Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions.
The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations.
Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges’ g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = − 0.63, − 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = − 0.09, − 0.28, − 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = − 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition.
In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Highlights
-
•
Many strategies beyond traditional antioxidants reduce 8-iso-PGF2α.
-
•
The effectiveness of each strategy is dependent on the medical condition.
-
•
General statements on the effectiveness of strategies should be avoided.
Graphical abstract
1. Introduction
With the increasing acceptance of oxidative stress as a potential deleterious mechanism to human health, much research now focuses on strategies to reduce oxidative stress with the goal of improving health. Many different approaches have been investigated with the most common strategy involving elevating the total level of antioxidants [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. This is typically accomplished through supplementation with high levels of classic antioxidants, e.g., vitamin C, E, or glutathione [17], or engineered nutraceutical blends high in a mixture of these and other compounds [18]. In addition, changes in diet or consumption of extracts [19] are commonly used to modify antioxidants levels. Another common approach to reducing bodily oxidative stress is to modify the rate of oxidant production. Typical strategies in this category are lifestyle changes or treatment of underlying diseases by medications [20]. It is also believed that some medications can be antioxidants.
With this large variety of potential approaches, determining the most effective method becomes crucial. Here we systemically review and quantitatively compare a wide variety of strategies that have been shown to reduce biomarkers of oxidative stress in humans. There are numerous biomarkers that could be utilized to quantitate the levels of oxidative stress. Through the multi-model, multi-laboratory Biomarkers of Oxidative Stress study, many biomarkers were compared, with the most indicative marker being the F2-isoprostanes and specifically 8-iso-prostaglandin F2α (8-iso-PGF2α) [21], [22], [23], [24], [25]. Since no other biomarker is recommended, this meta-analysis will focus solely on 8-iso-PGF2α as the biomarker. Interestingly, in addition to being a marker of oxidative stress, it is now becoming accepted that this popular biomarker can also be indicative of increases in inflammation, specifically through the direct generation of 8-iso-PGF2α by prostaglandin-H-synthases (PGHS) in vivo. This often-overlooked, potentially confounding generation mechanism makes interpretations of elevated levels of 8-iso-PGF2α complicated. Given this caveat, the effectiveness of strategies to reduce 8-iso-PGF2α, especially anti-inflammatory medication, should provide interesting insights into the contribution of these two sources in a wide variety of medical conditions known to have elevated 8-iso-PGF2α levels.
This comparison of strategies for reducing 8-iso-PGF2α provides an unbiased review of the literature without preconceived notions of the origins or mechanisms of 8-iso-PGF2α generation. In addition, the quantitative magnitude of diminished 8-iso-PGF2α levels for each strategy could provide clues to the role of oxidative stress in each medical condition, guiding future work to rectify past interpretations of this biomarker.
2. Materials and methods
2.1. Data collection and inclusion criteria
An electronic search for the term “isoprostanes” was performed in the Thomas Reuters Web of Knowledge database and all references imported into Endnote. This initial search was then refined by searching in the abstracts or titles specifically for the F2-isoprostanes and, more specifically, 8-iso-PGF2α. Results from multiple acronyms and abbreviations were combined as multiple names and abbreviations are common for these biomarkers, especially in earlier publications. The following terms were included: F2-isoprostane, 8-isoprostane, 8-iso-PGF2α, 8-epi-PGF2α, 15-F2t-isoprostane, iPF2α-III, and isoprostane. Subsequently, references referring to animal experiments were excluded by searching for key words in the title and abstract, e.g., “rat”, “mouse”, “mice”, “pig”, etc. The remaining references were manually selected for inclusion into the meta-analysis if the measurements were performed on human specimens in either randomized control trials or cross-sectional studies. In addition, sufficient data on the mean population concentration and distribution of free or total 8-iso-PGF2α had to be reported for studies to be included. Numeric data were gathered directly from tables or, when presented in graphs, were inferred by digitizing the figure with Plot Digitizer for Windows by Joseph A. Huwaldt.1 Numeric data collected included mean, geometric mean, standard deviation (SD), standard error (SE), interquartile range (IQR), 95% confidence interval, and number of participants (n). Geometric means and arithmetic means were used without modification. The measures of variation in the mean were converted to standard deviation prior to calculation of Hedges’ g. Standard error was assumed to be SD = SE * . The interquartile range was assumed to be SD = IQR/1.35. The 95% confidence interval was assumed to be SD = . Except for serum, all biological specimens were included in the analysis. Serum is not an appropriate specimen for F2-isoprostane measurement because, during the clotting process, 8-iso-PGF2α is generated ex vivo by prostaglandin endoperoxide synthase [26]. Publications reporting storage conditions other than liquid nitrogen or − 80 °C, and the use of non-pristine samples (repeated freeze/thaw cycles) were excluded. No restrictions were placed on measurement methodology. Additional publications were found through the reference sections of already included publications. Review articles and strategies for which fewer than 3 unique publications could be found were also excluded from the final analysis. References from van 't Erve et al. [27] were used to calculate the g values for the medical condition baselines (populations with the medical conditions compared to a population without any medical conditions).
2.2. Meta-analysis and sensitivity analyses
Extracted mean or geometric mean, standard deviation or geometric standard deviation, and number of participants were used to compute the standardized mean difference (Hedges’ g) and 95% confidence intervals using R version 3.4.0, and RStudio version 1.1.383, with the software package “meta” [28], [29]. Studies reporting different grades or severities of conditions were combined to form a single estimate per the method of Borenstein et al. [30]. The fixed-effects model was used for the meta-analysis and applied to each subgroup (i.e., strategy per medical condition) with inverse variance weighting of individual studies [31], [32].
When studies are combined, significant heterogeneity between studies can exist and confound the analysis if not accounted for. Sensitivity analyses were performed to assess heterogeneity when studies were combined with different specimens (i.e., plasma, urine, etc.), methodologies (i.e., ELISA, mass spectroscopy, etc.), duration of study, and medical conditions (i.e., diabetes, cardiovascular disease, etc.). The influence of each factor was assessed by calculating a random-effects model for all data and subsequently calculating a random-effects model of datasets filtered on each potential source of heterogeneity. These different models were compared amongst each other using the Kruskal-Wallis Rank Sum Test to see if any one model provided a statistically significantly different answer from all others with p < 0.05. If no statistically significant difference was observed, the parameter investigated could be combined in fixed-effect models without introducing significant bias into the final analysis.
2.3. Percent inhibition and error calculation
Effectiveness was assed as the difference between the fixed-effect model Hedges’ g calculated for each strategy per medical condition (Strategy g) and the Hedges’ g value calculated for elevated 8-iso-PGF2α levels between populations with and without the condition (Baseline g), as previously calculated by van 't Erve et al. [27]. The baseline values from the earlier meta-analysis [27] were taken as 0% inhibition for each medical condition. The effect of each strategy was calculated and converted to a percentage with Formula (1):
| (1) |
The error was calculated by adding the coefficient of variation of the baseline Hedges’ g to that of the Hedges’ g for the strategy and multiplying this value by the percent inhibition. The error is always presented as a positive number to improve interpretation of the data. A minimum of two publications per medical condition was required for inclusion in the final analysis.
3. Results
The literature search strategy resulted in a total of 2730 unique publications on F2-isoprostanes in humans. After removing reviews, publications with other F2-isoprostanes (i.e. 8,12-iso-iPF2 alpha-VI, IPF2α-I, etc.), F2-isoprostane metabolites, surgeries, publications with serum as the specimens, and publications with animals or cells, 669 publications reported on 8-iso-PGF2α levels in appropriate human specimens and medical conditions. Of these publications, 391 included strategies to reduce 8-iso-PGF2α (Fig. 1). 8-iso-PGF2α was measured in almost 20,000 control samples and just over 15,000 treatment samples, resulting in 417 treatment-control pairs for which the Hedges’ g values could be calculated (data points).
Fig. 1.
Diagram of the inclusion process for the meta-analysis. N in parentheses represents the number of publications in each step, whereas the end totals represent the sum of all individuals measured for free or total 8-iso-PGF2α.
These data points describe the effect of 180 different strategies on the levels of 8-iso-PGF2α in human specimens. Strategies were subjectively classified into 19 categories: anti-inflammatories, antibiotics, anticoagulants, anticonvulsants, antihyperglycemics, antihyperlipidemics, antihyperphosphatemias, antihypertensives, antimucolytics, antiobesities, antioxidants, antivirals, bronchodilators, diets, extracts/oils/juices, hormones, lifestyle, medical procedures/devices, phytochemicals, supplements, and uricosurics. Supplemental Table S1 lists all strategies making up each category. Diet changes were considered to be all those strategies which included addition of whole foods or changes in overall caloric content or lipid content of the diet. Extracts/oils/juices were those strategies with a processed product, e.g., fish oil or green tea extract, etc., but not a pure compound. Strategies concerning administration of pure chemical compounds were classified as either phytochemicals or supplements. Lifestyle changes were those strategies that relied on physical changes rather than pharmacological agents, such as smoking cessation, increased exercise, or weight loss.
To reduce the diversity between studies, the data needed to be combined in an appropriate manner. To ensure combining this many studies did not confound the analysis by introducing significant heterogeneity, sensitivity analyses were performed. The sensitivity analysis showed that Hedges’ g values did not change significantly between studies with different specimens, methodologies for measuring 8-iso-PGF2α and treatment durations for a given medical condition/strategy combination, Supplementary Fig. 1.
The remaining 278 references could be utilized to establish the increase in 8-iso-PGF2α levels associated with medical conditions [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115], [116], [117], [118], [119], [120], [121], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131], [132], [133], [134], [135], [136], [137], [138], [139], [140], [141], [142], [143], [144], [145], [146], [147], [148], [149], [150], [151], [152], [153], [154], [155], [156], [157], [158], [159], [160], [161], [162], [163], [164], [165], [166], [167], [168], [169], [170], [171], [172], [173], [174], [175], [176], [177], [178], [179], [180], [181], [182], [183], [184], [185], [186], [187], [188], [189], [190], [191], [192], [193], [194], [195], [196], [197], [198], [199], [200], [201], [202], [203], [204], [205], [206], [207], [208], [209], [210], [211], [212], [213], [214], [215], [216], [217], [218], [219], [220], [221], [222], [223], [224], [225], [226], [227], [228], [229], [230], [231], [232], [233], [234], [235], [236], [237], [238], [239], [240], [241], [242], [243], [244], [245], [246], [247], [248], [249], [250], [251], [252], [253], [254], [255], [256], [257], [258], [259], [260], [261], [262], [263], [264], [265], [266], [267], [268], [269], [270], [271], [272], [273], [274], [275], [276], [277], [278], [279], [280], [281], [282], [283], [284], [285], [286], [287], [288], [289], [290], [291], [292], [293], [294], [295], [296], [297], [298], [299], [300], [301], [302], [303], [304], [305], [306], [307], [308], [309], [310], [311], [312], [313], [314], [315], [316], [317], [318], [319], [320], [321], [322], [323], [324], [325], [326], [327], [328], [329], [330], [331], [332], [333], [334], [335], [336], [337], [338], [339], [340], [341], [342], [343], [344], [345], [346], [347], [348], [349], [350], [351]. These increases were reported in a prior work by van 't Erve et al. [27] and are referred to as the baseline meta-analysis in this publication. The extracted data from each publication can be found in the following Mendeley dataset: 〈http://dx.doi.org/10.17632/6s8k723m7b.1〉.
3.1. Free 8-iso-PGF2α
In publications where no specific medical condition is reported in the studied populations (e.g., having no diagnosis of a given disease or no increased risk for adverse health outcomes due to risk factors such as tobacco smoking), use of hormones (g = − 0.5 ± 0.1) followed by dietary (g = − 0.33 ± 0.03) and lifestyle changes (g = − 0.25 ± 0.1) show the largest reductions in 8-iso-PGF2α levels (Fig. 2 upper panel). All these strategies result in a statistically significant reduction in the level of 8-iso-PGF2α; however, quantitatively, the effects are considered small (Hedges’ g < 0.7). Additionally, administration of phytochemicals or extracts/oils/juices provided even smaller yet still statistically significant reductions in 8-iso-PGF2α. For all other strategies investigated in healthy populations, no statistically significant reduction in the level of 8-iso-PGF2α was observed. The effects of medications are largely missing in populations without a medical condition, as these studies are not typically performed or reported on.
Fig. 2.
Effect of different categories of strategies to reduce the levels of 8-iso-PGF2αamong populations with and without medical conditions. Scatterplot of the calculated Hedges’ value for each strategy as well as the mean per category. A negative Hedges’ g indicates a reduction in the levels of 8-iso-PGF2α from the non-treated or placebo group. Black dots with lines are calculated Hedges’ g values and 95% confidence interval for each included publication; colored squares are the fixed-effects model estimate for each category. Table abbreviations are: SMD = standardized mean difference (i.e., fixed-effect model estimate for combined Hedges’ g), SE = standard error in this estimate, n studies = number of unique publications in each category, n = total number of measured samples per category.
The strategies with the largest reduction in 8-iso-PGF2α level in populations affected by a medical condition (e.g., those populations having a diagnosis of a given disease or that are at increased risk for adverse health outcomes due to risk factors such as tobacco smoking), were administration of antibiotics, antihyperlipidemics, and changes in lifestyle (Fig. 2 lower panel). All these strategies have a statistically significantly different from 0 change in the Hedges’ g value, yet quantitatively they are considered small effects (Hedges’ g < 0.7). Interestingly, in populations administered anticonvulsants there was a large and statistically significant increase in the levels of 8-iso-PGF2α.
When comparing Hedges’ g values between publications with and without a medical condition, all strategies, except dietary changes, produced a larger reduction in 8-iso-PGF2α levels in populations with medical conditions. This is a generalized result, and since the populations with medical conditions comprised 38 different conditions, it was important to determine whether significant heterogeneity was induced when all conditions were combined. A sensitivity analysis showed that significant heterogeneity is present between the various included conditions; therefore, each strategy must be described in the context of each specific condition (Supplemental Fig. 2). In addition, as previously reported [33], the extent of reduction in the 8-iso-PGF2α levels has been found to be proportional to the elevated levels found in each medical condition relative to the level of a healthy population. Therefore, results are presented as percent inhibition for each strategy per medical condition (Fig. 3). The analysis was restricted to those medical conditions where a Hedges’ g for the baseline elevation of 8-iso-PGF2α was available as well as those strategies which had at least two publications per category to calculate the Hedges’ g value.
Fig. 3.
Effect of different categories of strategies to reduce 8-iso-PGF2αlevels stratified by medical condition. Data are presented as percent inhibition ± standard error. Percent inhibition is calculated using Formula(1) and is derived from the difference in Hedges’ g value for the reduction in 8-iso-PGF2α levels of each strategy and the Hedges’ g for elevated 8-iso-PGF2α levels for each medical condition as calculated by van 't Erve et al. [27]. * denotes an effect statistically significantly different from 0.
Percent inhibition within each category varied significantly between medical conditions. In general, the largest inhibitions were observed with lifestyle changes and extracts/oils/juices (Fig. 3). Weight loss in obese populations led to the largest percentage reduction in 8-iso-PGF2α levels of all strategies studied. Also, a large percentage reduction was observed in tobacco smokers from an extract, oils, or a juice; however, this group consists of only two references and therefore has a large uncertainty. The category with the most consistent and statistically significant reduction in percentage of 8-iso-PGF2α compared to baseline was the antioxidants. Populations with medical conditions that did not see a significant reduction in 8-iso-PGF2α after antioxidant supplementation were chronic kidney disease, cystic fibrosis, and obesity. Antioxidant supplementation in tobacco smokers had a small but statistically significant reduction in 8-iso-PGF2α inhibition percentage. For treatments with medications, statistically significant decreases in 8-iso-PGF2α levels were observed with both antihyperlipidemic and antihypertensive drugs in populations diagnosed with hyperlipidemia. In addition, statistically significant reductions were found in populations with hypertension being treated with antihypertensive drugs. Anti-inflammatories, dietary changes, and supplements had mostly non-significant and very small effects; a notable exception to this is that dietary changes in populations with hypertension had a large and significant effect, an effect driven predominantly by the effectiveness of the “dietary approach to stop hypertension” (DASH) diet. See the Supplemental forest plots for a detailed presentation of the data in Fig. 3.
3.2. Total 8-iso-PGF2α
In addition to free 8-iso-PGF2α, some publications measure the effect of strategies to decrease total 8-iso-PGF2α levels. Total 8-iso-PGF2α is a measure of both the free 8-iso-PGF2α as well as the 8-iso-PGF2α content that is esterified to phospholipids and other membrane lipids. This biomarker, although similar to free 8-iso-PGF2α, has potentially distinct generation chemistry and metabolism and, thus must be analyzed separately and not combined with free 8-iso-PGF2α measurements. Available data on total 8-iso-PGF2α are presented as forest plots in Supplemental Figs. 3 and 4 for populations with and without medical conditions, respectively. For the categories with a significant effect and multiple references available, in comparison to free 8-iso-PGF2α, the only two categories that were different were the extracts/oils/juices (g = − 0.35 for free 8-iso-PGF2α and g = − 0.8 for total 8-iso-PGF2α) and supplements (g = − 0.09 for free 8-iso-PGF2α and g = − 0.4 for total 8-iso-PGF2α) in the non-healthy populations. All others either were the same or too few data were present to make a conclusive determination. No distinction between medical conditions could be made to calculate the effectiveness of strategies to reduce total 8-iso-PGF2α levels due to a lack of multiple studies for most medical conditions.
4. Discussion
Based on the results of the meta-analysis, there are many different methodologies, strategies, medications, and other compounds which can lower levels of 8-iso-PGF2α in humans. The extent of reduction for each of these strategies is dependent on both the treatment itself and the population studied [33], [34]. Patrignani et al. [33] were the first to notice this trend for 8-iso-PGF2α in their studies of the effect of vitamin E on 8-iso-PGF2α levels. It was noted that the change in 8-iso-PGF2α levels as calculated by the slope between pre-and post-levels after administration of vitamin E to patients with cystic fibrosis, hypercholesterolemia, and diabetes mellitus type 2, as well as to chronic tobacco smokers, was correlated with the elevation of 8-iso-PGF2α levels for each condition [33]. This early work shows that the effectiveness of reduction in 8-iso-PGF2α levels should not be interpreted generally; it is best interpreted in the context of the conditions studied. In the meta-analysis presented here, the confounding effect of medical conditions is very clear in the interpretation of the effectiveness of antioxidants. In populations with no medical condition, the combined Hedges’ g for antioxidants is − 0.28 ± 0.03, which is, quantitatively, a small effect (Fig. 2). Based on this result, we could conclude that administration of antioxidants is not an effective strategy to lower 8-iso-PGF2α levels. However, since we are talking about inhibition of an elevated level of 8-iso-PGF2α, the Hedges’ g value is best interpreted relative to the Hedges’ g value of the population on which the strategy was performed. In that case, large effects of near 100% inhibition for many medical conditions are observed, meaning that antioxidants in most cases do significantly reduce the 8-iso-PGF2α levels (Fig. 3). Given this observation, it is important to note that a large majority of studies with dietary interventions and antioxidant therapies where conducted on populations without medical conditions. It was not possible to calculate a relative effectiveness within these populations as there was no increase in 8-iso-PGF2α levels. The reduction in levels seen in these populations could be real reductions or the effect of unreported medical conditions within these populations.
4.1. Caution for mechanism interpretation
With the historical evidence and recent reinforcement of the complex generation mechanism of F2-isoprostanes, especially 8-iso-PGF2α [25], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], simple explanations based on historical dogma for the mechanism behind the effect or non-effect of specific strategies should be made with caution. As has been pointed out before [45], [46], [47], in addition to affecting formation by scavenging free radicals, 8-iso-PGF2α levels can be manipulated by changes in metabolism, excretion rates, substrate availability, redox-environment, and enzymatic activities of prostaglandin H synthase (PGHS). Besides the classical mechanism [48], antioxidants such as vitamins C and E and other substances can affect the redox-environment by numerous other mechanisms, including signaling, reducing the level of hydrogen peroxide and/or lipid hydroperoxides, all of which are important in healthy cell signaling and enzyme activities. Reducing the peroxide level will reduce the activity of, e.g., prostaglandin-H-synthases, which are potential sources of 8-iso-PGF2α [49], [50], [51] in vivo. Also, since the majority of F2-isoprostanes are esterified, reducing the total amount of phospholipids by, e.g., weight loss, or decreasing the hydrolysis rate of esterified 8-iso-PGF2α by changes in phospholipase A2 activity would affect free 8-iso-PGF2α levels without altering formation [45], [52].
Since there are multiple and controversial mechanisms to explain the effect of each strategy [48], [53], [54], [55], [56], [57], [58], [59], it is imperative not to over interpret the results presented here and rely purely on the quantitative effect. Future mechanistic studies will need to be performed to ascertain whether the 8-iso-PGF2α measured is formed through a chemical or oxidative stress type pathway or whether enzymatic generation is the primary source [43], [44], [60]. This distinction, together with studies on the mechanism of each strategy, will provide the comprehensive evidence needed to fully classify the involvement of oxidative stress across human conditions.
4.2. Limitations to the meta-analysis
There are some limitations to the interpretation of this meta-analysis. To simplify the analysis, subjective choices were made to categorize each strategy instead of analyzing them separately. In some categories, especially medications, this categorization is straightforward; however, in other categories, e.g., supplements, extracts, phytochemicals, antioxidants, and others, the categorization could have introduced some bias due to oversimplification. All strategies included in each category are listed in Supplemental Table 1. The most restrictive category was chosen to be antioxidants, which also contains the largest number of references. This category was limited to only treatment with tocopherols (Vitamin E), tocotrienols, ascorbic acid (vitamin C), glutathione, N-acetyl-cysteine, alpha-lipoic acid, or blends of these compounds (i.e. antioxidant or nutraceutical blends). Most other strategies claiming that their studied substances are antioxidants were instead classified as extracts/juices/oils (e.g., fish oil or green tea extract) if they were processed substances, or as supplements or phytochemicals if they were pure substances (e.g., docosahexaenoic acid (DHA) or quercetin).
An additional limitation is overinterpretation due to small sample size. There are several categories (e.g., hormones, medical devices, anticonvulsants, and antibiotics) as well as strategy/medical condition combinations, such as extracts/oils/juice in tobacco smokers or chronic kidney disease, which rely on the minimum of 2 publications describing populations with these conditions. The estimates for these groups and others with few studies are not ideal, but hopefully, with future research, these current estimates can be confirmed and broader interpretation will be possible.
4.3. Conclusion
In conclusion, there are many distinct strategies which can reduce the levels of 8-iso-PGF2α in humans. The largest reductions are seen in populations with a specific medical condition/strategy combination. No general rule on the effectiveness of any given strategy in all medical conditions can be devised. For example, antioxidants do not significantly reduce 8-iso-PGF2α in tobacco smokers and chronic kidney disease but do in several other conditions. Future research should be conservative in the generalization of the effectiveness of new strategies to reduce 8-iso-PGF2α levels and fully investigate the mechanism of generation before making conclusions.
Acknowledgements
The author gratefully acknowledges Drs. Ronald P. Mason, Maria B. Kadiiska, Kelly K. Ferguson, and Stephanie London for their invaluable scientific input and feedback; and Jean Corbett, Dr. Ann Motten, and Mary Mason for their editorial expertise. This work was supported by the Intramural Research Program, National Institutes of Health, National Institute of Environmental Health Sciences (Z01 ES048012-08).
Footnotes
Supplementary data associated with this article can be found in the online version at doi:10.1016/j.redox.2018.05.003.
Appendix A. Supplementary material
Supplementary material
References
- 1.Ahmed Ali U., Jens S., Busch O.R., Keus F., van Goor H., Gooszen H.G., Boermeester M.A. Antioxidants for pain in chronic pancreatitis. Cochrane Database Syst. Rev. 2014:Cd008945. doi: 10.1002/14651858.CD008945.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Bjelakovic G., Nikolova D., Gluud C. Antioxidant supplements and mortality. Curr. Opin. Clin. Nutr. Metab. Care. 2014;17:40–44. doi: 10.1097/MCO.0000000000000009. [DOI] [PubMed] [Google Scholar]
- 3.Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012:Cd007176. doi: 10.1002/14651858.CD007176.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Braakhuis A.J., Hopkins W.G. Impact of dietary antioxidants on sport performance: a review. Sports Med. 2015;45:939–955. doi: 10.1007/s40279-015-0323-x. [DOI] [PubMed] [Google Scholar]
- 5.Ciofu O., Lykkesfeldt J. Antioxidant supplementation for lung disease in cystic fibrosis. Cochrane Database Syst. Rev. 2014:Cd007020. doi: 10.1002/14651858.CD007020.pub3. [DOI] [PubMed] [Google Scholar]
- 6.Jeurnink S.M., Nijs M.M., Prins H.A., Greving J.P., Siersema P.D. Antioxidants as a treatment for acute pancreatitis: a meta-analysis. Pancreatology. 2015;15:203–208. doi: 10.1016/j.pan.2015.03.009. [DOI] [PubMed] [Google Scholar]
- 7.Jun M., Venkataraman V., Razavian M., Cooper B., Zoungas S., Ninomiya T., Webster A.C., Perkovic V. Antioxidants for chronic kidney disease. Cochrane Database Syst. Rev. 2012;10:Cd008176. doi: 10.1002/14651858.CD008176.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Manzanares W., Dhaliwal R., Jiang X., Murch L., Heyland D.K. Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit. Care. 2012;16:R66. doi: 10.1186/cc11316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Myung S.K., Ju W., Cho B., Oh S.W., Park S.M., Koo B.K., Park B.J. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. Bmj. 2013;346:f10. doi: 10.1136/bmj.f10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Pais R., Dumitrascu D.L. Do antioxidants prevent colorectal cancer? A meta-analysis. Rom. J. Intern. Med. 2013;51:152–163. [PubMed] [Google Scholar]
- 11.Panahi Y., Hosseini M.S., Khalili N., Naimi E., Majeed M., Sahebkar A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin. Nutr. 2015;34:1101–1108. doi: 10.1016/j.clnu.2014.12.019. [DOI] [PubMed] [Google Scholar]
- 12.Showell M.G., Brown J., Clarke J., Hart R.J. Antioxidants for female subfertility. Cochrane Database Syst. Rev. 2013:Cd007807. doi: 10.1002/14651858.CD007807.pub2. [DOI] [PubMed] [Google Scholar]
- 13.Showell M.G., Mackenzie-Proctor R., Brown J., Yazdani A., Stankiewicz M.T., Hart R.J. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2014:Cd007411. doi: 10.1002/14651858.CD007411.pub3. [DOI] [PubMed] [Google Scholar]
- 14.Vivekananthan D.P., Penn M.S., Sapp S.K., Hsu A., Topol E.J. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet. 2003;361:2017–2023. doi: 10.1016/S0140-6736(03)13637-9. [DOI] [PubMed] [Google Scholar]
- 15.Ye Y., Li J., Yuan Z. Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One. 2013;8:e56803. doi: 10.1371/journal.pone.0056803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Zhou D., Wang W., Cheng X., Wei J., Zheng S. Antioxidant therapy for patients with chronic pancreatitis: a systematic review and meta-analysis. Clin. Nutr. 2015;34:627–634. doi: 10.1016/j.clnu.2014.07.003. [DOI] [PubMed] [Google Scholar]
- 17.Biesalski H.K., Grune T., Tinz J., Zollner I., Blumberg J.B. Reexamination of a meta-analysis of the effect of antioxidant supplementation on mortality and health in randomized trials. Nutrients. 2010;2:929–949. doi: 10.3390/nu2090929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Kelley N.S., Yoshida Y., Erickson K.L. Do n-3 polyunsaturated fatty acids increase or decrease lipid peroxidation in humans? Metab. Syndr. Relat. Disord. 2014;12:403–415. doi: 10.1089/met.2014.0045. [DOI] [PubMed] [Google Scholar]
- 19.Higdon J.V., Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003;43:89–143. doi: 10.1080/10408690390826464. [DOI] [PubMed] [Google Scholar]
- 20.Davignon J., Jacob R.F., Mason R.P. The antioxidant effects of statins. Coron. Artery Dis. 2004;15:251–258. doi: 10.1097/01.mca.0000131573.31966.34. [DOI] [PubMed] [Google Scholar]
- 21.Morrow J.D., Awad J.A., Boss H.J., Blair I.A., Roberts L.J., II Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc. Natl. Acad. Sci. USA. 1992;89:10721–10725. doi: 10.1073/pnas.89.22.10721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Morrow J.D., Harris T.M., Roberts L.J., II Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal. Biochem. 1990;184:1–10. doi: 10.1016/0003-2697(90)90002-q. [DOI] [PubMed] [Google Scholar]
- 23.Morrow J.D., Hill K.E., Burk R.F., Nammour T.M., Badr K.F., Roberts L.J., II A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA. 1990;87:9383–9387. doi: 10.1073/pnas.87.23.9383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Kadiiska M.B., Gladen B.C., Baird D.D., Germolec D., Graham L.B., Parker C.E., Nyska A., Wachsman J.T., Ames B.N., Basu S., Brot N., Fitzgerald G.A., Floyd R.A., George M., Heinecke J.W., Hatch G.E., Hensley K., Lawson J.A., Marnett L.J., Morrow J.D., Murray D.M., Plastaras J., Roberts L.J., II, Rokach J., Shigenaga M.K., Sohal R.S., Sun J., Tice R.R., Van Thiel D.H., Wellner D., Walter P.B., Tomer K.B., Mason R.P., Barrett J.C. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic. Biol. Med. 2005;38:698–710. doi: 10.1016/j.freeradbiomed.2004.09.017. [DOI] [PubMed] [Google Scholar]
- 25.Kadiiska M.B., Gladen B.C., Baird D.D., Graham L.B., Parker C.E., Ames B.N., Basu S., Fitzgerald G.A., Lawson J.A., Marnett L.J., Morrow J.D., Murray D.M., Plastaras J., Roberts L.J., II, Rokach J., Shigenaga M.K., Sun J., Walter P.B., Tomer K.B., Barrett J.C., Mason R.P. Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Radic. Biol. Med. 2005;38:711–718. doi: 10.1016/j.freeradbiomed.2004.10.024. [DOI] [PubMed] [Google Scholar]
- 26.Praticò D., Barry O.P., Lawson J.A., Adiyaman M., Hwang S.W., Khanapure S.P., Iuliano L., Rokach J., FitzGerald G.A. IPF2α-I: an index of lipid peroxidation in humans. Proc. Natl. Acad. Sci. USA. 1998;95:3449–3454. doi: 10.1073/pnas.95.7.3449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.van 't Erve T.J., Kadiiska M.B., London S.J., Mason R.P. Classifying oxidative stress by F2-isoprostane levels across human diseases: a meta-analysis. Redox Biol. 2017;12:582–599. doi: 10.1016/j.redox.2017.03.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Hedges L.V. Distribution theory for glass's estimator of effect size and related estimators. J. Educ. Behav. Stat. 1981;6:107–128. [Google Scholar]
- 29.Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. John Wiley & Sons, Ltd.; 2009. Effect sizes based on means; pp. 21–32. [Google Scholar]
- 30.Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. John Wiley & Sons, Ltd.; 2009. Multiple comparisons within a study; pp. 239–242. [Google Scholar]
- 31.Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. John Wiley & Sons, Ltd.; 2009. Fixed-effect model; pp. 63–67. [Google Scholar]
- 32.Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. John Wiley & Sons, Ltd.; 2009. Subgroup analyses; pp. 149–186. [Google Scholar]
- 33.Patrignani P., Panara M.R., Tacconelli S., Seta F., Bucciarelli T., Ciabattoni G., Alessandrini P., Mezzetti A., Santini G., Sciulli M.G., Cipollone F., Davi G., Gallina P., Bon G.B., Patrono C. Effects of vitamin E supplementation on F(2)-isoprostane and thromboxane biosynthesis in healthy cigarette smokers. Circulation. 2000;102:539–545. doi: 10.1161/01.cir.102.5.539. [DOI] [PubMed] [Google Scholar]
- 34.Block G., Jensen C.D., Morrow J.D., Holland N., Norkus E.P., Milne G.L., Hudes M., Dalvi T.B., Crawford P.B., Fung E.B., Schumacher L., Harmatz P. The effect of vitamins C and E on biomarkers of oxidative stress depends on baseline level. Free Radic. Biol. Med. 2008;45:377–384. doi: 10.1016/j.freeradbiomed.2008.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Praticò D., Lawson J.A., FitzGerald G.A. Cyclooxygenase-dependent formation of the isoprostane, 8-epiprostaglandin F2α. J. Biol. Chem. 1995;270:9800–9808. doi: 10.1074/jbc.270.17.9800. [DOI] [PubMed] [Google Scholar]
- 36.Klein T., Reutter F., Schweer H., Seyberth H.W., Nüsing R.M. Generation of the isoprostane 8-epi-prostaglandin F2αin vitro and in vivo via the cyclooxygenases. J. Pharmacol. Exp. Ther. 1997;282:1658–1665. [PubMed] [Google Scholar]
- 37.Praticò D., FitzGerald G.A. Generation of 8-epiprostaglandin F2α by human monocytes: discriminate production by reactive oxygen species and prostaglandin endoperoxide synthase-2. J. Biol. Chem. 1996;271:8919–8924. doi: 10.1074/jbc.271.15.8919. [DOI] [PubMed] [Google Scholar]
- 38.Bachi A., Brambilla R., Fanelli R., Bianchi R., Zuccato E., Chiabrando C. Reduction of urinary 8-epi-prostaglandin F2α during cyclooxygenase inhibition in rats but not in man. Br. J. Pharmacol. 1997;121:1770–1774. doi: 10.1038/sj.bjp.0701321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Schweer H., Watzer B., Seyberth H.W., Nusing R.M. Improved quantification of 8-epi-prostaglandin F2α and F2-isoprostanes by gas chromatography/triple-stage quadrupole mass spectrometry: partial cyclooxygenase-dependent formation of 8-epi-prostaglandin F2α in humans. J. Mass Spectrom. 1997;32:1362–1370. doi: 10.1002/(SICI)1096-9888(199712)32:12<1362::AID-JMS606>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- 40.Watkins M.T., Patton G.M., Soler H.M., Albadawi H., Humphries D.E., Evans J.E., Kadowaki H. Synthesis of 8-epi-prostaglandin F2α by human endothelial cells: role of prostaglandin H2 synthase. Biochem. J. 1999;344:747–754. [PMC free article] [PubMed] [Google Scholar]
- 41.Favreau F., Petit-Paris I., Hauet T., Dutheil D., Papet Y., Mauco G., Tallineau C. Cyclooxygenase 1-dependent production of F2-isoprostane and changes in redox status during warm renal ischemia-reperfusion. Free Radic. Biol. Med. 2004;36:1034–1042. doi: 10.1016/j.freeradbiomed.2004.01.010. [DOI] [PubMed] [Google Scholar]
- 42.Tsikas D., Suchy M.T., Niemann J., Tossios P., Schneider Y., Rothmann S., Gutzki F.M., Frolich J.C., Stichtenoth D.O. Glutathione promotes prostaglandin H synthase (cyclooxygenase)-dependent formation of malondialdehyde and 15(S)-8-iso-prostaglandin F2alpha. FEBS Lett. 2012;586:3723–3730. doi: 10.1016/j.febslet.2012.09.001. [DOI] [PubMed] [Google Scholar]
- 43.van 't Erve T.J., Lih F.B., Kadiiska M.B., Deterding L.J., Eling T.E., Mason R.P. Reinterpreting the best biomarker of oxidative stress: the 8-iso-PGF2α/PGF2α ratio distinguishes chemical from enzymatic lipid peroxidation. Free Radic. Biol. Med. 2015;83:245–251. doi: 10.1016/j.freeradbiomed.2015.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.van 't Erve T.J., Lih F.B., Jelsema C., Deterding L.J., Eling T.E., Mason R.P., Kadiiska M.B. Reinterpreting the best biomarker of oxidative stress: the 8-iso-prostaglandin F2alpha/prostaglandin F2alpha ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic. Biol. Med. 2016;95:65–73. doi: 10.1016/j.freeradbiomed.2016.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Halliwell B., Lee C.Y. Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid. Redox Signal. 2010;13:145–156. doi: 10.1089/ars.2009.2934. [DOI] [PubMed] [Google Scholar]
- 46.Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal. Biochem. 2017;524:13–30. doi: 10.1016/j.ab.2016.10.021. [DOI] [PubMed] [Google Scholar]
- 47.Yen H.C., Wei H.J., Lin C.L. Unresolved issues in the analysis of F2-isoprostanes, F4-neuroprostanes, isofurans, neurofurans, and F2-dihomo-isoprostanes in body fluids and tissue using gas chromatography/negative-ion chemical-ionization mass spectrometry. Free Radic. Res. 2015;49:861–880. doi: 10.3109/10715762.2015.1014812. [DOI] [PubMed] [Google Scholar]
- 48.Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic. Biol. Med. 2014;66:3–12. doi: 10.1016/j.freeradbiomed.2013.03.022. [DOI] [PubMed] [Google Scholar]
- 49.Kulmacz R.J., Wang L.H. Comparison of hydroperoxide initiator requirements for the cyclooxygenase activities of prostaglandin H synthase-1 and -2. J. Biol. Chem. 1995;270:24019–24023. doi: 10.1074/jbc.270.41.24019. [DOI] [PubMed] [Google Scholar]
- 50.Weitzel F., Wendel A. Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J. Biol. Chem. 1993;268:6288–6292. [PubMed] [Google Scholar]
- 51.van der Zee J., Eling T.E., Mason R.P. Formation of free radical metabolites in the reaction between soybean lipoxygenase and its inhibitors. An ESR study. Biochemistry. 1989;28:8363–8367. doi: 10.1021/bi00447a015. [DOI] [PubMed] [Google Scholar]
- 52.Harry D., Anand R., Holt S., Davies S., Marley R., Fernando B., Goodier D., Moore K. Increased sensitivity to endotoxemia in the bile duct-ligated cirrhotic rat. Hepatology. 1999;30:1198–1205. doi: 10.1002/hep.510300515. [DOI] [PubMed] [Google Scholar]
- 53.Croft K.D. Dietary polyphenols: antioxidants or not? Arch. Biochem. Biophys. 2016;595:120–124. doi: 10.1016/j.abb.2015.11.014. [DOI] [PubMed] [Google Scholar]
- 54.Day B.J. Antioxidant therapeutics: Pandora's box. Free Radic. Biol. Med. 2014;66:58–64. doi: 10.1016/j.freeradbiomed.2013.05.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Forman H.J., Davies K.J.A., Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Gutteridge J.M.C., Halliwell B. Antioxidants: molecules, medicines, and myths. Biochem. Biophys. Res. Commun. 2010;393:561–564. doi: 10.1016/j.bbrc.2010.02.071. [DOI] [PubMed] [Google Scholar]
- 57.Murphy M.P. Antioxidants as therapies: can we improve on nature? Free Radic. Biol. Med. 2014;66:20–23. doi: 10.1016/j.freeradbiomed.2013.04.010. [DOI] [PubMed] [Google Scholar]
- 58.Schewe T., Steffen Y., Sies H. How do dietary flavanols improve vascular function? A position paper. Arch. Biochem. Biophys. 2008;476:102–106. doi: 10.1016/j.abb.2008.03.004. [DOI] [PubMed] [Google Scholar]
- 59.Walsh M.E., Shi Y., Van Remmen H. The effects of dietary restriction on oxidative stress in rodents. Free Radic. Biol. Med. 2014;66:88–99. doi: 10.1016/j.freeradbiomed.2013.05.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.van 't Erve T.J., Lih F.B., Kadiiska M.B., Deterding L.J., Mason R.P. Elevated plasma 8-iso-prostaglandin F2α levels in human smokers originate primarily from enzymatic instead of non-enzymatic lipid peroxidation. Free Radic. Biol. Med. 2017 doi: 10.1016/j.freeradbiomed.2017.11.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Aghdassi E., Wendland B.E., Steinhart A.H., Wolman S.L., Jeejeebhoy K., Allard J.P. Antioxidant vitamin supplementation in Crohn's disease decreases oxidative stress: a randomized controlled trial. Am. J. Gastroenterol. 2003;98:348–353. doi: 10.1111/j.1572-0241.2003.07226.x. [DOI] [PubMed] [Google Scholar]
- 62.Al-Alem U., Gann P.H., Dahl J., van Breemen R.B., Mistry V., Lam P.M., Evans M.D., Van Horn L., Wright M.E. Associations between functional polymorphisms in antioxidant defense genes and urinary oxidative stress biomarkers in healthy, premenopausal women. Genes Nutr. 2012;7:191–195. doi: 10.1007/s12263-011-0257-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Al-Solaiman Y., Jesri A., Zhao Y., Morrow J.D., Egan B.M. Low-sodium DASH reduces oxidative stress and improves vascular function in salt-sensitive humans. J. Hum. Hypertens. 2009;23:826–835. doi: 10.1038/jhh.2009.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Allen J., Bradley R.D. Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers. J. Altern. Complement. Med. 2011;17:827–833. doi: 10.1089/acm.2010.0716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Allgrove J., Farrell E., Gleeson M., Williamson G., Cooper K. Regular dark chocolate consumption's reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. Int. J. Sport Nutr. Exerc. Metab. 2011;21:113–123. doi: 10.1123/ijsnem.21.2.113. [DOI] [PubMed] [Google Scholar]
- 66.Alonso-Fernandez A., Garcia-Rio F., Arias M.A., Hernanz A., de la Pena M., Pierola J., Barcelo A., Lopez-Collazo E., Agusti A. Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax. 2009;64:581–586. doi: 10.1136/thx.2008.100537. [DOI] [PubMed] [Google Scholar]
- 67.Ambring A., Friberg P., Axelsen M., Laffrezen M., Taskinen M.R., Basu S., Johansson M. Effects of a Mediterranean-inspired diet on blood lipids, vascular function and oxidative stress in healthy subjects. Clin. Sci. 2004;106:519–525. doi: 10.1042/CS20030315. [DOI] [PubMed] [Google Scholar]
- 68.Andersson A., Tengblad S., Karlstrom B., Kamal-Eldin A., Landberg R., Basu S., Aman P., Vessby B. Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J. Nutr. 2007;137:1401–1407. doi: 10.1093/jn/137.6.1401. [DOI] [PubMed] [Google Scholar]
- 69.Ando H., Ushijima K., Hosohata K., Saito T., Fujimura A. Relationship between the receptor occupancy profile and pleiotropic effects of angiotensin II receptor blockers. Br. J. Clin. Pharmacol. 2013;75:415–422. doi: 10.1111/j.1365-2125.2012.04358.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Angelico F., Loffredo L., Pignatelli P., Augelletti T., Carnevale R., Pacella A., Albanese F., Mancini I., Di Santo S., Del Ben M., Violi F. Weight loss is associated with improved endothelial dysfunction via NOX2-generated oxidative stress down-regulation in patients with the metabolic syndrome. Intern. Emerg. Med. 2012;7:219–227. doi: 10.1007/s11739-011-0591-x. [DOI] [PubMed] [Google Scholar]
- 71.Antczak A., Montuschi P., Kharitonov S., Gorski P., Barnes P.J. Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am. J. Respir. Crit. Care Med. 2002;166:301–306. doi: 10.1164/rccm.2101021. [DOI] [PubMed] [Google Scholar]
- 72.Antczak A., Ciebiada M., Pietras T., Piotrowski W.J., Kurmanowska Z., Gorski P. Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Arch. Med. Sci. 2012;8:277–285. doi: 10.5114/aoms.2012.28555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Arent S.M., Pellegrino J.K., Williams C.A., Difabio D.A., Greenwood J.C. Nutritional supplementation, performance, and oxidative stress in college soccer players. J. Strength Cond. Res. 2010;24:1117–1124. doi: 10.1519/JSC.0b013e3181cb70b8. [DOI] [PubMed] [Google Scholar]
- 74.Askari G., Ghiasvand R., Feizi A., Ghanadian S.M., Karimian J. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J. Res. Med. Sci. 2012;17:637–641. [PMC free article] [PubMed] [Google Scholar]
- 75.Atteritano M., Marini H., Minutoli L., Polito F., Bitto A., Altavilla D., Mazzaferro S., D'Anna R., Cannata M.L., Gaudio A., Frisina A., Frisina N., Corrado F., Cancellieri F., Lubrano C., Bonaiuto M., Adamo E.B., Squadrito F. Effects of the phytoestrogen genistein on some predictors of cardiovascular risk in osteopenic, postmenopausal women: a two-year randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 2007;92:3068–3075. doi: 10.1210/jc.2006-2295. [DOI] [PubMed] [Google Scholar]
- 76.Ayers K., Byrne L.M., DeMatteo A., Brown N.J. Differential effects of nebivolol and metoprolol on insulin sensitivity and plasminogen activator inhibitor in the metabolic syndrome. Hypertension. 2012;59:893–898. doi: 10.1161/HYPERTENSIONAHA.111.189589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Bachi A., Brambilla R., Fanelli R., Bianchi R., Zuccato E., Chiabrando C. Reduction of urinary 8-epi-prostaglandin F-2 alpha during cyclooxygenase inhibition in rats but not in man. Br. J. Pharmacol. 1997;121:1770–1774. doi: 10.1038/sj.bjp.0701321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Bailey D.M., Williams C., Betts J.A., Thompson D., Hurst T.L. Oxidative stress, inflammation and recovery of muscle function after damaging exercise: effect of 6-week mixed antioxidant supplementation. Eur. J. Appl. Physiol. 2011;111:925–936. doi: 10.1007/s00421-010-1718-x. [DOI] [PubMed] [Google Scholar]
- 79.Baldrick F.R., Elborn J.S., Woodside J.V., Treacy K., Bradley J.M., Patterson C.C., Schock B.C., Ennis M., Young I.S., McKinley M.C. Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: a randomised controlled trial. Eur. Respir. J. 2012;39:1377–1384. doi: 10.1183/09031936.00086011. [DOI] [PubMed] [Google Scholar]
- 80.Bank A.J., Kelly A.S., Thelen A.M., Kaiser D.R., Gonzalez-Campoy J.M. Effects of carvedilol versus metoprolol on endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am. J. Hypertens. 2007;20:777–783. doi: 10.1016/j.amjhyper.2007.01.019. [DOI] [PubMed] [Google Scholar]
- 81.Baraldi E., Ghiro L., Piovan V., Carraro S., Ciabattoni G., Barnes P.J., Montuschi P. Increased exhaled 8-isoprostane in childhood asthma. Chest. 2003;124:25–31. doi: 10.1378/chest.124.1.25. [DOI] [PubMed] [Google Scholar]
- 82.Baraldi E., Carraro S., Alinovi R., Pesci A., Ghiro L., Bodini A., Piacentini G., Zacchello F., Zanconato S. Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax. 2003;58:505–509. doi: 10.1136/thorax.58.6.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Barden A.E., Mori T.A., Dunstan J.A., Taylor A.L., Thornton C.A., Croft K.D., Beilin L.J., Prescott S.L. Fish oil supplementation in pregnancy lowers F-2-isoprostanes in neonates at high risk of atopy. Free Radic. Res. 2004;38:233–239. doi: 10.1080/10715760310001656722. [DOI] [PubMed] [Google Scholar]
- 84.Barden A., Zilkens R.R., Croft K., Mori T., Burke V., Beilin L.J., Puddey I.B. A reduction in alcohol consumption is associated with reduced plasma F-2-isoprostanes and urinary 20-HETE excretion in men. Free Radic. Biol. Med. 2007;42:1730–1735. doi: 10.1016/j.freeradbiomed.2007.03.004. [DOI] [PubMed] [Google Scholar]
- 85.Barden A.E., Burke V., Mas E., Beilin L.J., Puddey I.B., Watts G.F., Irish A.B., Mori T.A. n-3 Fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease. J. Hypertens. 2015;33:1947–1953. doi: 10.1097/HJH.0000000000000621. [DOI] [PubMed] [Google Scholar]
- 86.Barden A., O'Callaghan N., Burke V., Mas E., Beilin L.J., Fenech M., Irish A.B., Watts G.F., Puddey I.B., Huang R.C., Mori T.A. n-3 Fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients. 2016;8 doi: 10.3390/nu8030175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Barker T., Leonard S.W., Trawick R.H., Walker J.A., Traber M.G. Antioxidant supplementation lowers circulating IGF-1 but not F-2-isoprostanes immediately following anterior cruciate ligament surgery. Redox Rep. 2009;14:221–226. doi: 10.1179/135100009X12525712409535. [DOI] [PubMed] [Google Scholar]
- 88.Basu S., Smedman A., Vessby B. Conjugated linoleic acid induces lipid peroxidation in humans. Febs Lett. 2000;468:33–36. doi: 10.1016/s0014-5793(00)01193-5. [DOI] [PubMed] [Google Scholar]
- 89.Bays H.E., Evans J.L., Maki K.C., Evans M., Maquet V., Cooper R., Anderson J.W. Chitin-glucan fiber effects on oxidized low-density lipoprotein: a randomized controlled trial. Eur. J. Clin. Nutr. 2013;67:2–7. doi: 10.1038/ejcn.2012.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Berg K., Langaas M., Ericsson M., Pleym H., Basu S., Nordrum I.S., Vitale N., Haaverstad R. Acetylsalicylic acid treatment until surgery reduces oxidative stress and inflammation in patients undergoing coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 2013;43:1154–1163. doi: 10.1093/ejcts/ezs591. [DOI] [PubMed] [Google Scholar]
- 91.Bernabe J., Mulero J., Cerde B., Garcia-Viguera C., Moreno D.A., Parra S., Aviles F., Gil-Izquierdo A., Abellan J., Zafrilla P. Effects of a citrus based juice on biomarkers of oxidative stress in metabolic syndrome patients. J. Funct. Foods. 2013;5:1031–1038. [Google Scholar]
- 92.Berry S.E., Mulla U.Z., Chowienczyk P.J., Sanders T.A.B. Increased potassium intake from fruit and vegetables or supplements does not lower blood pressure or improve vascular function in UK men and women with early hypertension: a randomised controlled trial. Br. J. Nutr. 2010;104:1839–1847. doi: 10.1017/S0007114510002904. [DOI] [PubMed] [Google Scholar]
- 93.Beulens J.W.J., van den Berg R., Kok F.J., Helander A., Vermunt S.H.F., Hendriks H.F.J. Moderate alcohol consumption and lipoprotein-associated phospholipase A2 activity. Nutr. Metab. Cardiovasc. Dis. 2008;18:539–544. doi: 10.1016/j.numecd.2007.07.002. [DOI] [PubMed] [Google Scholar]
- 94.Biernacki W.A., Kharitonov S.A., Barnes P.J. Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax. 2003;58:294–298. doi: 10.1136/thorax.58.4.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Bilinska M., Wolszakiewicz J., Duda M., Janas J., Beresewicz A., Piotrowicz R. Antioxidative activity of sulodexide, a glycosaminoglycan, in patients with stable coronary artery disease: a pilot study. Med. Sci. Monit. 2009;15:CR618-623. [PubMed] [Google Scholar]
- 96.Bloomer R.J., Smith W.A., Fisher-Wellman K.H. Oxidative stress in response to forearm ischemia-reperfusion with and without carnitine administration. Int. J. Vitam. Nutr. Res. 2010;80:12–23. doi: 10.1024/0300-9831/a000002. [DOI] [PubMed] [Google Scholar]
- 97.Botero D., Ebbeling C.B., Blumberg J.B., Ribaya-Mercado J.D., Creager M.A., Swain J.F., Feldman H.A., Ludwig D.S. Acute effects of dietary glycemic index on antioxidant capacity in a nutrient-controlled feeding study. Obesity. 2009;17:1664–1670. doi: 10.1038/oby.2009.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Bougoulia M., Triantos A., Koliakos G. Effect of weight loss with or without orlistat treatment on adipocytokines, inflammation, and oxidative markers in obese women. Hormones. 2006;5:259–269. doi: 10.14310/horm.2002.11190. [DOI] [PubMed] [Google Scholar]
- 99.Bougoulia M., Triantos A., Koliakos G. Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones. 2006;5:192–199. doi: 10.14310/horm.2002.11182. [DOI] [PubMed] [Google Scholar]
- 100.Boyle S.P., Dobson V.L., Duthie S.J., Hinselwood D.C., Kyle J.A.M., Collins A.R. Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur. J. Clin. Nutr. 2000;54:774–782. doi: 10.1038/sj.ejcn.1601090. [DOI] [PubMed] [Google Scholar]
- 101.Brantley M.A., Osborn M.P., Sanders B.J., Rezaei K.A., Lu P.C., Li C., Milne G.L., Cai J.Y., Sternberg P. The short-term effects of antioxidant and zinc supplements on oxidative stress biomarker levels in plasma: a pilot investigation. Am. J. Ophthalmol. 2012;153:1104–1109. doi: 10.1016/j.ajo.2011.12.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Brindicci C., Ito K., Torre O., Barnes P.J., Kharitonov S.A. Effects of aminoguanidine, an inhibitor of inducible nitric oxide synthase, on nitric oxide production and its metabolites in healthy control subjects, Healthy smokers, and COPD patients. Chest. 2009;135:353–367. doi: 10.1378/chest.08-0964. [DOI] [PubMed] [Google Scholar]
- 103.Buchowski M.S., Hongu N., Acra S., Wang L., Warolin J., Roberts L.J. Effect of modest caloric restriction on oxidative stress in women, a randomized trial. PLoS One. 2012;7 doi: 10.1371/journal.pone.0047079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Budinsky A., Wolfram R., Oguogho A., Efthimiou Y., Stamatopoulos Y., Sinzinger H. Regular ingestion of Opuntia robusta lowers oxidation injury. Prostaglandins Leukot. Essent. Fat. Acids. 2001;65:45–50. doi: 10.1054/plef.2001.0287. [DOI] [PubMed] [Google Scholar]
- 105.Burnett A.L., Strong T.D., Trock B.I., Jin L., Bivalacqua T.J., Musicki B. Serum biomarker measurements of endothelial function and oxidative stress after daily dosing of sildenafil in type 2 diabetic men with erectile dysfunction. J. Urol. 2009;181:245–251. doi: 10.1016/j.juro.2008.09.005. [DOI] [PubMed] [Google Scholar]
- 106.Caccetta R.A.A., Burke V., Mori T.A., Beilin L.J., Puddey I.B., Croft K.D. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic. Biol. Med. 2001;30:636–642. doi: 10.1016/s0891-5849(00)00497-4. [DOI] [PubMed] [Google Scholar]
- 107.Cacciatore F., Bruzzese G., Vitale D.F., Liguori A., de Nigris F., Fiorito C., Infante T., Donatelli F., Minucci P.B., Ignarro L.J., Napoli C. Effects of ACE inhibition on circulating endothelial progenitor cells, vascular damage, and oxidative stress in hypertensive patients. Eur. J. Clin. Pharmacol. 2011;67:877–883. doi: 10.1007/s00228-011-1029-0. [DOI] [PubMed] [Google Scholar]
- 108.Cangemi R., Loffredo L., Carnevale R., Perri L., Patrizi M.P., Sanguigni V., Pignatelli P., Violi F. Early decrease of oxidative stress by atorvastatin in hypercholesterolaemic patients: effect on circulating vitamin E. Eur. Heart J. 2008;29:54–62. doi: 10.1093/eurheartj/ehm565. [DOI] [PubMed] [Google Scholar]
- 109.Carpagnano G.E., Resta O., Foschino-Barbaro M.P., Spanevello A., Stefano A., Di Gioia G., Serviddio G., Gramiccioni E. Exhaled Interleukine-6 and 8-isoprostane in chronic obstructive pulmonary disease: effect of carbocysteine lysine salt monohydrate (SCMC-Lys) Eur. J. Pharmacol. 2004;505:169–175. doi: 10.1016/j.ejphar.2004.10.007. [DOI] [PubMed] [Google Scholar]
- 110.Cavalcante A.G.D., de Bruin P.F.C., de Bruin V.M.S., Nunes D.M., Pereira E.D.B., Cavalcante M.M., Andrade G.M. Melatonin reduces lung oxidative stress in patients with chronic obstructive pulmonary disease: a randomized, double-blind, placebo-controlled study. J. Pineal Res. 2012;53:238–244. doi: 10.1111/j.1600-079X.2012.00992.x. [DOI] [PubMed] [Google Scholar]
- 111.Chan D., Irish A., Croft K.D., Dogra G. Effect of ascorbic acid supplementation on plasma isoprostanes in haemodialysis patients. Nephrol. Dial. Transplant. 2006;21:234–235. doi: 10.1093/ndt/gfi154. [DOI] [PubMed] [Google Scholar]
- 112.Chiabrando C., Avanzini F., Rivalta C., Colombo F., Fanelli R., Palumbo G., Roncaglioni M.C., PPP Collaborative Groupon the antioxidant effect of vitamin E Long-term vitamin E supplementation fails to reduce lipid peroxidation in people at cardiovascular risk: analysis of underlying factors. Curr. Control Trials Cardiovasc. Med. 2002;3:5. doi: 10.1186/1468-6708-3-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Choi H.D., Youn Y.K., Shin W.G. Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects. Plant Foods Hum. Nutr. 2011;66:363–369. doi: 10.1007/s11130-011-0258-9. [DOI] [PubMed] [Google Scholar]
- 114.Clarke R., Harrison G., Richards S., Grp V.T.C. Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. J. Intern. Med. 2003;254:67–75. doi: 10.1046/j.1365-2796.2003.01154.x. [DOI] [PubMed] [Google Scholar]
- 115.Cracowski J.L., Girolet S., Imbert B., Seinturier C., Stanke-Labesque F.S., Bessard J., Boignard A., Bessard G., Carpentier P.H. Effects of short-term treatment with vitamin E in systemic sclerosis: a double-blind, randomized, controlled clinical trial of efficacy based on urinary isoprostane measurement. Free Radic. Biol. Med. 2005;38:98–103. doi: 10.1016/j.freeradbiomed.2004.09.032. [DOI] [PubMed] [Google Scholar]
- 116.Crujeiras A.B., Parra D., Abete I., Martinez J.A. A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic. Res. 2007;41:498–506. doi: 10.1080/10715760601131935. [DOI] [PubMed] [Google Scholar]
- 117.Dal Negro R.W., Visconti M., Turco P. Efficacy of erdosteine 900 versus 600 mg/day in reducing oxidative stress in patients with COPD exacerbations: results of a double blind, placebo-controlled trial. Pulm. Pharmacol. Ther. 2015;33:47–51. doi: 10.1016/j.pupt.2015.06.004. [DOI] [PubMed] [Google Scholar]
- 118.Darghosian L., Free M., Li J., Gebretsadik T., Bian A., Shintani A., McBride B.F., Solus J., Milne G., Crossley G.H., Thompson D., Vidaillet H., Okafor H., Darbar D., Murray K.T., Stein C.M. Effect of omega-three polyunsaturated fatty acids on inflammation, oxidative stress, and recurrence of atrial fibrillation. Am. J. Cardiol. 2015;115:196–201. doi: 10.1016/j.amjcard.2014.10.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Davi G., Alessandrini P., Mezzetti A., Minotti G., Bucciarelli T., Costantini F., Cipollone F., Bon G.B., Ciabattoni G., Patrono C. In vivo formation of 8-Epi-prostaglandin F2 alpha is increased in hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 1997;17:3230–3235. doi: 10.1161/01.atv.17.11.3230. [DOI] [PubMed] [Google Scholar]
- 120.de Boer I.H., Sachs M., Hoofnagle A.N., Utzschneider K.M., Kahn S.E., Kestenbaum B., Himmelfarb J. Paricalcitol does not improve glucose metabolism in patients with stage 3–4 chronic kidney disease. Kidney Int. 2013;83:323–330. doi: 10.1038/ki.2012.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.de Castro-Silva C., de Bruin V.M.S., Cunha G.M.A., Nunes D.M., Medeiros C.A.M., de Bruin P.F.C. Melatonin improves sleep and reduces nitrite in the exhaled breath condensate in cystic fibrosis – a randomized, double-blind placebo-controlled study. J. Pineal Res. 2010;48:65–71. doi: 10.1111/j.1600-079X.2009.00726.x. [DOI] [PubMed] [Google Scholar]
- 122.De Caterina R., Cipollone F., Filardo F.P., Zimarino M., Bernini W., Lazzerini G., Bucciarelli T., Falco A., Marchesani P., Muraro R., Mezzetti A., Ciabattoni G. Low-density lipoprotein level reduction by the 3-hydroxy-3-methylglutaryl coenzyme-A inhibitor simvastatin is accompanied by a related reduction of F2-isoprostane formation in hypercholesterolemic subjects: no further effect of vitamin E. Circulation. 2002;106:2543–2549. doi: 10.1161/01.cir.0000038500.43292.d7. [DOI] [PubMed] [Google Scholar]
- 123.De Diego A., Milara J., Martinez-Moragon E., Palop M., Leon M., Cortijo J. Effects of long-term azithromycin therapy on airway oxidative stress markers in non-cystic fibrosis bronchiectasis. Respirology. 2013;18:1056–1062. doi: 10.1111/resp.12130. [DOI] [PubMed] [Google Scholar]
- 124.Devaraj S., Hirany S.V., Burk R.F., Jialal I. Divergence between LDL oxidative susceptibility and urinary F-2-isoprostanes as measures of oxidative stress in type 2 diabetes. Clin. Chem. 2001;47:1974–1979. [PubMed] [Google Scholar]
- 125.Devaraj S., Tang R., Adams-Huet B., Harris A., Seenivasan T., de Lemos J.A., Jialal I. Effect of high-dose alpha-tocopherol supplementation on biomarkers of oxidative stress and inflammation and carotid atherosclerosis in patients with coronary artery disease. Am. J. Clin. Nutr. 2007;86:1392–1398. doi: 10.1093/ajcn/86.5.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Devries M.C., Hamadeh M.J., Glover A.W., Raha S., Samjoo I.A., Tarnopolsky M.A. Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women. Free Radic. Biol. Med. 2008;45:503–511. doi: 10.1016/j.freeradbiomed.2008.04.039. [DOI] [PubMed] [Google Scholar]
- 127.Dhawan V., Jain S. Effect of garlic supplementation on oxidized low density lipoproteins and lipid peroxidation in patients of essential hypertension. Mol. Cell. Biochem. 2004;266:109–115. doi: 10.1023/b:mcbi.0000049146.89059.53. [DOI] [PubMed] [Google Scholar]
- 128.Di Gennaro C., Saccani-Jotti G., Pinelli S., Venturi N., Palombi F., Manfredi G., Pellegrino A., Bicchieri L., Sansoni P., Montanari A. Endothelial dysfunction and high cardiovascular risk profile in severe alcoholics improve only partially following a medium-term alcohol withdrawal. Alcohol.-Clin. Exp. Res. 2012;36:242–250. doi: 10.1111/j.1530-0277.2011.01636.x. [DOI] [PubMed] [Google Scholar]
- 129.Di Sabatino A., Santilli F., Guerci M., Simeone P., Ardizzone S., Massari A., Giuffrida P., Tripaldi R., Malara A., Liani R., Gurini E., Aronico N., Balduini A., Corazza G.R., Devi G. Oxidative stress and thromboxane-dependent platelet activation in inflammatory bowel disease: effects of anti-TNF-alpha treatment. Thromb. Haemost. 2016;116:486–495. doi: 10.1160/TH16-02-0167. [DOI] [PubMed] [Google Scholar]
- 130.Diaz-Castro J., Guisado R., Kajarabille N., Garcia C., Guisado I.M., De Teresa C., Ochoa J.J. Phlebodium decumanum is a natural supplement that ameliorates the oxidative stress and inflammatory signalling induced by strenuous exercise in adult humans. Eur. J. Appl. Physiol. 2012;112:3119–3128. doi: 10.1007/s00421-011-2295-3. [DOI] [PubMed] [Google Scholar]
- 131.Dietrich M., Block G., Hudes M., Morrow J.D., Norkus E.P., Traber M.G., Cross C.E., Packer L. Antioxidant supplementation decreases lipid peroxidation biomarker F(2)-isoprostanes in plasma of smokers. Cancer Epidemiol. Biomark. Prev. 2002;11:7–13. [PubMed] [Google Scholar]
- 132.Dietrich M., Block G., Benowitz N.L., Morrow J.A., Hudes M., Jacob P., Norkus E.P., Packer L. Vitamin C supplementation decreases oxidative stress biomarker F-2-isoprostanes in plasma of nonsmokers exposed to environmental tobacco smoke. Nutr. Cancer – Int. J. 2003;45:176–184. doi: 10.1207/S15327914NC4502_06. [DOI] [PubMed] [Google Scholar]
- 133.Dillon S.A., Lowe G.M., Billington D., Rahman K. Dietary supplementation with aged garlic extract reduces plasma and urine concentrations of 8-iso-prostaglandin F-2 alpha in smoking and nonsmoking men and women. J. Nutr. 2002;132:168–171. doi: 10.1093/jn/132.2.168. [DOI] [PubMed] [Google Scholar]
- 134.Dong Y., Steffen B.T., Cao J., Tsai A.K., Ordovas J., Straka R., Zhou X., Kabagambe E., Hanson N.Q., Arnett D., Tsai M.Y. Effects of fenofibrate on plasma oxidized LDL and 8-isoprostane in a sub-cohort of GOLDN participants. Atherosclerosis. 2011;214:422–425. doi: 10.1016/j.atherosclerosis.2010.11.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Donovan J.L., DeVane C.L., Chavin K.D., Oates J.C., Njoku C., Patrick K.S., Fiorini R.N., Markowitz J.S. Oral administration of a decaffeinated green tea (Camellia sinensis) extract did not alter urinary 8-epi-prostaglandin F-2 alpha, a biomarker for in-vivo lipid peroxidation. J. Pharm. Pharmacol. 2005;57:1365–1369. doi: 10.1211/jpp.57.10.0017. [DOI] [PubMed] [Google Scholar]
- 136.Dow C.A., Wertheim B.C., Patil B.S., Thomson C.A. Daily consumption of grapefruit for 6 weeks reduces urine F2-isoprostanes in overweight adults with high baseline values but has no effect on plasma high-sensitivity C-reactive protein or soluble vascular cellular adhesion molecule 1. J. Nutr. 2013;143:1586–1592. doi: 10.3945/jn.113.175166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Duggan C., Tapsoba J.D., Wang C.Y., Campbell K.L., Foster-Schubert K., Gross M.D., McTiernan A. Dietary eeight loss, exercise, and oxidative stress in postmenopausal women: a randomized controlled trial. Cancer Prev. Res. 2016;9:835–843. doi: 10.1158/1940-6207.CAPR-16-0163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Dunstan J.A., Breckler L., Hale J., Lehmann H., Franklin P., Lyons G., Ching S.Y.L., Mori T.A., Barden A., Prescott S.L. Supplementation with vitamins C, E, beta-carotene and selenium has no effect on anti-oxidant status and immune responses in allergic adults: a randomized controlled trial. Clin. Exp. Allergy. 2007;37:180–187. doi: 10.1111/j.1365-2222.2007.02657.x. [DOI] [PubMed] [Google Scholar]
- 139.Efrati S., Dishy V., Averbukh M., Blatt A., Krakover R., Weisgarten J., Morrow J.D., Stein M.C., Golik A. The effect of N-acetylcysteine on renal function, nitric oxide, and oxidative stress after angiography. Kidney Int. 2003;64:2182–2187. doi: 10.1046/j.1523-1755.2003.00322.x. [DOI] [PubMed] [Google Scholar]
- 140.Elizondo A., Araya J., Rodrigo R., Signorini C., Sgherri C., Comporti M., Poniachik J., Videla L.A. Effects of weight loss on liver and erythrocyte polyunsaturated fatty acid pattern and oxidative stress status in obese patients with non-alcoholic fatty liver disease. Biol. Res. 2008;41:59–68. [PubMed] [Google Scholar]
- 141.Engler M.M., Engler M.B., Malloy M., Chiu E., Besio D., Paul S., Stuehlinger M., Morrow J., Ridker P., Rifai N., Mietus-Snyder M. Docosahexaenoic acid restores endothelial function in children with hyperlipidemia: results from the EARLY study. Int. J. Clin. Pharmacol. Ther. 2004;42:672–679. doi: 10.5414/cpp42672. [DOI] [PubMed] [Google Scholar]
- 142.Engler M.B., Engler M.M., Chen C.Y., Malloy M.J., Browne A., Chiu E.Y., Kwak H.K., Milbury P., Paul S.M., Blumberg J., Mietus-Snyder M.L. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J. Am. Coll. Nutr. 2004;23:197–204. doi: 10.1080/07315724.2004.10719361. [DOI] [PubMed] [Google Scholar]
- 143.Evans M., Wilson D., Guthrie N. A randomized, double-blind, placebo-controlled, pilot study to evaluate the effect of whole grape extract on antioxidant status and lipid profile. J. Funct. Foods. 2014;7:680–691. [Google Scholar]
- 144.Flammer A.J., Hermann F., Sudano I., Spieker L., Hermann M., Cooper K.A., Serafini M., Luescher T.F., Ruschitzka F., Noll G., Corti R. Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation. 2007;116:2376–2382. doi: 10.1161/CIRCULATIONAHA.107.713867. [DOI] [PubMed] [Google Scholar]
- 145.Flammer A.J., Hermann F., Wiesli P., Schwegler B., Chenevard R., Huerlimann D., Sudano I., Gay S., Neidhart M., Riesen W., Ruschitzka F., Luescher T.F., Noll G., Lehmann R. Effect of losartan, compared with atenolol, on endothelial function and oxidative stress in patients with type 2 diabetes and hypertension. J. Hypertens. 2007;25:785–791. doi: 10.1097/HJH.0b013e3280287a72. [DOI] [PubMed] [Google Scholar]
- 146.Flores L., Rodela S., Abian J., Claria J., Esmatjes E. F-2 isoprostane is already increased at the onset of type 1 diabetes mellitus: effect of glycemic control. Metab.-Clin. Exp. 2004;53:1118–1120. doi: 10.1016/j.metabol.2004.04.005. [DOI] [PubMed] [Google Scholar]
- 147.Fowke J.H., Morrow J.D., Motley S., Bostick R.M., Ness R.M. Brassica vegetable consumption reduces urinary F2-isoprostane levels independent of micronutrient intake. Carcinogenesis. 2006;27:2096–2102. doi: 10.1093/carcin/bgl065. [DOI] [PubMed] [Google Scholar]
- 148.Freese R., Basu S., Hietanen E., Nair J., Nakachi K., Bartsch H., Mutanen M. Green tea extract decreases plasma malondialdehyde concentration but does not affect other indicators of oxidative stress, nitric oxide production, or hemostatic factors during a high-linoleic acid diet in healthy females. Eur. J. Nutr. 1999;38:149–157. doi: 10.1007/s003940050056. [DOI] [PubMed] [Google Scholar]
- 149.Freitas B., Lloret G.R., Visacri M.B., Tuan B.T., Amaral L.S., Baldini D., de Sousa V.M., de Castro L.L., Aguiar J.R.S., Pincinato E.D., Mazzola P.G., Moriel P. High 15-F-2t-isoprostane levels in patients with a previous history of nonmelanoma skin cancer: the effects of supplementary antioxidant therapy. Biomed. Res. Int. 2015 doi: 10.1155/2015/963569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Freund-Levi Y., Vedin I., Hjorth E., Basun H., Irving G.F., Schultzberg M., Eriksdotter M., Palmblad J., Vessby B., Wahlund L.O., Cederholm T., Basu S. Effects of supplementation with omega-3 fatty acids on oxidative stress and inflammation in patients with Alzheimer's disease: the OmegAD study. J. Alzheimers Dis. 2014;42:823–831. doi: 10.3233/JAD-132042. [DOI] [PubMed] [Google Scholar]
- 151.Galasko D.R., Peskind E., Clark C.M., Quinn J.F., Ringman J.M., Jicha G.A., Cotman C., Cottrell B., Montine T.J., Thomas R.G., Aisen P., Alzheimers Dis Cooperative Study Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch. Neurol. 2012;69:836–841. doi: 10.1001/archneurol.2012.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Gamboa J.L., Pretorius M., Todd-Tzanetos D.R., Luther J.M., Yu C., Ikizler T.A., Brown N.J. Comparative effects of angiotensin-converting enzyme inhibition and angiotensin-receptor blockade on inflammation during hemodialysis. J. Am. Soc. Nephrol. 2012;23:334–342. doi: 10.1681/ASN.2011030287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Garcia V.P., Rocha H.N.M., Silva G.M., Amaral T.A.G., Secher N.H., Nobrega A.C.L., Vianna L.C., Rocha N.G. Exogenous L-arginine reduces matrix metalloproteinase-2 and -9 activities and oxidative stress in patients with hypertension. Life Sci. 2016;157:125–130. doi: 10.1016/j.lfs.2016.06.006. [DOI] [PubMed] [Google Scholar]
- 154.Garcia-Martinez R., Noiret L., Sen S., Mookerjee R., Jalan R. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury. Liver Int. 2015;35:335–343. doi: 10.1111/liv.12528. [DOI] [PubMed] [Google Scholar]
- 155.Garg M.L., Blake R.J., Wills R.B.H., Clayton E.H. Macadamia nut consumption modulates favourably risk factors for coronary artery disease in hypercholesterolemic subjects. Lipids. 2007;42:583–587. doi: 10.1007/s11745-007-3042-8. [DOI] [PubMed] [Google Scholar]
- 156.Graydon R., Hogg R.E., Chakravarthy U., Young I.S., Woodside J.V. The effect of lutein- and zeaxanthin-rich foods v. supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: pilot studies in healthy volunteers. Br. J. Nutr. 2012;108:334–342. doi: 10.1017/S0007114511005599. [DOI] [PubMed] [Google Scholar]
- 157.Guan J.Z., Guan W.P., Maeda T., Makino N. Effect of vitamin E administration on the elevated oxygen stress and the telomeric and subtelomeric status in Alzheimer's disease. Gerontology. 2012;58:62–69. doi: 10.1159/000327821. [DOI] [PubMed] [Google Scholar]
- 158.Guertin K.A., Grant R.K., Arnold K.B., Burwell L., Hartline J., Goodman P.J., Minasian L.M., Lippman S.M., Klein E., Cassano P.A. Effect of long-term vitamin E and selenium supplementation on urine F2-isoprostanes, a biomarker of oxidative stress. Free Radic. Biol. Med. 2016;95:349–356. doi: 10.1016/j.freeradbiomed.2016.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Guillot N., Caillet E., Laville M., Calzada C., Lagarde M., Vericel E. Increasing intakes of the long-chain omega-3 docosahexaenoic acid: effects on platelet functions and redox status in healthy men. Faseb J. 2009;23:2909–2916. doi: 10.1096/fj.09-133421. [DOI] [PubMed] [Google Scholar]
- 160.Hall W.L., Formanuik N.L., Harnpanich D., Cheung M., Talbot D., Chowienczyk P.J., Sanders T.A.B. A meal enriched with soy isoflavones increases nitric oxide-mediated vasodilation in healthy postmenopausal women. J. Nutr. 2008;138:1288–1292. doi: 10.1093/jn/138.7.1288. [DOI] [PubMed] [Google Scholar]
- 161.Hansson P., Barregard L., Halltorp M., Sibthorpe S., Svelander C., Sandberg A.S., Basu S., Hoppe M.R., Hulthen L. Habitual high intake of fatty fish is related to lower levels of F-2-isoprostane in healthy women. Nutrition. 2015;31:847–852. doi: 10.1016/j.nut.2014.12.015. [DOI] [PubMed] [Google Scholar]
- 162.Higdon J.V., Liu J.K., Du S.H., Morrow J.D., Ames B.N., Wander R.C. Supplementation of postmenopausal women with fish oil rich in eicosapentaenoic acid and docosahexaenoic acid is not associated with greater in vivo lipid peroxidation compared with oils rich in oleate and linoleate as assessed by plasma malondialdehyde and F-2-isoprostanes. Am. J. Clin. Nutr. 2000;72:714–722. doi: 10.1093/ajcn/72.3.714. [DOI] [PubMed] [Google Scholar]
- 163.Himmelfarb J., Ikizler T.A., Ellis C., Wu P.S., Shintani A., Dalal S., Kaplan M., Chonchol M., Hakim R.M. Provision of antioxidant therapy in hemodialysis (PATH): a randomized clinical trial. J. Am. Soc. Nephrol. 2014;25:623–633. doi: 10.1681/ASN.2013050545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Hirooka Y., Kimura Y., Ito Y.S.K., Sunagawa K. Effects of valsartan or amlodipine on endothelial function and oxidative stress after one year follow-up in patients with essential hypertension. Clin. Exp. Hypertens. 2008;30:267–276. doi: 10.1080/10641960802071000. [DOI] [PubMed] [Google Scholar]
- 165.Hodgson J.M., Puddey I.B., Croft K.D., Mori T.A., Rivera J., Beilin L.J. Isoflavonoids do not inhibit in vivo lipid peroxidation in subjects with high-normal blood pressure. Atherosclerosis. 1999;145:167–172. doi: 10.1016/s0021-9150(99)00029-5. [DOI] [PubMed] [Google Scholar]
- 166.Hodgson J.M., Croft K.D., Mori T.A., Burke V., Beilin L.J., Puddey I.B. Regular ingestion of tea does not inhibit in vivo lipid peroxidation in humans. J. Nutr. 2002;132:55–58. doi: 10.1093/jn/132.1.55. [DOI] [PubMed] [Google Scholar]
- 167.Hodgson J.M., Puddey I.B., Burke V., Watts G.F., Beilin L.J. Regular ingestion of black tea improves brachial artery vasodilator function. Clin. Sci. 2002;102:195–201. [PubMed] [Google Scholar]
- 168.Hokayem M., Blond E., Vidal H., Lambert K., Meugnier E., Feillet-Coudray C., Coudray C., Pesenti S., Luyton C., Lambert-Porcheron S., Sauvinet V., Fedou C., Brun J.-F., Rieusset J., Bisbal C., Sultan A., Mercier J., Goudable J., Dupuy A.-M., Cristol J.-P., Laville M., Avignon A. Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care. 2013;36:1454–1461. doi: 10.2337/dc12-1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Hoskins A., Roberts J.L., II, Milne G., Choi L., Dworski R. Natural-source d-alpha-tocopheryl acetate inhibits oxidant stress and modulates atopic asthma in humans in vivo. Allergy. 2012;67:676–682. doi: 10.1111/j.1398-9995.2012.02810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170.Hsu S.P., Chiang C.K., Yang S.Y., Chien C.T. N-acetylcysteine for the management of anemia and oxidative stress in hemodialysis patients. Nephron Clin. Pract. 2010;116:C207–C216. doi: 10.1159/000317201. [DOI] [PubMed] [Google Scholar]
- 171.Huang H.Y., Appel L.J., Croft K.D., Miller E.R., Mori T.A., Puddey I.B. Effects of vitamin C and vitamin E on in vivo lipid peroxidation: results of a randomized controlled trial. Am. J. Clin. Nutr. 2002;76:549–555. doi: 10.1093/ajcn/76.3.549. [DOI] [PubMed] [Google Scholar]
- 172.Hummel S.L., Seymour E.M., Brook R.D., Kolias T.J., Sheth S.S., Rosenblum H.R., Wells J.M., Weder A.B. Low-sodium DASH diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive HFPEF. Hypertension. 2012;60:1200–1206. doi: 10.1161/HYPERTENSIONAHA.112.202705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Ichihara A., Hayashi M., Kaneshiro Y., Takemitsu T., Homma K., Kanno Y., Yoshizawa M., Furukawa T., Takenaka T., Saruta T. Low doses of losartan and trandolapril improve arterial stiffness in hemodialysis patients. Am. J. Kidney Dis. 2005;45:866–874. doi: 10.1053/j.ajkd.2005.02.022. [DOI] [PubMed] [Google Scholar]
- 174.Jacob K., Periago M.J., Boehm V., Berruezo G.R. Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. Br. J. Nutr. 2008;99:137–146. doi: 10.1017/S0007114507791894. [DOI] [PubMed] [Google Scholar]
- 175.Jarvi A., Karlstrom B., Vessby B., Becker W. Increased intake of fruits and vegetables in overweight subjects: effects on body weight, body composition, metabolic risk factors and dietary intake. Br. J. Nutr. 2016;115:1760–1768. doi: 10.1017/S0007114516000970. [DOI] [PubMed] [Google Scholar]
- 176.Jenkins D.J.A., Kendall C.W.C., Marchie A., Josse A.R., Nguyen T.H., Faulkner D.A., Lapsley K.G., Blumberg J. Almonds reduce biomarkers of lipid peroxidation in older hyperlipidemic subjects. J. Nutr. 2008;138:908–913. doi: 10.1093/jn/138.5.908. [DOI] [PubMed] [Google Scholar]
- 177.Joseph A.M., Hecht S.S., Murphy S.E., Lando H., Carmella S.G., Gross M., Bliss R., Le C.T., Hatsukami D.K. Smoking reduction fails to improve clinical and biological markers of cardiac disease: a randomized controlled trial. Nicotine Tob. Res. 2008;10:471–481. doi: 10.1080/14622200801901948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Kageyama Y., Takahashi M., Ichikawa T., Torikai E., Nagano A. Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 2008;26:73–80. [PubMed] [Google Scholar]
- 179.Kajiyama S., Hasegawa G., Asano M., Hosoda H., Fukui M., Nakamura N., Kitawaki J., Imai S., Nakano K., Ohta M., Adachi T., Obayashi H., Yoshikawa T. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr. Res. 2008;28:137–143. doi: 10.1016/j.nutres.2008.01.008. [DOI] [PubMed] [Google Scholar]
- 180.Kakuda H., Kanasaki K., Koya D., Takekoshi N. The administration of pitavastatin augments creatinine clearance associated with reduction in oxidative stress parameters: acute and early effects. Clin. Exp. Nephrol. 2013;17:240–247. doi: 10.1007/s10157-012-0689-0. [DOI] [PubMed] [Google Scholar]
- 181.Kamgar M., Zaldivar F., Vaziri N.D., Pahl M.V. Antioxidant therapy does not ameliorate oxidative stress and inflammation in patients with end-stage renal disease. J. Natl. Med. Assoc. 2009;101:336–344. doi: 10.1016/s0027-9684(15)30881-6. [DOI] [PubMed] [Google Scholar]
- 182.Kantor E.D., Ulrich C.M., Owen R.W., Schmezer P., Neuhouser M.L., Lampe J.W., Peters U., Shen D.D., Vaughan T.L., White E. Specialty supplement use and biologic measures of oxidative stress and DNA damage. Cancer Epidemiol. Biomark. Prev. 2013;22:2312–2322. doi: 10.1158/1055-9965.EPI-13-0470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Karamanli H., Ozol D., Ugur K.S., Yildirim Z., Armutcu F., Bozkurt B., Yigitoglu R. Influence of CPAP treatment on airway and systemic inflammation in OSAS patients. Sleep Breath. 2014;18:251–256. doi: 10.1007/s11325-012-0761-8. [DOI] [PubMed] [Google Scholar]
- 184.Katayama S., Kawamori R., Iwamoto Y., Saito I., Kuramoto K., Grp A.S. In half of hypertensive diabetics, co-administration of a calcium channel blocker and an angiotensin-converting enzyme inhibitor achieved a target blood pressure of < 130/80 mmHg: the azelnidipine and temocapril in hypertensive patients with type 2 diabetes (ATTEST) study. Hypertens. Res. 2008;31:1499–1508. doi: 10.1291/hypres.31.1499. [DOI] [PubMed] [Google Scholar]
- 185.Ke R.W., Pace D.T., Ahokas A. Effect of short-term hormone therapy on oxidative stress and endothelial function in African American and Caucasian postmenopausal women. Fertil. Steril. 2003;79:1118–1122. doi: 10.1016/s0015-0282(03)00153-5. [DOI] [PubMed] [Google Scholar]
- 186.Kei A., Tellis C., Liberopoulos E., Tselepis A., Elisaf M. Effect of switch to the highest dose of rosuvastatin versus add-on-statin fenofibrate versus add-on-statin nicotinic acid/laropiprant on oxidative stress markers in patients with mixed dyslipidemia. Cardiovasc. Ther. 2014;32:139–146. doi: 10.1111/1755-5922.12072. [DOI] [PubMed] [Google Scholar]
- 187.Kelly A.S., Thelen A.M., Kaiser D.R., Gonzalez-Campoy J.M., Bank A.J. Rosiglitazone improves endothelial function and inflammation but not asymmetric dimethylarginine or oxidative stress in patients with type 2 diabetes mellitus. Vasc. Med. 2007;12:311–318. doi: 10.1177/1358863X07084200. [DOI] [PubMed] [Google Scholar]
- 188.Kendall M., Batterham M., Obied H., Prenzler P.D., Ryan D., Robards K. Zero effect of multiple dosage of olive leaf supplements on urinary biomarkers of oxidative stress in healthy humans. Nutrition. 2009;25:270–280. doi: 10.1016/j.nut.2008.08.008. [DOI] [PubMed] [Google Scholar]
- 189.Keskin O., Uluca U., Keskin M., Gogebakan B., Kucukosmanoglu E., Ozkars M.Y., Kul S., Bayram H., Coskun Y. The efficacy of single-high dose inhaled corticosteroid versus oral prednisone treatment on exhaled leukotriene and 8-isoprostane levels in mild to moderate asthmatic children with asthma exacerbation. Allergol. Immunopathol. 2016;44:138–148. doi: 10.1016/j.aller.2015.05.006. [DOI] [PubMed] [Google Scholar]
- 190.Khan B.V., Sola S., Lauten W.B., Natarajan R., Hooper W.C., Menon R.G., Lerakis S., Helmy T. Quinapril, an ACE inhibitor, reduces markers of oxidative stress in the metabolic syndrome. Diabetes Care. 2004;27:1712–1715. doi: 10.2337/diacare.27.7.1712. [DOI] [PubMed] [Google Scholar]
- 191.Kharitonov S.A., Donnelly L.E., Montuschi P., Corradi M., Collins J.V., Barnes P.J. Dose-dependent onset and cessation of action of inhaled budesonide on exhaled nitric oxide and symptoms in mild asthma. Thorax. 2002;57:889–896. doi: 10.1136/thorax.57.10.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 192.Kiliszek M., Maczewski M., Styczynski G., Duda M., Opolski G., Beresewicz A. Low-density lipoprotein reduction by sirrivastatin is accompanied by angiotensin II type 1 receptor downregulation, reduced oxidative stress, and improved endothelial function in patients with stable coronary artery disease. Coron. Artery Dis. 2007;18:201–209. doi: 10.1097/MCA.0b013e32802c7cb0. [DOI] [PubMed] [Google Scholar]
- 193.King D.E., Player M., Everett C.J. The impact of pioglitazone on ADMA and oxidative stress markers in patients with type 2 diabetes. Prim. Care Diabetes. 2012;6:157–161. doi: 10.1016/j.pcd.2011.06.002. [DOI] [PubMed] [Google Scholar]
- 194.Kinlay S., Behrendt D., Fang J.C., Delagrange D., Morrow J., Witztum J.L., Rifai N., Selwyn A.P., Creager M.A., Ganz P. Long-term effect of combined vitamins E and C on coronary and peripheral endothelial function. J. Am. Coll. Cardiol. 2004;43:629–634. doi: 10.1016/j.jacc.2003.08.051. [DOI] [PubMed] [Google Scholar]
- 195.Kishimoto N., Hayashi T., Sakuma I., Kano-Hayashi H., Tsunekawa T., Osawa M., Ina K., Iguchi A. A hydroxymethylglutaryl coenzyme a reductase inhibitor improves endothelial function within 7 days in patients with chronic hemodialysis. Int. J. Cardiol. 2010;145:21–26. doi: 10.1016/j.ijcard.2009.05.023. [DOI] [PubMed] [Google Scholar]
- 196.Klein T., Reutter F., Schweer H., Seyberth H.W., Nusing R.M. Generation of the isoprostane 8-epi-prostaglandin F2alpha in vitro and in vivo via the cyclooxygenases. J. Pharmacol. Exp. Ther. 1997;282:1658–1665. [PubMed] [Google Scholar]
- 197.Kom G.D., Schwedhelm E., Maas R., Schneider L., Benndorf R., Boger R.H. Impact of atorvastatin treatment on platelet-activating factor acetylhydrolase and 15-F-2trans-isoprostane in hypercholesterolaemic patients. Br. J. Clin. Pharmacol. 2007;63:672–679. doi: 10.1111/j.1365-2125.2006.02832.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Komiya N., Hirose H., Saisho Y., Saito I., Itoh H. Effects of 12-month valsartan therapy on glycation and oxidative stress markers in type 2 diabetic subjects with hypertension. Int. Heart J. 2008;49:681–689. doi: 10.1536/ihj.49.681. [DOI] [PubMed] [Google Scholar]
- 199.Konishi M., Iwasa M., Yamauchi K., Sugimoto R., Fujita N., Kobayashi Y., Watanabe S., Teraguchi S., Adachi Y., Kaito M. Lactoferrin inhibits lipid peroxidation in patients with chronic hepatitis C. Hepatol. Res. 2006;36:27–32. doi: 10.1016/j.hepres.2006.06.005. [DOI] [PubMed] [Google Scholar]
- 200.Koren S., Shemesh-Bar L., Tirosh A., Peleg R.K., Berman S., Abu Hamad R., Vinker S., Golik A., Efrati S. The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients. Diabetes Technol. Ther. 2012;14:561–567. doi: 10.1089/dia.2011.0296. [DOI] [PubMed] [Google Scholar]
- 201.Koyama N., Suzuki K., Furukawa Y., Arisaka H., Seki T., Kuribayashi K., Ishii K., Sukegawa E., Takahashi M. Effects of safflower seed extract supplementation on oxidation and cardiovascular risk markers in healthy human volunteers. Br. J. Nutr. 2009;101:568–575. doi: 10.1017/S0007114508025786. [DOI] [PubMed] [Google Scholar]
- 202.Kuboki K., Iso K., Murakami E., Abe S., Araki E., Ueshiba H., Yoshino G. Effects of valsartan on inflammatory and oxidative stress markers in hypertensive, hyperglycemic patients: an open-label, prospective study. Curr. Ther. Res.-Clin. Exp. 2007;68:338–348. doi: 10.1016/j.curtheres.2007.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Kullisaar T., Songisepp E., Mikelsaar M., Zilmer K., Vihalemm T., Zilmer M. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 2003;90:449–456. doi: 10.1079/bjn2003896. [DOI] [PubMed] [Google Scholar]
- 204.Kurajoh M., Koyama H., Shoji T., Sumida C., Yamamoto A., Tsutsumi Z., Moriwaki Y., Yamamoto T., Koga M. Relationship between serum allantoin and urate in healthy subjects and effects of benzbromarone in gout patients. Int. J. Clin. Pharmacol. Ther. 2012;50:265–271. doi: 10.5414/cp201582. [DOI] [PubMed] [Google Scholar]
- 205.Lazich I., Sarafidis P., de Guzman E., Patel A., Oliva R., Bakris G. Effects of combining simvastatin with rosiglitazone on inflammation, oxidant stress and ambulatory blood pressure in patients with the metabolic syndrome: the SIROCO study. Diabetes Obes. Metab. 2012;14:181–186. doi: 10.1111/j.1463-1326.2011.01510.x. [DOI] [PubMed] [Google Scholar]
- 206.Lee C.Y.J., Isaac H.B., Wang H., Huang S.H., Long L.H., Jenner A.M., Kelly R.P., Halliwell B. Cautions in the use of biomarkers of oxidative damage; the vascular and antioxidant effects of dark soy sauce in humans. Biochem. Biophys. Res. Commun. 2006;344:906–911. doi: 10.1016/j.bbrc.2006.03.217. [DOI] [PubMed] [Google Scholar]
- 207.Lee C.-Y.J., Isaac H.B., Huang S.H., Long L.H., Wang H., Gruber J., Ong C.N., Kelly R.P., Halliwell B. Limited antioxidant effect after consumption of a single dose of tomato sauce by young males, despite a rise in plasma lycopene. Free Radic. Res. 2009;43:622–628. doi: 10.1080/10715760902942816. [DOI] [PubMed] [Google Scholar]
- 208.Lin C.C., Yin M.C. Vitamins B depletion, lower iron status and decreased antioxidative defense in patients with chronic hepatitis C treated by pegylated interferon alfa and ribavirin. Clin. Nutr. 2009;28:34–38. doi: 10.1016/j.clnu.2008.09.003. [DOI] [PubMed] [Google Scholar]
- 209.Loke W.M., Hodgson J.M., Proudfoot J.M., McKinley A.J., Puddey I.B., Croft K.D. Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr. 2008;88:1018–1025. doi: 10.1093/ajcn/88.4.1018. [DOI] [PubMed] [Google Scholar]
- 210.Lopes H.F., Martin K.L., Nashar K., Morrow J.D., Goodfriend T.L., Egan B.M. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension. 2003;41:422–430. doi: 10.1161/01.HYP.0000053450.19998.11. [DOI] [PubMed] [Google Scholar]
- 211.Lopez-Uriarte P., Nogues R., Saez G., Bullo M., Romeu M., Masana L., Tormos C., Casas-Agustench P., Salas-Salvado J. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin. Nutr. 2010;29:373–380. doi: 10.1016/j.clnu.2009.12.008. [DOI] [PubMed] [Google Scholar]
- 212.Lu T.M., Ding Y.A., Leu H.B., Yin W.H., Sheu W.H.H., Chu K.M. Effect of rosuvastatin on plasma levels of asymmetric dimethylarginine in patients with Hypercholesterolemia. Am. J. Cardiol. 2004;94:157–161. doi: 10.1016/j.amjcard.2004.03.052. [DOI] [PubMed] [Google Scholar]
- 213.Macedo R.C., Vieira A., Marin D.P., Otton R. Effects of chronic resveratrol supplementation in military firefighters undergo a physical fitness test--a placebo-controlled, double blind study. Chem. Biol. Interact. 2015;227:89–95. doi: 10.1016/j.cbi.2014.12.033. [DOI] [PubMed] [Google Scholar]
- 214.Maffei S., Mercuri A., Prontera C., Zucchelli G.C., Vassalle C. Vasoactive biomarkers and oxidative stress in healthy recently postmenopausal women treated with hormone replacement therapy. Climacteric. 2006;9:452–458. doi: 10.1080/13697130601014752. [DOI] [PubMed] [Google Scholar]
- 215.Mannarino E., Pirro M., Cortese C., Lupattelli G., Siepi D., Mezzetti A., Bertolini S., Parillo M., Fellin R., Pujia A., Averna M., Nicolle C., Notarbartolo A. Effects of a phytosterol-enriched dairy product on lipids, sterols and 8-isoprostane in hypercholesterolemic patients: a multicenter Italian study. Nutr. Metab. Cardiovasc. Dis. 2009;19:84–90. doi: 10.1016/j.numecd.2008.03.012. [DOI] [PubMed] [Google Scholar]
- 216.Marina A., von Frankenberg A.D., Suvag S., Callahan H.S., Kratz M., Richards T.L., Utzschneider K.M. Effects of dietary fat and saturated fat content on liver fat and markers of oxidative stress in overweight/obese men and women under weight-stable conditions. Nutrients. 2014;6:4678–4690. doi: 10.3390/nu6114678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Mas E., Woodman R.J., Burke V., Puddey I.B., Beilin L.J., Durand T., Mori T.A. The omega-3 fatty acids EPA and DHA decrease plasma F-2-isoprostanes: results from two placebo-controlled interventions. Free Radic. Res. 2010;44:983–990. doi: 10.3109/10715762.2010.492830. [DOI] [PubMed] [Google Scholar]
- 218.Mathur S., Devaraj S., Grundy S.M., Jialal I. Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J. Nutr. 2002;132:3663–3667. doi: 10.1093/jn/132.12.3663. [DOI] [PubMed] [Google Scholar]
- 219.Mauriz E., Laliena A., Vallejo D., Tunon M.J., Rodriguez-Lopez J.M., Rodriguez-Perez R., Garcia-Fernandez M.C. Effects of a low-fat diet with antioxidant supplementation on biochemical markers of multiple sclerosis long-term care residents. Nutr. Hosp. 2013;28:2229–2235. [PubMed] [Google Scholar]
- 220.Mayne S.T., Walter M., Cartmel B., Goodwin W.J., Blumberg J. Supplemental beta-carotene, smoking, and urinary F-2-isoprostane excretion in patients with prior early stage head and neck cancer. Nutr. Cancer- Int. J. 2004;49:1–6. doi: 10.1207/s15327914nc4901_1. [DOI] [PubMed] [Google Scholar]
- 221.McAnulty S.R., McAnulty L.S., Morrow J.D., Khardouni D., Shooter L., Monk J., Gross S., Brown V. Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers. Free Radic. Res. 2005;39:1241–1248. doi: 10.1080/10715760500306836. [DOI] [PubMed] [Google Scholar]
- 222.McAnulty S.R., Owens J.T., McAnulty L.S., Nieman D.C., Morrow J.D., Dumke C.L., Milne G.L. Ibuprofen use during extreme exercise: effects on oxidative stress and PGE2. Med. Sci. Sports Exerc. 2007;39:1075–1079. doi: 10.1249/mss.0b13e31804a8611. [DOI] [PubMed] [Google Scholar]
- 223.McAnulty S., McAnulty L., Nieman D., Morrow J., Dumke C., Henson D. Effect of NSAID on muscle injury and oxidative stress. Int. J. Sports Med. 2007;28:909–915. doi: 10.1055/s-2007-964966. [DOI] [PubMed] [Google Scholar]
- 224.McAnulty L.S., Nieman D.C., Dumke C.L., Shooter L.A., Henson D.A., Utter A.C., Milne G., McAnulty S.R. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl. Physiol. Nutr. Metab. 2011;36:976–984. doi: 10.1139/h11-120. [DOI] [PubMed] [Google Scholar]
- 225.Meagher E.A., Barry O.P., Lawson J.A., Rokach J., FitzGerald G.A. Effects of vitamin e on lipid peroxidation in healthy persons. Jama – J. Am. Med. Assoc. 2001;285:1178–1182. doi: 10.1001/jama.285.9.1178. [DOI] [PubMed] [Google Scholar]
- 226.Merchant N., Rahman S.T., Ahmad M., Parrott J.M., Johnson J., Ferdinand K.C., Khan B.V. Changes in biomarkers and 24 h blood pressure in hypertensive African Americans with the metabolic syndrome: comparison of amlodipine/olmesartan versus hydrochlorothiazide/losartan. J. Am. Soc. Hypertens. 2013;7:386–394. doi: 10.1016/j.jash.2013.05.001. [DOI] [PubMed] [Google Scholar]
- 227.Meyer K.A., Sijtsma F.P.C., Nettleton J.A., Steffen L.M., Van Horn L., Shikany J.M., Gross M.D., Mursu J., Traber M.G., Jacobs D.R., Jr. Dietary patterns are associated with plasma F-2-isoprostanes in an observational cohort study of adults. Free Radic. Biol. Med. 2013;57:201–209. doi: 10.1016/j.freeradbiomed.2012.08.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Michoulas A., Tong V., Teng X.W., Chang T.K.H., Abbott F.S., Farrell K. Oxidative stress in children receiving valproic acid. J. Pediatr. 2006;149:692–696. doi: 10.1016/j.jpeds.2006.08.015. [DOI] [PubMed] [Google Scholar]
- 229.Miller E.R., Erlinger T.P., Sacks F.M., Svetkey L.P., Charleston J., Lin P.H., Appel L.J. A dietary pattern that lowers oxidative stress increases antibodies to oxidized LDL: results from a randomized controlled feeding study. Atherosclerosis. 2005;183:175–182. doi: 10.1016/j.atherosclerosis.2005.04.001. [DOI] [PubMed] [Google Scholar]
- 230.Minoguchi K., Yokoe T., Tanaka A., Ohta S., Hirano T., Yoshino G., O'Donnell C.P., Adachi M. Association between lipid peroxidation and inflammation in obstructive sleep apnoea. Eur. Respir. J. 2006;28:378–385. doi: 10.1183/09031936.06.00084905. [DOI] [PubMed] [Google Scholar]
- 231.Mondino C., Ciabattoni G., Koch P., Pistelli R., Trove A., Barnes P.J., Montuschi P. Effects of inhaled corticosteroids on exhaled leukotrienes and prostanoids in asthmatic children. J. Allergy Clin. Immunol. 2004;114:761–767. doi: 10.1016/j.jaci.2004.06.054. [DOI] [PubMed] [Google Scholar]
- 232.Monnier L., Colette C., Mas E., Michel F., Cristol J.P., Boegner C., Owens D.R. Regulation of oxidative stress by glycaemic control: evidence for an independent inhibitory effect of insulin therapy. Diabetologia. 2010;53:562–571. doi: 10.1007/s00125-009-1574-6. [DOI] [PubMed] [Google Scholar]
- 233.Montuschi P., Macagno F., Parente P., Valente S., Lauriola L., Ciappi G., Kharitonov S.A., Barnes P.J., Ciabattoni G. Effects of cyclooxygenase inhibition on exhaled eicosanoids in patients with COPD. Thorax. 2005;60:827–833. doi: 10.1136/thx.2004.035592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 234.Mori T.A., Dunstan D.W., Burke V., Croft K.D., Rivera J.H., Beilin L.J., Puddey I.B. Effect of dietary fish and exercise training on urinary F-2-isoprostane excretion in non-insulin-dependent diabetic patients. Metab.-Clin. Exp. 1999;48:1402–1408. doi: 10.1016/s0026-0495(99)90150-6. [DOI] [PubMed] [Google Scholar]
- 235.Mori T.A., Woodman R.J., Burke V., Puddey I.B., Croft K.D., Beilin L.J. Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects. Free Radic. Biol. Med. 2003;35:772–781. doi: 10.1016/s0891-5849(03)00407-6. [DOI] [PubMed] [Google Scholar]
- 236.Morrow J.D., Frei B., Longmire A.W., Gaziano J.M., Lynch S.M., Shyr Y., Strauss W.E., Oates J.A., Roberts L.J., 2nd Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N. Engl. J. Med. 1995;332:1198–1203. doi: 10.1056/NEJM199505043321804. [DOI] [PubMed] [Google Scholar]
- 237.Moutzouri E., Liberopoulos E.N., Tellis C.C., Milionis H.J., Tselepis A.D., Elisaf M.S. Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia. Atherosclerosis. 2013;231:8–14. doi: 10.1016/j.atherosclerosis.2013.08.013. [DOI] [PubMed] [Google Scholar]
- 238.Murashima M., Watanabe S., Zhuo X.G., Uehara M., Kurashige A. Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. Biofactors. 2004;22:271–275. doi: 10.1002/biof.5520220154. [DOI] [PubMed] [Google Scholar]
- 239.Murer S.B., Aeberli I., Braegger C.P., Gittermann M., Hersberger M., Leonard S.W., Taylor A.W., Traber M.G., Zimmermann M.B. Antioxidant supplements reduced oxidative stress and stabilized liver function tests but did not reduce inflammation in randomized controlled trial in obese children and adolescents. J. Nutr. 2014;144:193–201. doi: 10.3945/jn.113.185561. [DOI] [PubMed] [Google Scholar]
- 240.Murphy K.J., Chronopoulos A.K., Singh I., Francis M.A., Moriarty H., Pike M.J., Turner A.H., Mann N.J., Sinclair A.J. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am. J. Clin. Nutr. 2003;77:1466–1473. doi: 10.1093/ajcn/77.6.1466. [DOI] [PubMed] [Google Scholar]
- 241.Mursu J., Voutilainen S., Nurmi T., Rissanen T.H., Virtanen J.K., Kaikkonen J., Nyyssoonen K., Salonen J.T. Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic. Biol. Med. 2004;37:1351–1359. doi: 10.1016/j.freeradbiomed.2004.06.002. [DOI] [PubMed] [Google Scholar]
- 242.Mustad V.A., Smith C.A., Ruey P.P., Edens N.K., DeMichele S.J. Supplementation with 3 compositionally different tocotrienol supplements does not improve cardiovascular disease risk factors in men and women with hypercholesterolemia. Am. J. Clin. Nutr. 2002;76:1237–1243. doi: 10.1093/ajcn/76.6.1237. [DOI] [PubMed] [Google Scholar]
- 243.Nada T., Nomura M., Koshiba K., Kawano T., Mikawa J., Ito S. Clinical study with azelnidipine in patients with essential hypertension – antiarteriosclerotic and cardiac hypertrophy-inhibitory effects and influence on autonomic nervous activity. Arzneim.-Forsch.-Drug Res. 2007;57:698–704. doi: 10.1055/s-0031-1296670. [DOI] [PubMed] [Google Scholar]
- 244.Nakamura N., Kumasaka R., Osawa H., Yamabe H., Shirato K.I., Fujita T., Murakami R., Shimada M., Nakamura M., Okumura K., Hamazaki K., Hamazaki T. Effects of eicosapentaenoic acids on oxidative stress and plasma fatty acid composition in patients with lupus nephritis. In Vivo. 2005;19:879–882. [PubMed] [Google Scholar]
- 245.Nakao A., Toyoda Y., Sharma P., Evans M., Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome—an open label pilot study. J. Clin. Biochem. Nutr. 2010;46:140–149. doi: 10.3164/jcbn.09-100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 246.Nalsen C., Vessby B., Berglund L., Uusitupa M., Hermansen K., Riccardi G., Rivellese A., Storlien L., Erkkila A., Yla-Herttuala S., Tapsell L., Basu S. Dietary (n-3) fatty acids reduce plasma F-2-isoprostanes but not prostaglandin F-2 alpha in healthy humans. J. Nutr. 2006;136:1222–1228. doi: 10.1093/jn/136.5.1222. [DOI] [PubMed] [Google Scholar]
- 247.Nashar K., Nguyen A.P., Jesri A., Morrow J.D., Egan B.M. Angiotensin receptor blockade improves arterial distensibility and reduces exercise-induced pressor responses in obese hypertensive patients with the metabolic syndrome. Am. J. Hypertens. 2004;17:477–482. doi: 10.1016/j.amjhyper.2004.02.015. [DOI] [PubMed] [Google Scholar]
- 248.Navarro S.L., White E., Kantor E.D., Zhang Y., Rho J., Song X., Milne G.L., Lampe P.D., Lampe J.W. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLoS One. 2015;10 doi: 10.1371/journal.pone.0117534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 249.Negi S., Shukrullah I., Veledar E., Bloom H.L., Jones D.P., Dudley S.C. Statin therapy for the prevention of atrial fibrillation trial (SToP AF trial) J. Cardiovasc. Electrophysiol. 2011;22:414–419. doi: 10.1111/j.1540-8167.2010.01925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250.Nhan S., Anderson K.E., Nagamani M., Grady J.J., Lu L.J.W. Effect of a soymilk supplement containing isoflavones on urinary F2 isoprostane levels in premenopausal women. Nutr. Cancer – Int. J. 2005;53:73–81. doi: 10.1207/s15327914nc5301_9. [DOI] [PubMed] [Google Scholar]
- 251.Nieman D.C., Henson D.A., McAnulty S.R., McAnulty L., Swick N.S., Utter A.C., Vinci D.M., Opiela S.J., Morrow J.D. Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J. Appl. Physiol. 2002;92:1970–1977. doi: 10.1152/japplphysiol.00961.2001. [DOI] [PubMed] [Google Scholar]
- 252.Nitta H., Kinoyama M., Watanabe A., Shirao K., Kihara H., Arai M. Effects of nutritional supplementation with antioxidant vitamins and minerals and fish oil on antioxidant status and psychosocial stress in smokers: an open trial. Clin. Exp. Med. 2007;7:179–183. doi: 10.1007/s10238-007-0144-y. [DOI] [PubMed] [Google Scholar]
- 253.O'Byrne D.J., Devaraj S., Grundy S.M., Jialal I. Comparison of the antioxidant effects of Concord grape juice flavonoids and alpha-tocopherol on markers of oxidative stress in healthy adults. Am. J. Clin. Nutr. 2002;76:1367–1374. doi: 10.1093/ajcn/76.6.1367. [DOI] [PubMed] [Google Scholar]
- 254.Ochiai R., Chikama A., Kataoka K., Tokimitsu I., Maekawa Y., Ohishi M., Rakugi H., Mikami H. Effects of hydroxyhydroquinone-reduced coffee on vasoreactivity and blood pressure. Hypertens. Res. 2009;32:969–974. doi: 10.1038/hr.2009.132. [DOI] [PubMed] [Google Scholar]
- 255.Ochoa J.J., Diaz-Castro J., Kajarabille N., Garcia C., Guisado I.M., De Teresa C., Guisado R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J. Pineal Res. 2011;51:373–380. doi: 10.1111/j.1600-079X.2011.00899.x. [DOI] [PubMed] [Google Scholar]
- 256.Ohmori K., Ebihara S., Kuriyama S., Ugajin T., Ogata M., Hozawa A., Matsui T., Tsubono Y., Arai H., Sasaki H., Tsuji I. The relationship between body mass index and a plasma lipid peroxidation biomarker in an older, healthy Asian community. Ann. Epidemiol. 2005;15:80–84. doi: 10.1016/j.annepidem.2004.04.001. [DOI] [PubMed] [Google Scholar]
- 257.Ohno T., Tanaka Y., Sugauchi F., Orito E., Hasegawa I., Nukaya H., Kato A., Matunaga S., Endo M., Tanaka Y., Sakakibara K., Mizokami M. Suppressive effect of oral administration of branched-chain amino acid granules on oxidative stress and inflammation in HCV-positive patients with liver cirrhosis. Hepatol. Res. 2008;38:683–688. doi: 10.1111/j.1872-034X.2008.00319.x. [DOI] [PubMed] [Google Scholar]
- 258.Olveira C., Padilla A., Dorado A., Contreras V., Garcia-Fuentes E., Rubio-Martin E., Porras N., Dona E., Carmona A., Olveira G. Inflammation and oxidation biomarkers in patients with cystic fibrosis: the influence of azithromycin. Eurasia. J. Med. 2017;49:118–123. doi: 10.5152/eurasianjmed.2017.17010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 259.O'Reilly J.D., Mallet A.I., McAnlis G.T., Young I.S., Halliwell B., Sanders T.A.B., Wiseman H. Consumption of flavonoids in onions and black tea: lack of effect on F-2-isoprostanes and autoantibodies to oxidized LDL in healthy humans. Am. J. Clin. Nutr. 2001;73:1040–1044. doi: 10.1093/ajcn/73.6.1040. [DOI] [PubMed] [Google Scholar]
- 260.Ottestad I., Vogt G., Retterstol K., Myhrstad M.C., Haugen J.E., Nilsson A., Ravn-Haren G., Nordvi B., Bronner K.W., Andersen L.F., Holven K.B., Ulven S.M. Oxidised fish oil does not influence established markers of oxidative stress in healthy human subjects: a randomised controlled trial. Br. J. Nutr. 2012;108:315–326. doi: 10.1017/S0007114511005484. [DOI] [PubMed] [Google Scholar]
- 261.Ozden H., Kabay S.C., Toker A., Ustuner M.C., Ozbayer C., Ustuner D., Gunes H.V. The effects of levetiracetam on urinary 15f-2t-isoprostane levels in epileptic patients. Seizure-Eur. J. Epilepsy. 2010;19:514–516. doi: 10.1016/j.seizure.2010.07.010. [DOI] [PubMed] [Google Scholar]
- 262.Ozol D., Karamanli H., Uysal S., Yigitoglu M.R., Yildirim Z. Airway inflammation and tiotropium treatment in stable COPD patients. Turk. J. Med. Sci. 2014;44:804–808. doi: 10.3906/sag-1303-138. [DOI] [PubMed] [Google Scholar]
- 263.Palmer F.M., Nieman D.C., Henson D.A., McAnulty S.R., McAnulty L., Swick N.S., Utter A.C., Vinci D.M., Morrow J.D. Influence of vitamin C supplementation on oxidative and salivary IgA changes following an ultramarathon. Eur. J. Appl. Physiol. 2003;89:100–107. doi: 10.1007/s00421-002-0756-4. [DOI] [PubMed] [Google Scholar]
- 264.Patrignani P., Panara M.R., Tacconelli S., Seta F., Bucciarelli T., Ciabattoni G., Alessandrini P., Mezzetti A., Santini G., Sciulli M.G., Cipollone F., Davi G., Gallina P., Bon G.B., Patrono C. Effects of vitamin E supplementation on F-2-isoprostane and thromboxane biosynthesis in healthy cigarette smokers. Circulation. 2000;102:539–545. doi: 10.1161/01.cir.102.5.539. [DOI] [PubMed] [Google Scholar]
- 265.Petersson H., Riserus U., McMonagle J., Gulseth H.L., Tierney A.C., Morange S., Helal O., Shaw D.I., Ruano J.A., Lopez-Miranda J., Kiec-Wilk B., Golabek I., Blaak E.E., Saris W.H.M., Drevon C.A., Lovegrove J.A., Roche H.M., Basu S. Effects of dietary fat modification on oxidative stress and inflammatory markers in the LIPGENE study. Br. J. Nutr. 2010;104:1357–1362. doi: 10.1017/S000711451000228X. [DOI] [PubMed] [Google Scholar]
- 266.Pignatelli P., Ghiselli A., Buchetti B., Carnevale R., Natella F., Germano G., Fimognari F., Di Santo S., Lenti L., Violi F. Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis. 2006;188:77–83. doi: 10.1016/j.atherosclerosis.2005.10.025. [DOI] [PubMed] [Google Scholar]
- 267.Pignatelli P., Carnevale R., Cangemi R., Loffredo L., Sanguigni V., Stefanutti C., Basili S., Violi F. Atorvastatin inhibits gp91(phox) circulating levels in patients with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2010;30:360–367. doi: 10.1161/ATVBAHA.109.198622. [DOI] [PubMed] [Google Scholar]
- 268.Pilz H., Oguogho A., Chehne F., Lupattelli G., Palumbo B., Sinzinger H. Quitting cigarette smoking results in a fast improvement of in vivo oxidation injury (determined via plasma, serum and urinary isoprostane) Thromb. Res. 2000;99:209–221. doi: 10.1016/s0049-3848(00)00249-8. [DOI] [PubMed] [Google Scholar]
- 269.Pipingas A., Sinclair A., Croft K.D., Januszewski A.S., Jenkins A.J., Mori T.A., Cockerell R., Grima N.A., Stough C., Scholey A., Myers S.P., Sali A., Pase M.P. Fish oil and multivitamin supplementation reduces oxidative stress but not inflammation in healthy older adults: a randomised controlled trial. J. Funct. Foods. 2015;19:949–957. [Google Scholar]
- 270.Pop-Busui R., Stevens M.J., Raffel D.M., White E.A., Mehta M., Plunkett C.D., Brown M.B., Feldman E.L. Effects of triple antioxidant therapy on measures of cardiovascular autonomic neuropathy and on myocardial blood flow in type 1 diabetes: a randomised controlled trial. Diabetologia. 2013;56:1835–1844. doi: 10.1007/s00125-013-2942-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 271.Pratico D., Basili S., Vieri M., Cordova C., Violi F., Fitzgerald G.A. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2 alpha III, an index of oxidant stress. Am. J. Respir. Crit. Care Med. 1998;158:1709–1714. doi: 10.1164/ajrccm.158.6.9709066. [DOI] [PubMed] [Google Scholar]
- 272.Ramos L.F., Kane J., McMonagle E., Le P., Wu P.S., Shintani A., Ikizler T.A., Himmelfarb J. Effects of combination tocopherols and alpha lipoic acid therapy on oxidative stress and inflammatory biomarkers in chronic kidney disease. J. Ren. Nutr. 2011;21:211–218. doi: 10.1053/j.jrn.2010.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 273.Rankin J.W., Andreae M.C., Chen C.Y.O., O'Keefe S.F. Effect of raisin consumption on oxidative stress and inflammation in obesity. Diabetes Obes. Metab. 2008;10:1086–1096. doi: 10.1111/j.1463-1326.2008.00867.x. [DOI] [PubMed] [Google Scholar]
- 274.Reilly M., Delanty N., Lawson J.A., FitzGerald G.A. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation. 1996;94:19–25. doi: 10.1161/01.cir.94.1.19. [DOI] [PubMed] [Google Scholar]
- 275.Ribeiro S.M.D., Braga C.B.M., Peria F.M., Domenici F.A., Martinez E.Z., Feres O., da Rocha J.J.R., da Cunha S.F.D. Effect of zinc supplementation on antioxidant defenses and oxidative stress markers in patients undergoing chemotherapy for colorectal cancer: a placebo-controlled, prospective randomized trial. Biol. Trace Elem. Res. 2016;169:8–16. doi: 10.1007/s12011-015-0396-2. [DOI] [PubMed] [Google Scholar]
- 276.Richelle M., Turini M.E., Guidoux R., Tavazzi I., Metairon S., Fay L.B. Urinary isoprostane excretion is not confounded by the lipid content of the diet. Febs Lett. 1999;459:259–262. doi: 10.1016/s0014-5793(99)01259-4. [DOI] [PubMed] [Google Scholar]
- 277.Rink S.M., Mendola P., Mumford S.L., Poudrier J.K., Browne R.W., Wactawski-Wende J., Perkins N.J., Schisterman E.F. Self-report of fruit and vegetable intake that meets the 5 a day recommendation is associated with reduced levels of oxidative stress biomarkers and increased levels of antioxidant defense in premenopausal women. J. Acad. Nutr. Diet. 2013;113:776–785. doi: 10.1016/j.jand.2013.01.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 278.Riserus U., Basu S., Jovinge S., Fredrikson G.N., Arnlov J., Vessby B. Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein – a potential link to fatty acid-induced insulin resistance. Circulation. 2002;106:1925–1929. doi: 10.1161/01.cir.0000033589.15413.48. [DOI] [PubMed] [Google Scholar]
- 279.Riserus U., Vessby B., Arnlov J., Basu S. Effects of cis-9,trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am. J. Clin. Nutr. 2004;80:279–283. doi: 10.1093/ajcn/80.2.279. [DOI] [PubMed] [Google Scholar]
- 280.Rivara M.B., Mehrotra R., Linke L., Ruzinski J., Ikizler T.A., Himmelfarb J. A pilot randomized crossover trial assessing the safety and short-term effects of pomegranate supplementation in hemodialysis patients. J. Ren. Nutr. 2015;25:40–49. doi: 10.1053/j.jrn.2014.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 281.Rizos E.C., Spyrou A., Liberopoulos E.N., Papavasiliou E.C., Saougos V., Tselepis A.D., Elisaf M. Effects of eprosartan on serum metabolic parameters in patients with essential hypertension. Open Cardiovasc. Med. J. 2007;1:22–26. doi: 10.2174/1874192400701010022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 282.Rizos C.V., Liberopoulos E.N., Tellis C.C., Tselepis A.D., Elisaf M.S. The effect of combining rosuvastatin with sartans of different peroxisome proliferator receptor-gamma activating capacity on plasma 8-isoprostane prostaglandin F-2a levels. Arch. Med. Sci. 2013;9:172–176. doi: 10.5114/aoms.2013.33357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 283.Rizzo M.R., Abbatecola A.M., Barbieri M., Vietri M.T., Cioffi M., Grella R., Molinari A., Forsey R., Powell J., Paolisso G. Evidence for anti-inflammatory effects of combined administration of vitamin E and C in older persons with impaired fasting glucose: impact on insulin action. J. Am. Coll. Nutr. 2008;27:505–511. doi: 10.1080/07315724.2008.10719732. [DOI] [PubMed] [Google Scholar]
- 284.Robbins I.M., Morrow J.D., Christman B.W. Oxidant stress but not thromboxane decreases with epoprostenol therapy. Free Radic. Biol. Med. 2005;38:568–574. doi: 10.1016/j.freeradbiomed.2004.11.033. [DOI] [PubMed] [Google Scholar]
- 285.Roberts C.K., Chen B.H., Pruthi S., Lee M.L. Effects of varying doses of testosterone on atherogenic markers in healthy younger and older men. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2014;306:R118–R123. doi: 10.1152/ajpregu.00372.2013. [DOI] [PubMed] [Google Scholar]
- 286.Roberts L.J., II, Oates J.A., Linton M.F., Fazio S., Meador B.P., Gross M.D., Shyr Y., Morrow J.D. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic. Biol. Med. 2007;43:1388–1393. doi: 10.1016/j.freeradbiomed.2007.06.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 287.Roca O., Gomez-Olles S., Cruz M.J., Munoz X., Griffiths M.J.D., Masclans J.R. Effects of salbutamol on exhaled breath condensate biomarkers in acute lung injury: prospective analysis. Crit. Care. 2008;12 doi: 10.1186/cc6911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 288.Rodrigo R., Prat H., Passalacqua W., Araya J., Bachler J.P. Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patients with essential hypertension. Clin. Sci. 2008;114:625–634. doi: 10.1042/CS20070343. [DOI] [PubMed] [Google Scholar]
- 289.Root M.M., McGinn M.C., Nieman D.C., Henson D.A., Heinz S.A., Shanely R.A., Knab A.M., Jin F. Combined fruit and vegetable intake is correlated with improved inflammatory and oxidant status from a cross-sectional study in a community setting. Nutrients. 2012;4:29–41. doi: 10.3390/nu4010029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 290.Rossi M., Johnson D.W., Morrison M., Pascoe E.M., Coombes J.S., Forbes J.M., Szeto C.C., McWhinney B.C., Ungerer J.P., Campbell K.L. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin. J. Am. Soc. Nephrol. 2016;11:223–231. doi: 10.2215/CJN.05240515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 291.Ryan-Borchers T.A., Park J.S., Chew B.P., McGuire M.K., Fournier L.R., Beerman K.A. Soy isoflavones modulate immune function in healthy postmenopausal women. Am. J. Clin. Nutr. 2006;83:1118–1125. doi: 10.1093/ajcn/83.5.1118. [DOI] [PubMed] [Google Scholar]
- 292.Rytter E., Vessby B., Aring;sgard R., Ersson C., Moussavian S., Sjodin A., Abramsson-Zetterberg L., Moller L., Basu S. Supplementation with a combination of antioxidants does not affect glycaemic control, oxidative stress or inflammation in type 2 diabetes subjects. Free Radic. Res. 2010;44:1445–1453. doi: 10.3109/10715762.2010.515219. [DOI] [PubMed] [Google Scholar]
- 293.Sagara M., Suzuki K., Aoki C., Tanaka S., Taguchi I., Inoue T., Aso Y. Impact of teneligliptin on oxidative stress and endothelial function in type 2 diabetes patients with chronic kidney disease: a case-control study. Cardiovasc. Diabetol. 2016;15 doi: 10.1186/s12933-016-0396-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 294.Sagel S.D., Sontag M.K., Anthony M.M., Emmett P., Papas K.A. Effect of an antioxidant-rich multivitamin supplement in cystic fibrosis. J. Cyst. Fibros. 2011;10:31–36. doi: 10.1016/j.jcf.2010.09.005. [DOI] [PubMed] [Google Scholar]
- 295.Saisho Y., Komiya N., Hirose H. Effect of valsartan, an angiotensin II receptor blocker, on markers of oxidation and glycation in Japanese type 2 diabetic subjects: blood pressure-independent effect of valsartan. Diabetes Res. Clin. Pract. 2006;74:201–203. doi: 10.1016/j.diabres.2006.04.015. [DOI] [PubMed] [Google Scholar]
- 296.Samjoo I.A., Safdar A., Hamadeh M.J., Raha S., Tarnopolsky M.A. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr. Diabetes. 2013;3 doi: 10.1038/nutd.2013.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 297.Samocha-Bonet D., Campbell L.V., Mori T.A., Croft K.D., Greenfield J.R., Turner N., Heilbronn L.K. Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans. PLoS One. 2012;7 doi: 10.1371/journal.pone.0036320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 298.Sanchez-Moreno C., Cano M.P., de Ancos B., Plaza L., Olmedilla B., Granado F., Martin A. Effect of orange juice intake on vitamin C concentrations and biomarkers of antioxidant status in humans. Am. J. Clin. Nutr. 2003;78:454–460. doi: 10.1093/ajcn/78.3.454. [DOI] [PubMed] [Google Scholar]
- 299.Sanchez-Moreno C., Cano M.P., de Ancos B., Plaza L., Olmedilla B., Granado F., Martin A. High-pressurized orange juice consumption affects plasma vitamin C, antioxidative status and inflammatory markers in healthy humans. J. Nutr. 2003;133:2204–2209. doi: 10.1093/jn/133.7.2204. [DOI] [PubMed] [Google Scholar]
- 300.Sanchez-Moreno C., Cano M.P., de Ancos B., Plaza L., Olmedilla B., Granado F., Elez-Martinez P., Martin-Belloso O., Martin A. Pulsed electric fields-processed orange juice consumption increases plasma vitamin C and decreases F2-isoprostanes in healthy humans. J. Nutr. Biochem. 2004;15:601–607. doi: 10.1016/j.jnutbio.2004.04.007. [DOI] [PubMed] [Google Scholar]
- 301.Sanchez-Moreno C., Cano M.P., de Ancos B., Plaza L., Olmedilla B.A., Granado F., Martin A. Consumption of high-pressurized vegetable soup increases plasma vitamin C and decreases oxidative stress and inflammatory biomarkers in healthy humans. J. Nutr. 2004;134:3021–3025. doi: 10.1093/jn/134.11.3021. [DOI] [PubMed] [Google Scholar]
- 302.Sanchez-Moreno C., Cano M.P., de Ancos B., Plaza L., Olmedilla B., Granado F., Martin A. Mediterranean vegetable soup consumption increases plasma vitamin C and decreases F-2-isoprostanes, prostaglandin E-2 and monocyte chemotactic protein-1 in healthy humans. J. Nutr. Biochem. 2006;17:183–189. doi: 10.1016/j.jnutbio.2005.07.001. [DOI] [PubMed] [Google Scholar]
- 303.Santus P., Sola A., Carlucci P., Fumagalli F., Di Gennaro A., Mondoni M., Carnini C., Centanni S., Sala A. Lipid peroxidation and 5-lipoxygenase activity in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005;171:838–843. doi: 10.1164/rccm.200404-558OC. [DOI] [PubMed] [Google Scholar]
- 304.Sato K., Dohi Y., Kojima M., Miyagawa K., Takase H., Katada E., Suzuki S. Effects of ascorbic acid on ambulatory blood pressure in elderly patients with refractory hypertension. Arzneim.-Forsch.-Drug Res. 2006;56:535–540. doi: 10.1055/s-0031-1296748. [DOI] [PubMed] [Google Scholar]
- 305.Schwedhelm E., Bierend A., Maas R., Trinks R., Kom G.D., Tsikas D., Boger R.H. Redox-generated isoprostanes are associated with residual platelet activity in aspirin-treated patients with stable coronary heart disease. J. Thromb. Haemost. 2010;8:2662–2670. doi: 10.1111/j.1538-7836.2010.04117.x. [DOI] [PubMed] [Google Scholar]
- 306.Schweer H., Watzer B., Seyberth H.W., Nusing R.M. Improved quantification of 8-epi-prostaglandin F2 alpha and F2-isoprostanes by gas chromatography/triple-stage quadrupole mass spectrometry: partial cyclooxygenase-dependent formation of 8-epi-prostaglandin F2 alpha in humans. J. Mass Spectrom. 1997;32:1362–1370. doi: 10.1002/(SICI)1096-9888(199712)32:12<1362::AID-JMS606>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- 307.Seet R.C.S., Lee C.-Y.J., Lim E.C.H., Quek A.M.L., Huang H., Huang S.H., Looi W.F., Long L.H., Halliwell B. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis. 2011;219:231–239. doi: 10.1016/j.atherosclerosis.2011.07.097. [DOI] [PubMed] [Google Scholar]
- 308.Seet R.C.-S., Lim E.C.H., Tan J.J.H., Quek A.M.L., Chow A.W.L., Chong W.-L., Ng M.P.E., Ong C.-N., Halliwell B. Does high-dose coenzyme Q(10) improve oxidative damage and clinical outcomes in Parkinson's disease? Antioxid. Redox Signal. 2014;21:211–217. doi: 10.1089/ars.2013.5801. [DOI] [PubMed] [Google Scholar]
- 309.Sen C., Morimoto Y., Heak S., Cooney R.V., Franke A.A., Maskarinec G. Soy foods and urinary isoprostanes: results from a randomized study in premenopausal women. Food Funct. 2012;3:517–521. doi: 10.1039/c2fo10251j. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 310.Serg M., Kampus P., Kals J., Zagura M., Zilmer M., Zilmer K., Kullisaar T., Eha J. Nebivolol and metoprolol: long-term effects on inflammation and oxidative stress in essential hypertension. Scand. J. Clin. Lab. Investig. 2012;72:427–432. doi: 10.3109/00365513.2012.691991. [DOI] [PubMed] [Google Scholar]
- 311.Shahid S.K., Kharitonov S.A., Wilson N.M., Bush A., Barnes P.J. Exhaled 8-isoprostane in childhood asthma. Respir. Res. 2005;6:79. doi: 10.1186/1465-9921-6-79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 312.Shanely R.A., Knab A.M., Nieman D.C., Jin F., McAnulty S.R., Landram M.J. Quercetin supplementation does not alter antioxidant status in humans. Free Radic. Res. 2010;44:224–231. doi: 10.3109/10715760903407293. [DOI] [PubMed] [Google Scholar]
- 313.Shinto L., Quinn J., Montine T., Dodge H.H., Woodward W., Baldauf-Wagner S., Waichunas D., Bumgarner L., Bourdette D., Silbert L., Kaye J. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer's disease. J. Alzheimers Dis. 2014;38:111–120. doi: 10.3233/JAD-130722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 314.Silva P.S., Fontana V., Palei A.C.T., Sertorio J.T.C., Biagi C., Tanus-Santos J.E. Antihypertensive effects exerted by enalapril in mild to moderate hypertension are not associated with changes in the circulating levels of nitric oxide-related markers. Eur. J. Clin. Pharmacol. 2011;67:365–370. doi: 10.1007/s00228-011-1003-x. [DOI] [PubMed] [Google Scholar]
- 315.Singh U., Devaraj S., Jialal I., Siegel D. Comparison effect of atorvastatin (10 versus 80 mg) on biomarkers of inflammation and oxidative stress in subjects with metabolic syndrome. Am. J. Cardiol. 2008;102:321–325. doi: 10.1016/j.amjcard.2008.03.057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 316.Sinzinger H., Chehne F., Lupattelli G. Oxidation injury in patients receiving HMG-CoA reductase inhibitors – occurrence in patients without enzyme elevation or myopathy. Drug Saf. 2002;25:877–883. doi: 10.2165/00002018-200225120-00005. [DOI] [PubMed] [Google Scholar]
- 317.Smith K.S., Lee C.L., Ridlington J.W., Leonard S.W., Devaraj S., Traber M.G. Vitamin E supplementation increases circulating vitamin E metabolites tenfold in end-stage renal disease patients. Lipids. 2003;38:813–819. doi: 10.1007/s11745-003-1130-9. [DOI] [PubMed] [Google Scholar]
- 318.Sola S., Mir M.Q., Cheema F.A., Khan-Merchant N., Menon R.G., Parthasarathy S., Khan B.V. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation. 2005;111:343–348. doi: 10.1161/01.CIR.0000153272.48711.B9. [DOI] [PubMed] [Google Scholar]
- 319.Spirou A., Rizos E., Liberopoulos E.N., Kolaitis N., Achimastos A., Tselepis A.D., Elisaf M. Effect of barnidipine on blood pressure and serum metabolic parameters in patients with essential hypertension: a pilot study. J. Cardiovasc. Pharmacol. Ther. 2006;11:256–261. doi: 10.1177/1074248406296108. [DOI] [PubMed] [Google Scholar]
- 320.Stephens J.W., Bodvarsdottir T.B., Wareham K., Prior S.L., Bracken R.M., Lowe G.D., Rumley A., Dunseath G., Luzio S., Deacon C.F., Holst J.J., Bain S.C. Effects of short-term therapy with glibenclamide and repaglinide on incretin hormones and oxidative damage associated with postprandial hyperglycaemia in people with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2011;94:199–206. doi: 10.1016/j.diabres.2011.07.014. [DOI] [PubMed] [Google Scholar]
- 321.Stewart R.J., Askew E.W., McDonald C.M., Metos J., Jackson W.D., Balon T.W., Prior R.L. Antioxidant status of young children: response to an antioxidant supplement. J. Am. Diet. Assoc. 2002;102:1652–1657. doi: 10.1016/s0002-8223(02)90352-4. [DOI] [PubMed] [Google Scholar]
- 322.Stockler-Pinto M.B., Malm O., Moraes C., Farage N.E., Silva W.S., Cozzolino S.M.F., Mafra D. A follow-up study of the chronic kidney disease patients treated with Brazil nut: focus on inflammation and oxidative stress. Biol. Trace Elem. Res. 2015;163:67–72. doi: 10.1007/s12011-014-0167-5. [DOI] [PubMed] [Google Scholar]
- 323.Stradling J.R., Schwarz E.I., Schlatzer C., Manuel A.R., Lee R., Antoniades C., Kohler M. Biomarkers of oxidative stress following continuous positive airway pressure withdrawal: data from two randomised trials. Eur. Respir. J. 2015;46:1065–1071. doi: 10.1183/09031936.00023215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 324.Sugiyama M., Ohashi M., Takase H., Sato K., Ueda R., Dohi Y. Effects of atorvastatin on inflammation and oxidative stress. Heart Vessels. 2005;20:133–136. doi: 10.1007/s00380-005-0833-9. [DOI] [PubMed] [Google Scholar]
- 325.Thethi T.K., Bajwa M.A., Ghanim H., Jo C., Weir M., Goldfine A.B., Umpierrez G., Desouza C., Dandona P., Fang-Hollingsworth Y., Raghavan V., Fonseca V.A. Effect of paricalcitol on endothelial function and inflammation in type 2 diabetes and chronic kidney disease. J. Diabetes Complicat. 2015;29:433–437. doi: 10.1016/j.jdiacomp.2015.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 326.Tholstrup T., Hellgren L.I., Petersen M., Basu S., Straarup E.M., Schnohr P., Sandstrom B. A solid dietary fat containing fish oil redistributes lipoprotein subclasses without increasing oxidative stress in men. J. Nutr. 2004;134:1051–1057. doi: 10.1093/jn/134.5.1051. [DOI] [PubMed] [Google Scholar]
- 327.Thompson H.J., Heimendinger J., Haegele A., Sedlacek S.M., Gillette C., O'Neill C., Wolfe P., Conry C. Effect of increased vegetable and fruit consumption on markers of oxidative cellular damage. Carcinogenesis. 1999;20:2261–2266. doi: 10.1093/carcin/20.12.2261. [DOI] [PubMed] [Google Scholar]
- 328.Traustadottir T., Davies S.S., Stock A.A., Su Y., Heward C.B., Roberts L.J., III, Harman S.M. Tart cherry juice decreases oxidative stress in healthy older men and women. J. Nutr. 2009;139:1896–1900. doi: 10.3945/jn.109.111716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 329.Tsunekawa T., Hayashi T., Kano H., Sumi D., Matsui-Hirai H., Thakur N.K., Egashira K., Iguchi A. Cerivastatin, a hydroxymethylglutaryl coenzyme A reductase inhibitor, improves endothelial function in elderly diabetic patients within 3 days. Circulation. 2001;104:376–379. doi: 10.1161/hc2901.094094. [DOI] [PubMed] [Google Scholar]
- 330.Turfaner N., Uzun H., Balci H., Ercan M.A., Karter Y.H., Caner M., Sipahioglu F., Genc H. Ezetimibe therapy and its influence on oxidative stress and fibrinolytic activity. South. Med. J. 2010;103:428–433. doi: 10.1097/SMJ.0b013e3181d83374. [DOI] [PubMed] [Google Scholar]
- 331.Turpeinen A.A., Ylonen N., von Willebrand E., Basu S., Aro A. Immunological and metabolic effects of cis-9, trans-11-conjugated linoleic acid in subjects with birch pollen allergy. Br. J. Nutr. 2008;100:112–119. doi: 10.1017/S0007114507886326. [DOI] [PubMed] [Google Scholar]
- 332.Undas A., Siudak Z., Topor-Madry R., Lesniak M., Tracz W. Simvastatin administration reduces thromboxane production in subjects taking aspirin: links between aspirin resistance and thrombin generation. Int. J. Cardiol. 2012;154:59–64. doi: 10.1016/j.ijcard.2010.09.093. [DOI] [PubMed] [Google Scholar]
- 333.van den Berg R., van Vliet T., Broekmans W.M.R., Cnubben N.H.P., Vaes W.H.J., Roza L., Haenen G., Bast A., van den Berg H. A vegetable/fruit concentrate with high antioxidant capacity has no effect on biomarkers of antioxidant status in male smokers. J. Nutr. 2001;131:1714–1722. doi: 10.1093/jn/131.6.1714. [DOI] [PubMed] [Google Scholar]
- 334.Vega-Lopez S., Yeum K.J., Lecker J.L., Ausman L.M., Johnson E.J., Devaraj S., Jialal I., Lichtenstein A.H. Plasma antioxidant capacity in response to diets high in soy or animal protein with or without isoflavones. Am. J. Clin. Nutr. 2005;81:43–49. doi: 10.1093/ajcn/81.1.43. [DOI] [PubMed] [Google Scholar]
- 335.Vericel E., Colas R., Calzada C., Le Q.H., Feugier N., Cugnet C., Vidal H., Laville M., Moulin P., Lagarde M. Moderate oral supplementation with docosahexaenoic acid improves platelet function and oxidative stress in type 2 diabetic patients. Thromb. Haemost. 2015;114:289–296. doi: 10.1160/TH14-12-1003. [DOI] [PubMed] [Google Scholar]
- 336.Visioli F., Caruso D., Galli C., Viappiani S., Galli G., Sala A. Olive oils rich in natural catecholic phenols decrease isoprostane excretion in humans. Biochem. Biophys. Res. Commun. 2000;278:797–799. doi: 10.1006/bbrc.2000.3879. [DOI] [PubMed] [Google Scholar]
- 337.Visioli F., Riso P., Grande S., Galli C., Porrini M. Protective activity of tomato products on in vivo markers of lipid oxidation. Eur. J. Nutr. 2003;42:201–206. doi: 10.1007/s00394-003-0415-5. [DOI] [PubMed] [Google Scholar]
- 338.Visioli F., Caruso D., Grande S., Bosisio R., Villa M., Galli G., Sirtori C., Galli C. Virgin Olive Oil Study (VOLOS): vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur. J. Nutr. 2005;44:121–127. doi: 10.1007/s00394-004-0504-0. [DOI] [PubMed] [Google Scholar]
- 339.Vongpatanasin W., Peri-Okonny P., Velasco A., Arbique D., Wang Z.Y., Ravikumar P., Adams-Huet B., Moe O.W., Pak C.Y.C. Effects of potassium magnesium citrate supplementation on 24-h ambulatory blood pressure and oxidative Stress marker in prehypertensive and hypertensive subjects. Am. J. Cardiol. 2016;118:849–853. doi: 10.1016/j.amjcard.2016.06.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 340.Widlansky M.E., Duffy S.J., Hamburg N.M., Gokce N., Warden B.A., Wiseman S., Keaney J.F., Frei B., Vita J.A. Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease. Free Radic. Biol. Med. 2005;38:499–506. doi: 10.1016/j.freeradbiomed.2004.11.013. [DOI] [PubMed] [Google Scholar]
- 341.Wolfram R.M., Oguogho A., Efthimiou Y., Budinsky A.C., Sinzinger H. Effect of black tea on (iso-)prostaglandins and platelet aggregation in healthy volunteers. Prostaglandins Leukot. Essent. Fat. Acids. 2002;66:529–533. doi: 10.1054/plef.2002.0395. [DOI] [PubMed] [Google Scholar]
- 342.Wu W.H., Lu S.C., Wang T.F., Jou H.J., Wang T.A. Effects of docosahexaenoic acid supplementation on blood lipids, estrogen metabolism, and in vivo oxidative stress in postmenopausal vegetarian women. Eur. J. Clin. Nutr. 2006;60:386–392. doi: 10.1038/sj.ejcn.1602328. [DOI] [PubMed] [Google Scholar]
- 343.Wu J.H.Y., Ward N.C., Indrawan A.P., Almeida C.-A., Hodgson J.M., Proudfoot J.M., Puddey I.B., Croft K.D. Effects of alpha-tocopherol and mixed tocopherol supplementation on markers of oxidative stress and inflammation in type 2 diabetes. Clin. Chem. 2007;53:511–519. doi: 10.1373/clinchem.2006.076992. [DOI] [PubMed] [Google Scholar]
- 344.Wu J.H.Y., Hodgson J.M., Puddey I.B., Belski R., Burke V., Croft K.D. Sesame supplementation does not improve cardiovascular disease risk markers in overweight men and women. Nutr. Metab. Cardiovasc. Dis. 2009;19:774–780. doi: 10.1016/j.numecd.2009.01.003. [DOI] [PubMed] [Google Scholar]
- 345.Wu J., Salisbury C., Graham R., Lyons G., Fenech M. Increased consumption of wheat biofortified with selenium does not modify biomarkers of cancer risk, oxidative stress, or immune function in healthy Australian males. Environ. Mol. Mutagen. 2009;50:489–501. doi: 10.1002/em.20490. [DOI] [PubMed] [Google Scholar]
- 346.Yang X., Croft K.D., Lee Y.P., Mori T.A., Puddey I.B., Sipsas S., Barden A., Swinny E., Hodgson J.M. The effects of a lupin-enriched diet on oxidative stress and factors influencing vascular function in overweight subjects. Antioxid. Redox Signal. 2010;13:1517–1524. doi: 10.1089/ars.2010.3133. [DOI] [PubMed] [Google Scholar]
- 347.Yeung C.K., Billings F.T., Claessens A.J., Roshanravan B., Linke L., Sundell M.B., Ahmad S., Shao B., Shen D.D., Ikizler T.A., Himmelfarb J. Coenzyme Q(10) dose-escalation study in hemodialysis patients: safety, tolerability, and effect on oxidative stress. Bmc Nephrol. 2015;16 doi: 10.1186/s12882-015-0178-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 348.Zemel M.B., Sun X., Sobhani T., Wilson B. Effects of dairy compared with soy on oxidative and inflammatory stress in overweight and obese subjects. Am. J. Clin. Nutr. 2010;91:16–22. doi: 10.3945/ajcn.2009.28468. [DOI] [PubMed] [Google Scholar]
- 349.Zemel M.B., Bruckbauer A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and inflammatory stress in overweight and obese subjects. Nutrients. 2012;4:529–541. doi: 10.3390/nu4060529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 350.Zern T.L., Wood R.J., Greene C., West K.L., Liu Y.Z., Aggarwal D., Shachter N.S., Fernandez M.L. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J. Nutr. 2005;135:1911–1917. doi: 10.1093/jn/135.8.1911. [DOI] [PubMed] [Google Scholar]
- 351.Zhang Y., Zhang D., Zhu B.Y., Zhang H., Sun Y., Sun C.X. Effects of dietary green tea polyphenol supplementation on the health of workers exposed to high-voltage power lines. Environ. Toxicol. Pharmacol. 2016;46:183–187. doi: 10.1016/j.etap.2016.07.016. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Supplementary material




