Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Jun 30;25(3):649–658. doi: 10.1007/s10068-016-0115-6

Microbiota associated with the starter cultures and brewing process of traditional Hong Qu glutinous rice wine

Kwan Hwa Park 1, Zhibin Liu 3, Cheon-Seok Park 2, Li Ni 3,
PMCID: PMC6049153  PMID: 30263319

Abstract

Hong Qu glutinous rice wine (produced mainly in Fujian province, China) is a traditional alcoholic beverage, which is prepared by fermenting cooked rice using a starter containing Monascus purpureus. In this review, the microbial diversity of fermentation starters from Fujian province, including fungi, bacteria, and yeast, is analyzed in comparison with those of “nuruk” (a traditional starter for making alcoholic beverages in Korea). The bacterial organization of Hong Qu starters was vastly variable in species composition and dominated by Bacillus sp. Lactic acid bacteria were also found in some starters. In case of fungi, Monascus sp. was dominant, whereas non-Saccharomyces yeast such as Saccharomycopsis fibuligera was detected. The microorganisms found in the nuruk starter are, in general, not significantly diverse compared with those found in the Hong Qu starter, with the exception of Monascus sp.; however, Hong Qu and nuruk both contain their own unique microbiota, which are quite diverse from each other.

Keywords: Hong Qu starter, Hong Qu rice wine, nuruk, microbiota, Monascus

References

  • 1.Tamang JP. Diversity of fermented beverages and alcoholic drinks. In: Tamang JP, Kailasapathy K, editors. Fermented Foods and Beverages of the World. Boca Raton, FL, USA: CRC Press; 2010. [Google Scholar]
  • 2.Huang HT. Biology and Biological Technology. Part V: Fermentations and Food Science. Cambridge, UK: Cambridge University Press; 2000. Science and civilisation in China. [Google Scholar]
  • 3.Shurtleff W, Aoyagi A. History of koji-grains and/or soybeans enrobed with a mold culture (300 BCE to 2012): Extensively annotated bibliography and sourcebook. Lafayette, CA, USA: Soyinfo Center; 2012. pp. 19–613. [Google Scholar]
  • 4.Huang F, Cai DT, Nip WK. Chinese Wines: Jiu. In: Hui YH, CRC Press B R F U, editors. Handbook of Food Science, Technology, and Engineering. 2006. [Google Scholar]
  • 5.Yang S, Lee J, Kwak J, Kim K, Seo M, Lee YW. Fungi associated with the traditional starter cultures used for rice wine in Korea. Appl. Biol. Chem. 2011;54:933–943. [Google Scholar]
  • 6.Rong RJ, Li ZM, Wang DL, Bai ZH, Li HY, Rong RF, Ye L. Research progress on microorganisms in Chinese liquor Qu. China Brewing. 2009;6:8. [Google Scholar]
  • 7.Zhang ZY, Chang XX, Zhong QD. Liquor Qu fungus system and enzymatic system character and microbial dynamic variety during vintage. Liquor Making. 2008;5:29. [Google Scholar]
  • 8.Yamamoto S, Matsumoto T. Rice fermentation starters in Cambodia: Cultural importance and traditional methods of production. J. Southeast Asian Stud. 2011;49:192–213. [Google Scholar]
  • 9.Dung NTP, Rombouts FM, Nout MJR. Characteristics of some traditional Vietnamese starch-based rice wine fermentation starters (men) LWT-Food Sci. Technol. 2007;40:130–135. doi: 10.1016/j.lwt.2005.08.004. [DOI] [Google Scholar]
  • 10.Lv XC, Huang XL, Zhang W, Rao PF, Ni L. Yeast diversity of traditional alcohol fermentation starters for Hong Qu glutinous rice wine brewing, revealed by culture-dependent and culture-independent methods. Food Control. 2013;34:183–190. doi: 10.1016/j.foodcont.2013.04.020. [DOI] [Google Scholar]
  • 11.Lv XC, Weng X, Zhang W, Rao PF, Ni L. Microbial diversity of traditional fermentation starters for Hong Qu glutinous rice wine as determined by PCRmediated DGGE. Food Control. 2012;28:426–434. doi: 10.1016/j.foodcont.2012.05.025. [DOI] [Google Scholar]
  • 12.Lv XC, Cai QQ, Ke XX, Chen F, Rao PF, Ni L. Characterization of fungal community and dynamics during the traditional brewing of Wuyi Hong Qu glutinous rice wine by means of multiple culture-independent methods. Food Control. 2015;54:231–239. doi: 10.1016/j.foodcont.2015.01.046. [DOI] [Google Scholar]
  • 13.Lv XC, Huang RL, Chen F, Zhang W, Rao PF, Ni L. Bacterial community dynamics during the traditional brewing of Wuyi Hong Qu glutinous rice wine as determined by culture-independent methods. Food Control. 2013;34:300–306. doi: 10.1016/j.foodcont.2013.05.003. [DOI] [Google Scholar]
  • 14.Lv XC, Huang ZQ, Zhang W, Rao PF, Ni L. Identification and characterization of filamentous fungi isolated from fermentation starters for Hong Qu glutinous rice wine brewing. J. Gen. Appl. Microbiol. 2012;58:33–42. doi: 10.2323/jgam.58.33. [DOI] [PubMed] [Google Scholar]
  • 15.Erdogrul, Azirak S. Review of the studies on the red yeast rice (Monascus purpureus) Turkish Electr. J. Biotechnol. 2004;2:37–49. [Google Scholar]
  • 16.Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VLW. Cholesterollowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am. J. Clin. Nutr. 1999;69:231–236. doi: 10.1093/ajcn/69.2.231. [DOI] [PubMed] [Google Scholar]
  • 17.Que F, Mao L, Pan X. Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds. Food Res. Int. 2006;39:581–587. doi: 10.1016/j.foodres.2005.12.001. [DOI] [Google Scholar]
  • 18.Taira J, Miyagi C, Aniya Y. Dimerumic acid as an antioxidant from the mold, Monascus anka: The inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem. Pharmacol. 2002;63:1019–1026. doi: 10.1016/S0006-2952(01)00923-6. [DOI] [PubMed] [Google Scholar]
  • 19.Yang JH, Tseng YH, Lee YL, Mau JL. Antioxidant properties of methanolic extracts from monascal rice. LWT-Food Sci. Technol. 2006;39:740–747. doi: 10.1016/j.lwt.2005.06.002. [DOI] [Google Scholar]
  • 20.Pattanagul P, Pinthong R, Phianmongkhol A, Leksawasdi N. Review of angkak production (Monascus purpureus) Chiang Mai J. Sci. 2007;34:319–328. [Google Scholar]
  • 21.Feng YL, Shao YC, Chen FS. Monascus pigments. Appl. Microbiol. Biot. 2012;96:1421–1440. doi: 10.1007/s00253-012-4504-3. [DOI] [PubMed] [Google Scholar]
  • 22.Knecht A, Humpf HU. Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Mol. Nutr. Food Res. 2006;50:406–412. doi: 10.1002/mnfr.200500238. [DOI] [PubMed] [Google Scholar]
  • 23.Martinkova L, Juzlova P, Vesely D. Biological activity of polyketide pigments produced by the fungus Monascus. J. Appl. Bacteriol. 1995;79:609–616. doi: 10.1111/j.1365-2672.1995.tb00944.x. [DOI] [Google Scholar]
  • 24.Vendruscolo F, Tosin I, Giachini AJ, Schmidell W, Ninow JL. Antimicrobial activity of Monascus pigments produced in submerged fermentation. J. Food Process Pres. 2014;38:1860–1865. doi: 10.1111/jfpp.12157. [DOI] [Google Scholar]
  • 25.Yasukawa K, Takahashi M, Natori S, Kawai K, Yamazaki M, Takeuchi M, Takido M. Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in 2-stage carcinogenesis in mice. Oncology. 1994;51:108–112. doi: 10.1159/000227320. [DOI] [PubMed] [Google Scholar]
  • 26.Wu CL, Lee CL, Pan TM. Red mold dioscorea has a greater antihypertensive effect than traditional red mold rice in spontaneously hypertensive rats. J. Agr. Food Chem. 2009;57:5035–5041. doi: 10.1021/jf900349v. [DOI] [PubMed] [Google Scholar]
  • 27.Lin CP, Lin YL, Huang PH, Tsai HS, Chen YH. Inhibition of endothelial adhesion molecule expression by Monascus purpureus-fermented rice metabolites, monacolin K, ankaflavin, and monascin. J. Sci. Food Agr. 2011;91:1751–1758. doi: 10.1002/jsfa.4371. [DOI] [PubMed] [Google Scholar]
  • 28.Han S, Lei ZH, Li Q, Lu LH, Zhao LQ. Study on the cultured microbial community and the metabolism regulation during the brewing process of the Fen liquor. Food Ferment. Ind. 2009;35:9–13. [Google Scholar]
  • 29.Lee AC, Fujio Y. Microflora of banh men, a fermentation starter from Vietnam. World J. Microb. Biot. 1999;15:51–55. doi: 10.1023/A:1008897909680. [DOI] [Google Scholar]
  • 30.Wang CL, Shi DJ, Gong GL. Microorganisms in Daqu: A starter culture of Chinese Maotai-flavor liquor. World J. Microb. Biot. 2008;24:2183–2190. doi: 10.1007/s11274-008-9728-0. [DOI] [Google Scholar]
  • 31.Li ZX, Du JH, Wang XX, Ma M. Study on submerged fermentation conditions of a strain Monascus anka sp. producing pigment and glucoamylase. Food Ferment. Ind. 2007;33:77. [Google Scholar]
  • 32.Ercolini D. PCR-DGGE fingerprinting: Novel strategies for detection of microbes in food. J. Microbiol. Meth. 2004;56:297–314. doi: 10.1016/j.mimet.2003.11.006. [DOI] [PubMed] [Google Scholar]
  • 33.Sujaya IN, Nocianitri KA, Asano K. Diversity of bacterial flora of Indonesian ragi tape and their dynamics during the tape fermentation as determined by PCRDGGE. Int. Food Res. J. 2010;17:239–245. [Google Scholar]
  • 34.Thanh VN, Mai LT, Tuan DA. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE. Int. J. Food Microbiol. 2008;128:268–273. doi: 10.1016/j.ijfoodmicro.2008.08.020. [DOI] [PubMed] [Google Scholar]
  • 35.Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2008;126:159–166. doi: 10.1016/j.ijfoodmicro.2008.05.013. [DOI] [PubMed] [Google Scholar]
  • 36.Cocolin L, Manzano M, Aggio D, Cantoni C, Comi G. A novel polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for the identification of Micrococcaceae strains involved in meat fermentations. Its application to naturally fermented Italian sausages. Meat Sci. 2001;58:59–64. doi: 10.1016/s0309-1740(00)00131-5. [DOI] [PubMed] [Google Scholar]
  • 37.Omar NB, Ampe F. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl. Environ. Microb. 2000;66:3664–3673. doi: 10.1128/AEM.66.9.3664-3673.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Limtong S, Sintara S, Suwannarit P, Lotong N. Yeast diversity in Thai traditional alcoholic starter._Kasetsart^J. (Nat. Sci.) 2002;36:149–158. [Google Scholar]
  • 39.Lu J, Cao Y, Fang H, Li WJ, Xie GF, Zou HJ, Hu ZM. Fungal community of wheat Qu of Shaoxing rice wine. J. Food Sci. Biotechnol. 2008;2:23. [Google Scholar]
  • 40.Lv XC, Weng X, Huang RL, Zhang W, Rao PF, Ni L. Research on biodiversity of yeasts associated with Hong Qu glutinous rice wine starters and the traditional brewing process. J. Chinese Inst. Food Sci. Technol. 2012;12:182–190. [Google Scholar]
  • 41.Wang HY, Gao YB, Fan QW, Xu Y. Characterization and comparison of microbial community of different typical Chinese liquor Daqusby PCR–DGGE. Lett. Appl. Microbiol. 2011;53:134–140. doi: 10.1111/j.1472-765X.2011.03076.x. [DOI] [PubMed] [Google Scholar]
  • 42.Xie GF, Li WJ, Lu J, Cao Y, Fang H, Zou HJ, Hu ZM. Isolation and identification of representative fungi from Shaoxing rice wine wheat Qu using a polyphasic approach of culture-based and molecular-based methods. J. I. Brewing. 2007;113:272–279. doi: 10.1002/j.2050-0416.2007.tb00287.x. [DOI] [Google Scholar]
  • 43.Bleve G, Rizzotti L, Dellaglio F, Torriani S. Development of reverse transcription (RT)-PCR and real-time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products. Appl. Environ. Microb. 2003;69:4116–4122. doi: 10.1128/AEM.69.7.4116-4122.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Cao Y, Lu J, Fang H, Li WJ, Xie GF, Zou HJ, Hu ZM. Fungal diversity of wheat Qu of Shaoxing rice wine. Food Sci. 2008;3:282. [Google Scholar]
  • 45.Chao SH, Wu RJ, Watanabe K, Tsai YC. Diversity of lactic acid bacteria in suantsai and fu-tsai, traditional fermented mustard products of Taiwan. Int. J. Food Microbiol. 2009;135:203–210. doi: 10.1016/j.ijfoodmicro.2009.07.032. [DOI] [PubMed] [Google Scholar]
  • 46.Shi JH, Xiao YP, Li XR, Ma EB, Du XW, Quan ZX. Analyses of microbial consortia in the starter of Fen Liquor. Lett. Appl. Microbiol. 2009;48:478–485. doi: 10.1111/j.1472-765X.2009.02554.x. [DOI] [PubMed] [Google Scholar]
  • 47.Wang Y, Cheng Q, Zhang Y, Lin WL. Study on predominant microflora in glutinous rice wine. China Brewing. 2008;5:12–14. [Google Scholar]
  • 48.Zhang X, Wu ZF, Zhang SC, Hu C, Zhang WX. Phylogenetic analysis of 18S rDNA sequence of mold from Luzhou-flavor Daqu. Chinese J. Appl. Environ. Biol. 2011;17:334–337. doi: 10.3724/SP.J.1145.2011.00334. [DOI] [Google Scholar]
  • 49.Li XR, Ma EB, Yan LZ, Meng H, Du XW, Zhang SW, Quan ZX. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int. J. Food Microbiol. 2011;146:31–37. doi: 10.1016/j.ijfoodmicro.2011.01.030. [DOI] [PubMed] [Google Scholar]
  • 50.Zheng XW, Tabrizi MR, Nout MJ, Han BZ. Daqu-a traditional Chinese liquor fermentation starter. J. I. Brewing. 2011;117:82–90. doi: 10.1002/j.2050-0416.2011.tb00447.x. [DOI] [Google Scholar]
  • 51.Zheng XW, Yan Z, Han BZ, Zwietering MH, Samson RA, Boekhout T, Nout MJ. Complex microbiota of a Chinese “Fen” liquor fermentation starter (Fen-Daqu), revealed by culture-dependent and culture-independent methods. Food Microbiol. 2012;31:293–300. doi: 10.1016/j.fm.2012.03.008. [DOI] [PubMed] [Google Scholar]
  • 52.Yu TS, Kim J, Kim HS, Hyun JS, Ha HP, Park MG. Bibliographical study on microorganisms of nuruk (until 1945) J. Korean Soc. Food Sci. Nutr. 1998;27:789–799. [Google Scholar]
  • 53.Kim HR, Baek SH, Seo MJ, Ahn BH. Feasibility of cheonghju brewing with wild type yeast strains from nuruks. Microbiol. Biotechnol. Lett. 2006;34:244–249. [Google Scholar]
  • 54.Song SH, Lee CH, Lee SH, Park JM, Lee HJ, Bai DH, Yoon S C J, Park YS. Analysis of microflora profile in Korean traditional nuruk. J. Microbiol. Biotechnol. 2013;23:40–46. doi: 10.4014/jmb.1210.10001. [DOI] [PubMed] [Google Scholar]
  • 55.Bae KH, Shin KS, Ryu HY, Kwon CS, Sohn HY. Identification and fermentation characteristics of lactic acid bacteria isolated from the fermentation broth of Korean traditional liquor, Andong-Soju. Microbiol. Biotechnol. Lett. 2007;35:310–315. [Google Scholar]
  • 56.Park JW, Lee KH, Lee CY. Identification of filamentous molds isolated from Korean traditional nuruk and their amylolytic activities. Microbiol. Biotechnol. Lett. 1995;23:737–746. [Google Scholar]
  • 57.Viana F, Gil JV, Genovés S, Valles S, Manzanares P. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol. 2008;25:778–785. doi: 10.1016/j.fm.2008.04.015. [DOI] [PubMed] [Google Scholar]
  • 58.Ha DM, Kim DC, Hong SM, Lee CW. Identification and properties of starch utilizing yeasts isolated from Nuruk. J. Appl. Biol. Chem. 1989;32:408–415. [Google Scholar]
  • 59.Wu Q, Chen L, Xu Y. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor. Int. J. Food Microbiol. 2013;166:323–330. doi: 10.1016/j.ijfoodmicro.2013.07.003. [DOI] [PubMed] [Google Scholar]
  • 60.Lee HH, Lee JH, Ko YJ, Park MH, Lee JO, Ryo CH. Changes in allergenicity and quality of Nuruk during fermentation. J. Korean Soc. Food Sci. Nutr. 2009;38:76–82. doi: 10.3746/jkfn.2009.38.1.076. [DOI] [Google Scholar]
  • 61.Yoshizaki Y, Susuki T, Takamine K, Tamaki H, Ito K, Sameshima Y. Characterization of glucoamylase and a-amylase from Monascus anka: enhanced production of á-amylase in red koji. J. Biosci. Bioeng. 2010;110:670–674. doi: 10.1016/j.jbiosc.2010.07.005. [DOI] [PubMed] [Google Scholar]
  • 62.Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol. Adv. 2009;27:423–431. doi: 10.1016/j.biotechadv.2009.03.003. [DOI] [PubMed] [Google Scholar]
  • 63.Tovar L, Salafranca J, Sánchez C, Nerin C. Migration studies to assess the safety in use of a new antioxidant active packaging. J. Agr. Food Chem. 2005;53:5270–5275. doi: 10.1021/jf050076k. [DOI] [PubMed] [Google Scholar]
  • 64.Nerín C, Tovar L, Djenane D, Camo J, Salafranca J, Beltran J A, Roncales P. Stabilization of beef meat by a new active packaging containing natural antioxidants. J. Agr. Food Chem. 2006;54:7840–7846. doi: 10.1021/jf060775c. [DOI] [PubMed] [Google Scholar]
  • 65.Dikshit R, Tallapragada P. Monascus purpureus: A potential source for natural pigment production. J. Microbiol. Biotechnol. Res. 2011;1:164–174. [Google Scholar]
  • 66.Dufossé L. Microbial production of food grade pigments. Food Technol. Biotech. 2006;44:313–321. [Google Scholar]
  • 67.Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ. Production and food applications of the red pigments of Monascus ruber. J. Food Sci. 1993;58:1099–1102. doi: 10.1111/j.1365-2621.1993.tb06123.x. [DOI] [Google Scholar]
  • 68.Mapari SAS, Thrane U, Meyer AS. Fungal polyketideazaphilone pigments as future natural food colorants? Trends Biotechnol. 2010;28:300–307. doi: 10.1016/j.tibtech.2010.03.004. [DOI] [PubMed] [Google Scholar]
  • 69.Carels M, Shepherd D. The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can. J. Microbiol. 1977;23:1360–1372. doi: 10.1139/m77-205. [DOI] [PubMed] [Google Scholar]
  • 70.Lim HS, Yoo SK, Shin CS, Hyun YM. Monascus red pigment overproduction by coculture with recombinant Saccharomyces cerevisiae secreting glucoamylase. J. Microbiol. 2000;38:48–51. [Google Scholar]
  • 71.Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanabe A, Kariyama M. Light effects on cell development and secondary metabolism in Monascus. J. Ind. Microbiol. Biot. 2005;32:103–108. doi: 10.1007/s10295-005-0209-2. [DOI] [PubMed] [Google Scholar]
  • 72.Mukherjee G, Singh SK. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem. 2011;46:188–192. doi: 10.1016/j.procbio.2010.08.006. [DOI] [Google Scholar]
  • 73.Babitha S, Soccol CR, Pandey A. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technol. 2007;98:1554–1560. doi: 10.1016/j.biortech.2006.06.005. [DOI] [PubMed] [Google Scholar]
  • 74.Lee BK, Park NH, Piao HY, Chung WJ. Production of red pigments by Monascus purpureus in submerged culture. Biotechnol. Bioproc. E. 2001;6:341–346. doi: 10.1007/BF02933003. [DOI] [Google Scholar]
  • 75.Ahn J, Jung J, Hyung W, Haam S, Shin C. Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol. Progr. 2006;22:338–340. doi: 10.1021/bp050275o. [DOI] [PubMed] [Google Scholar]
  • 76.Jung HY, Kim CY, Shin CS. Enhanced photostability of Monascus pigments derived with various amino acids via fermentation. J. Agr. Food Chem. 2005;53:7108–7114. doi: 10.1021/jf0510283. [DOI] [PubMed] [Google Scholar]
  • 77.Jung HY, Kim CY, Kim K, Shin CS. Color characteristics of Monascus pigments derived by fermentation with various amino acids. J. Agr. Food Chem. 2003;51:1302–1306. doi: 10.1021/jf0209387. [DOI] [PubMed] [Google Scholar]
  • 78.Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J. Biosci. Bioeng. 2015;120:145–154. doi: 10.1016/j.jbiosc.2015.01.001. [DOI] [PubMed] [Google Scholar]
  • 79.Wang B, Zhang X, Wu Z, Wang Z. Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation. J. Biotechnol. 2015;212:167–173. doi: 10.1016/j.jbiotec.2015.08.019. [DOI] [PubMed] [Google Scholar]
  • 80.Carels M, Shepherd D. The effect of changes in pH on phosphate and potassium uptake by Monascus rubiginosus ATCC 16367 in submerged shaken culture. Can. J. Microbiol. 1979;25:1484–1488. doi: 10.1139/m79-231. [DOI] [PubMed] [Google Scholar]
  • 81.Huang L, Cheng X, Wei SJ, Tu XR, Li KT. Research on the stability for Monascus pigment produced by Monascus purpureus JR. China Condiment. 2011;36:93–96. [Google Scholar]
  • 82.Li HR, Du ZW, Zhang JR. Study on the stability of Monascus pigment. Food Sci. 2003;24:59–62. [Google Scholar]
  • 83.Shehata HA, Buckenhuskes HJ, El-Zoghbi MS. Colour optimization of Egyptian fresh beef sausage by natural colorants. Fleischwirtschaft (Germany) 1998;78:68–71. [Google Scholar]
  • 84.Hong MY, Seeram NP, Zhang YJ, Heber D. Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells. J. Nutr. Biochem. 2008;19:448–458. doi: 10.1016/j.jnutbio.2007.05.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Mostafa ME, Abbady MS. Secondary metabolites and bioactivity of the Monascus pigments review article. Global J. Biotechnol. Biochem. 2014;9:1–13. [Google Scholar]
  • 86.Kaur B, Chakraborty D, Kaur H. Production and evaluation of physicochemical properties of red pigment from Monascus purpureus MTCC 410. Internet J. Microbiol. 2009;7:1–7. [Google Scholar]
  • 87.Hajjaj H, François JM, Goma G, Blanc PJ. Effect of amino acids on red pigments and citrinin production in Monascus ruber. J. Food Sci. 2012;77:M156–M159. doi: 10.1111/j.1750-3841.2011.02579.x. [DOI] [PubMed] [Google Scholar]
  • 88.Goswami S, Vidyarthi AS, Bhunia B, Manadal T. A review on lovastatin and its production. J. Biochem. Technol. 2012;4:581–587. [Google Scholar]
  • 89.Kennedy J, Auclair K, Kendrew SG, Park CS, Vederas JC, Hutchinson CR. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science. 1999;284:1368–1372. doi: 10.1126/science.284.5418.1368. [DOI] [PubMed] [Google Scholar]
  • 90.Zheng Y, Xin Y, Shi X, Guo Y. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823. Appl. Microbiol. Biot. 2010;88:1169–1177. doi: 10.1007/s00253-010-2834-6. [DOI] [PubMed] [Google Scholar]
  • 91.Choe DK, Lee JY, Woo SH, Shin CS. Evaluation of the amine derivatives of Monascus pigment with anti-obesity activities. Food Chem. 2012;134:315–323. doi: 10.1016/j.foodchem.2012.02.149. [DOI] [Google Scholar]
  • 92.Man RYK, Lynn EG, Cheung F, Tsang P O K. Cholestin inhibits cholesterol synthesis and secretion in hepatic cells (HepG2) Mol. Cell. Biochem. 2002;233:153–158. doi: 10.1023/A:1017487815091. [DOI] [PubMed] [Google Scholar]
  • 93.Blanc PJ, Loret MO, Goma G. Production of citrinin by various species of Monascus. Biotechnol. Lett. 1995;17:291–294. doi: 10.1007/BF01190639. [DOI] [Google Scholar]
  • 94.Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl. Environ. Microb. 2005;71:3453–3457. doi: 10.1128/AEM.71.7.3453-3457.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Lee CH, Lee CL, Pan TM. A 90-d toxicity study of Monascus-fermented products including high citrinin level. J. Food Sci. 2010;75:T91–97. doi: 10.1111/j.1750-3841.2009.01464.x. [DOI] [PubMed] [Google Scholar]
  • 96.Chen YP, Tseng CP, Liaw LL, Wang CL, Chen IC, Wu WJ, Wu MD, Yuan GF. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J. Agr. Food Chem. 2008;56:5639–5646. doi: 10.1021/jf800595k. [DOI] [PubMed] [Google Scholar]
  • 97.Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H. Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J. Agr. Food Chem. 2005;53:562–565. doi: 10.1021/jf040199p. [DOI] [PubMed] [Google Scholar]
  • 98.Su NW, Lin YL, Lee MH, Ho CY. Ankaflavin from Monascus fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J. Agr. Food Chem. 2005;53:1949–1954. doi: 10.1021/jf048310e. [DOI] [PubMed] [Google Scholar]
  • 99.Lee CL, Kung YH, Wu CL, Hsu YW, Pan TM. Monascin and ankaflavin act as a novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J. Agr. Food Chem. 2010;58:9013–9019. doi: 10.1021/jf101982v. [DOI] [PubMed] [Google Scholar]
  • 100.Shi YC, Liao VHC, Pan TM. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radical Bio. Med. 2012;52:109–117. doi: 10.1016/j.freeradbiomed.2011.09.034. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES