565–1575. doi: 10.1080/14786419.2011.573791. [DOI] [PubMed] [Google Scholar]
  • 217.Lee J., Oh W.K., Ahn J.S., Kim Y.H., Mbafor J.T., Wandji J., Fomum Z.T. Prenylisoflavonoids from Erythrina senegalensis as novel HIV-1 protease inhibitors. Planta Med. 2009;75:268–270. doi: 10.1055/s-0028-1088395. [DOI] [PubMed] [Google Scholar]
  • 218.Lo W.L., Wu C.C., Chang F.R., Wang W.Y., Khalil A.T., Lee K.H., Wu Y.C. Antiplatelet and anti-HIV constituents from Euchresta formosana. Nat. Prod. Res. 2003;17:91–97. doi: 10.1080/1478641031000103669. [DOI] [PubMed] [Google Scholar]
  • 219.Konoshima T., Yasuda I., Kashiwada Y., Cosentino L.M., Lee K.-H. Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of Gleditsia japonica and Gymnocladus chinesis, and a structure-activity correlation. J. Nat. Prod. 1995;58:1372–1377. doi: 10.1021/np50123a006. [DOI] [PubMed] [Google Scholar]
  • 220.Cheng B.H., Zhou X., Wang Y., Chan J.Y.W., Lin H.Q., Or P.M.Y., Wan D.C.C., Leung P.C., Fung K.P., Wang Y.F., et al. Herb-drug interaction between an anti-HIV Chinese herbal sh formula and atazanavir in vitro and in vivo. J. Ethnopharmacol. 2015;162:369–376. doi: 10.1016/j.jep.2015.01.010. [DOI] [PubMed] [Google Scholar]
  • 221.Ito M., Sato A., Hirabayashi K., Tanabe F., Shigeta S., Baba M., De Clercq E., Nakashima H., Yamamoto N. Mechanism of inhibitory effect of glycyrrhizin on replication of human immunodeficiency virus(HIV) Antivir. Res. 1988;10:289–298. doi: 10.1016/0166-3542(88)90047-2. [DOI] [PubMed] [Google Scholar]
  • 222.Baltina L.A. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. Curr. Med. Chem. 2003;10:155–171. doi: 10.2174/0929867033368538. [DOI] [PubMed] [Google Scholar]
  • 223.Takada K., Bermingham A., O’Keefe B.R., Wamiru A., Beutler J.A., Le Grice S.F.J., Lloyd J., Gustafson K.R., McMahon J.B. An HIV RNAse H inhibitory 1,3,4,5-tetragalloylapiitol from the African plant Hylodendron gabunensis. J. Nat. Prod. 2007;70:1647–1649. doi: 10.1021/np0702279. [DOI] [PubMed] [Google Scholar]
  • 224.Likhitwitayawuid K., Sritularak B., Benchanak K., Lipipun V., Mathew J., Schinazi R.F. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat. Prod. Res. 2005;19:177–182. doi: 10.1080/14786410410001704813. [DOI] [PubMed] [Google Scholar]
  • 225.Theo A., Masebe T., Suzuki Y., Kikuchi H., Wada S., Obi C.L., Bessong P.O., Usuzawa M., Oshima Y., Hattori T. Peltophorum africanum, a traditional South African medicinal plant, contains an anti HIV-1 constituent, betulinic acid. Tohoku J. Exp. Med. 2009;217:93–99. doi: 10.1620/tjem.217.93. [DOI] [PubMed] [Google Scholar]
  • 226.Fang E.F., Lin P., Wong J.H., Tsao S.W., Ng T.B. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of Phaseolus vulgaris cv. extralong autumn purple bean. J. Agric. Food Chem. 2010;58:2221–2229. doi: 10.1021/jf903964u. [DOI] [PubMed] [Google Scholar]
  • 227.Li L., Li X., Shi C., Deng Z., Fu H., Proksch P., Lin W. Pongamone A-E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata. Phytochemistry. 2006;67:1347–1352. doi: 10.1016/j.phytochem.2006.05.016. [DOI] [PubMed] [Google Scholar]
  • 228.Kashiwada Y., Wang H.-K., Nagao T., Kitanaka S., Yasuda I., Fujioka T., Yamagishi T., Cosentino L.M., Kozuka M., Okabe H., et al. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod. 1998;61:1090–1095. doi: 10.1021/np9800710. [DOI] [PubMed] [Google Scholar]
  • 229.Thayil Seema M., Thyagarajan S.P. Methanol and aqueous extracts of Ocimum kilimandscharicum (Karpuratulasi) inhibits HIV-1 reverse transcriptase in vitro. Int. J. Pharmacogn. Phytochem. Res. 2016;8:1099–1103. [Google Scholar]
  • 230.Behbahani M., Sayedipour S., Pourazar A., Shanehsazzadeh M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res. Pharm. Sci. 2014;9:463–469. [PMC free article] [PubMed] [Google Scholar]
  • 231.Quintero A., Fabbro R., Maillo M., Barrios M., Milano M.B., Fernandez A., Williams B., Michelangeli F., Rangel H.R., Pujol F.H. Inhibition of hepatitis B virus and human immunodeficiency virus (HIV-1) replication by Warscewiczia coccinea (Vahl) Kl. (Rubiaceae) ethanol extract. Nat. Prod. Res. 2011;25:1565–1569. doi: 10.1080/14786419.2010.535164. [DOI] [PubMed] [Google Scholar]
  • 232.Dong M., Quan L.Q., Dai W.F., Yan S.L., Chen C.H., Chen X.Q., Li R.T. Anti-inflammatory and anti-HIV compounds from Swertia bimaculata. Planta Med. 2017;83:1368–1373. doi: 10.1055/s-0043-114736. [DOI] [PubMed] [Google Scholar]
  • 233.Wang J.-N., Hou C.-Y., Liu Y.-L., Lin L.-Z., Gil R.R., Cordell G.A. Swertifrancheside, an HIV-reverse transcriptase inhibitor and the first flavone-xanthone dimer, from Swertia franchetiana. J. Nat. Prod. 1994;57:211–217. doi: 10.1021/np50104a003. [DOI] [PubMed] [Google Scholar]
  • 234.Du X.G., Wang W., Zhang Q.Y., Cheng J., Avula B., Khan I.A., Guo D.A. Identification of xanthones from Swertia punicea using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012;26:2913–2923. doi: 10.1002/rcm.6419. [DOI] [PubMed] [Google Scholar]
  • 235.Chang C.-C., Lin C.-N., Lin J.-Y. Inhibition of Moloney murine leukemia virus reverse transcriptase activity by tetrahydroxyxanthones isolated from the Chinese herb, Tripterospermum lanceolatum (Hyata) Antivir. Res. 1992;19:119–127. doi: 10.1016/0166-3542(92)90071-C. [DOI] [PubMed] [Google Scholar]
  • 236.Ji S.L., Hattori M., Kim J. Inhibition of HIV-1 protease and RNase H of HIV-1 reverse transcriptase activities by long chain phenols from the sarcotestas of Ginkgo biloba. Planta Med. 2008;74:532–534. doi: 10.1055/s-2008-1074497. [DOI] [PubMed] [Google Scholar]
  • 237.Lü J.M., Yan S., Jamaluddin S., Weakley S.M., Liang Z., Siwak E.B., Yao Q., Chen C. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro. Med. Sci. Monit. 2012;18:BR293–BR298. doi: 10.12659/MSM.883261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238.Rowley D.C., Hansen M.S., Rhodes D., Sotriffer C.A., Ni H., McCammon J.A., Bushman F.D., Fenical W. Thalassiolins A-C: New marine-derived inhibitors of HIV cDNA integrase. Bioorgan. Med. Chem. 2002;10:3619–3625. doi: 10.1016/S0968-0896(02)00241-9. [DOI] [PubMed] [Google Scholar]
  • 239.Reutrakul V., Chanakul W., Pohmakotr M., Jaipetch T., Yoosook C., Kasisit J., Napaswat C., Santisuk T., Prabpai S., Kongsaeree P., et al. Anti-HIV-1 constituents from leaves and twigs of Cratoxylum arborescens. Planta Med. 2006;72:1433–1435. doi: 10.1055/s-2006-951725. [DOI] [PubMed] [Google Scholar]
  • 240.Sokmen A., Jones B.M., Erturk M. Antimicrobial activity of extracts from the cell cultures of some Turkish medicinal plants. Phytother. Res. 1999;13:355–357. doi: 10.1002/(SICI)1099-1573(199906)13:4&#x0003c;355::AID-PTR454&#x0003e;3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  • 241.Esposito F., Sanna C., Del Vecchio C., Cannas V., Venditti A., Corona A., Bianco A., Serrilli A.M., Guarcini L., Parolin C., et al. Hypericum hircinum L. components as new single-molecule inhibitors of both HIV-1 reverse transcriptase-associated DNA polymerase and ribonuclease H activities. Pathog. Dis. 2013;68:116–124. doi: 10.1111/2049-632X.12051. [DOI] [PubMed] [Google Scholar]
  • 242.Birt D.F., Widrlechner M.P., Hammer K.D.P., Hillwig M.L., Wei J., Kraus G.A., Murphy P.A., McCoy J.A., Wurtele E.S., Neighbors J.D., et al. Hypericum in infection: Identification of anti-viral and anti-inflammatory constituents. Pharm. Biol. 2009;47:774–782. doi: 10.1080/13880200902988645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Fuller R.W., Westergaard C.K., Collins J.W., Cardellina J.H., Boyd M.R. Vismiaphenones D−G, new prenylated benzophenones from Vismia cayennensis. J. Nat. Prod. 1999;62:67–69. doi: 10.1021/np980152w. [DOI] [PubMed] [Google Scholar]
  • 244.Drewes S.E., Khan F. The African potato (Hypoxis hemerocallidea): A chemical-historical perspective. S. Afr. J. Sci. 2004;100:425–430. [Google Scholar]
  • 245.Hara H., Maruyama N., Yamashita S., Hayashi Y., Lee K.H., Bastow K.F., Chairul, Marumoto R., Imakura Y. Elecanacin, a novel new naphthoquinone from the bulb of Eleutherine americana. Chem. Pharm. Bull. 1997;45:1714–1716. doi: 10.1248/cpb.45.1714. [DOI] [Google Scholar]
  • 246.Byung S.M., Hyeong K.L., Sang M.L., Young H.K., Ki H.B., Otake T., Nakamura N., Hattori M. Anti-human immunodeficiency virus-type 1 activity of constituents from Juglans mandshurica. Arch. Pharm. Res. 2002;25:441–445. doi: 10.1007/BF02976598. [DOI] [PubMed] [Google Scholar]
  • 247.Kim H.K., Lee H.K., Shin C.G., Huh H. HIV integrase inhibitory activity of Agastache rugosa. Arch. Pharm. Res. 1999;22:520–523. doi: 10.1007/BF02979163. [DOI] [PubMed] [Google Scholar]
  • 248.Tang X., Chen H., Zhang X., Quan K., Sun M. Screening anti-HIV Chinese materia medica with HIV and equine infectious anemic virus reverse transcriptase. J. Tradit. Chin. Med. 1994;14:10–13. [PubMed] [Google Scholar]
  • 249.Shahidul Alam M., Quader M.A., Rashid M.A. HIV-inhibitory diterpenoid from Anisomeles indica. Fitoterapia. 2000;71:574–576. doi: 10.1016/S0367-326X(00)00197-0. [DOI] [PubMed] [Google Scholar]
  • 250.Bodiwala H.S., Sabde S., Mitra D., Bhutani K.K., Singh I.P. Anti-HIV diterpenes from Coleus forskohlii. Nat. Prod. Commun. 2009;4:1173–1175. [PubMed] [Google Scholar]
  • 251.Kreis W., Kaplan M.H., Freeman J., Sun D.K., Sarin P.S. Inhibition of HIV replication by Hyssop officinalis extracts. Antivir. Res. 1990;14:323–337. doi: 10.1016/0166-3542(90)90051-8. [DOI] [PubMed] [Google Scholar]
  • 252.Miraj S., Azizi N., Kiani S. A review of chemical components and pharmacological effects of Melissa officinalis L. Der Pharm. Lett. 2016;8:229–237. [Google Scholar]
  • 253.Amzazi S., Ghoulami S., Bakri Y., Il Idrissi A., Fkih-Tétouani S., Benjouad A. Human immunodeficiency virus type 1 inhibitory activity of Mentha longifolia. Thérapie. 2003;58:531–534. doi: 10.2515/therapie:2003086. [DOI] [PubMed] [Google Scholar]
  • 254.Behbahani M., Mohabatkar H., Soltani M. Anti-HIV-1 activities of aerial parts of Ocimum basilicum and its parasite Cuscuta campestris. J. Antivir. Antiretrovir. 2013;5:57–61. doi: 10.4172/jaa.1000064. [DOI] [Google Scholar]
  • 255.Kapewangolo P., Omolo J., Fonteh P., Kandawa-Schulz M., Meyer D. Triterpenoids from Ocimum labiatum activates latent HIV-1 expression in vitro: Potential for use in adjuvant therapy. Molecules. 2017;22:1703. doi: 10.3390/molecules22101703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Kapewangolo P., Hussein A.A., Meyer D. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J. Ethnopharmacol. 2013;149:184–190. doi: 10.1016/j.jep.2013.06.019. [DOI] [PubMed] [Google Scholar]
  • 257.Tabba H.D., Chang R.S., Smith K.M. Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of Prunella vulgaris. Antivir. Res. 1989;11:263–273. doi: 10.1016/0166-3542(89)90036-3. [DOI] [PubMed] [Google Scholar]
  • 258.Pariš A., Štrukelj B., Renko M., Turk V., Pukl M., Umek A., Korant B.D. Inhibitory effect of carnosolic acid on HIV-1 protease in cell-free assays. J. Nat. Prod. 1993;56:1426–1430. doi: 10.1021/np50098a031. [DOI] [PubMed] [Google Scholar]
  • 259.Fu M., Ng T.B., Jiang Y., Pi Z.F., Liu Z.K., Li L., Liu F. Compounds from rose (Rosa rugosa) flowers with human immunodeficiency virus type 1 reverse transcriptase inhibitory activity. J. Pharm. Pharmacol. 2006;58:1275–1280. doi: 10.1211/jpp.58.9.0015. [DOI] [PubMed] [Google Scholar]
  • 260.Abd-Elazem I.S., Chen H.S., Bates R.B., Huang R.C.C. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antivir. Res. 2002;55:91–106. doi: 10.1016/S0166-3542(02)00011-6. [DOI] [PubMed] [Google Scholar]
  • 261.Geuenich S., Goffinet C., Venzke S., Nolkemper S., Baumann I., Plinkert P., Reichling J., Keppler O.T. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology. 2008;5:27. doi: 10.1186/1742-4690-5-27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Bailly F., Queffelec C., Mbemba G., Mouscadet J.F., Cotelle P. Synthesis and HIV-1 integrase inhibitory activities of caffeic acid dimers derived from Salvia officinalis. Bioorgan. Med. Chem. Lett. 2005;15:5053–5056. doi: 10.1016/j.bmcl.2005.07.091. [DOI] [PubMed] [Google Scholar]
  • 263.Watanabe M., Kobayashi Y., Ogihara J., Kato J., Oishi K. HIV-1 reverse transcriptase-inhibitory compound in Salvia officinalis. Food Sci. Technol. Res. 2000;6:216–220. doi: 10.3136/fstr.6.216. [DOI] [Google Scholar]
  • 264.Zhang Z.F., Peng Z.G., Gao L., Dong B., Li J.R., Li Z.Y., Chen H.S. Three new derivatives of anti-HIV-1 polyphenols isolated from Salvia yunnanensis. J. Asian Nat. Prod. Res. 2008;10:391–396. doi: 10.1080/10286020801966591. [DOI] [PubMed] [Google Scholar]
  • 265.Li B.Q., Fu T., Yan Y.D., Baylor N.W., Ruscetti F.W., Kung H.F. Inhibition of HIV infection by baicalin-A flavonoid compound purified from Chinese herbal medicine. Cell. Mol. Biol. Res. 1993;39:119–124. [PubMed] [Google Scholar]
  • 266.Wei Y., Ma C.M., Chen D.Y., Hattori M. Anti-HIV-1 protease triterpenoids from Stauntonia obovatifoliola Hayata subsp. Intermedia. Phytochemistry. 2008;69:1875–1879. doi: 10.1016/j.phytochem.2008.03.004. [DOI] [PubMed] [Google Scholar]
  • 267.Zhang C.F., Sun Q.S., Wáng Z.T., Masao H., Supinya T. Inhibitory activities of tannins extracted from stem of Lindera aggregata against HIV-1 integrase. Chin. Pharm. J. 2003;38:911–914. [Google Scholar]
  • 268.Zhang C.F., Nakamura N., Tewtrakul S., Hattori M., Sun Q.S., Wang Z.T., Fujiwara T. Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chem. Pharm. Bull. 2002;50:1195–1200. doi: 10.1248/cpb.50.1195. [DOI] [PubMed] [Google Scholar]
  • 269.Byung Sun M., Bae K., Young Ho K., Shimotohno K., Miyashiro H., Hattori M. Inhibitory activities of Korean plants on HIV-1 protease. Nat. Prod. Sci. 1998;4:241–244. [Google Scholar]
  • 270.Zhang H.J., Tan G.T., Hoang V.D., Hung N.V., Cuong N.M., Soejarto D.D., Pezzuto J.M., Fong H.H.S. Natural anti-HIV agents. Part 2: Litseaverticillol a, a prototypic litseane sesquiterpene from Litsea verticillata. Tetrahedron Lett. 2001;42:8587–8591. doi: 10.1016/S0040-4039(01)01852-4. [DOI] [Google Scholar]
  • 271.He J., Chen X.-Q., Li M.-M., Zhao Y., Xu G., Cheng X., Peng L.-Y., Xie M.-J., Zheng Y.-T., Wang Y.-P., et al. Lycojapodine a, a novel alkaloid from Lycopodium japonicum. Organ. Lett. 2009;11:1397–1400. doi: 10.1021/ol900079t. [DOI] [PubMed] [Google Scholar]
  • 272.Sharma A., Rangari V. HIV-1 reverse transcriptase and protease assay of methanolic extracts of Adansonia digitata L. Int. J. Pharm. Pharm. Sci. 2016;8:124–127. doi: 10.22159/ijpps.2016v8i9.12485. [DOI] [Google Scholar]
  • 273.Subramanya M.D., Pai S.R., Upadhya V., Ankad G.M., Bhagwat S.S., Hegde H.V. Total polyphenolic contents and in vitro antioxidant properties of eight Sida species from Western Ghats, India. J. Ayurveda Integr. Med. 2015;6:24–28. doi: 10.4103/0975-9476.146544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Kainuma M., Baba S., Chan H.T., Inoue T., Tangah J., Chan E.W.C. Medicinal plants of sandy shores: A short review on Calophyllum inophyllum and Thespesia populnea. Int. J. Pharmacogn. Phytochem. Res. 2016;8:2056–2062. [Google Scholar]
  • 275.Puripattanavong J., Tungcharoen P., Chaniad P., Pianwanit S., Tewtrakul S. Anti-HIV-1 integrase effect of compounds from Aglaia andamanica leaves and molecular docking study with acute toxicity test in mice. Pharm. Biol. 2016;54:654–659. doi: 10.3109/13880209.2015.1071413. [DOI] [PubMed] [Google Scholar]
  • 276.Eid A.M.M., Elmarzugi N.A., El-Enshasy H.A. A review on the phytopharmacological effect of Swietenia macrophylla. Int. J. Pharm. Pharm. Sci. 2013;5:47–53. [Google Scholar]
  • 277.Matsuse I.T., Nakabayashi T., Lim Y.A., Hussein G.M.E., Miyashiro H., Kakiuchi N., Hattori M., Stardjo S., Shimotohno K. A human immunodeficiency virus protease inhibitory substance from Swietenia mahagoni. Phytother. Res. 1997;11:433–436. doi: 10.1002/(SICI)1099-1573(199709)11:6&#x0003c;433::AID-PTR122&#x0003e;3.0.CO;2-#. [DOI] [Google Scholar]
  • 278.Yan M.H., Cheng P., Jiang Z.Y., Ma Y.B., Zhang X.M., Zhang F.X., Yang L.M., Zheng Y.T., Chen J.J. Periglaucines A-D, anti-HBV and -HIV-1 alkaloids from Pericampylus glaucus. J. Nat. Prod. 2008;71:760–763. doi: 10.1021/np070479+. [DOI] [PubMed] [Google Scholar]
  • 279.Ma C.M., Nakamura N., Miyashiro H., Hattori M., Komatsu K., Kawahata T., Otake T. Screening of Chinese and Mongolian herbal drugs for anti-human immunodeficiency virus type 1 (HIV-1) activity. Phytother. Res. 2002;16:186–189. doi: 10.1002/ptr.922. [DOI] [PubMed] [Google Scholar]
  • 280.Bunluepuech K., Tewtrakul S. Anti-HIV-1 integrase activity of Thai medicinal plants. Songklanakarin J. Sci. Technol. 2009;31:289–292. [Google Scholar]
  • 281.Bunluepuech K., Sudsai T., Wattanapiromsakul C., Tewtrakul S. Inhibition on HIV-1 integrase activity and nitric oxide production of compounds from Ficus glomerata. Nat. Prod. Commun. 2011;6:1095–1098. [PubMed] [Google Scholar]
  • 282.Groweiss A., Cardellina J.H., Boyd M.R. HIV-Inhibitory Prenylated xanthones and flavones from Maclura tinctoria. J. Nat. Prod. 2000;63:1537–1539. doi: 10.1021/np000175m. [DOI] [PubMed] [Google Scholar]
  • 283.Swanson M.D., Winter H.C., Goldstein I.J., Markovitz D.M. A lectin isolated from bananas is a potent inhibitor of HIV replication. J. Biol. Chem. 2010;285:8646–8655. doi: 10.1074/jbc.M109.034926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Kamng'Ona A., Moore J.P., Lindsey G., Brandt W. Inhibition of HIV-1 and m-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia. J. Enzyme Inhib. Med. Chem. 2011;26:843–853. doi: 10.3109/14756366.2011.566220. [DOI] [PubMed] [Google Scholar]
  • 285.Bokesch H.R., Wamiru A., Le Grice S.F.J., Beutler J.A., McKee T.C., McMahon J.B. HIV-1 ribonuclease H inhibitory phenolic glycosides from Eugenia hyemalis. J. Nat. Prod. 2008;71:1634–1636. doi: 10.1021/np8002518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Mao Q.C., Zhou Y.C., Li R.M., Hu Y.P., Liu S.W., Li X.J. Inhibition of HIV-1 mediated cell-cell fusion by saponin fraction from Psidium guajava leaf. Zhong Yao Cai. 2010;33:1751–1754. [PubMed] [Google Scholar]
  • 287.Dai J.P., Zhao X.F., Zeng J., Wan Q.Y., Yang J.C., Li W.Z., Chen X.X., Wang G.F., Li K.S. Drug screening for autophagy inhibitors based on the dissociation of beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza a virus activity. PLoS ONE. 2013;8:e61026. doi: 10.1371/journal.pone.0061026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 288.Goo H.R., Choi J.S., Na D.H. Simultaneous determination of quercetin and its glycosides from the leaves of Nelumbo nucifera by reversed-phase high-performance liquid chromatography. Arch. Pharm. Res. 2009;32:201–206. doi: 10.1007/s12272-009-1136-y. [DOI] [PubMed] [Google Scholar]
  • 289.Thomford N.E., Awortwe C., Dzobo K., Adu F., Chopera D., Wonkam A., Skelton M., Blackhurst D., Dandara C. Inhibition of CYP2B6 by medicinal plant extracts: Implication for use of efavirenz and nevirapine based highly active anti-retroviral therapy (HAART) in resource-limited settings. Molecules. 2016;21:211. doi: 10.3390/molecules21020211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Nugraha A.S., Hilou A., Vandegraaff N., Rhodes D.I., Haritakun R., Keller P.A. Bioactive glycosides from the African medicinal plant Boerhavia erecta L. Nat. Prod. Res. 2015;29:1954–1958. doi: 10.1080/14786419.2015.1013470. [DOI] [PubMed] [Google Scholar]
  • 291.Reutrakul V., Ningnuek N., Pohmakotr M., Yoosook C., Napaswad C., Kasisit J., Santisuk T., Tuchinda P. Anti HIV-1 flavonoid glycosides from Ochna integerrima. Planta Med. 2007;73:683–688. doi: 10.1055/s-2007-981538. [DOI] [PubMed] [Google Scholar]
  • 292.Maroyi A. Ximenia caffra Sond. (Ximeniaceae) in sub-Saharan Africa: A synthesis and review of its medicinal potential. J. Ethnopharmacol. 2016;184:81–100. doi: 10.1016/j.jep.2016.02.052. [DOI] [PubMed] [Google Scholar]
  • 293.Hatano T., Yasuhara T., Matsuda M., Yazaki K., Yoshida T., Okuda T. Oenothein B, a dimeric hydrolyzable tannin of cyclic structure. Chem. Pharm. Bull. 1989;37:2269–2271. doi: 10.1248/cpb.37.2269. [DOI] [PubMed] [Google Scholar]
  • 294.Hu Q.F., Zhou B., Huang J.M., Gao X.M., Shu L.D., Yang G.Y., Che C.T. Antiviral phenolic compounds from Arundina gramnifolia. J. Nat. Prod. 2013;76:292–296. doi: 10.1021/np300727f. [DOI] [PubMed] [Google Scholar]
  • 295.Bessong P.O., Rojas L.B., Obi L.C., Tshisikawe P.M., Igunbor E.O. Further screening of venda medicinal plants for activity against HIV type 1 reverse transcriptase and integrase. Afr. J. Biotechnol. 2006;5:526–528. [Google Scholar]
  • 296.Notka F., Meier G.R., Wagner R. Inhibition of wild-type human immunodeficiency virus and reverse transcriptase inhibitor-resistant variants by Phyllanthus amarus. Antivir. Res. 2003;58:175–186. doi: 10.1016/S0166-3542(02)00213-9. [DOI] [PubMed] [Google Scholar]
  • 297.Ogata T., Higuchi H., Mochida S., Matsumoto H., Kato A., Endo T., Kaji A., Kaji H. HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. AIDS Res. Hum. Retrovir. 1992;8:1937–1944. doi: 10.1089/aid.1992.8.1937. [DOI] [PubMed] [Google Scholar]
  • 298.Eberhardt T.L., Young R.A. Assessment of the anti-HIV activity of a pine cone isolate. Planta Med. 1996;62:63–65. doi: 10.1055/s-2006-957801. [DOI] [PubMed] [Google Scholar]
  • 299.Lai P.K., Donovan J., Takayama H., Sakagami H., Tanaka A., Konno K., Nonoyama M. Modification of human immunodeficiency viral replication by pine cone extracts. AIDS Res. Hum. Retrovir. 1990;6:205–217. doi: 10.1089/aid.1990.6.205. [DOI] [PubMed] [Google Scholar]
  • 300.Porika M., Aileni M., Kokkirala V.R., Gadidasu K., Umate P., Rao A.V., Devarakonda R.K., Abbagani S. In vitro HIV type-1 reverse transcriptase inhibitory activity from leaf extracts of Scoparia dulcis L. J. Herbs Spices Med. Plants. 2009;15:241–247. doi: 10.1080/10496470903378854. [DOI] [Google Scholar]
  • 301.Esposito F., Carli I., Del Vecchio C., Xu L., Corona A., Grandi N., Piano D., Maccioni E., Distinto S., Parolin C., et al. Sennoside a, derived from the traditional Chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine. 2016;23:1383–1391. doi: 10.1016/j.phymed.2016.08.001. [DOI] [PubMed] [Google Scholar]
  • 302.Zhao X.H., Han F., Li Y.L., Yue H.L. Preparative isolation and purification of three stilbene glycosides from the Tibetan medicinal plant Rheum tanguticum Maxim. Ex Balf. By high-speed counter-current chromatography. Phytochem. Anal. 2013;24:171–175. doi: 10.1002/pca.2397. [DOI] [PubMed] [Google Scholar]
  • 303.Piacente S., Pizza C., De Tommasi N., Mahmood N. Constituents of Ardisia japonica and their in vitro anti-HIV activity. J. Nat. Prod. 1996;59:565–569. doi: 10.1021/np960074h. [DOI] [PubMed] [Google Scholar]
  • 304.Dai J.-R., Decosterd L.A., Gustafson K.R., Cardellina J.H., Gray G.N., Boyd M.R. Novel naphthoquinones from Conospermum incurvum. J. Nat. Prod. 1994;57:1511–1516. doi: 10.1021/np50113a006. [DOI] [PubMed] [Google Scholar]
  • 305.Min B.S., Jung H.J., Lee J.S., Kim Y.H., Bok S.H., Ma C.M., Nakamura N., Hattori M., Bae K. Inhibitory effect of triterpenes from Crataegus pinatifida on HIV-I protease. Planta Med. 1999;65:374–375. doi: 10.1055/s-2006-960792. [DOI] [PubMed] [Google Scholar]
  • 306.Mahmood N., Piacente S., Pizza C., Burke A., Khan A.I., Hayt A.J. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochem. Biophys. Res. Commun. 1996;229:73–79. doi: 10.1006/bbrc.1996.1759. [DOI] [PubMed] [Google Scholar]
  • 307.Jong Cheol P., Suk Nam K., Kwang Jin C., Jong Won C. Anti-HIV-1 protease activity and in vivo anti-lipid peroxidative effect on Rosa davurica. Korean J. Pharmacogn. 2000;31:264–267. [Google Scholar]
  • 308.Liang J., Chen J., Tan Z., Peng J., Zheng X., Nishiura K., Ng J., Wang Z., Wang D., Chen Z., et al. Extracts of the medicinal herb Sanguisorba officinalis inhibit the entry of human immunodeficiency virus-1. J. Food Drug Anal. 2013;21:S52–S58. doi: 10.1016/j.jfda.2013.09.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 309.Chinnaiyan S.K., Subramanian M.R., Vinoth Kumar S., Chandu A.N., Deivasigamani K. Antimicrobial and anti-HIV activity of extracts of Canthium coromandelicum (Burm.F.) Alston leaves. J. Pharm. Res. 2013;7:588–594. doi: 10.1016/j.jopr.2013.06.026. [DOI] [Google Scholar]
  • 310.Reutrakul V., Krachangchaeng C., Tuchinda P., Pohmakotr M., Jaipetch T., Yoosook C., Kasisit J., Sophasan S., Sujarit K., Santisuk T. Cytotoxic and anti-HIV-1 constituents from leaves and twigs of Gardenia tubifera. Tetrahedron. 2004;60:1517–1523. doi: 10.1016/j.tet.2003.12.010. [DOI] [Google Scholar]
  • 311.Lamorde M., Tabuti J.R.S., Obua C., Kukunda-Byobona C., Lanyero H., Byakika-Kibwika P., Bbosa G.S., Lubega A., Ogwal-Okeng J., Ryan M., et al. Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda. J. Ethnopharmacol. 2010;130:43–53. doi: 10.1016/j.jep.2010.04.004. [DOI] [PubMed] [Google Scholar]
  • 312.Ayisi N.K., Nyadedzor C. Comparative in vitro effects of azt and extracts of Ocimum gratissimum, Ficus polita, Clausena anisata, Alchornea cordifolia, and Elaeophorbia drupifera against HIV-1 and HIV-2 infections. Antivir. Res. 2003;58:25–33. doi: 10.1016/S0166-3542(02)00166-3. [DOI] [PubMed] [Google Scholar]
  • 313.Sunthitikawinsakul A., Kongkathip N., Kongkathip B., Phonnakhu S., Daly J.W., Spande T.F., Nimit Y., Napaswat C., Kasisit J., Yoosook C. Anti-HIV-1 limonoid: First isolation from Clausena excavata. Phytother. Res. 2003;17:1101–1103. doi: 10.1002/ptr.1381. [DOI] [PubMed] [Google Scholar]
  • 314.Rashid M., Gustafson K., Kashmani Y., Cardellina J., III, McMahon J., Boyd M. Anti-HIV alkaloids from Toddalia asiatica. Nat. Prod. Lett. 1995;6:153–156. doi: 10.1080/10575639508044104. [DOI] [Google Scholar]
  • 315.Kim H.J., Woo E.-R., Shin C.-G., Park H. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J. Nat. Prod. 1998;61:145–148. doi: 10.1021/np970171q. [DOI] [PubMed] [Google Scholar]
  • 316.Yang X.W., Zhao J., Cui Y.X., Liu X.H., Ma C.M., Hattori M., Zhang L.H. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis. J. Nat. Prod. 1999;62:1510–1513. doi: 10.1021/np990180u. [DOI] [PubMed] [Google Scholar]
  • 317.Suedee A., Tewtrakul S., Panichayupakaranant P. Anti-HIV-1 integrase compound from Pometia pinnata leaves. Pharm. Biol. 2013;51:1256–1261. doi: 10.3109/13880209.2013.786098. [DOI] [PubMed] [Google Scholar]
  • 318.Fang E.F., Ng T.B. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties. Appl. Biochem. Biotechnol. 2015;175:3828–3839. doi: 10.1007/s12010-015-1550-1. [DOI] [PubMed] [Google Scholar]
  • 319.Sahu N.P., Mandal N.B., Banerjee S., Siddiqui K.A.I. Chemistry and biology of the triterpenes and saponins from seeds of Mimusops elengi. J. Herbs Spices Med. Plants. 2001;8:29–37. doi: 10.1300/J044v08n04_04. [DOI] [Google Scholar]
  • 320.Gosse B., Gnabre J., Bates R.B., Dicus C.W., Nakkiew P., Huang R.C.C. Antiviral saponins from Tieghemella heckelii. J. Nat. Prod. 2002;65:1942–1944. doi: 10.1021/np020165g. [DOI] [PubMed] [Google Scholar]
  • 321.Hayashi K., Kamiya M., Hayashi T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med. 1995;61:237–241. doi: 10.1055/s-2006-958063. [DOI] [PubMed] [Google Scholar]
  • 322.Lee J., Huh M.S., Kim Y.C., Hattori M., Otake T. Lignan, sesquilignans and dilignans, novel HIV-1 protease and cytopathic effect inhibitors purified from the rhizomes of Saururus chinensis. Antivir. Res. 2010;85:425–428. doi: 10.1016/j.antiviral.2009.11.002. [DOI] [PubMed] [Google Scholar]
  • 323.Song W.Y., Ma Y.B., Bai X., Zhang X.M., Gu Q., Zheng Y.T., Zhou J., Chen J.J. Two new compounds and anti-HIV active constituents from Illicium verum. Planta Med. 2007;73:372–375. doi: 10.1055/s-2007-967162. [DOI] [PubMed] [Google Scholar]
  • 324.Gao X.-M., Pu J.-X., Huang S.-X., Yang L.-M., Huang H., Xiao W.-L., Zheng Y.-T., Sun H.-D. Lignans from Kadsura angustifolia. J. Nat. Prod. 2008;71:558–563. doi: 10.1021/np0705108. [DOI] [PubMed] [Google Scholar]
  • 325.Xu L.J., Peng Z.G., Chen H.S., Wang J., Xiao P.G. Bioactive triterpenoids from Kadsura heteroclita. Chem. Biodivers. 2010;7:2289–2295. doi: 10.1002/cbdv.200900173. [DOI] [PubMed] [Google Scholar]
  • 326.Pu J.X., Yang L.M., Xiao W.L., Li R.T., Lei C., Gao X.M., Huang S.X., Li S.H., Zheng Y.T., Huang H., et al. Compounds from Kadsura heteroclita and related anti-HIV activity. Phytochemistry. 2008;69:1266–1272. doi: 10.1016/j.phytochem.2007.11.019. [DOI] [PubMed] [Google Scholar]
  • 327.Sun Q.Z., Chen D.F., Ding P.L., Ma C.M., Kakuda H., Nakamura N., Hattori M. Three new lignans, longipedunins A-C, from Kadsura longipedunculata and their inhibitory activity against HIV-1 protease. Chem. Pharm. Bull. 2006;54:129–132. doi: 10.1248/cpb.54.129. [DOI] [PubMed] [Google Scholar]
  • 328.Xiao W.-L., Tian R.-R., Pu J.-X., Li X., Wu L., Lu Y., Li S.-H., Li R.-T., Zheng Y.-T., Zheng Q.-T., et al. Triterpenoids from Schisandra lancifolia with anti-HIV-1 activity. J. Nat. Prod. 2006;69:277–279. doi: 10.1021/np0503303. [DOI] [PubMed] [Google Scholar]
  • 329.Xiao W.L., Huang S.X., Zhang L., Tian R.R., Wu L., Li X.L., Pu J.X., Zheng Y.T., Lu Y., Li R.T., et al. Nortriterpenoids from Schisandra lancifolia. J. Nat. Prod. 2006;69:650–653. doi: 10.1021/np060047j. [DOI] [PubMed] [Google Scholar]
  • 330.Li X.-N., Pu J.-X., Du X., Yang L.-M., An H.-M., Lei C., He F., Luo X., Zheng Y.-T., Lu Y., et al. Lignans with anti-HIV activity from Schisandra propinqua var. sinensis. J. Nat. Prod. 2009;72:1133–1141. doi: 10.1021/np900123z. [DOI] [PubMed] [Google Scholar]
  • 331.Xiao W.-L., Li X.L., Wang R.-R., Yang L.-M., Li L.M., Huang S.-X., Pu J.-X., Zheng Y.-T., Li R.-T., Sun H.-D. Triterpenoids from Schisandra rubriflora. J. Nat. Prod. 2007;70:1056–1059. doi: 10.1021/np0700927. [DOI] [PubMed] [Google Scholar]
  • 332.Sun H., Qiu S., Lin L., Wang Z., Lin Z., Pengsuparp T., Pezzuto J.M., Fong H.H.S., Cordell G.A., Farnsworth N.R. Nigranoic acid, a triterpenoid from Schisandra sphaerandra that inhibits HIV-1 reverse transcriptase. J. Nat. Prod. 1996;59:525–527. doi: 10.1021/np960149h. [DOI] [PubMed] [Google Scholar]
  • 333.Xiao W.L., Pu J.X., Chang Y., Li X.L., Huang S.X., Yang L.M., Li L.M., Lu Y., Zheng Y.T., Li R.T., et al. Sphenadilactones A and B, two novel nortriterpenoids from Schisandra sphenanthera. Organ. Lett. 2006;8:1475–1478. doi: 10.1021/ol060324d. [DOI] [PubMed] [Google Scholar]
  • 334.Liang C.Q., Luo R.H., Yan J.M., Li Y., Li X.N., Shi Y.M., Shang S.Z., Gao Z.H., Yang L.M., Zheng Y.T., et al. Structure and bioactivity of triterpenoids from the stems of Schisandra sphenanthera. Arch. Pharm. Res. 2014;37:168–174. doi: 10.1007/s12272-013-0133-3. [DOI] [PubMed] [Google Scholar]
  • 335.Yang G.Y., Li Y.K., Wang R.R., Xiao W.L., Yang L.M., Pu J.X., Zheng Y.T., Sun H.D. Dibenzocyclooctadiene lignans from the fruits of Schisandra wilsoniana and their anti-HIV-1 activities. J. Asian Nat. Prod. Res. 2010;12:470–476. doi: 10.1080/10286020.2010.489823. [DOI] [PubMed] [Google Scholar]
  • 336.Xu Z., Chang F.-R., Wang H.-K., Kashiwada Y., McPhail A.T., Bastow K.F., Tachibana Y., Cosentino M., Lee K.-H. Anti-HIV agents 45 and antitumor agents 205. Two new sesquiterpenes, leitneridanins A and B, and the cytotoxic and anti-HIV principles from Leitneria floridana. J. Nat. Prod. 2000;63:1712–1715. doi: 10.1021/np000260u. [DOI] [PubMed] [Google Scholar]
  • 337.Wang W.X., Qian J.Y., Wang X.J., Jiang A.P., Jia A.Q. Anti-HIV-1 activities of extracts and phenolics from Smilax china L. Pakistan J. Pharm. Sci. 2014;27:147–151. [PubMed] [Google Scholar]
  • 338.Shy S.N., Chang W.T., Lee S.S., Chen Liu K.C.S. Production of triterpenes from cell suspension cultures of Solanum incanum L. Chin. Pharm. J. 2000;52:35–42. [Google Scholar]
  • 339.Mamba P., Adebayo S.A., Tshikalange T.E. Anti-microbial, anti-inflammatory and HIV-1 reverse transcriptase activity of selected South African plants used to treat sexually transmitted diseases. Int. J. Pharmacogn. Phytochem. Res. 2016;8:1870–1876. [Google Scholar]
  • 340.Kumar S., Pandey A.K. Medicinal attributes of Solanum xanthocarpum fruit consumed by several tribal communities as food: An in vitro antioxidant, anticancer and anti HIV perspective. BMC Complement. Altern. Med. 2014;14:112. doi: 10.1186/1472-6882-14-112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 341.Rege A.A., Chowdhary A.S. Evaluation of some medicinal plants as putative HIV-protease inhibitors. Indian Drugs. 2013;50:24–28. [Google Scholar]
  • 342.Wu N., Wang L., Chzn Y.K., Liao Z., Yang G.Y., Hu Q.F. Lignans from the stem of Styrax japonica. Asian J. Chem. 2011;23:931–932. [Google Scholar]
  • 343.Park J.C., Hur J.M., Park J.G., Hatano T., Yoshida T., Miyashiro H., Min B.S., Hattori M. Inhibitory effects of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease. Phytother. Res. 2002;16:422–426. doi: 10.1002/ptr.919. [DOI] [PubMed] [Google Scholar]
  • 344.Zhang X., Huang S.Z., Gu W.G., Yang L.M., Chen H., Zheng C.B., Zhao Y.X., Wan D.C.C., Zheng Y.T. Wikstroelide M potently inhibits HIV replication by targeting reverse transcriptase and integrase nuclear translocation. Chin. J. Nat. Med. 2014;12:186–193. doi: 10.1016/S1875-5364(14)60031-5. [DOI] [PubMed] [Google Scholar]
  • 345.Hu Q.F., Mu H.X., Huang H.T., Lv H.Y., Li S.L., Tu P.F., Li G.P. Secolignans, neolignans and phenylpropanoids from Daphne feddei and their biological activities. Chem. Pharm. Bull. 2011;59:1421–1424. doi: 10.1248/cpb.59.1421. [DOI] [PubMed] [Google Scholar]
  • 346.Rahman M.K., Chowdhury M.A., Islam M.F., Barua S., Rahman M.A. Antidiarrheal and thrombolytic effects of methanol extract of Wikstroemia indica (L.) C. A. Mey leaves. Int. J. Green Pharm. 2015;9:8–13. doi: 10.4103/0973-8258.150914. [DOI] [Google Scholar]
  • 347.Charan R.D., Munro M.H.G., O’Keefe B.R., Sowder Ii R.C., McKee T.C., Currens M.J., Pannell L.K., Boyd M.R. Isolation and characterization of Myrianthus holstii lectin, a potent HIV-1 inhibitory protein from the plant Myrianthus holstii. J. Nat. Prod. 2000;63:1170–1174. doi: 10.1021/np000039h. [DOI] [PubMed] [Google Scholar]
  • 348.Piccinelli A.L., Mahmood N., Mora G., Poveda L., De Simone F., Rastrelli L. Anti-HIV activity of dibenzylbutyrolactone-type lignans from Phenax species endemic in Costa Rica. J. Pharm. Pharmacol. 2005;57:1109–1115. doi: 10.1211/jpp.57.9.0006. [DOI] [PubMed] [Google Scholar]
  • 349.Turville S.G., Vermeire K., Balzarini J., Schols D. Sugar-binding proteins potently inhibit dendritic cell human immunodeficiency virus type 1 (HIV-1) infection and dendritic-cell-directed HIV-1 transfer. J. Virol. 2005;79:13519–13527. doi: 10.1128/JVI.79.21.13519-13527.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 350.Mujovo S., Hussein A., Meyer J.J.M., Fourie B., MutHIVhi T., Lall N. Bioactive compounds from Lippia javanica and Hoslundia opposita. Nat. Prod. Res. 2008;22:1047–1054. doi: 10.1080/14786410802250037. [DOI] [PubMed] [Google Scholar]
  • 351.Pflieger A., Teguo P.W., Papastamoulis Y., Chaignepain S., Subra F., Munir S., Delelis O., Lesbats P., Calmels C., Andreola M.L., et al. Natural stilbenoids isolated from grapevine exhibiting inhibitory effects against HIV-1 integrase and eukaryote MOS1 transposase in vitro activities. PLoS ONE. 2013;8:e81184. doi: 10.1371/journal.pone.0081184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 352.Afolayan A.J., Grierson D.S., Mbeng W.O. Ethnobotanical survey of medicinal plants used in the management of skin disorders among the Xhosa communities of the Amathole district, Eastern Cape, South Africa. J. Ethnopharmacol. 2014;153:220–232. doi: 10.1016/j.jep.2014.02.023. [DOI] [PubMed] [Google Scholar]
  • 353.Olatunya O.S., Olatunya A.M., Anyabolu H.C., Adejuyigbe E.A., Oyelami O.A. Preliminary trial of Aloe vera gruel on HIV infection. J. Altern. Complement. Med. 2012;18:850–853. doi: 10.1089/acm.2010.0735. [DOI] [PubMed] [Google Scholar]
  • 354.Sookkongwaree K., Geitmann M., Roengsumran S., Petsom A., Danielson U.H. Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie. 2006;61:717–721. [PubMed] [Google Scholar]
  • 355.Voravuthikunchai S.P., Phongpaichit S., Subhadhirasakul S. Evaluation of antibacterial activities of medicinal plants widely used among AIDS patients in Thailand. Pharm. Biol. 2005;43:701–706. doi: 10.1080/13880200500385194. [DOI] [Google Scholar]
  • 356.Tan E.C., Karsani S.A., Foo G.T., Wong S.M., Abdul Rahman N., Khalid N., Othman S., Yusof R. Proteomic analysis of cell suspension cultures of Boesenbergia rotunda induced by phenylalanine: Identification of proteins involved in flavonoid and phenylpropanoid biosynthesis pathways. Plant Cell Tissue Organ Cult. 2012;111:219–229. doi: 10.1007/s11240-012-0188-8. [DOI] [Google Scholar]
  • 357.Md-Mustafa N.D., Khalid N., Gao H., Peng Z., Alimin M.F., Bujang N., Ming W.S., Mohd-Yusuf Y., Harikrishna J.A., Othman R.Y. Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture. BMC Genom. 2014;15 doi: 10.1186/1471-2164-15-984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 358.Mesa M.D. Pharmacological and nutritional effects of Curcuma longa L. extracts and curcuminoids. Ars Pharm. 2000;41:307–321. [Google Scholar]
  • 359.Gnabre J.N., Brady J.N., Clanton D.J., Ito Y., Dittmer J., Bates R.B., Huang R.C.C. Inhibition of human immunodeficiency virus type 1 transcription and replication by DNA sequence-selective plant lignans. Proc. Natl. Acad. Sci. USA. 1995;92:11239–11243. doi: 10.1073/pnas.92.24.11239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 360.Borris R.P. Natural products research: Perspectives from a major pharmaceutical company. J. Ethnopharmacol. 1996;51:29–38. doi: 10.1016/0378-8741(95)01347-4. [DOI] [PubMed] [Google Scholar]
  • 361.Yang S.S., Cragg G.M., Newman D.J., Bader J.P. Natural product-based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics program. J. Nat. Prod. 2001;64:265–277. doi: 10.1021/np0003995. [DOI] [PubMed] [Google Scholar]
  • 362.Sarin P.S. Molecular pharmacologic approaches to the treatment of AIDS. Annu. Rev. Pharmacol. Toxicol. 1988;28:411–428. doi: 10.1146/annurev.pa.28.040188.002211. [DOI] [PubMed] [Google Scholar]
  • 363.Vlietinck A.J., Berghe D.A.V. Can ethnopharmacology contribute to the development of antiviral drugs? J. Ethnopharmacol. 1991;32:141–153. doi: 10.1016/0378-8741(91)90112-Q. [DOI] [PubMed] [Google Scholar]
  • 364.Harvey A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today. 2000;5:294–300. doi: 10.1016/S1359-6446(00)01511-7. [DOI] [PubMed] [Google Scholar]
  • 365.Beutler J.A. Natural products as a foundation for drug discovery. Curr. Protoc. Pharmacol. 2009;46:9–11. doi: 10.1002/0471141755.ph0911s46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 366.Vlietinck A., De Bruyne T., Apers S., Pieters L. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med. 1998;64:97–109. doi: 10.1055/s-2006-957384. [DOI] [PubMed] [Google Scholar]
  • 367.De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med. Res. Rev. 2000;20:323–349. doi: 10.1002/1098-1128(200009)20:5&#x0003c;323::AID-MED1&#x0003e;3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  • 368.Jadaun P., Khopkar P., Kulkarni S. Repurposing Phytochemicals as Anti-HIV Agents. J. Antivir. Antiretrovir. 2016;8:139–141. doi: 10.4172/jaa.1000150. [DOI] [Google Scholar]
  • 369.Lubbe A., Seibert I., Klimkait T., Van der Kooy F. Ethnopharmacology in overdrive: The remarkable anti-HIV activity of Artemisia annua. J. Ethnopharmacol. 2012;141:854–859. doi: 10.1016/j.jep.2012.03.024. [DOI] [PubMed] [Google Scholar]
  • 370.Burack J.H., Cohen M.R., Hahn J.A., Abrams D.I. Pilot randomized controlled trial of Chinese herbal treatment for HIV-associated symptoms. J. Acquir. Immune Defic. Syndr. 1996;12:386–393. doi: 10.1097/00042560-199608010-00009. [DOI] [PubMed] [Google Scholar]
  • 371.Kalvatchev Z., Walder R., Garzaro D. Anti-HIV activity of extracts from Calendula officinalis flowers. Biomed. Pharmacother. 1997;51:176–180. doi: 10.1016/S0753-3322(97)85587-4. [DOI] [PubMed] [Google Scholar]
  • 372.Pengsuparp T., Serit M., Hughes S.H., Soejarto D.D., Pezzuto J.M. Specific inhibition of human immunodeficiency virus type 1 reverse transcriptase mediated by soulattrolide, a coumarin isolated from the latex of Calophyllum teysmannii. J. Nat. Prod. 1996;59:839–842. doi: 10.1021/np960399y. [DOI] [PubMed] [Google Scholar]
  • 373.Leteane M.M., Ngwenya B.N., Muzila M., Namushe A., Mwinga J., Musonda R., Moyo S., Mengestu Y.B., Abegaz B.M., Andrae-Marobela K. Old plants newly discovered: Cassia sieberiana DC and Cassia abbreviata Oliv. Oliv. root extracts inhibit in vitro HIV-1C replication in peripheral blood mononuclear cells (pbmcs) by different modes of action. J. Ethnopharmacol. 2012;141:48–56. doi: 10.1016/j.jep.2012.01.044. [DOI] [PubMed] [Google Scholar]
  • 374.Gerenčer M., Turecek P.L., Kistner O., Mitterer A., Savidis-Dacho H., Barrett N.P. In vitro and in vivo anti-retroviral activity of the substance purified from the aqueous extract of Chelidonium majus L. Antivir. Res. 2006;72:153–156. doi: 10.1016/j.antiviral.2006.03.008. [DOI] [PubMed] [Google Scholar]
  • 375.Rashed K., Zhang X.-J., Luo M.-T., Zheng Y.-T. Anti-HIV-1 activity of phenolic compounds isolated from Diospyros lotus fruits. Phytopharmacology. 2012;3:199–207. [Google Scholar]
  • 376.Bedoya L., Palomino S.S., Abad M., Bermejo P., Alcami J. Screening of selected plant extracts for in vitro inhibitory activity on human immunodeficiency virus. Phytother. Res. 2002;16:550–554. doi: 10.1002/ptr.992. [DOI] [PubMed] [Google Scholar]
  • 377.Wu L., Bao J.-k. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (Gna)-related lectins. Glycoconj. J. 2013;30:269–279. doi: 10.1007/s10719-012-9440-z. [DOI] [PubMed] [Google Scholar]
  • 378.Magadula J.J. A bioactive isoprenylated xanthone and other constituents of Garcinia edulis. Fitoterapia. 2010;81:420–423. doi: 10.1016/j.fitote.2009.12.002. [DOI] [PubMed] [Google Scholar]
  • 379.Hudson J., Harris L., Towers G. The importance of light in the anti-HIV effect of hypericin. Antivir. Res. 1993;20:173–178. doi: 10.1016/0166-3542(93)90006-5. [DOI] [PubMed] [Google Scholar]
  • 380.Gulick R.M., McAuliffe V., Holden-Wiltse J., Crumpacker C., Liebes L., Stein D.S., Meehan P., Hussey S., Forcht J., Valentine F.T. Phase I studies of hypericin, the active compound in St. John’s wort, as an antiretroviral agent in HIV-infected adults: AIDS clinical trials group protocols 150 and 258. Ann. Intern. Med. 1999;130:510–514. doi: 10.7326/0003-4819-130-6-199903160-00015. [DOI] [PubMed] [Google Scholar]
  • 381.Zhang H.-J., Rumschlag-Booms E., Guan Y.-F., Wang D.-Y., Liu K.-L., Li W.-F., Nguyen V.H., Cuong N.M., Soejarto D.D., Fong H.H. Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa. J. Nat. Prod. 2017;80:1798–1807. doi: 10.1021/acs.jnatprod.7b00004. [DOI] [PubMed] [Google Scholar]
  • 382.Jiratchariyakul W., Wiwat C., Vongsakul M., Somanabandhu A., Leelamanit W., Fujii I., Suwannaroj N., Ebizuka Y. HIV inhibitor from Thai bitter gourd. Planta Med. 2001;67:350–353. doi: 10.1055/s-2001-14323. [DOI] [PubMed] [Google Scholar]
  • 383.Bot Y., Mgbojikwe L., Nwosu C., Abimiku A., Dadik J., Damshak D. Screening of the fruit pulp extract of Momordica balsamina for anti HIV property. Afr. J. Biotechnol. 2007;6:47–52. [Google Scholar]
  • 384.Eldeen I., Seow E., Abdullah R., Sulaiman S. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven Phyllanthus sp. S. Afr. J. Bot. 2011;77:75–79. doi: 10.1016/j.sajb.2010.05.009. [DOI] [Google Scholar]
  • 385.Wang R.-R., Gu Q., Yang L.-M., Chen J.-J., Li S.-Y., Zheng Y.-T. Anti-HIV-1 activities of extracts from the medicinal plant Rhus chinensis. J. Ethnopharmacol. 2006;105:269–273. doi: 10.1016/j.jep.2005.11.008. [DOI] [PubMed] [Google Scholar]
  • 386.Durge A., Jadaun P., Wadhwani A., Chinchansure A.A., Said M., Thulasiram H., Joshi S.P., Kulkarni S.S. Acetone and methanol fruit extracts of Terminalia paniculata inhibit HIV-1 infection in vitro. Nat. Prod. Res. 2017;31:1468–1471. doi: 10.1080/14786419.2016.1258561. [DOI] [PubMed] [Google Scholar]
  • 387.Jian W., Feng-Zhen Y., Min Z., Yun-Hui Z., Yong-Xiang Z., Ying L., Wei-Min L., Fu-Sheng W., Shu-Ling X., Zhi-Min Y. Randomized double-blinded and controlled clinical trial on treatment of HIV/AIDS by zhongyan-4. Chin. J. Integr. Med. 2006;12:6–11. doi: 10.1007/BF02857422. [DOI] [PubMed] [Google Scholar]
  • 388.Zhang L., Yue S.-T., Xue Y.-X., Attele A.S., Yuan C.-S. Effects of Qian-Kun-Nin, a Chinese herbal medicine formulation, on HIV positive subjects: A pilot study. Am. J. Chin. Med. 2000;28:305–312. doi: 10.1142/S0192415X00000362. [DOI] [PubMed] [Google Scholar]
  • 389.Colebunders R., Dreezen C., Florence E., Pelgrom Y., Schrooten W. The use of complementary and alternative medicine by persons with HIV infection in Europe. Int. J. STD AIDS. 2003;14:672–674. doi: 10.1258/095646203322387929. [DOI] [PubMed] [Google Scholar]
  • 390.Owen-Smith A., Diclemente R., Wingood G. Complementary and alternative medicine use decreases adherence to HAART in HIV-positive women. AIDS Care. 2007;19:589–593. doi: 10.1080/09540120701203279. [DOI] [PubMed] [Google Scholar]
  • 391.Tshibangu K., Worku Z., De Jongh M., Van Wyk A., Mokwena S., Peranovic V. Assessment of effectiveness of traditional herbal medicine in managing HIV/AIDS patients in south Africa. East Afr. Med. J. 2004;81:499–504. doi: 10.4314/eamj.v81i10.9231. [DOI] [PubMed] [Google Scholar]
  • 392.Mills E., Cooper C., Seely D., Kanfer I. African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutr. J. 2005;4:19. doi: 10.1186/1475-2891-4-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 393.Tani M., Nagase M., Nishiyama T., Yamamoto T., Matusa R. The effects of long-term herbal treatment for pediatric AIDS. Am. J. Chin. Med. 2002;30:51–64. doi: 10.1142/S0192415X02000065. [DOI] [PubMed] [Google Scholar]
  • 394.Djohan Y., Camara C., Monde A., Koffi G., Niamké G., Déré L., Tiahou G., Djessou P., Sess D. Interest of antioxidants in the care of the patients infected by the HIV: The experience of long term administration of alternanthera pungens herb tea. Ann. Biol. Clin. 2009;67:563–568. doi: 10.1684/abc.2009.0362. [DOI] [PubMed] [Google Scholar]

Articles from International Journal of Molecular Sciences are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES