Skip to main content
Molecules logoLink to Molecules
. 2017 Apr 6;22(4):584. doi: 10.3390/molecules22040584

Screening and Analysis of the Marker Components in Ganoderma lucidum by HPLC and HPLC-MSn with the Aid of Chemometrics

Lingfang Wu 1, Wenyi Liang 1, Wenjing Chen 1, Shi Li 1, Yaping Cui 1, Qi Qi 1, Lanzhen Zhang 1,*
Editor: Derek J McPhee1
PMCID: PMC6154496  PMID: 28383512

Abstract

Ganoderma triterpenes (GTs) are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. The present study was to establish a fingerprint evaluation system based on Similarity Analysis (SA), Cluster Analysis (CA) and Principal Component Analysis (PCA) for the identification and quality control of G. lucidum. Fifteen samples from the Chinese provinces of Hainan, Neimeng, Shangdong, Jilin, Anhui, Henan, Yunnan, Guangxi and Fujian were analyzed by HPLC-PAD and HPLC-MSn. Forty-seven compounds were detected by HPLC, of which forty-two compounds were tentatively identified by comparing their retention times and mass spectrometry data with that of reference compounds and reviewing the literature. Ganoderic acid B, 3,7,15-trihydroxy-11,23-dioxolanost-8,16-dien-26-oic acid, lucidenic acid A, ganoderic acid G, and 3,7-oxo-12-acetylganoderic acid DM were deemed to be the marker compounds to distinguish the samples with different quality according to both CA and PCA. This study provides helpful chemical information for further research on the anti-tumor activity and mechanism of action of G. lucidum. The results proved that fingerprints combined with chemometrics are a simple, rapid and effective method for the quality control of G. lucidum.

Keywords: Ganoderma lucidum, triterpenes, HPLC-MSn, Similarity Analysis (SA), chemometrics

1. Introduction

Ganoderma lucidum (Leyss. ex Fr.) Karstis is one of the most highly used medicinal fungi in the world. Its fruiting body, called lingzhi or reishi, has been widely used in traditional Chinese medicine (TCM) as a dietary supplement and medicinal herb in China and other eastern countries. Modern medical research has indicated that G. lucidum has comprehensive biological activities, such as anti-cancer [1,2,3,4,5], immune-modulating [1,3,6], anti-oxidant [6,7,8], anti-microbial [9], anti-inflammatory [10], anti-HIV-1 [11], and so on, among which the most attractive is its anti-cancer activity.

To date, more than 400 compounds were isolated and identified from G. lucidum. Over 150 compounds such as ganoderic acid A (GA-A), GA-C2, GA-D, GA-DM, GA-lactone, ganoderiol F, ganodermanotriol and so on belong to the Ganoderma terpene (GT) class which are regarded as the main medicinal components [9,12,13,14,15]. Accumulating evidence has shown that GTs can inhibit the proliferation of hepatoma cells and HeLa cells, as well as human colon cancer cells HT-29 [16,17,18]. The type and content of triterpene acids reflects the quality of G. lucidum, so GTs could be used as marker components to evaluate the quality of G. lucidum.

The therapeutic effects of traditional Chinese medicines (TCMs) are based on the complex interactions of numerous complicated chemical constituents as a whole system, so methods are needed in order to control the quality of this complex system. In this case, HPLC fingerprints of key components provide a new approach for quality control of traditional Chinese medicines. There are many studies about fingerprints analysis combined with chemometrics for the quality control of traditional Chinese medicines and to find the bioactive components [19,20,21].

Some studies on the fingerprints of G. lucidum have been reported [22,23,24,25], but in these studies, only a few compounds were identified by HPLC-MSn. Yang [26] focused on chemical identification of the GTs, and identified thirty-two compounds, but no marker compounds were found from cluster analysis (CA) and principal component analysis (PCA).

In the present study, forty-seven peaks were detected in HPLC-PDA, of which thirty-seven were common peaks in the similarity analysis. Forty-two known triterpenoids were identified by high-resolution liquid mass spectrometry. To the best of our knowledge, this is the first time that so many compounds were identified. We also found for the first time that ganoderic acid B, 3,7,15-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid, lucidenic acid A, ganoderic acid G, and 3,7-oxo-12-acetylganoderic acid DM might be suitable marker compounds to distinguish between G. lucidum samples of different quality, according to CA and PCA. This study provides helpful chemical information for further research on the anti-tumor activity and mechanism of action of G. lucidum. The method developed in our study also provides a scientific foundation for the quality control of G. lucidum.

2. Results and Discussion

2.1. Validation of the Method

The relative retention time, relative peak area and similarities were used to evaluate the quality of the fingerprints. Dehydrotumulosic acid (peak 15) which is a large single peak in the middle of the chromatogram, was assigned as the reference peak to calculate relative retention times and relative peak areas.

The precision was determined by repeated injection of the same sample solution six consecutive times. The RSDs of relative retention time and relative peak area of the common peaks were all below 0.94% and 2.88%, respectively; the similarities of different chromatograms were all above 0.995.

The repeatability was evaluated by the analysis of six prepared samples. The RSDs of relative retention time and relative retention time of the common peaks were all below 0.95% and 2.86%, respectively; the similarities of different chromatograms were all above 0.995.

Stability testing was performed with one sample over 24 h. The RSDs of relative retention time and relative retention time of the common peaks were all below 1.06% and 2.71%; the similarities of different chromatograms were all 1.000. All these results indicated that the samples remained stable during the testing period and the conditions were satisfactory for the fingerprint analysis.

2.2. Similarity Analysis (SA)

The chromatographic profile must be representative of all the samples and have the features of integrity and fuzziness. By analyzing the mutual pattern of chromatograms, the identification and authentication of the samples can be conducted well even if the amounts of some chemical constituents are different from the others.

Fifteen batches of samples from different habitats were determined and the chromatograms were analyzed by SES to generate a common pattern R (Figure 1). The peak area of the common peaks was list in the supplementary materials. SES for Chromatographic Fingerprint was performed to calculate the similarities of different chromatograms compared to the common pattern. The results are shown in Table 1.

Figure 1.

Figure 1

Overlaid HPLC chromatograms of samples from No. S1 to S15. The common pattern (marked R) was obtained by using the Similarity Evaluation System (SES) for the Chromatographic Fingerprints of TCMs.

Table 1.

The results of similarities of the chromatograms from different origins.

No. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 R
S1 1.000 0.820 0.925 0.848 0.799 0.723 0.701 0.921 0.699 0.692 0.748 0.714 0.774 0.708 0.723 0.935
S2 0.820 1.000 0.831 0.733 0.707 0.673 0.636 0.803 0.670 0.803 0.797 0.777 0.624 0.642 0.687 0.864
S3 0.925 0.831 1.000 0.914 0.853 0.795 0.768 0.961 0.663 0.735 0.813 0.833 0.728 0.785 0.838 0.965
S4 0.848 0.733 0.914 1.000 0.877 0.711 0.676 0.911 0.597 0.672 0.744 0.674 0.604 0.694 0.509 0.907
S5 0.799 0.707 0.853 0.877 1.000 0.659 0.622 0.853 0.562 0.618 0.680 0.651 0.671 0.636 0.689 0.857
S6 0.723 0.673 0.795 0.711 0.659 1.000 0.843 0.728 0.509 0.739 0.744 0.653 0.481 0.984 0.648 0.825
S7 0.701 0.636 0.768 0.676 0.622 0.843 1.000 0.706 0.512 0.669 0.695 0.665 0.705 0.862 0.642 0.791
S8 0.921 0.803 0.961 0.911 0.853 0.728 0.706 1.000 0.664 0.697 0.784 0.913 0.695 0.719 0.733 0.956
S9 0.699 0.670 0.663 0.597 0.562 0.509 0.512 0.664 1.000 0.675 0.665 0.714 0.774 0.500 0.723 0.772
S10 0.692 0.803 0.735 0.672 0.618 0.739 0.669 0.697 0.675 1.000 0.799 0.650 0.711 0.720 0.686 0.826
S11 0.748 0.797 0.813 0.744 0.680 0.744 0.695 0.784 0.665 0.799 1.000 0.651 0.671 0.708 0.689 0.874
S12 0.714 0.777 0.833 0.674 0.651 0.653 0.665 0.913 0.714 0.650 0.651 1.000 0.695 0.505 0.733 0.867
S13 0.774 0.624 0.728 0.604 0.671 0.481 0.705 0.695 0.774 0.711 0.671 0.695 1.000 0.681 0.742 0.854
S14 0.708 0.642 0.785 0.694 0.636 0.984 0.862 0.719 0.500 0.720 0.708 0.505 0.681 1.000 0.554 0.810
S15 0.723 0.687 0.838 0.509 0.689 0.648 0.642 0.733 0.723 0.686 0.689 0.733 0.742 0.554 1.000 0.863
R 0.935 0.864 0.965 0.907 0.857 0.825 0.791 0.956 0.772 0.826 0.874 0.867 0.854 0.810 0.863 1.000

The conclusion can be drawn from the results that the similarities of different chromatograms compared to the common pattern are all above 0.800, except for samples S7 (0.791) and S9 (0.772), which indicates that the chemical constituents of different samples are not highly influenced by their sources. The common pattern is a very positive identification for the samples of G. lucidum.

2.3. Identification of the Compounds Present

HPLC-ESI-MSn method was employed to identify the components in G. lucidum (Figure 2 and Figure 3) Molecular weights and fragmentation information (Table 2 and Table 3) were obtained. The possible structures of 37 common peaks and ten other peaks a1–a10 were deduced, as shown in Figure 4. Under the optimized MS conditions, the negative mode was used to identify the peaks.

Figure 2.

Figure 2

HPLC chromatograms of G. lucidum.

Figure 3.

Figure 3

Negative mode of the HPLC-MSn chromatograms of G. lucidum.

Table 2.

The HPLC-MSn data and compound names of the 47 peaks.

Peak No. tR (min) [M− H] Negative Mode Identification
1 16.07 533.3109 MS1:533.3109 [M − H]
MS2:533.3109→515.3029 [M − H − 18(H2O)], 485.2977 [M − H − 18(H2O) − 30(2CH3)]
MS3:515.3029→497.3448 [M − H − 18(H2O) − 18(H2O)],
     303.1085 [M − H − 18(H2O) − 18(H2O) − 194(pyrolysis fragments of D ring)]
   485.2977→467.3855 [M − H − 18(H2O) − 30(2CH3) − 18(H2O)]
12-hydroxyganoderic C2 [26,27]
2 17.39 515.3452 MS1:515.3452 [M − H] Unknown
3 17.79 613.2977 MS1:613.2977 [M − H]
MS2:613.2977→595.3029 [M − H − 18(H2O)], 553.3198[M − H − 18(H2O) − 42(CH2=CO)]
MS3:553.3198→535.2648 [M − H − 18(H2O) − 42(CH2=CO) − 18(H2O)]
     343.1749 [M − H − 18(H2O) − 192(pyrolysis fragments of D ring)]
3-acetylganoderenic acid K [26]
4 20.22 515.3011 MS1:515.3011 [M − H]
MS2:515.3011→497.9281 [M − H − 18(H2O)], 453.2738[M − H − 18(H2O) − 44(CO2)]
MS3:453.2738→438.2719 [M − H − 18(H2O) − 44(CO2) − 15(CH3)], 423.2209[M − H − 18 (H2O) − 44(CO2) − 30(2CH3)],
   497.9281→305.2222 [M − H − 18(H2O) − 192(pyrolysis fragments of D ring)]
3,7,15-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid [28]
5 21.84 517.3159 MS1:517.3159 [M − H]
MS2:517.3159→499.3881 [M − H − 18(H2O)], 481.3099[M − H − 36(2H2O)]−, 455.4148[M − H − 18(H2O) − 44(CO2)],
     437.4261[M − H − 36(2H2O) − 44(CO2)]
MS3:499.3881→481.3099 [M − H − 18(H2O) − 18(H2O)],
   481.3099→287.2234 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring)]
Ganoderic acid C2 [26,29,30]
6 22.83 501.3214 MS1:501.3214 [M − H]
MS2:501.3214→483.3465 [M − H − 18(H2O)], 439.4045 [M − H − 18(H2O) − 44(CO2)], 421.3404[M − H − 36(2H2O) − 44(CO2)],
     289.1908 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring)]
Ganolucidic acid B [26]
7 24.10 457.2592 MS1:457.2592 [M − H]
MS2:457.2592→ 438.9782 [M − H − 18(H2O) − H], 420.9395[M − H − 36(2H2O) − H], 413.1963[M − H − 44(CO2)],
     397.1818 [M − H − 44(CO2) − 16(CH4)], 395.1743[M − H − 44(CO2) − 18H2O],
     303.0224 [M − H − 138(pyrolysis fragments of D ring) − 16(CH4)]
3-hydroxy-4,4,14-trimethyl-7,11,15-trioxochol-8-en-24-oic-acid [26]
8 25.83 529.2786 MS1:529.2786 [M − H], 511.2697 [M − H − 18(H2O)]
MS2:511.2697→467.3350 [M − H − 18(H2O) − 44(CO2)], 437.3528[M − H − 18(H2O) − 44(CO2) − 30(2CH3)],
     317.0999 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring)]
MS3:467.3350→423.3057 [M − H − 18(H2O) − 44(CO2) − 44(CO2)]
Ganoderic acid C6 [26]
9 28.17 531.2941 MS1:531.2941 [M − H], 513.2853 [M − H − 18(H2O)]
MS2:513.2853→469.3372 [M − H − 18(H2O) − 44(CO2)], 454.2572 [M − H − 18(H2O) − 44(CO2) − 15(CH3)],
     436.2994 [M − H − 18(H2O) − 44(CO2) − 18(H2O) − 15(CH3)],
     301.1445 [M − H − 18(H2O) − 18(H2O) − 194(pyrolysis fragments of D ring)]
MS3:469.3372→451.3330 [M − H − 18(H2O) − 44(CO2) − 18(H2O)],
     265.0820 [M − H − 18(H2O) − 44(CO2) − 204 (pyrolysis fragments of C ring)]
Ganoderic acid G [26,31]
10 31.25 516.2992 MS1:516.2992 [M − H], 497.2901 [M − H − 18(H2O)]
MS2:497.2901→453.2937 [M − H − 18(H2O) − 44(CO2)], 303.2104 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring)],
     287.2104 [M − H − 194(pyrolysis fragments of D ring) − 16(CH4)]
MS3:453.2937→435.2029 [M − H − 44(CO2) − 36(2H2O)], 409.3284 [M − H − 18(H2O) − 44(CO2) − 44(CO2)],
     249.0864 [M − H − 18(H2O) − 44(CO2) − 204(pyrolysis fragments of C ring)]
Ganoderic acid B [26,30,31]
11 33.14 511.2698 MS1:511.2698 [M − H]
MS2:511.2698→493.3167 [M − H − 18(H2O)], 467.3325 [M − H − 44(CO2)], 449.3569 [M − H − 18(H2O) − 44(CO2)],
     434.2375 [M − H − 18(H2O) − 59(Ac-)]
MS3:493.3167→245.1126 [M − H − 18(H2O) − 44(CO2) − 204 (pyrolysis fragments of C ring)]
     147.0566 [M − H − 18(H2O) − 44(CO2) − 204 (pyrolysis fragments of C ring) − 98(pyrolysis fragments of A ring)]
unknown
12 34.63 513.2588 MS1:513.2588 [M − H]
MS2:513.2588→495.2083 [M − H − 18(H2O)], 451.2515 [M − H − 18(H2O) − 44(CO2)], 436.2632 [M − H − 18(H2O) − 59(Ac-)]
MS3:495.2083→249.0978 [M − H − 18(H2O) − 36(2H2O) − 16(CH4) − 194(pyrolysis fragments of D ring)]
Ganoderic acid AM1 [26,32]
13 38.02 573.3042 MS1:573.3042 [M − H], 555.2953 [M − H − 18(H2O)]
MS2:555.2953→511.2890 [M − H − 18(H2O) − 44(CO2)], 496.3256 [M − H − 18(H2O) − 59(CH3COO-)]
MS3:511.2890→265.0914 [M − H − 18(H2O) − 44(CO2) − 42(CH2=CO) − 204(pyrolysis fragments of C ring)]
   496.3256→302.1797 [M − H − 18(H2O) − 59((CH3COO) − 194(pyrolysis fragments of D ring)]
Ganoderic acid K [26]
14 40.45 457.2594 MS1:457.2594 [M − H]
MS2:457.2594→442.4391 [M − H − 15(CH3)], 439.0501[M − H − 18(H2O)], 421.4436[M − H − 36(2H2O)]
     395.3611 [M − H − 18(H2O) − 44(CO2)], 301.3354 [M − H − 138(pyrolysis fragments of D ring) − 18(H2O)]
Lucidenic acid A [26]
15 44.49 515.3004 MS1:515.3004 [M − H]
MS2:515.3004→497.2571 [M − H − 18(H2O)], 479.3175 [M − H − 36(2H2O)]
MS3:497.2571→435.3353 [M − H − 18(H2O) − 18(H2O) − 44(CO2)],
     303.1984 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring)]
Ganoderic acid A [26,30,31]
16 46.25 571.2893 MS1:571.2893 [M − H], 553.2797 [M − H − 18(H2O)]
MS2:553.2797→511.2424 [M − H − 18(H2O) − 42(CH2=CO)], 481.3605 [M − H − 18(H2O) − 42(CH2=CO) − 30(2CH3)],
MS3:511.2424→467.3026 [M − H − 18(H2O) − 42(CH2=CO) − 44(CO2)],
     437.3870 [M – H − 18(H2O) − 42(CH2=CO) − 44(CO2) -30(2CH3)],
     303.1073[M − H − 18(H2O) − 42(CH2=CO) − 194(pyrolysis fragments of D ring) − 14(CH2)],
     301.1706[M – H − 18(H2O) − 42(CH2=CO) − 194(pyrolysis fragments of D ring) − 16(CH4)]
Ganoderic acid H [26,33]
17 52.47 527.2637 MS1:527.2637 [M − H], 509.2544 [M − H − 18(H2O)]
MS2:509.2544→465.2312 [M − H − 18(H2O) − 44(CO2)], 435.2996 [M − H − 18(H2O) − 44(CO2) − 30(2CH3)],
     301.2139 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring) − 14(CH2)],
     299.1358 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring) − 16(CH4)]
12-hydroxy-3,7,11,15,23-pentaoxo-lanost-8-en-26-oic acid [26]
18 62.71 615.2795 MS1:615.2795 [M − H], 597.3021 [M − H − 18(H2O)]
MS2:597.3021→553.2849 [M − H − 18(H2O) − 44(CO2)], 511.2561 [M − H − 18(H2O) − 44(CO2) − 42(CH2=CO)],
     493.2861 [M − H − 18(H2O) − 88(2CO2) − 16(CH4)], 467.4220[M − H − 18(H2O) − 88(2CO2) − 42(CH2=CO)]
MS3:553.2849→509.1722 [M − H − 18(H2O) − 44(CO2) − 44(CO2)], 479.1404 [M − H − 18(H2O) − 44(CO2) − 44(CO2) −
     30(2CH3)],449.4641 [M − H − 18(H2O) − 44(CO2) − 44(CO2) − 42(CH2=CO) − 18(H2O)]
12,15-bis(acetyloxy)-3-hydroxy-7,11,23-trioxo-lanost-8-en-26-oic-acid [26]
19 69.36 513.2836 MS1:513.2836 [M − H], 495.2746 [M − H − 18(H2O)]
MS2:495.2746→451.3033 [M − H − 18(H2O) − 44(CO2)], 436.2344 [M − H − 18(H2O) − 44(CO2) − 15(CH3)],
     301.1673 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring)],
     285.1029 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring) − 14(CH2)],
MS3:451.3033→433.3118 [M − H − 18(H2O) − 44(CO2) − 18(H2O)], 407.2886[M − H − 18(H2O) − 44(CO2) − 44(CO2)],
     247.0793 [M − H − 18(H2O) − 44(CO2) − 204(pyrolysis fragments of C ring)]
Ganoderic acid D [26,30]
20 75.66 511.2693 MS1:511.2693 [M − H]
MS2:511.2693→493.2604 [M − H − 18(H2O)], 449.2799[M − H − 18(H2O) − 44(CO2)]
MS3:493.2604→299.2487 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring)]
   449.2799→434.2175 [M − H − 18(H2O) − 44(CO2) − 15(CH3)], 419.3584 [M − H − 18(H2O) − 44(CO2) − 30(2CH3)]
Ganoderic acid F [26]
21 77.24 499.3067 MS1:499.3067 [M − H]
MS2:499.3067→481.3056 [M − H − 18(H2O)], 437.3787 [M − H − 18(H2O) − 44(CO2)],
MS3:481.3056→287.2167 [M − H − 18(H2O) − 194(pyrolysis fragments of D ring)],
   437.3787→419.2850 [M − H − 18(H2O) − 44(CO2) − 18(H2O)]
Ganolucidic acid D [26]
22 80.47 569.2731 MS1:569.2731 [M − H], 551.0040 [M − H − 18(H2O)]
MS2:551.0040→509.2411 [M − H − 18(H2O) − 42(CH2=CO)], 479.2818[M − H − 18(H2O) − 42(CH2=CO) − 30(2CH3)],
     317.2806 [M − H − 204 (pyrolysis fragments of C ring) − 30(2CH3)]
MS3:509.2411→465.2256 [M − H − 18(H2O) − 42(CH2=CO) − 44(CO2)],
     435.3218 [M − H − 18(H2O) − 42(CH2=CO) − 44(CO2) − 30(2CH3)],
     301.2180[M − H − 18(H2O) − 42(CH2=CO) − 194(pyrolysis fragments of D ring) − 14(CH2)]
12-acetoxyganoderic acid F [26,27]
23 81.87 513.2857 MS1:513.2857 [M − H]
MS2:513.2857→451.2750 [M − H − 18(H2O) − 44(CO2)], 436.3795 [M − H − 18(H2O) − 44(CO2) − 15(CH3) ],
     305.2700 [M − H − 194(pyrolysis fragments of D ring) − 14(CH2)],
     251.1266 [M − H − 44(CO2) − 204(pyrolysis fragments of C ring) − 14(CH2)]
MS3:451.2750→421.2310 [M − H − 18(H2O) − 44(CO2) − 30(2CH3)], 403.253 [M − H − 18(H2O) − 44(CO2) − 30(2CH3) − 18(H2O)]
Ganoderic acid J [26]
24 86.30 497.2899 MS1:497.2899 [M − H]
MS2:497.2899→479.2302 [M − H − 18(H2O)], 453.2728 [M − H − 44(CO2)], 435.2746 [M − H − 18(H2O) − 44(CO2)],
     285.1586 [M − H − 18(H2O − 194(pyrolysis fragments of D ring)]
Ganoderic acid GS [32]
25 88.22 483.3108 MS1:483.3108 [M-H]
MS2:483.3108→467.2955 [M − H − 16(CH4)], 465.3409 [M − H − 18(H2O)], 439.3409 [M − H − 44(CO2)],
     421.3387 [M − H − 18(H2O) − 44(CO2)], 385.1546 [M − H − 98(pyrolysis fragments of A ring)],
     345.2003 [M − H − 138(pyrolysis fragments of B ring)], 315.1342 [M − H-178(pyrolysis fragments of D ring)],
     287.1245 [M − H − 138(pyrolysis fragments of B ring) − 18(H2O)]
MS3:345.2003→301.2150 [M − H − 138(pyrolysis fragments of B ring) − 44(CO2)],
     271.0611 [M − H − 138(pyrolysis fragments of B ring) − 44(CO2) − 30(2CH3)],
     269.1784 [M − H − 138(pyrolysis fragments of B ring) − 44(CO2) − 32(2CH4)]
3,7-oxo-12-hydroxy-ganoderic acid DM [27,32]
26 91.31 529.3177 MS1:529.3177 [M − H]
MS2:529.3177→511.3445 [M − H − 18(H2O)], 493.3448 [M − H − 36(2H2O)], 467.3685 [M − H − 18(H2O) − 44(CO2)],
     299.1341 [M − H − 36(2H2O) − 194(pyrolysis fragments of D ring)]
MS3:467.3685→449.3226 [M − H − 18(H2O) − 44(CO2) − 18(H2O)], 419.1971 [M − H − 18(H2O) − 44(CO2) − 18(H2O) − 30(2CH3)],
     263.3528 [M − H − 18(H2O) − 44(CO2) − 204(pyrolysis fragments of C ring)],
     247.0979 [M − H − 18(H2O) − 44(CO2) − 204(pyrolysis fragments of C ring) − 16(CH4)]
12-hydroxyganoderic acid D [26]
27 91.83 613.3005 MS1:613.3005 [M − H], 595.2902 [M − H − 18(H2O)]
MS2:595.2902→553.2996 [M − H − 18(H2O) − 42(CH2=CO)], 523.2399 [M − H − 18(H2O) − 44(CO2) − 28(2CH2))],
     509.3708 [M − H − 18(H2O) − 44(CO2) − 42(CH2=CO)]
MS3:553.2996→479.2277 [M − H − 18(H2O) − 42(CH2=CO) − 44(CO2) − 30(2CH3)],
     465.3148[M − H − 18(H2O) − 42(CH2=CO) − 88(2CO2)],
     345.2563 [M − H − 18(H2O) − 42(CH2=CO) − 194(pyrolysis fragments of D ring) − 14(CH2)],
     343.3474 [M − H − 18(H2O) − 42(CH2=CO) − 194(pyrolysis fragments of D ring) − 16(CH4)]
3-acetylganoderic acid H [26]
28 91.30 570.0023 MS1:570.0023 [M − H] Unknown
29 93.34 483.3266 MS1:483.3266 [M − H]
MS2:483.3266→465.3160 [M − H − 18(H2O)], 447.2954 [M − H − 36(2H2O)], 439.4073453.2728 [M − H − 44(CO2)],
     421.4003 [M − H − 18(H2O) − 44(CO2)], 361.1981 [M − H − 18(H2O) − 44(CO2) − 60(CH3COOH)],
     255.1103 [M − H − 178(pyrolysis fragments of D ring) − 18(H2O) − 32(2CH4)]
15-hydroxyganoderic acid DM [32]
30 95.05 525.3211 MS1:525.3211 [M − H]
MS2:525.3211→483.2451 [M − H − 42(CH2=CO)], 439.4126 [M − H − 42(CH2=CO) − 44(CO2)],
     421.4462 [M − H − 42(CH2=CO) − 44(CO2) − 18(H2O)],329.4416 [M − H − 18(H2O) − 178(pyrolysis fragments of D ring)]
MS3:483.2451→465.3002 [M − H − 42(CH2=CO) − 18(H2O)],
     287.2225 [M − H − 42(CH2=CO) − 18(H2O) − 178(pyrolysis fragments of D ring)],
     269.1860 [M − H − 42(CH2=CO) − 36(2 H2O) − 178(pyrolysis fragments of D ring)]-
3,7-oxo-12-acetylganoderic acid DM [26]
31 96.23 571.2204 MS1:571.2204 [M − H] Unknown
32 97.07 499.3419 MS1:499.3419 [M − H]
MS2:499.3419→481.2946 [M − H − 18(H2O)], 455.0124 [M − H − 44(CO2)] , 437.2764 [M − H − 18(H2O) − 44(CO2)]
     287.0924 [M − H − 194(pyrolysis fragments of D ring) − 18(H2O)]
Ganolucidic acid A [26]
33 99.83 467.3156 MS1:467.3156 [M − H]
MS2:467.3156→449.3837 [M − H − 18(H2O)], 423.3398 [M − H − 44(CO2)], 383.0190 [M − H − 84(2CH2=CO)],
     257.1906 [M − H − 178 (pyrolysis fragments of D ring) − 32(2CH4)]
MS3:423.3398→407.2750 [M − H − 44(CO2) − 16(CH4)], 337.3115 [M − H − 44(CO2) − 44(CO2) − 42(CH2=CO)],
     311.2945 [M − H − 44(CO2) − 98(pyrolysis fragments of A ring) − 14(CH2)]
Ganoderic acid DM [32]
34 103.86 401.0025 MS1:401.0025 [M - H]
MS2:401.0025→383.1729 [M − H − 18(H2O)], 344.2189 [M − H − 42(CH2=CO) − 15(CH3)],
     303.2025 [M − H − 18(H2O) − 80(pyrolysis fragments of D ring)]
Lucidone A [32]
35 111.95 453.3369 MS1:453.3369 [M − H]
MS2:453.3369→435.2218 [M − H − 18(H2O)], 409.4311 [M − H − 44(CO2)], 393.2309 [M − H − 60 (CH3COOH)],
     391.4413 [M − H − 18(H2O) − 44(CO2)], 207.1283[M − H − 42(CH2=CO) − 204(pyrolysis fragments of C ring)]
MS3:393.2309→375.2531 [M − H − 60 (CH3COOH) − 18(H2O)], 359.2667 [M − H − 60 (CH3COOH) − 18(H2O) − 16(CH4)]
Ganoderic acid TR or Ganoderic acid Y [32]
36 116.41 495.2749 MS1:495.2749 [M − H]
MS2:495.2749→477.4175 [M − H − 18(H2O)], 451.2777 [M − H − 44(CO2)], 436.2990 [M − H − 44(CO2) − 15(CH3)],
     301.1088 [M − H − 194(pyrolysis fragments of D ring)],
     285.1394 [M − H − 194(pyrolysis fragments of D ring) - 16(CH4)],
     247.1259 [M − H − 44(CO2) − 204(pyrolysis fragments of C ring)]
3,11,15-trioxochol-8-en-24-oic acid [26,27]
37 119.35 459.2901 MS1:459.2901 [M − H]
MS2:459.2901→441.4392 [M − H − 18(H2O)], 423.2791 [M − H − 36(2H2O)], 397.6952 [M − H − 18(H2O) − 44(CO2)],
     285.2697 [M − H − 36(2H2O) − 138(pyrolysis fragments of D ring)],
     269.1612 [M − H − 36(2H2O) − 138(pyrolysis fragments of D ring) − 16(CH4)]
7,15-dihydroxy-4,4,14-trimethyl-3,11-dioxochol-8-en-24-oic acid [26]
a1 13.31 527.2641 MS1:527.2641 [M − H]
MS2:527.2641→509.2797 [M − H − 18(H2O)], 483.2253 [M − H − 44(CO2)], 465.2714 [M − H − 18(H2O) − 44(CO2)],
     317.1736 [M − H − 18(H2O) − 192(pyrolysis fragments of D ring)]MS3:465.2714→447.2611 [M − H − 18(H2O) − 44(CO2) − 18(H2O)] , 421.2402 [M − H − 18(H2O) − 44(CO2) − 44(CO2)]
3,12-dihydroxy-4,4,14-trimethyl-7,11,15- trioxo-lanost-8,9,20,22-en-26-oic acid [26,27]
a2 13.71 511.3550 MS1:511.3550 [M − H]
MS2:511.3550→469.3110 [M − H − 42(CH2=CO)], 467.2477[M − H − 44(CO2)], 425.3692[M − H − 42(CH2=CO) − 44(CO2)],
     303.1880 [M − H − 192(pyrolysis fragments of D ring) − 16(CH4)]
Ganoderic acid Mf [26,33]
a3 29.16 459.2763 MS1:459.2763 [M − H]
MS2:459.2763→441.2818 [M − H − 18(H2O)], 423.3502 [M − H − 36(2H2O)], 397.4172 [M − H − 18(H2O) − 44(CO2)]
     303.2930 [M − H − 18(H2O) − 138(pyrolysis fragments of D ring)],
     289.2338 [M − H − 18(H2O) − 138(pyrolysis fragments of D ring) − 14(CH2)],
     288.4626 [M − H − 18(H2O) − 138(pyrolysis fragments of D ring) − 15(CH3)]
Lucidenic acid N [26]
a4 49.03 511.2703 MS1:511.2703 [M − H], 493.2587 [M − H − 18(H2O)]
MS2:493.2587→478.3034 [M − H − 18(H2O) − 15(CH3)], 449.3233[M − H − 18(H2O) − 44(CO2)],
     431.3262 [M − H − 18(H2O) − 44(CO2) − 18(H2O)], 301.0695 [M − H − 192(pyrolysis fragments of D ring)],
     261.1931 [M − H − 204 (pyrolysis fragments of C ring) − 28 (CO)],
     247.0212[M - H − 204 (pyrolysis fragments of C ring) − 42(CH2=CO)]
Ganoderenic acid D [26]
a5 52.47 515.3007 MS1:515.3007 [M − H]
MS2:515.3007→497.3394 [M − H − 18(H2O)], 453.2672 [M − H − 18(H2O) − 44(CO2)], 435.3178[M − H − 36(2H2O) − 44(CO2)]
MS3:497.3394→435.3178 [M − H − 18(H2O) − 18(H2O) − 44(CO2)],
     303.2353 [M − H − 18(H2O) − 194 (pyrolysis fragments of D ring)]
Ganoderic acid δ [31,33]
a6 54.24 527.2637 MS1:527.2637 [M − H], 509.2544 [M - H - 18(H2O)]
MS2:509.2544→479.1830 [M − H − 18(H2O) − 30(2CH3)], 465.2850 [M − H − 18(H2O) − 44(CO2)],
     435.2603 [M − H − 18(H2O) − 44(CO2) − 30(2CH3)],
     317.2471 [M − H − 18(H2O) − 192 (pyrolysis fragments of D ring)],
     301.1240 [M − H − 18(H2O) − 192 (pyrolysis fragments of D ring) − 16(CH4)],
     299.1788 [M − H − 18(H2O) − 192 (pyrolysis fragments of D ring) − 18(H2O)]
Elfvingic acid A [26]
a7 69.32 513.2836 MS1:513.2836 [M − H], 495.2746 [M − H − 18(H2O)
MS2:495.2746→451.3008 [M − H − 18(H2O) − 44(CO2)], 437.3971 [M − H − 18(H2O) − 44(CO2) − 14(CH2)],
     303.1641 [M − H − 18(H2O) − 192 (pyrolysis fragments of D ring)],
     287.1062 [M − H − 18(H2O) − 192 (pyrolysis fragments of D ring) − 16(CH4)]
MS3:451.3008→433.2937 [M − H − 18(H2O) − 44(CO2) − 18(H2O)], 407.3061 [M − H − 18(H2O)) − 44(CO2) − 44(CO2)],
     247.0545 [M − H − 18(H2O) − 44(CO2) − 18(H2O) − 204 (pyrolysis fragments of C ring)]
Ganoderenic acid B [26]
a8 79.87 513.2494 MS1:513.2836 [M - H]
MS2:513.2494→471.1854 [M − H − 42(CH2=CO)], 456.3038 [M − H − 42(CH2=CO) − 15(CH3)],
     453.1012 [M − H − 42(CH2=CO) − 18(H2O)], 435.2854 [M − H − 42(CH2=CO) − 36(2H2O)],
     301.2219 [M − H − 42(CH2=CO) − 138 (pyrolysis fragments of D ring) − 32(2CH4)]
Lucidenic acid D [26]
a9 88.41 555.2974 MS1:555.2974 [M - H]
MS2:555.2974→537.0157 [M − H − 18(H2O)], 513.3628 [M − H − 42(CH2=CO)], 495.2735 [M − H − 18(H2O) − 42(CH2=CO)],
     451.3274 [M − H − 18(H2O) − 42(CH2=CO) − 44(CO2)]
MS3:513.3628→263.1146 [M - H − 42(CH2=CO) − 56(2CO) − 194 (pyrolysis fragments of D ring)],
     249.3468 [M − H − 42(CH2=CO) − 18(H2O) − 42(CH2=CO) − 204 (pyrolysis fragments of C ring)],
     247.0499 [M − H − 42(CH2=CO) − 18(H2O) − 44(CO2) − 204 (pyrolysis fragments of C ring)]
Lucidenic acid GS-3 [32,33]
a10 124.88 471.3473 MS1:471.3473 [M − H]
MS2:471.3473→435.4189 [M − H − 36 (2H2O)], 395.3422 [M − H − 32(2CH4) − 44(CO2)],
     367.1648 [M − H − 44(CO2) - 60(CH3COOH)], 353.1996 [M − H − 44(CO2) − 60(CH3COOH) − 14(CH2)]
unknown

Table 3.

The chemical structures of the identified compounds.

No. Chemical Name Ty. R1 R2 R3 R4 C=C M
1 12-Hydroxyganoderic acid C2 A β-OH β-OH α-OH OH - 534.3109
3 3-Acetylganoderenic acid K A β-OAc β-OH =O β-OAc Δ20, 22 613.2977
4 3,7,15-Trihydroxy-11,23-dioxolanost-8,16-dien-26-oic acid A β-OH β-OH β-OH - Δ16, 17 516.3011
5 Ganoderic acid C2 A β-OH β-OH α-OH H - 518.3159
6 Ganolucidic acid B A β-OH H α-OH H - 502.3214
7 3-Hydroxy-4,4,14-trimethyl-7,11,15-trioxochol-8-en-24-oic-acid B β-OH =O =O H - 458.2592
8 Ganoderic acid C6 A β-OH =O =O β-OH - 530.2786
9 Ganoderic acid G A β-OH β-OH =O β-OH - 532.2941
10 Ganoderic acid B A β-OH β-OH =O H - 516.2992
12 Ganoderic acid AM1 A β-OH =O =O H - 514.2588
13 Ganoderic acid K A β-OH β-OH =O β-OAc - 574.3042
14 Lucidenic acid A B =O β-OH =O H 458.2594
15 Ganoderic acid A A =O β-OH α-OH H - 516.3004
16 Ganoderic acid H A β-OH =O =O β-OAc - 572.2893
17 12-Hydroxy-3,7,11,15,23-pentaoxolanost-8-en-26-oic acid A =O =O =O -OH - 528.2637
18 12,15-Bis(acetyloxy)-3-hydroxy-7,11,23-trioxo-lanost-8-en-26-oic-acid A OH =O OAc OAc - 616.2795
19 Ganoderic acid D A =O β-OH =O H - 514.2836
20 Ganoderic acid F A =O =O =O H - 512.2693
21 Ganolucidic acid D C - - - - - 500.3067
22 12-Acetoxyganoderic acid F A =O =O =O β-OAc - 570.2731
23 Ganoderic acid J A =O =O α-OH H - 514.2857
24 Ganoderic acid GS A =O =OH =O =O - 498.2899
25 3,7-Oxo-12-hydroxy-ganoderic acid DM D =O =O H OH - 484.3108
26 12-Hydroxyganoderic acid D A =O β-OH =O OH - 530.3177
27 3-Acetylganoderic acid H A β-OAc =O =O β-OAc - 614.3005
29 15-Hydroxyganoderic acid DM D =O H -OH H - 484.3266
30 3,7-Oxo-12-acetylganoderic acid DM D =O =O - β-OAc - 526.3211
32 Ganolucidic acid A A =O H α-OH H - 500.3419
33 Ganoderic acid DM D =O H H H - 468.3156
34 Lucidone A E - - - - - 402.0025
35 Ganoderic acid TR F - - - - - 454.3369
Ganoderic acid Y G β-OH - - - -
36 3,11,15-Trioxochol-8-en-24-oic acid A =O H =O H - 496.2749
37 7,15-Dihydroxy-4,4,14-trimethyl-3,11-dioxochol-8-en-24-oic acid B =O OH OH H - 460.2901
a1 3,12-Dihydroxy-4,4,14-trimethyl-7,11,15-trioxolanost-8,9,20,22-en-26-oic acid A β-OH =O =O β-OH Δ20, 22 528.2641
a2 Ganoderic acid Mf H β-OAc - - - - 512.3550
a3 Lucidenic acid N B β-OH β-OH =O H - 460.2763
a4 Ganoderenic acid D A =O β-OH =O H 20, 22 512.2703
a5 Ganoderic acid δ C - -OH - H - 516.3007
a6 Elfvingic acid A A =O =O β-OH α-OH Δ20, 22 528.2637
a7 Ganoderenic acid B A β-OH β-OH =O H Δ20, 22 514.2836
a8 Lucidenic acid D B =O =O =O β-OAc - 514.2494
a9 Lucidenic acid GS-3 A β-OH β-OH =O β-OAc - 556.2974

Figure 4.

Figure 4

The chemical structures of the identified compounds.

As shown in Table 2, in the negative mode ESI-MS spectra, the [M − H] and [M − H2O − H] ions were found for all 47 compounds. The [M − CO2 − H] ion was seen for most of the compounds. In type A and C, the molecular weight of pyrolysis fragments of D ring was 194, while there is aΔ20, 22 or Δ16, 17, the molecular weight of pyrolysis fragments of D ring was 192. In type B, the molecular weight of pyrolysis fragments of D ring was 138. In type D, the molecular weight of pyrolysis fragments of D ring was 178. In type E, the molecular weight of pyrolysis fragments of D ring was 80, only for compound 34. In type F, the molecular weight of pyrolysis fragments of D ring was also 194, without R1, R2, R3, and R4, only for compound 35. In type G, the molecular weight of pyrolysis fragments of D ring was also 178, without R2, R3, and R4, only for compound 35. In type H, the molecular weight of pyrolysis fragments of D ring was also 192, without C=C, only for compound a2.

2.4. Cluster Analysis (CA)

Cluster analysis is a multivariate analysis technique that is used to sort samples into groups. It is widely applied for fingerprint analysis, because it is a nonparametric data interpretation method and simple to use. CA provides a visual representation of complex data. Average linkage between groups was applied, and Pearson correlation was selected as a measurement. The method can classify different herbs by measuring the peak areas from their corresponding HPLC fingerprints. The common characteristic peaks, which were calculated by the Similarity Evaluation System, were selected for the CA. Cluster analysis of G. lucidum samples was performed based on the relative peak areas of all 37 common peaks.

The CA results are shown in Figure 5, where the quality characteristics are revealed more clearly. The cluster analysis results show that the samples could be divided into three quality clusters. Among them, Cluster I includes the samples S2, S6, S5, S1, S11 and S7, Cluster III includes S13 S14 and S12, the others are in Cluster II. All the compounds in Cluster II had much lower concentrations than the other two clusters.

Figure 5.

Figure 5

Results of cluster analysis of 15 samples.

Cluster I was distinguished as it contains more 3-acetylganoderenic acid K (F3), ganoderic acid G (F9), ganoderic acid B (F10), unknown F11, lucidenic acid A (F14), and 3,7-oxo-12-acetylganoderic acid DM (F30) than Clusters II and III. The higher concentration of these compounds in Cluster I may be due to the good quality of G. lucidum herb. This indicated that these compounds could be used as marker compounds to distinguish the G. lucidum samples with different quality. The results of CA could be validated against each other and provided more references for the quality evaluation of G. lucidum.

2.5. Principal Components Analysis (PCA)

To evaluate the variations in quality of the 15 samples, PCA was carried out with the relative amounts of each identified component. The contents of 37 fingerprint peaks were applied to evaluate the sample variations. Figure 6 shows the score plots obtained by PCA. The first six principal components accounted for 93.69% of the total variance. Examination of the score plots indicates that the main components responsible for the separation were ganoderic acid B (F10), 3-acetylganoderenic acid K (F3), 3,7-oxo-12-acetylganoderic acid DM (F30), ganoderic acid G (F9), 3,7,15-trihydroxy-11,23-dioxolanost-8,16-dien-26-oic acid (F4), lucidenic acid A (F14), 3-acetyl-ganoderic acid H (F27) and unknown F11, as shown in Figure 6 and Table 4.

Figure 6.

Figure 6

PCA scores plots of the sample from different regions.

Table 4.

Factor loading matrix of the testing samples.

Peak No. Principal Component Values
PC1 PC2 PC3 PC4 PC5 PC6
1 0.058 0.077 −0.014 −0.087 −0.025 0.007
2 −0.018 −0.012 −0.087 0.074 0.407 0.008
3 0.092 0.006 −0.059 0.024 −0.079 0.058
4 0.078 0.040 −0.018 −0.077 0.037 0.053
5 0.019 −0.050 −0.043 0.307 −0.017 0.117
6 −0.010 0.096 0.062 0.048 −0.095 0.242
7 0.041 0.079 −0.157 0.057 0.035 0.121
8 0.057 −0.033 0.051 0.046 −0.051 0.147
9 0.079 −0.067 −0.024 0.077 0.085 0.048
10 0.096 −0.025 −0.044 0.025 −0.023 0.019
11 0.077 −0.050 0.078 −0.080 0.040 0.046
12 0.015 0.090 0.070 −0.074 0.006 0.162
13 0.057 0.011 0.032 0.004 0.019 0.386
14 0.078 −0.047 0.037 0.023 −0.008 0.072
15 −0.003 0.060 0.064 −0.033 0.076 0.075
16 0.042 −0.054 0.034 −0.089 0.164 0.259
17 0.049 −0.062 0.115 −0.069 0.117 0.068
18 −0.054 −0.005 −0.049 0.290 0.054 0.013
19 0.043 −0.006 −0.025 0.167 0.064 0.177
20 −0.017 −0.026 0.115 −0.069 0.117 0.068
21 −0.021 0.039 0.019 0.101 0.077 0.049
22 −0.015 0.050 0.015 0.099 −0.056 0.093
23 0.000 0.128 −0.153 0.023 0.095 0.043
24 0.032 0.002 0.016 −0.086 0.139 0.182
25 −0.018 0.106 0.025 −0.008 −0.100 0.012
26 −0.031 0.058 −0.061 −0.011 0.206 0.130
27 0.078 0.069 −0.070 −0.029 −0.048 0.054
28 −0.035 0.055 0.123 −0.071 −0.051 0.021
29 −0.029 0.065 0.031 0.103 −0.135 0.052
30 0.085 0.048 −0.050 −0.082 −0.027 0.007
31 0.075 0.012 −0.020 0.025 −0.052 0.062
32 −0.049 0.042 0.239 −0.059 −0.126 0.241
33 −0.040 0.069 −0.029 −0.098 0.186 0.118
34 −0.007 0.176 0.028 −0.131 −0.076 0.343
35 0.029 −0.041 0.059 0.159 −0.182 0.239
36 −0.020 −0.039 0.203 0.040 −0.111 0.004
37 0.068 −0.003 −0.016 0.056 −0.109 0.220

These components were deemed to be the marker compounds of sample variation. This result is in accord with the one obtained from the cluster analysis (CA). The combination of PCA and CA was thus a useful tool for quality control and evaluation of G. lucidum.

3. Materials and Methods

3.1. Samples and Reagents

Fifteen G. lucidum samples were purchased from different regions of China and authenticated by Professor Chun-Sheng Liu (School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China). Each sample (three replicates) was placed in a dark and dry environment. The regions where the 15 samples were obtained are listed in Table 5. HPLC grade acetonitrile and acetic acid were obtained from Fisher (Waltham, MA, USA); distilled water was bought from Watsons (Beijing, China) and was filtered through a 0.22 µm membrane (Dikma, Beijing, China) prior to use. All other reagents were of analytical grade.

Table 5.

The regions of origin of the 15 samples.

No. Region No. Region
S1 Haikou, Hainan S9 Huangshan, Anhui
S2 Baotou, Neimemg S10 Jinzhai, Anhui
S3 Taishan, Shandong S11 Xinyang, Henan
S4 Jiaxing, Shandong S12 Dali, Yunnan
S5 Jilin, Jilin S13 Tianlin, Guangxi
S6 Changbaishan, Jilin S14 Shanghai
S7 Changchun, Jilin S15 Fuzhou, Fujian
S8 Jingzhou, Hunan

3.2. Sample Preparation

Dried powder of G. lucidum from different regions (1 g) was accurately weighed out and transferred into a 100 mL conical flask. Chloroform (50 mL) was added to the flask and the flask with the chloroform and powder was placed in an ultrasonic extraction device and extracted for 30 min twice. The solution was cooled and filtered through filter paper, and then the solvent was recovered using a rotary evaporator. The residue was dissolved in a 10 mL volumetric flask using methanol. The solution was filtered through a 0.22 µm membrane filter for fingerprint analysis.

3.3. Apparatus and Parameters

A Waters Alliance HPLC 2695 series instrument (Waters, Manchester, UK) was used to perform the high performance liquid chromatography (HPLC) analysis. Mobile phase: A (acetonitrile); B (H2O:CH3COOH, 100:0.2, v/v). Column: Agilent C18 (250 mm × 4.6 mm, 5 μm), maintained at 30 °C with flow rate of 1.0 mL·min−1. The detection wavelength was set at 254 nm for acquiring chromatograms. The injection volume was 20 µL. Gradient elution procedure: 0 min (20 % A) → 8 min (29% A) → 25 min (29% A) → 55 min (30% A) → 65 min (30% A) → 70 min (31% A) → 90 min (65% A) → 110 min (90% A) → 135 min (90% A).

The LCMS-IT-TOF instrument (Shimadzu, Kyoto, Japan) was equipped with an ESI source used in negative ionization mode. The interface and MS parameters were as follows: nebulizer pressure, 100 kPa; dry gas, N2 (1.5 L/min); drying gas temperature, 200 °C; spray capillary voltage, 4000 V; scan range, m/z 100–1000. Mobile phase: A (acetonitrile); B (H2O:CH3COOH, 100:0.2, v/v). Column: Agilent C18 (250 mm × 4.6 mm, 5 μm), maintained at 30 °C with flow rate of 1.0 mL·min−1. The injection volume was 20 µL. Gradient elution procedure: 0 min (20 % A) → 8 min (29% A) → 25 min (29% A) → 55 min (30% A) → 65 min (30% A) → 70 min (31% A) → 90 min (65% A) → 110 min (90% A) → 135 min (90% A).

3.4. Statistical Analyses

The HPLC data were used for fingerprint analysis and chemometrics. HPLC-MSn was used for identification of the 47 peaks. Cluster analysis (CA) and principal components analysis (PCA) were performed by SPSS (SPSS statistical software package, version 20.0, SPSS Inc., Chicago, IL, USA).

4. Conclusions

The therapeutic effects of traditional Chinese medicines (TCM) are based on the complex interactions of complicated chemical constituents as a whole system. HPLC and HPLC-MSn fingerprint analysis combined with chemometrics were employed to study the complex G. lucidum system. According to previous extensive phytochemical and pharmacological studies, triterpenoid acids were the most important chemical components in the samples, which had a variety of potential biological activities. The qualitative analysis and quantification of triterpenoid acids can better reflect the therapeutic effects and quality of G. lucidum. The chromatographic method is predominant to control the quality and stability of the complex system. This study provided a systematic method for the quality control of G. lucidum by HPLC fingerprinting and the HPLC-MSn evaluation system based on Similarity Analysis (SA), Cluster Analysis (CA) and Principal Component Analysis (PCA). As a result, a common mutual pattern was established by determining and comparing the fingerprints of 15 samples of G. lucidum from different regions. Forty-seven compounds were detected by HPLC-MSn, of which forty-two compounds were tentatively identified by comparing their retention times, and mass spectrometry data with that of reference compounds and literature data. Ganoderic acid B (10), 3,7,15-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (F4), Lucidenic acid A (F14), Ganoderic acid G (F9), unknown (F11), 3,7-oxo-12-acetylganoderic acid DM (F30) were deemed to be the markers to distinguish G. lucidum samples of different quality. The proposed method can be used to improve the quality control of G. lucidum, thus ensuring the effectiveness of G. lucidum herbs. There are still five peaks—2, 11, 28, 31 and a10—which were not identified by HPLC-MSn, of which compound 11 were used as marker compound to distinguish the G. lucidum of different quality. These components require further study.

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Science and Technology support project (No. 2012BAI29B01) and National Natural Science Foundation of China (No. 81274187).

Supplementary Materials

The supplementary materials are available online.

Author Contributions

Conceived and designed the experiments: Lanzhen Zhang, Lingfang Wu. Performed the experiments: Lingfang Wu, Wenjing Chen, Wenyi Liang, Shi Li, Qi Qi, Yaping Cui. Analyzed the data: Lingfang Wu. Wrote the paper: Ling-Fang Wu, Lanzhen Zhang.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Sample Availability: Samples are available from the authors.

References

  • 1.Bojana B. Ganoderma lucidum: A potential for biotechnological production of anti-cancer and immunomodulatory drugs. Recent Pat. Anticancer Drug Discov. 2013;8:255–287. doi: 10.2174/1574891x113089990036. [DOI] [PubMed] [Google Scholar]
  • 2.Xia Q., Zhang H.Z., Sun X.F., Zhao H.J., Wu L.F., Zhu D., Yang G.H., Shao Y.Y., Zhang X.X., Mao X., et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules. 2014;19:17478–17535. doi: 10.3390/molecules191117478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Feng L., Yuan L., Du Y., Chen Y., Zhang M.H., Gu J.F., He J.J., Wang Y., Cao W. Anti-Lung cancer activity through enhancement of immunomodulation and induction of cell apoptosis of total triterpenes extracted from Ganoderma luncidum (Leyss. ex Fr.) Karst. Molecules. 2013;18:9966–9981. doi: 10.3390/molecules18089966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.RadwanFaisal F.F., Hossain A., God J.M., Leaphart N., Elvington M., Nagarkatti M., Tomlinson S., Haque A. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid. J. Cell. Biochem. 2015;116:102–114. doi: 10.1002/jcb.24946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Huang S.M., Yang X.L., Wang B.W., Zhu H.S., Xu J.L. Antitumor activity of ethanol-soluble and acidic components from Ganoderma lucidum. Nat. Prod. Res. 2004;16:146–148. [Google Scholar]
  • 6.Smina T.P., Mathew J., Janardhanan K.K., Devasagayam T.P. Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environ. Toxicol. Pharmacol. 2011;32:438–446. doi: 10.1016/j.etap.2011.08.011. [DOI] [PubMed] [Google Scholar]
  • 7.Kan Y.J., Chen T.Q., Wu Y.B., Wu J.G., Wu J.Z. Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. Int. J. Biol. Macromol. 2015;10:943–955. doi: 10.1016/j.ijbiomac.2014.07.056. [DOI] [PubMed] [Google Scholar]
  • 8.Shi M., Zhang Z.Y., Yang Y.N. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP) Carbohydr. Polym. 2013;1:200–206. doi: 10.1016/j.carbpol.2013.02.081. [DOI] [PubMed] [Google Scholar]
  • 9.Li P.Z., Zhang K.C. Isolation, purification, and antimicrobial activity of ganoderic acids M1 from the fermented mycelia of Ganoderma lucidum. Nat. Prod. Res. 1999;11:67–70. [Google Scholar]
  • 10.Liu Y.J., Du J.L., Cao L.P., Jia R., Shen Y.J., Zhao C.Y., Xu P., Yin G.J. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.) Int. Immunopharmacol. 2015;1:112–120. doi: 10.1016/j.intimp.2015.01.023. [DOI] [PubMed] [Google Scholar]
  • 11.Min B.S., Nakamura N., Miyashiro H., Bae K.W., Hattori M. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem. Pharm. Bull. 1998;10:1607–1612. doi: 10.1248/cpb.46.1607. [DOI] [PubMed] [Google Scholar]
  • 12.Mizushina Y., Takahashi N., Hanashima L., Koshinom H., Esumi Y., Uzawa J., Sugawara F., Sakaguchi K. Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Ganoderma lucidum. Bioorg. Med. Chem. 1999;7:2047–2052. doi: 10.1016/S0968-0896(99)00121-2. [DOI] [PubMed] [Google Scholar]
  • 13.Zhao Z.Z., Yin R.H., Chen H.P., Feng T., Li Z.H., Dong Z.J., Cui B.K., Liu J.K. Two new triterpenoids from fruiting bodies of fungus Ganoderma lucidum. J. Asian Nat. Prod. Res. 2015;17:1–6. doi: 10.1080/10286020.2014.996139. [DOI] [PubMed] [Google Scholar]
  • 14.Liu D.Z., Zhu Y.Q., Li X.F., Shan W.G., Gao P.F. New Triterpenoids from the Fruiting Bodies of Ganoderma lucidum and Their Bioactivities. Chem. Biodivers. 2014;6:982–986. doi: 10.1002/cbdv.201400004. [DOI] [PubMed] [Google Scholar]
  • 15.Li Y.B., Liu R.M., Zhong J.J. A new ganoderic acid from Ganoderma lucidum mycelia and its stability. Fitoterapia. 2013;83:115–122. doi: 10.1016/j.fitote.2012.11.008. [DOI] [PubMed] [Google Scholar]
  • 16.Weng C.J., Chau C.F., Yen G.C., Liao J.W., Chen D.H., Chen K.D. Inhibitory effects of Ganoderma Lucidum on tumorigenesis and metastasis of human hepatoma cells in cells and animal models. J. Agric. Food Chem. 2009;55:5049–5057. doi: 10.1021/jf900828k. [DOI] [PubMed] [Google Scholar]
  • 17.Yue Q.X., Song X.Y., Ma C., Feng L.X., Guan S.H., Wu W.Y., Yang M., Jiang B.H., Liu X., Cui Y.J., et al. Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine. 2010;17:606–613. doi: 10.1016/j.phymed.2009.12.013. [DOI] [PubMed] [Google Scholar]
  • 18.Thyagarajan A., Jedinak A., Nquyen H., Terry C., Baldridge L.A., Jiang J., Sliva D. Triterpenes from Ganoderma lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK) Nutr. Cancer. 2010;62:630–640. doi: 10.1080/01635580903532390. [DOI] [PubMed] [Google Scholar]
  • 19.Sun H., Chen X., Zhang A., Sakurai T., Jiang J., Wang X. Chromatographic fingerprinting analysis of Zhizhu Wan preparation by high-performance liquid chromatography coupled with photodiode array detector. Pharmacogn. Mag. 2014;10:470–476. doi: 10.4103/0973-1296.141819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Donno D., Boggia R., Zunin P., Cerutti A.K., Guido M., Mellano M.G., Prgomet Z., Beccaro G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: An innovative technique in food supplement quality control. J. Food Sci. Technol. 2015 doi: 10.1007/s13197-015-2115-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zhu J.Q., Fan X.H., Cheng Y.Y., Agarwal R., Moore C.M.V., Chen S.T., Tong W.D. Chemometric analysis for identification of botanical raw materials for pharmaceutical use: A case study using Panax notoginseng. PLoS ONE. 2014;9:e87462. doi: 10.1371/journal.pone.0087462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Chen Y., Yan Y., Xie M.Y., Nie S.P., Liu W., Gong X.F., Wang Y.X. Development of a chromatographic fingerprint for the chloroform extracts of Ganoderma lucidum by HPLC and LC-MS. J. Pharm. Biomed. Anal. 2008;3:469–477. doi: 10.1016/j.jpba.2008.01.039. [DOI] [PubMed] [Google Scholar]
  • 23.Chen Y., Zhu S.B., Xie M.Y., Nie S.P., Liu W., Li C., Gong X.F., Wang Y.X. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Anal. Chim. Acta. 2008;2:146–156. doi: 10.1016/j.aca.2008.06.018. [DOI] [PubMed] [Google Scholar]
  • 24.Shi X.M., Zhang J.S., Tang Q.J., Yang Y., Hao R.X., Pan Y.J. Fingerprint analysis of Lingzhi (Ganoderma) strains by high-performance liquid chromatography coupled with chemometric methods. World J. Microbiol. Biotechnol. 2008;11:2443–2450. doi: 10.1007/s11274-008-9766-7. [DOI] [Google Scholar]
  • 25.Zhang J., Luo X., Zheng L., Xu X., Ye L. Discrimination of Ganoderma based on high performance liquid chromatographic fingerprints combined with chemometrics methods. Ann. Assoc. Can.-Fr. Pour l'Avancement Sci. 2009;6:776. [PubMed] [Google Scholar]
  • 26.Yang M., Wang X.M., Guan S.H., Xia J.M., Sun J.H., Guo H., Guo D.A. Analysis of Triterpenoids in Ganoderma lucidum Using Liquid Chromatography Coupled with Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2007;18:927–939. doi: 10.1016/j.jasms.2007.01.012. [DOI] [PubMed] [Google Scholar]
  • 27.Cheng C.R., Yang M., Wu Z.Y. Fragmentation pathways of oxygenated tetracyclic triterpenoids and their application in the qualitative analysis of Ganoderma lucidum by multistage tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2011;25:1323–1335. doi: 10.1002/rcm.4989. [DOI] [PubMed] [Google Scholar]
  • 28.Hu L.L., Ma Q.Y., Huang S.Z. Three new lanostanoid triterpenes from the fruiting bodies of Ganoderma tropicum. J. Asian Nat. Prod. Res. 2013;4:357–362. doi: 10.1080/10286020.2013.764869. [DOI] [PubMed] [Google Scholar]
  • 29.Kohda H., Tokumoto W., Sakamoto K. The biologically active constituents of Ganoderma lucidum (FR.) Karst. histamine release-inhibitory triterpenes. Chem. Pharm. Bull. 1985;4:1367–1374. doi: 10.1248/cpb.33.1367. [DOI] [PubMed] [Google Scholar]
  • 30.Liu Y.L., Liu Y.P., Qiu F. Sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of five ganoderic acids in Ganoderma lucidum and its related species. J. Parm. Biomed. Anal. 2011;54:717–721. doi: 10.1016/j.jpba.2010.11.002. [DOI] [PubMed] [Google Scholar]
  • 31.Qian Z.M., Jing Z., Li D.P. Analysis of global components in Ganoderma using liquid chromatography system with multiple columns and detectors. J. Sep. Sci. 2012;35:2725–2734. doi: 10.1002/jssc.201200441. [DOI] [PubMed] [Google Scholar]
  • 32.Yan Z., Xia B., Qiu M.H. Fast analysis of triterpenoids in Ganoderma lucidum spores by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Biomed. Chromatogr. 2013;11:1560–1567. doi: 10.1002/bmc.2960. [DOI] [PubMed] [Google Scholar]
  • 33.Min B.S., Gao J.J., Nakamura N. Triterpenes from the spores of Ganoderma Lucidum and their cytotoxicity against meth-A and LLC tumor cells. Chem. Pharm. Bull. 1998;7:1026–1033. doi: 10.1248/cpb.48.1026. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES