Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Oct 31;25(5):1333–1336. doi: 10.1007/s10068-016-0209-1

Kinetic study on the singlet oxygen quenching activity of nordihydroguaiaretic acid (NDGA) using methylene blue sensitized photooxidation of α-terpinene

Yun Seo Choi 1, Mun Yhung Jung 1,
PMCID: PMC6049261  PMID: 30263413

Abstract

Singlet oxygen is highly reactive and can therefore induce rapid oxidation of a range of biological molecules, causing cell damages. The effects of nordihydroguaiaretic acid (NDGA) on the photochemical singlet oxygen oxidation of α-terpinene in methanol were studied. NDGA showed strong protective activity on the singlet oxygen oxidation of α-terpinene in methanol in a dose dependent manner. The protective activity of NDGA was considerably higher than that of butylated hydroxytoluene and 1,4-diazabicyclo[2.2.2]octane. Total singlet oxygen quenching rate constant (k r +k q) of NDGA was determined by a steady state kinetic equation. The total singlet oxygen quenching rate constant of NDGA was 9.81×107 M−1 sec−1. The result showed that NDGA possessed strong singlet oxygen quenching activity, indicating its potential for the protection of molecules, cells and nutrients from the highly reactive singlet oxygen. To the best of our knowledge, this is the first report on the singlet oxygen quenching rate constant of NDGA.

Keywords: NDGA, singlet oxygen, Larrea tridentata, α-terpinene, quenching rate constant

References

  • 1.Choe EO, Min DB. Chemistry and reactions of reactive oxygen species in foods. J. Food Sci. 2005;70:R142–R159. doi: 10.1111/j.1365-2621.2005.tb08329.x. [DOI] [PubMed] [Google Scholar]
  • 2.Choe EO, Min DB. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. F. 2009;8:345–358. doi: 10.1111/j.1541-4337.2009.00085.x. [DOI] [Google Scholar]
  • 3.Wei H, Cai Q, Rahn R, Zhang X. Singlet oxygen involvement in ultraviolet (254 nm) radiation-induced formation of 8-hydroxydeoxyguanosine in DNA. Free Radical Bio. Med. 1997;23:148–154. doi: 10.1016/S0891-5849(96)00526-6. [DOI] [PubMed] [Google Scholar]
  • 4.Davis MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Bioph. Res. Co. 2003;305:761–770. doi: 10.1016/S0006-291X(03)00817-9. [DOI] [PubMed] [Google Scholar]
  • 5.Kim J, Rodriguez ME, Guo M, Kenney ME, Oleinick NL, Anderson VE. Oxidative modification of cytochrome c by singlet oxygen. Free Radical Bio. Med. 2008;44:1700–1711. doi: 10.1016/j.freeradbiomed.2007.12.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Basu-Modak S, Tyrrell RM. Singlet oxygen: A primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene. Cancer Res. 1993;53:4505–4510. [PubMed] [Google Scholar]
  • 7.Grether-Beck S, Olaizola-Horn S, Schmitt H, Grewe M, Jahnke A, Johnson JP, Briviba K, Sies H, Krutmann J. Activation of transcription factor AP-2 mediates UVA radiation-and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene. P. Natl. Acad. Sci. USA. 1996;93:14586–14591. doi: 10.1073/pnas.93.25.14586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Jung MY, Choi DS. Electron spin resonance and luminescence spectroscopic observation and kinetic study of chemical and physical singlet oxygen quenching by resveratrol in methanol. J. Agr. Food Chem. 2010;58:11888–11895. doi: 10.1021/jf101587c. [DOI] [PubMed] [Google Scholar]
  • 9.Lee JH, Jung MY. Direct spectroscopic observation of singlet oxygen quenching and kinetic studies of physical and chemical singlet oxygen quenching rate constants of synthetic antioxidants (BHA, BHT, and TBHQ) in methanol. J. Food Sci. 2010;75:C506–C513. doi: 10.1111/j.1750-3841.2010.01669.x. [DOI] [PubMed] [Google Scholar]
  • 10.Halliwell B, Gutteridge JMC. Measurement of reactive species. In: Halliwell B, Gutteridge JMC, editors. Free Radicals in Biology and Medicine. London, UK: Oxford Science Publications; 2007. p. 268. [Google Scholar]
  • 11.Foote CS, Ching TY, Geller GG. Chemistry of singlet oxygen-XVIII. Rates of reaction and quenching of a-tocopherol and singlet oxygen. Photochem. Photobiol. 1974;20:511–513. doi: 10.1111/j.1751-1097.1974.tb06611.x. [DOI] [PubMed] [Google Scholar]
  • 12.Tournaire C, Croux S, Maurette MT, Beck I, Hocquaux M, Braun AM, Olive E. Antioxidant activity of flavonoids: Efficiency of singlet oxygen (1-g) quenching. J. Photoch. Photobio. B. 1993;19:205–215. doi: 10.1016/1011-1344(93)87086-3. [DOI] [PubMed] [Google Scholar]
  • 13.Mukai K, Nagai S, Ohara K. Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radical Bio. Med. 2005;39:752–761. doi: 10.1016/j.freeradbiomed.2005.04.027. [DOI] [PubMed] [Google Scholar]
  • 14.Fahrenholtz SR, Doleiden FH, Trozzolo AM, Lamola AA. On the quenching of singlet oxygen by a-tocopherol. Photochem. Photobiol. 1974;20:505–509. doi: 10.1111/j.1751-1097.1974.tb06610.x. [DOI] [PubMed] [Google Scholar]
  • 15.Fukuzawa K, Inokami Y, Tokumura A, Terao J, Suzuki A. S inglet o xygen scavenging by a-tocopherol and ß-carotene: Kinetic studies in phospholipid membranes and ethanol solution. BioFactors. 1998;7:31–40. doi: 10.1002/biof.5520070106. [DOI] [PubMed] [Google Scholar]
  • 16.Choi DS, Jung MY. Protective activities of catechins on singlet oxygen induced photooxidation of a-terpinene in methanol: Structure and singlet oxygen quenching activity relationship. Food Sci. Biotechnol. 2013;22:249–256. doi: 10.1007/s10068-013-0034-8. [DOI] [Google Scholar]
  • 17.Konno C, Lu ZZ, Xue HZ, Erdelmeier CA, Meksuriyen D, Che CT, Cordell GC, Soejarto DD, Waller DP, Fong HHS. Furanoid lignans from Larrea tridentata. J. Nat. Prod. 1990;53:396–406. doi: 10.1021/np50068a019. [DOI] [PubMed] [Google Scholar]
  • 18.Lu J, Nurko J, Wakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Chen C. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: An update. Med. Sci. Monitor. 2010;16:RA93–RA100. [PMC free article] [PubMed] [Google Scholar]
  • 19.Mundhe N, Dahiya V, Budhani MK, Mishra N, Reddy J, Lahkar M. The Study of protective effect of Nordihydroguaiaretic acid (NDGA) on cisplatin induced genotoxicity and nephrotoxicity by attenuating oxidative stress in Swiss albino mice. World J. Pharm. Sci. 2015;3:232–240. [Google Scholar]
  • 20.Kumar S, Wedgwood S, Black SM. Nordihydroguaiaretic acid increases endothelial nitric oxide synthase expression via the transcription factor AP-1. DNA Cell Biol. 2007;26:853–862. doi: 10.1089/dna.2007.0614. [DOI] [PubMed] [Google Scholar]
  • 21.Seufferlein T, Seckl MJ, Schwarz E, Beil M, Wichert G, Baust H, Lührs H, Schmid RM, Adler G. Mechanisms of nordihydroguaiaretic acid-induced growth inhibition and apoptosis in human cancer cells. Brit. J. Cancer. 2002;86:1188–1196. doi: 10.1038/sj.bjc.6600186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Shishido Y, Furushiro M, Hashimoto S, Yokokura T. Effect of nordihydroguaiaretic acid on behavioral impairment and neuronal cell death after forebrain ischemia. Pharmacol. Biochem. Be. 2001;69:469–474. doi: 10.1016/S0091-3057(01)00572-X. [DOI] [PubMed] [Google Scholar]
  • 23.Richie JP, Mills BJ, Lang CA. Dietary nordihydroguaiaretic acid increases the life span of the mosquito. Proceedings of the society for experimental biology and medicine. Exp. Biol. Med. 1986;183:81–85. doi: 10.3181/00379727-183-42389. [DOI] [PubMed] [Google Scholar]
  • 24.Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell. 2008;7:641–650. doi: 10.1111/j.1474-9726.2008.00414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Floriano-Sánchez E, Villanueva C, Medina-Campos ON, Rocha D, Sánchez-González DJ, Cárdenas-Rodríguez N, Pedraza-Chaverrí J. Nordihydroguaiaretic acid is a potent in vitro scavenger of peroxynitrite, singlet oxygen, hydroxyl radical, superoxide anion and hypochlorous acid and prevents in vivo ozoneinduced tyrosine nitration in lungs. Free Radical. Res. 2006;40:523–533. doi: 10.1080/10715760500419365. [DOI] [PubMed] [Google Scholar]
  • 26.Anjaneyulu M, Chopra K. Nordihydroguairetic acid, a lignin, prevents oxidative stress and the development of diabetic nephropathy in rats. Pharmacology. 2004;72:42–50. doi: 10.1159/000078631. [DOI] [PubMed] [Google Scholar]
  • 27.Pillai K, Costello B, Oresajo C, Ceccoli J. Cosmetic compositions containing combinations of hydroxamate derivatives and antioxidants in a liposomal delivery system. U.S patent 2006/0165641A1 (2006)
  • 28.Nardello V, Bogaert S, Alsters PL, Aubry JM. Singlet oxygen generation from H2O2/MoO4: Peroxidation of hydrophobic substrates in pure organic solvents. Tetrahedron Lett. 2002;43:8731–8734. doi: 10.1016/S0040-4039(02)02108-1. [DOI] [Google Scholar]
  • 29.Scrulock RD, Ogilby PR. Production of singlet oxygen (1-g O2) by 9,10-dicyanoanthracene and acridine: Quantum yields in acetonitrile. J. Photoch. Photobio. A. 1993;72:1–7. doi: 10.1016/1010-6030(93)85077-L. [DOI] [Google Scholar]
  • 30.Criado S, Carolina A, Claudio C, Garcia NA. Visible-light promoted degradation of the commercial antioxidants butylated hydroxyanisol (BHA) and butylated hydroxytoluene (BHT): A kinetic study. Redox Rep. 2007;12:282–288. doi: 10.1179/135100007X239252. [DOI] [PubMed] [Google Scholar]
  • 31.Thomas MJ, Foote CS. Chemistry of singlet oxygen-XXVI. Photooxygenation of phenols. Photochem. Photobiol. 1978;27:683–691. doi: 10.1111/j.1751-1097.1978.tb07665.x. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES