Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Dec 17;13(6):663–676. doi: 10.1007/s13770-016-0148-1

Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine

Sang Hyun Ahn 1,2, Junhee Lee 1, Su A Park 1, Wan Doo Kim 1,3,
PMCID: PMC6170866  PMID: 30603447

Abstract

Three-Dimensional (3D) printing technologies have been widely used in the medical sector for the production of medical assistance equipment and surgical guides, particularly 3D bio-printing that combines 3D printing technology with biocompatible materials and cells in field of tissue engineering and regenerative medicine. These additive manufacturing technologies can make patient-made production from medical image data. Thus, the application of 3D bio-printers with biocompatible materials has been increasing. Currently, 3D bio-printing technology is in the early stages of research and development but it has great potential in the fields of tissue and organ regeneration. The present paper discusses the history and types of 3D printers, the classification of 3D bio-printers, and the technology used to manufacture artificial tissues and organs.

Key Words: 3D printer, 3D bio-printer, Inkjet, Extrusion, Laser assisted, Electrospinning

References

  • 1.Kodama H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum. 1981;52:1770. doi: 10.1063/1.1136492. [DOI] [Google Scholar]
  • 2.Hull CW. United States patent US 19864575330. 1986. Apparatus for production of three-dimensional objects by stereolithography. [Google Scholar]
  • 3.Deckard CR. United States patent US 19894863538. 1989. Method and apparatus for producing parts by selective sintering. [Google Scholar]
  • 4.Hornbeck LJ. Spatial light modulator and method. 1987. [Google Scholar]
  • 5.Feygin M. Apparatus and method for forming an integral object from laminations. 1988. [Google Scholar]
  • 6.Crump SS. Apparatus and method for creating three-dimensional objects. 1992. [Google Scholar]
  • 7.Yamane M, Kawaguchi T, Kagayama S, Higashiyama S, Suzuki K, Sakai J, et al. Apparatus and method for forming three-dimensional article. 1991. [Google Scholar]
  • 8.Almquist TA, Smalley DR. Thermal stereolighography. 1992. [Google Scholar]
  • 9.Sachs EM, Haggerty JS, Cima MJ, Williams PA. Three-dimensional printing techniques. 1993. [Google Scholar]
  • 10.Almquist TA, Smalley DR. Thermal stereolithography. 1996. [Google Scholar]
  • 11.ISO/ASTM [Internet]. ISO/ASTM 52900:2015(en) 2016. [Google Scholar]
  • 12.SAI GLOBAL [Internet]. ASTM F2792-12a. 2016. [Google Scholar]
  • 13.Meteyer S, Xu X, Perry N, Zhao YF. Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP. 2014;15:19–25. doi: 10.1016/j.procir.2014.06.030. [DOI] [Google Scholar]
  • 14.Xu X, Meteyer S, Perry N, Zhao YF. Energy consumption model of binder-jetting additive manufacturing processes. Int J Prod Res. 2015;53:7005–7015. doi: 10.1080/00207543.2014.937013. [DOI] [Google Scholar]
  • 15.Geiger M, Steger W, Greul M, Sindel M. Multiphase jet solidification-a new process towards metal prototypes and a new data interface. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. pp. 9–16. [Google Scholar]
  • 16.Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, et al. Three-dimensional printing: the physics and implications of additive manufacturing. CIRP Ann-Manuf Techn. 1993;42:257–260. doi: 10.1016/S0007-8506(07)62438-X. [DOI] [Google Scholar]
  • 17.3D Systems [Internet]. About 3D Systems. 2016. [Google Scholar]
  • 18.Bimber BA, Hamilton RF, Keist J, Palmer TA. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng A. 2016;674:125–134. doi: 10.1016/j.msea.2016.07.059. [DOI] [Google Scholar]
  • 19.Wang Z, Palmer TA, Beese AM. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Materialia. 2016;110:226–235. doi: 10.1016/j.actamat.2016.03.019. [DOI] [Google Scholar]
  • 20.Chen J, Xue L. Process-induced microstructural characteristics of laser consolidated IN-738 superalloy. Mater Sci Eng A. 2010;527:7318–7328. doi: 10.1016/j.msea.2010.08.003. [DOI] [Google Scholar]
  • 21.Ding Y, Dwivedi R, Kovacevic R. Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf. 2017;44:67–76. doi: 10.1016/j.rcim.2016.08.008. [DOI] [Google Scholar]
  • 22.Insstek [Internet]. Metal 3D Printers. 2016. [Google Scholar]
  • 23.TRUMPF [Internet]. 3-D-Drucksysteme. 2016. [Google Scholar]
  • 24.Stratasys [Internet]. 3D Printers. 2016. [Google Scholar]
  • 25.Lee CS, Kim SG, Kim HJ, Ahn SH. Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol. 2007;187:627–630. doi: 10.1016/j.jmatprotec.2006.11.095. [DOI] [Google Scholar]
  • 26.Comb JW, Priedeman WR, Turley PW. FDM technology process improvements. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. pp. 42–49. [Google Scholar]
  • 27.Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C. 2003;23:611–620. doi: 10.1016/S0928-4931(03)00052-3. [DOI] [Google Scholar]
  • 28.Masood SH, Song WQ. Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des. 2004;25:587–594. doi: 10.1016/j.matdes.2004.02.009. [DOI] [Google Scholar]
  • 29.Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–1185. doi: 10.1016/S0142-9612(01)00232-0. [DOI] [PubMed] [Google Scholar]
  • 30.Singh R. Process capability study of polyjet printing for plastic components. J Mech Sci Technol. 2011;25:1011–1015. doi: 10.1007/s12206-011-0203-8. [DOI] [Google Scholar]
  • 31.Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SM, et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg. 2009;37:167–173. doi: 10.1016/j.jcms.2008.10.008. [DOI] [PubMed] [Google Scholar]
  • 32.Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A, Ekman KF, et al. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip. 2016;16:668–678. doi: 10.1039/C5LC01389E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Ashley S. Rapid concept modelers. Mech Eng. 1996;118:64. [Google Scholar]
  • 34.EOS [Internet] [cited 2016 Sep 13]. Available from: https://www.eos.info/en.
  • 35.Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Kadri NA, et al. Sci Technol Adv Mater. 2015. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Sindel M, Pintat T, Greul M, NyrhiHi O, Wilkening C. Direct laser sintering of metals and metal melt infiltration for near net shape fabrication of components. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. pp. 94–101. [Google Scholar]
  • 37.Pintat T, Sindel M, Greul M, Burblies A, Wilkening C. Integration of numerical modeling and laser sintering with investment casting. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. pp. 175–180. [Google Scholar]
  • 38.Eyerer P, Shen J, Keller B. LAPS-Laser Aided F.owder S.olidification-Technology for the direct production of metallic and polymer parts. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. pp. 82–93. [Google Scholar]
  • 39.Lee G, Barlow JW. Selective laser sintering of calcium phosphate powders. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: he University of Texas at Austin; 1994. pp. 191–197. [Google Scholar]
  • 40.Forderhase P, McAlea K, Michalewicz M, Ganninger M, Firestone K. SLSTM prototypes from Nylon. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: he University of Texas at Austin; 1994. pp. 102–109. [Google Scholar]
  • 41.Yi X, Tan ZJ, Yu WJ, Li J, Li BJ, Huang BY, et al. Three dimensional printing of carbon/carbon composites by selective laser sintering. Carbon. 2016;96:603–607. doi: 10.1016/j.carbon.2015.09.110. [DOI] [Google Scholar]
  • 42.Cubic Technology [Internet]. Cubic Technologies Rapdid Prototyping Product Offerings. 2016. [Google Scholar]
  • 43.Chiu YY, Liao YS, Hou CC. Automatic fabrication for bridged laminated object manufacturing (LOM) process. J Mater Process Technol. 2003;140:179–184. doi: 10.1016/S0924-0136(03)00710-6. [DOI] [Google Scholar]
  • 44.Daufenbach CGJ, McMillin S. Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: he University of Texas at Austin; 1994. p. 17. [Google Scholar]
  • 45.Mcor Technologies [Internet] [cited 2016 Sep 13]. Available from: http://mcortechnologies.com/3d-printers/.
  • 46.Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharmaceutics. 2016;503:207–212. doi: 10.1016/j.ijpharm.2016.03.016. [DOI] [PubMed] [Google Scholar]
  • 47.Weng Z, Zhou Y, Lin W, Senthil T, Wu L. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Compos Part A Appl Sci Manuf. 2016;88:234–242. doi: 10.1016/j.compositesa.2016.05.035. [DOI] [Google Scholar]
  • 48.Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater. 2003;64:65–69. doi: 10.1002/jbm.b.10485. [DOI] [PubMed] [Google Scholar]
  • 49.Formlabs [Internet] [cited 2016 Sep 13]. Available from: https://formlabs.com/.
  • 50.Union Tech [Internet] [cited 2016 Sep 13]. Available from: http://www.en.union-tek.com/about_us/.
  • 51.CMET [Internet]. Our stereolithography system and stereolithography applications (Resin) [cited 2016 Sep 13]. Available from: http://www.cmet.co.jp/eng/.
  • 52.DWS [Internet] [cited 2016 Sep 13]. Available from: http://www.dwssystems.com/.
  • 53.Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A. 2006;77:396–405. doi: 10.1002/jbm.a.30601. [DOI] [PubMed] [Google Scholar]
  • 54.Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, et al. Continuous liquid interface production of 3D objects. Science. 2015;347:1349–1352. doi: 10.1126/science.aaa2397. [DOI] [PubMed] [Google Scholar]
  • 55.Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials. 2012;33:3824–3834. doi: 10.1016/j.biomaterials.2012.01.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Dean D, Mott E, Luo X, Busso M, Wang MO, Vorwald C, et al. Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds: a new method and new material to fabricate resorbable scaffold for bone tissue engineering via continuous Digital Light Processing. Virtual Phys Prototyp. 2014;9:3–9. doi: 10.1080/17452759.2013.873337. [DOI] [Google Scholar]
  • 57.EnvisionTEC [Internet] [cited 2016 Sep 13]. Available from: https://envisiontec.com/.
  • 58.Langer R, Vacanti JP. R TIC L E. Science. 1993;260:14. doi: 10.1126/science.8493529. [DOI] [PubMed] [Google Scholar]
  • 59.Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science. 2002;295:1009–1014. doi: 10.1126/science.1069210. [DOI] [PubMed] [Google Scholar]
  • 60.Landers R, Mülhaupt R. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng. 2000;282:17–21. doi: 10.1002/1439-2054(20001001)282:1<17::AID-MAME17>3.0.CO;2-8. [DOI] [Google Scholar]
  • 61.Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23:4437–4447. doi: 10.1016/S0142-9612(02)00139-4. [DOI] [PubMed] [Google Scholar]
  • 62.El-Ayoubi R, Eliopoulos N, Diraddo R, Galipeau J, Yousefi AM. Design and fabrication of 3D porous scaffolds to facilitate cell-based gene therapy. Tissue Eng Part A. 2008;14:1037–1048. doi: 10.1089/ten.tea.2006.0418. [DOI] [PubMed] [Google Scholar]
  • 63.Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol. 2011;22:667–673. doi: 10.1016/j.copbio.2011.02.006. [DOI] [PubMed] [Google Scholar]
  • 64.Mironov V. Printing technology to produce living tissue. Expert Opin Biol Ther. 2003;3:701–704. doi: 10.1517/14712598.3.5.701. [DOI] [PubMed] [Google Scholar]
  • 65.Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, et al. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta biomaterialia. 2014;10:2269–2281. doi: 10.1016/j.actbio.2014.01.001. [DOI] [PubMed] [Google Scholar]
  • 66.Pfister A, Landers R, Laib A, Hübner U, Schmelzeisen R, Mülhaupt R. Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci A Polym Chem. 2004;42:624–638. doi: 10.1002/pola.10807. [DOI] [Google Scholar]
  • 67.Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007;28:5291–5297. doi: 10.1016/j.biomaterials.2007.08.018. [DOI] [PubMed] [Google Scholar]
  • 68.Wilson WC, Jr, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:491–496. doi: 10.1002/ar.a.10057. [DOI] [PubMed] [Google Scholar]
  • 69.Boland T, Mironov V, Gutowska A, Roth E, Markwald RR. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:497–502. doi: 10.1002/ar.a.10059. [DOI] [PubMed] [Google Scholar]
  • 70.Ahn S, Lee H, Bonassar LJ, Kim G. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Biomacromolecules. 2012;13:2997–3003. doi: 10.1021/bm3011352. [DOI] [PubMed] [Google Scholar]
  • 71.Klebe RJ, Thomas CA, Grant GM, Grant A, Gosh P. Cytoscription: computer controlled micropositioning of cell adhesion proteins and cells. J Tissue Cult Methods. 1994;16:189–192. doi: 10.1007/BF01540648. [DOI] [Google Scholar]
  • 72.Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25:3707–3715. doi: 10.1016/j.biomaterials.2003.10.052. [DOI] [PubMed] [Google Scholar]
  • 73.Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ, et al. Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng. 2004;85:29–33. doi: 10.1002/bit.10768. [DOI] [PubMed] [Google Scholar]
  • 74.Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–99. doi: 10.1016/j.biomaterials.2004.04.011. [DOI] [PubMed] [Google Scholar]
  • 75.Boland T, Wilson WC, Xu T. Ink-jet printing of viable cells. 2006. [Google Scholar]
  • 76.Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21:157–161. doi: 10.1016/S0167-7799(03)00033-7. [DOI] [PubMed] [Google Scholar]
  • 77.Forgacs G, Jakab K, Neagu A, Mironov V. Self-assembling cell aggregates and methods of making engineered tissue using the same. 2012. [Google Scholar]
  • 78.Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910–5917. doi: 10.1016/j.biomaterials.2009.06.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Organovo [Internet] [cited 2016 Sep 13]. Available from: http://organovo.com/.
  • 80.Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat commun. 2014;5:3935. doi: 10.1038/ncomms4935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Nickenig HJ, Eitner S. Reliability of implant placement after virtual planning of implant positions using cone beam CT data and surgical (guide) templates. J Craniomaxillofac Surg. 2007;35:207–211. doi: 10.1016/j.jcms.2007.02.004. [DOI] [PubMed] [Google Scholar]
  • 82.Becker CM, Kaiser DA. Surgical guide for dental implant placement. J Prosthet Dent. 2000;83:248–251. doi: 10.1016/S0022-3913(00)80018-9. [DOI] [PubMed] [Google Scholar]
  • 83.Ciocca L, De Crescenzio F, Fantini M, Scotti R. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph. 2009;33:58–62. doi: 10.1016/j.compmedimag.2008.10.005. [DOI] [PubMed] [Google Scholar]
  • 84.Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat biotechnol. 2014;32:773–785. doi: 10.1038/nbt.2958. [DOI] [PubMed] [Google Scholar]
  • 85.Nishiyama Y, Nakamura M, Henmi C, Yamaguchi K, Mochizuki S, Nakagawa H, et al. ASME 2007 International Manufacturing Science and Engineering Conference. Proceedings of American Society of Mechanical Engineers; 2007 Oct 15-18. Atlanta, GA: Solid Freeform Fabr Biomed Tissue Eng; 2008. Fabrication of 3D cell supporting structures with multi-materials using the bio-printer; pp. 97–102. [Google Scholar]
  • 86.Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials. 2008;29:193–203. doi: 10.1016/j.biomaterials.2007.09.032. [DOI] [PubMed] [Google Scholar]
  • 87.Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng. 2009;131:111002. doi: 10.1115/1.3128729. [DOI] [PubMed] [Google Scholar]
  • 88.Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106:963–969. doi: 10.1002/bit.22762. [DOI] [PubMed] [Google Scholar]
  • 89.Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22:673–685. doi: 10.1002/adma.200901141. [DOI] [PubMed] [Google Scholar]
  • 90.Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30:6221–6227. doi: 10.1016/j.biomaterials.2009.07.056. [DOI] [PubMed] [Google Scholar]
  • 91.Demirci U, Montesano G. Cell encapsulating droplet vitrification. Lab Chip. 2007;7:1428–1433. doi: 10.1039/b705809h. [DOI] [PubMed] [Google Scholar]
  • 92.Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng. 2012;22:085014. doi: 10.1088/0960-1317/22/8/085014. [DOI] [Google Scholar]
  • 93.Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30:2164–2174. doi: 10.1016/j.biomaterials.2008.12.084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J. 2005;11:9–17. doi: 10.1108/13552540510573347. [DOI] [Google Scholar]
  • 95.Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004;10:1566–1576. doi: 10.1089/ten.2004.10.1566. [DOI] [PubMed] [Google Scholar]
  • 96.Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12:1325–1335. doi: 10.1089/ten.2006.12.1325. [DOI] [PubMed] [Google Scholar]
  • 97.Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication. 2015;7:045012. doi: 10.1088/1758-5090/7/4/045012. [DOI] [PubMed] [Google Scholar]
  • 98.El-Ayoubi R, DeGrandpré C, DiRaddo R, Yousefi AM, Lavigne P. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl. 2011;25:429–444. doi: 10.1177/0885328209355332. [DOI] [PubMed] [Google Scholar]
  • 99.Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30:1587–1595. doi: 10.1016/j.biomaterials.2008.12.009. [DOI] [PubMed] [Google Scholar]
  • 100.Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB. Application of laser printing to mammalian cells. Thin Solid Films. 2004;453:383–387. doi: 10.1016/j.tsf.2003.11.161. [DOI] [Google Scholar]
  • 101.Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–7256. doi: 10.1016/j.biomaterials.2010.05.055. [DOI] [PubMed] [Google Scholar]
  • 102.Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, et al. In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2:014101. doi: 10.1088/1758-5082/2/1/014101. [DOI] [PubMed] [Google Scholar]
  • 103.Odde DJ, Renn MJ. Laser-guided direct writing for applications in biotechnology. Trends biotechnol. 1999;17:385–389. doi: 10.1016/S0167-7799(99)01355-4. [DOI] [PubMed] [Google Scholar]
  • 104.Odde DJ, Renn MJ. Laser-guided direct writing of living cells. Biotechnol Bioeng. 2000;67:312–318. doi: 10.1002/(SICI)1097-0290(20000205)67:3<312::AID-BIT7>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 105.Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. Biofabrication. 2010;2:032001. doi: 10.1088/1758-5082/2/3/032001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Sell S, Barnes C, Smith M, McClure M, Madurantakam P, Grant J, et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polymer International. 2007;56:1349–1360. doi: 10.1002/pi.2344. [DOI] [Google Scholar]
  • 107.Martins A, Araújo JV, Reis RL, Neves NM. Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine (Lond) 2007;2:929–942. doi: 10.2217/17435889.2.6.929. [DOI] [PubMed] [Google Scholar]
  • 108.Garg K, Bowlin GL. Electrospinning jets and nanofibrous structures. Biomicrofluidics. 2011;5:13403. doi: 10.1063/1.3567097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Taylor G. Electrically driven jets. P Roy SOC A-MATH PHY. 1969;313:453–2475. doi: 10.1098/rspa.1969.0205. [DOI] [Google Scholar]
  • 110.Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425. doi: 10.1016/j.polymer.2008.02.002. [DOI] [Google Scholar]
  • 111.Park SH, Kim TG, Kim HC, Yang DY, Park TG. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater. 2008;4:1198–1207. doi: 10.1016/j.actbio.2008.03.019. [DOI] [PubMed] [Google Scholar]
  • 112.Park SH, Koh UH, Kim M, Yang DY, Suh KY, Shin JH. Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding. Biofabrication. 2014;6:024107. doi: 10.1088/1758-5082/6/2/024107. [DOI] [PubMed] [Google Scholar]
  • 113.Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–2082. doi: 10.1016/S0142-9612(02)00635-X. [DOI] [PubMed] [Google Scholar]
  • 114.Herbert N, Simpson D, Spence WD, Ion W. A preliminary investigation into the development of 3-D printing of prosthetic sockets. J Rehabil Res Dev. 2005;42:141–146. doi: 10.1682/JRRD.2004.08.0134. [DOI] [PubMed] [Google Scholar]
  • 115.Zuniga J, Katsavelis D, Peck J, Stollberg J, Petrykowski M, Carson A, et al. Cyborg beast: a low-cost 3D-printed prosthetic hand for children with upper-limb differences. BMC Res Notes. 2015;8:10. doi: 10.1186/s13104-015-0971-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Honiball JR. The application of 3D printing in reconstructive surgery. [dissertation]. Stellenbosch: University of Stellenbosch; 2010.
  • 117.Turkcadcam [Internet]. Rapid prototyping helps separate conjoined twins. 2016. [Google Scholar]
  • 118.Silva DN, Gerhardt de Oliveira M, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Bárbara A. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg. 2008;36:443–449. doi: 10.1016/j.jcms.2008.04.003. [DOI] [PubMed] [Google Scholar]
  • 119.Flügge TV, Nelson K, Schmelzeisen R, Metzger MC. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery. J Oral Maxillofac Surg. 2013;71:1340–1346. doi: 10.1016/j.joms.2013.04.010. [DOI] [PubMed] [Google Scholar]
  • 120.Di Giacomo GA, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL. Clinical application of stereolithographic surgical guides for implant placement: preliminary results. J Periodontol. 2005;76:503–507. doi: 10.1902/jop.2005.76.4.503. [DOI] [PubMed] [Google Scholar]
  • 121.Olszewski R, Tranduy K, Reychler H. Innovative procedure for computer-assisted genioplasty: three-dimensional cephalometry, rapid-prototyping model and surgical splint. Int J Oral Maxillofac Surg. 2010;39:721–724. doi: 10.1016/j.ijom.2010.03.018. [DOI] [PubMed] [Google Scholar]
  • 122.Cassetta M, Pandolfi S, Giansanti M. Minimally invasive corticotomy in orthodontics: a new technique using a CAD/CAM surgical template. Int J Oral Maxillofac Surg. 2015;44:830–833. doi: 10.1016/j.ijom.2015.02.020. [DOI] [PubMed] [Google Scholar]
  • 123.Murphy SV, Atala A. Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays. 2013;35:163–172. doi: 10.1002/bies.201200062. [DOI] [PubMed] [Google Scholar]
  • 124.Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16:496–504. doi: 10.1016/j.mattod.2013.11.017. [DOI] [Google Scholar]
  • 125.Kumar A, Mandal S, Barui S, Vasireddi R, Gbureck U, Gelinsky M, et al. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: processing related challenges and property assessment. Mater Sci Eng R Rep. 2016;103:1–39. doi: 10.1016/j.mser.2016.01.001. [DOI] [Google Scholar]
  • 126.Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74:782–788. doi: 10.1002/jbm.b.30291. [DOI] [PubMed] [Google Scholar]
  • 127.Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30:2563–2567. doi: 10.1016/j.jeurceramsoc.2010.04.037. [DOI] [Google Scholar]
  • 128.Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005;16:1121–1124. doi: 10.1007/s10856-005-4716-5. [DOI] [PubMed] [Google Scholar]
  • 129.Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–554. doi: 10.1016/j.tibtech.2012.07.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Lee JH, Park SA, Park K, Kim JH, Kim KS, Lee J, et al. Fabrication and characterization of 3D scaffold using 3D plotting system. Chin Sci Bull. 2010;55:94–98. doi: 10.1007/s11434-009-0271-7. [DOI] [Google Scholar]
  • 131.Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS, et al. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater. 2016;40:182–191. doi: 10.1016/j.actbio.2016.02.006. [DOI] [PubMed] [Google Scholar]
  • 132.Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543. doi: 10.1016/S0142-9612(00)00121-6. [DOI] [PubMed] [Google Scholar]
  • 133.Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16:1489–1496. doi: 10.1021/acs.biomac.5b00188. [DOI] [PubMed] [Google Scholar]
  • 134.Rhee S, Puetzer JL, Mason BN, ReinhartKing CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016;2:1800–1805. doi: 10.1021/acsbiomaterials.6b00288. [DOI] [PubMed] [Google Scholar]
  • 135.Woodfield TB, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials. 2004;25:4149–4161. doi: 10.1016/j.biomaterials.2003.10.056. [DOI] [PubMed] [Google Scholar]
  • 136.Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088–1094. doi: 10.1016/j.biomaterials.2005.07.048. [DOI] [PubMed] [Google Scholar]
  • 137.Pinnock CB, Meier EM, Joshi NN, Wu B, Lam MT. Customizable engineered blood vessels using 3D printed inserts. Methods. 2016;99:20–27. doi: 10.1016/j.ymeth.2015.12.015. [DOI] [PubMed] [Google Scholar]
  • 138.Ahn H, Ju YM, Takahashi H, Williams DF, Yoo JJ, Lee SJ, et al. Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater. 2015;16:14–22. doi: 10.1016/j.actbio.2015.01.030. [DOI] [PubMed] [Google Scholar]
  • 139.Naito Y, Rocco K, Kurobe H, Maxfield M, Breuer C, Shinoka T. Tissue engineering in the vasculature. Anat Rec (Hoboken) 2014;297:83–97. doi: 10.1002/ar.22838. [DOI] [PubMed] [Google Scholar]
  • 140.Lee SJ, Heo DN, Park JS, Kwon SK, Lee JH, Lee JH, et al. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys Chem Chem Phys. 2015;17:2996–2999. doi: 10.1039/C4CP04801F. [DOI] [PubMed] [Google Scholar]
  • 141.Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication. 2012;4:022001. doi: 10.1088/1758-5082/4/2/022001. [DOI] [PubMed] [Google Scholar]
  • 142.Martínez-Santamaría L, Guerrero-Aspizua S, Del Río M. Skin bioengineering: preclinical and clinical applications. Actas Dermosifiliogr. 2012;103:5–11. doi: 10.1016/j.ad.2011.03.006. [DOI] [PubMed] [Google Scholar]
  • 143.Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8:57741. doi: 10.1371/journal.pone.0057741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science. 1982;215:174–176. doi: 10.1126/science.7031899. [DOI] [PubMed] [Google Scholar]
  • 145.Binder KW, Allen AJ, Yoo JJ, Atala A. Drop-on-demand inkjet bioprinting: a primer. Gene Ther Regul. 2011;6:33–49. doi: 10.1142/S1568558611000258. [DOI] [Google Scholar]
  • 146.Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, et al. 3D printed bionic ears. Nano Lett. 2013;13:2634–2639. doi: 10.1021/nl4007744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Struecker B, Raschzok N, Sauer IM. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol. 2014;11:166–176. doi: 10.1038/nrgastro.2013.204. [DOI] [PubMed] [Google Scholar]
  • 148.Atala A. Tissue engineering of human bladder. Br Med Bull. 2011;97:81–104. doi: 10.1093/bmb/ldr003. [DOI] [PubMed] [Google Scholar]
  • 149.Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–1246. doi: 10.1016/S0140-6736(06)68438-9. [DOI] [PubMed] [Google Scholar]
  • 150.Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7:285. doi: 10.1126/scitranslmed.3010825. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES