Skip to main content
Chinese Journal of Lung Cancer logoLink to Chinese Journal of Lung Cancer
. 2010 Nov 20;13(11):1004–1008. [Article in Chinese] doi: 10.3779/j.issn.1009-3419.2010.11.02

人肺腺癌TLE1 N端Q结构域片段在原核系统表达纯化及其多克隆抗体的制备

Prokaryotic Expression and Purifcation of Human TLE1 N-terminal Q Domain Fragment and Production of its Polyclonal Antibody

Su WANG 1, Zhifei XU 1,*, Hua TANG 1, Lingyun WEI 1, Xuewei ZHAO 1
PMCID: PMC6000491  PMID: 21081038

Abstract

Background and objective

TLE1 is an important protein in regulating Wnt, Notch and EGFR signaling pathways. The TLE1 N-terminal Q domain regulates the pathways by mediating its oligomerization and interaction with LEF1. The aim of this study is to construct the human TLE1 N-terminal Q domain fragment in prokaryotic expression system, express and purify protein TLE1 N-terminal Q domain and prepare its polyclonal antibody.

Methods

The sequence of TLE1 N-terminal Q domain obtained by PCR from human lung adenocarcinoma cDNA, was cloned into the prokaryotic expression vector pGEX-4T-1 containing Glutathione S-transferase (GST). Vector pGEX-4T1-TLE1-Q was transformed into E.coli BL21 condon plus. The GST-TLE1-Q(1-136) fusion protein was induced by IPTG, digested by Thrombin, purified with glutathione-sepharose beads and FPLC, identified by SDS-PAGE. Then rabbits were immunized with the purified protein TLE1-Q(1-136) for obtaining the antiserum. The titers and specificity of antibodies were measured by ELISA and Western blot.

Results

The PCR identification and the sequencing of recombinant plasmid demonstrated that vector pGEX-4T1-TLE1-Q was successfully constructed. The SDS-PAGE shows target protein (14 000 Da) is the interest protein TLE1-Q(1-136). The TLE1 N-terminal Q domain fragment TLE1-Q(1-136) and its polyclonal antibody have been acquired, with an antibody titer of 1:20 000.

Conclusion

Expression vector pGEX-4T1-TLE1-Q is correctly constructed. The TLE1 N-terminal Q domain fragment TLE1-Q(1-136) and its polyclonal antibody have been acquired. These work established the foundation for further biological study between TLE1 and lung cancers.

Keywords: Lung neoplasms, TLE1, Gene cloning, Prokaryotic expression and purification, Polyclonal antibody


TLE是Groucho蛋白家族在哺乳类动物中的同源物,作为转录共抑制分子,通过与Hairy、Tcf/Lef1、Runt等蛋白家族作用,形成转录抑制复合物,调控基因表达[1-4]。人TLE1基因定位于第9号染色体,全长2 310 bp,编码770个氨基酸。TLE1蛋白是Notch信号通路下游重要调控蛋白,也可参与其它多个细胞信号通路传导,如Shh、EGFR等,成为多种信号通路间相互影响、相互作用的重要靶点[5, 6]。TLE1蛋白通过介导细胞的分化和发育,在胚胎发育、造血细胞发育分化、神经肿瘤尤其是恶性肿瘤生成等生理病理过程中起重要作用[7-9]。Allen等[8]通过组织芯片筛选实验证实TLE1在肺腺癌中表达显著增加,又在转基因大鼠模型中发现Grg1过表达对肺腺癌生成有促进作用,因此认为TLE1与肺腺癌发生发展有密切关系。

在Groucho蛋白家族中,TLE1-4四种蛋白均在氨基端含有富含谷氨酰胺的Q结构域,在羧基端含有高度保守的特征WD40样重复的结构域,此外TLE1还有3个保守性较低的结构域,分别是GP、SP和CcN。Q结构域作为TLE1蛋白两个高度保守的特征性结构域之一,主要发挥两部分生物学作用:寡聚化作用使TLE1形成四聚体,Q结构域关键基序点突变可导致寡聚化作用失败,从而使其转录抑制功能失活[10, 11];Q结构域通过直接与蛋白分子如Tcf/Lef1、PRDI结合,形成转录共轭复合物,影响下游信号蛋白表达,调控信号通路,从而发挥生物学活性[12, 13]。本实验通过对人TLE1 N端Q结构域的表达纯化,得到高纯度的Q结构域蛋白片段TLE1-Q(1-136),并成功制备其多克隆抗体,为解析TLE1-Q结构域蛋白结构、明确TLE1-Q结构域在Notch信号通路的作用方式、了解TLE1调控多条信号通路机理、理解TLE1促进肺癌生成机制打下基础。

1. 材料和方法

1.1. 菌株和表达载体

人肺腺癌cDNA文库(由本室前期保存);大肠杆菌E.coli BL21 condon plus及pGEX-4T-1载体由中科院上海生命科学院结构生物学平台杜嘉木博士提供。

1.2. 主要试剂

DNA胶回收试剂盒和质粒抽提试剂盒购自天根生化科技(北京)有限公司;KOD plus DNA聚合酶、dNTP、限制性内切酶BamHI和XholⅠ连接酶购自宝生物工程(大连)有限公司;Ligation High DNA连接酶购自东洋纺(上海)生物科技有限公司;Glutathion Sepharose 4B Fast Flow亲和层析凝胶、快速蛋白液相色谱(FPLC)、Thrombin酶购自GE公司;纯种新西兰大白兔6只(雄性)购自第二军医大学实验动物中心。

1.3. 引物设计

根据GenBank中人类TLE1基因序列(NM_005077),Omiga 2.0设计引物,选取TLE1 N端第1-136氨基酸残基,设计以BamHI、XholⅠ为酶切位点。引物序列为:tle5’: ata gga tcc atg ttc ccg cag agc和tle3’: tat ctc gag tca gcc atg aga aag atg。

1.4. 基因扩增

以人肺腺癌cDNA库为模板,以tle5’和tle3’作引物,KOD plus DNA聚合酶扩增。PCR反应参数设置为94 ℃预变性5 min,94 ℃变性30 s,55 ℃退火30 s,68 ℃延伸30 s,30个循环后,68 ℃延伸10 min,4 ℃孵育20 min。

1.5. 重组表达载体的构建及鉴定

人类TLE1 N端Q区基因PCR扩增产物以1%琼脂糖凝胶电泳检测,以QIANGEN胶回收试剂盒,按标准说明书回收。回收产物及质粒载体pGEX-4T-1以BamHI和XholⅠ限制性内切酶37 ℃酶切过夜。回收的酶切产物TLE1 N末端基因与pGEX-4T-1质粒以Ligtion High DNA连接酶16 ℃连接过夜。重组表达载体转化感受态细胞E.coli BL21 condon plus,Amp抗性筛选重组阳性菌,命名为pGEX-4T1-TLE1-Q,PCR及BamHI、XholⅠ双酶切鉴定,送上海博尚生物公司测序。

1.6. TLE1 N端Q结构域的表达纯化

pGEX-4T1-TLE1-Q菌株于LB 37 ℃培养至OD≈0.8,以0.5 mmol/L IPTG,16 ℃诱导过夜。离心收集菌体,以PBS(pH8.0)为破菌缓冲液,超声波破菌。高速离心收集上清液,与Glutathion Sepharose 4B Fast Flow beads混合3 h,PBS(pH8.0)洗脱未结合蛋白,10 mmol/L还原性谷胱甘肽洗脱融合目的蛋白GST-TLE1-Q(1-136)。100 U Thrombin 4 ℃,酶切16 h,透析至PBS(pH8.0),再次亲和纯化,去除GST-tag。以PBS 0.1%Chaps(pH8.0)洗脱目的蛋白TLE1-Q(1-136),FPLC纯化,SDS-PAGE分析纯度。

1.7. 多克隆抗体的制备

以纯化蛋白分别免疫新西兰大白兔,将300 μg TLE1-Q(1-136)蛋白与完全弗氏佐剂等体积混合充分乳化后,背部皮下多点注射初次免疫,21 d后200 μg TLE1-Q(1-136)蛋白与等体积的不完全弗氏佐剂混合乳化后,颈背部皮下多点加强免疫,加强免疫2次后,采心脏血,制备抗血清分离血清,分装储存于-20 ℃保存。间接ELISA法检测多克隆抗体效价。

1.8. Western blot分析

以pGEX-4T-1空载体转化的E.coli BL21 condon plus为阴性对照,纯化的TLE1-Q(1-136)蛋白经SDS-PAGE电泳,电转移(100 V,2 h,冰水浴)至硝酸纤维膜上,5%脱脂奶粉封闭,将制备的多克隆抗体(1:1 000稀释),4 ℃孵育过夜。1‰TBST洗膜,10 min/次,共3次,加入带HRP标记的羊抗兔二抗(1:2 000稀释),室温下孵育1 h,1‰TBST洗膜,15 min/次,共3次,最后加入化学荧光试剂,压片,曝光,拍照。

2. 结果

2.1. TLE1 N端Q区基因扩增鉴定

以构建的pGEX-4T1-TLE1-Q质粒载体为模板,以tle3’及tle5’为引物PCR扩增,双酶切后分别出现大小约408 bp的特异性条带,与目的大小片段相一致(图 1)。测序结果显示所获得的TLE1第1-136位氨基酸残基样品序列编码框架完整,编码区为408 bp,编码136个氨基酸残基。经Pubmed网站Blast分析,与人类基因组TLE1基因序列同源性为100%,编码TLE1蛋白N末端第1-136个氨基酸。

1.

M: Marker DL2000; 1: Double digest of pGEX-4T1-TLE1-Q with <italic>Bam</italic>HI and <italic>Xho</italic>lⅠ; 2: PCR product of pGEX-4T1-TLE1-Q.

重组质粒pGEX-4T1-TLE1-Q的PCR及双酶切鉴定

Identification of vector pGEX-4T1-TLE1-Q by PCR and digested with BamHI and XholⅠ

2.2. 重组人TLE1 N端Q结构域蛋白的表达及纯化结果

目的TLE1-Q(1-136)蛋白表达纯化后,以13.5%SDS-PAGE对全菌,上清,洗脱、酶切及纯化产物蛋白行鉴定分析。SDS-PAGE表明经一步亲和纯化,还原型谷胱甘肽洗脱,可以得到分子量约为41 000 Da左右的重组蛋白GST-TLE1-Q(1-136)。Thrombin酶切后,41 000 Da目的条带切开成为大小约26 000 Da和14 000 Da两条条带。再次经亲和、FPLC纯化,可得到大小约14 000 Da的目的蛋白TLE1-Q(1-136)(图 2)。

2.

M: Marker; 1: Total bacterial lysates pGEX-4T1-TLE-Q cells induced by IPTG; 2: Supematant of the induced cells after supersonication; 3: GST-TLE1-Q(1-136) eluted from the GST-beads by GSH; 4: Fragment digested by Thrombin; 5: Intersted protein TLE1-Q(1-136); 6: Final purified TLE1-Q(1-136).

重组蛋白GST-TLE1-Q(1-136)的SDS-PAGE鉴定

SDS-PAGE of recombinant protein GST-TLE1-Q(1-136)

2.3. TLE1 N端Q结构域蛋白多克隆抗体效价及特异性测定

纯化的TLE1 N端Q结构域蛋白TLE1-Q(1-136)以(0.1 μg/mL)每孔100 μL包被,ELISA法检测多克隆抗体效价,制备的抗血清效价达1:20 000。对TLE1-Q(1-136)蛋白经自制抗体行免疫印迹检测,可见一条分子量约14 000 Da的清晰条带,与预期结果相符,阴性对照未见明显条带,证明制备的抗体特异性较好(图 3)。

3.

1: Western blot of TLE1-Q (1-136) domain; 2: Western blot of negative control.

TLE1-Q(1-136)多克隆抗体的Western blot鉴定

Identification of polyclonal antibody by Western blot

3. 讨论

Gro/TLE家族作为转录共抑制分子,本身不与DNA直接结合,通过结合转录抑制蛋白形成复合物,对靶基因起“长程”转录抑制作用[4, 14]。Groucho/TLE蛋白分子中具有两个高度保守的特征性结构域,分别是:位于羧基端的含有多个色氨酸-天门冬氨酸二肽序列的WD40结构;位于氨基端的由130个氨基酸组成、富含谷氨酰胺的Q结构域。前期研究认为TLE1通过WD结构域与WRPW、Eh基序结合形成复合物,该复合物经N-末端由第1-136位氨基酸组成的Q结构域来发挥其转录抑制活性,可能机制为TLE1通过位于Q结构域的2个亮氨酸拉链状的α螺旋,形成四聚体抑制转录活性[10]。实验证实将亮氨酸突变后,TLE/Gro无法形成四聚体,失去转录抑制活性,分析认为TLE分子中第50-110位氨基酸残基对四聚体的形成起到关键作用[11]。近来亦有研究[13, 15]表明Q结构域不仅介导TLE及其家族蛋白之间的四聚化作用,也可直接结合Tcf/Lef1、gp130等转录调控因子,参与信号通路调控。本实验即选取TLE1第1-136位氨基酸残基TLE1-Q(1-136)即Q结构域所在片段进行表达纯化研究。

在原核系统中表达真核蛋白,蛋白的正确折叠是难点之一。蛋白的可溶性是由蛋白结构的空间折叠方式决定的,不同的折叠方式也可影响到蛋白分子上抗原决定簇,进而影响抗体的特异性与效价[16]。由于富含谷氨酰胺的蛋白在溶液中的可溶性较差[17],我们通过16 ℃低温诱导,控制蛋白生成速度,使目的蛋白以合适的速度转录、翻译,从而使其正确折叠,并借助GST-tag的助溶性,在上清中形成可溶的重组蛋白;同时GST-tag也为蛋白的纯化提供了亲和位点。SDS-PAGE电泳证实获得较高纯度的可溶重组蛋白GST-TLE1-Q(1-136),相对分子质量约为41 000 Da。由于无GST-Tag的TLE1蛋白的Q结构域性状更接近体内真实天然状态,并利于后期研究;且GST标签(26 000 Da)较Q结构域(14 000 Da)更大,用重组蛋白在制备抗体过程中可能会造成抗体的特异性和效价降低。我们尝试以Chaps为去垢剂,帮助维持蛋白在溶液中的稳定溶解状态,并以Thrombin酶切去除GST标签,最终得到相对分子质量约为14 000 Da、纯度高、特异性强、稳定可溶的TLE1N端Q结构域蛋白TLE1-Q(1-136)。用该纯化蛋白免疫家兔,成功制备该蛋白的多克隆抗体,ELISA检测效价为1:20 000,经Western blot与纯化蛋白TLE1-Q(1-136)免疫杂交出现条带,与预期结果一致,证实我们抗体制备成功,且具有高度的特异性。

TLE/Gro参与Shh、EGFR、Notch等多个信号通路的活化后调控,在信号通路活化、高等动物胚胎发育等生理病理过程中起到重要作用[4, 6]。TLE1作为以上信号通路的关键调控点,重要机制之一就是通过TLE1 N端Q结构域结合Tcf/Lef1、FoxA、c-Myc、PRDI等相关蛋白而引起转录调节因子活性的改变,或介导四聚体形成转录抑制复合物,实现对目的基因转录的调控,引起胚胎发育,肿瘤增殖等一系列病理生理变化,但其具体分子作用机制尚不十分明晰。本实验研究成功制备可溶TLE1 N端Q结构域蛋白TLE1-Q(1-136)及其多克隆抗体,为下一步开展针对TLE1 Q结构域的蛋白结构功能研究,了解TLE1参与信号通路调控机制,探讨TLE1在肺癌的发生发展中的作用奠定了前期研究基础。

Funding Statement

本研究受国家自然科学基金项目(No.30972965)资助

This study was supported by a grant from the National Natural Science Foundation of China (to Zhifei XU) (No.30972965)

References

  • 1.Yao J, Lai E, Stifani S. The winged-helix protein brain factor 1 interacts with Groucho and Hes proteins to repress transcription. Mol Cell Biol. 2001;21(6):1962–1972. doi: 10.1128/MCB.21.6.1962-1972.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Brantjes H, Roose J, van de Wetering M, et al. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res. 2001;29(7):1410–1419. doi: 10.1093/nar/29.7.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Levanon D, Goldstein RE, Bernstein Y, et al. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA. 1998;95(20):11590–11595. doi: 10.1073/pnas.95.20.11590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Chen G, Courey AJ. Groucho/TLE family proteins and transcriptional repression. Gene. 2000;249(1-2):1–16. doi: 10.1016/S0378-1119(00)00161-X. [DOI] [PubMed] [Google Scholar]
  • 5.Hasson P, Egoz N, Winkler C, et al. EGFR signaling attenuates Grouchodependent repression to antagonize Notch transcriptional output. Nat Gene. 2005;37(1):101–105. doi: 10.1038/ng1486. [DOI] [PubMed] [Google Scholar]
  • 6.Hasson P, Paroush Z. Crosstalk between the EGFR and other signaling pathways at the level of the global transcriptional corepressor Groucho/TLE. Br J Cancer. 2006;94(6):771–775. doi: 10.1038/sj.bjc.6603019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Buscarlet M, Stifani S. The 'Marx' of Groucho on development and disease. Trends Cell Biol. 2007;17(7):353–361. doi: 10.1016/j.tcb.2007.07.002. [DOI] [PubMed] [Google Scholar]
  • 8.Allen T, van Tuyl M, Iyengar P, et al. Grg1 acts as a lung-specific oncogene in a transgenic mouse model. Cancer Res. 2006;66(3):1294–1301. doi: 10.1158/0008-5472.CAN-05-1634. [DOI] [PubMed] [Google Scholar]
  • 9.Terry J, Saito T, Subramanian S, et al. TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol. 2007;31(2):240–246. doi: 10.1097/01.pas.0000213330.71745.39. [DOI] [PubMed] [Google Scholar]
  • 10.Song H, Hasson P, Paroush Z, et al. Groucho oligomerization is required for repression in vivo. Mol Cell Biol. 2004;24(10):4341–4350. doi: 10.1128/MCB.24.10.4341-4350.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Chen G, Nguyen PH, Courey AJ. A role for Groucho tetramerization in transcriptional repression. Mol Cell Biol. 1998;18(12):7259–7268. doi: 10.1128/MCB.18.12.7259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ren B, Chee K J, Kim TH, et al. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev. 1999;13(1):125–137. doi: 10.1101/gad.13.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Arce L, Pate KT, Waterman ML. Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer. 2009;9:159. doi: 10.1186/1471-2407-9-159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gasperowicz M, Otto F. Mammalian Groucho homologs: redundancy or specificity? J Cell Biochem. 2005;95(4):670–687. doi: 10.1002/(ISSN)1097-4644. [DOI] [PubMed] [Google Scholar]
  • 15.Liu F, Liu Y, Li D, et al. The transcription co-repressor TLE1 interacted with the intracellular region of gpl30 through its Q domain. https://link.springer.com/article/10.1023/A:1014880813692. Mol Cell Biol. 2002;232(1-2):163–167. doi: 10.1023/a:1014880813692. [DOI] [PubMed] [Google Scholar]
  • 16.Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  • 17.Perutz MF. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci. 1999;24(2):58–63. doi: 10.1016/S0968-0004(98)01350-4. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Lung Cancer are provided here courtesy of Editorial office of Chinese Journal of Lung Cancer

RESOURCES