Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Sep 28;74(Pt 10):1513–1516. doi: 10.1107/S2056989018013117

Crystal structure and Hirshfeld surface analysis of (E)-N-[(2-eth­oxy­naphthalen-1-yl)methyl­idene]-5,6,7,8-tetra­hydro­naphthalen-1-amine

Sevgi Kansiz a, Mustafa Macit b, Necmi Dege a, Galyna G Tsapyuk c,*
PMCID: PMC6176450  PMID: 30319813

The two ring systems are twisted by 51.40 (11)°. In the crystal, the mol­ecules are linked via C—H⋯π inter­actions, forming a three-dimensional framework.

Keywords: crystal structure, Schiff base, Hirshfeld surface

Abstract

In the title Schiff base compound, C23H23NO, the two ring systems are twisted by 51.40 (11)° relative to each other. In the crystal, the mol­ecules are connected by weak C—H⋯π inter­actions, generating a three-dimensional supra­molecular structure. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (67.2%), C⋯H/H⋯C (26.7%) and C⋯C (2.5%) inter­actions.

Chemical context  

Schiff bases have found wide use as a ligands in coordination chemistry (Calligaris et al., 1972; Hökelek et al., 2004; Moroz et al., 2012) and are also important in various areas of chemistry and biochemistry because of their biological activity (El-masry et al., 2000). Many Schiff bases have some anti­bacterial, anti­cancer and anti­oxidant properties and have therefore been used as starting materials in the synthesis of important medicinal substances. In the present study, we designed a new type of Schiff base obtained by the reaction of 2-eth­oxy-1-naphthaldehyde and 5,6,7,8-tetra­hydro-1-naphtyl­amine to give (E)-N-[(2-eth­oxy­naphthalen-1-yl)methyl­ene]-5,6,7,8-tetra­hydro­naphthalen-1-amine. We report herein the synthesis, crystal structure and Hirshfeld structural analysis of the title compound.graphic file with name e-74-01513-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound, (I), contains one independent mol­ecule (Fig. 1). the two ring systems are twisted by 51.40 (11)° relative to each other. The O1—C2 and O1—C11 bond lengths are 1.359 (4) and 1.423 (4) Å, respectively, while the C13=N1 and C14—N1 bond lengths are 1.262 (3) and 1.415 (5) Å, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are connected by C—H⋯π inter­actions, generating a three-dimensional supra­molecular structure (Table 1 and Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C5–C10 and C14–C23 rings.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg1i 0.97 2.91 3.799 153
C16—H16⋯Cg2i 0.93 2.96 3.728 141

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A view of the crystal packing. Dashed lines denote C—H⋯π inter­actions. Symmetry codes: (i) x, −y + Inline graphic, z − Inline graphic; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, −Inline graphic + y; Inline graphic − z.

Database survey  

There are no direct precedents for the structure of (I) in the crystallographic literature (CSD version 5.39, update of August 2018; Groom et al., 2016). However, there are several precedents for (E)-N-benzyl­idene-5,6,7,8-tetra­hydro­naph­thalen-1-amine and (E)-N-[(2-eth­oxy­naphthalen-1-yl)methyl­ene]aniline including 2-(4-iso­propyl­phen­yl)-1,3-diphenyl-2,3-di­hydro-1H-naphtho­[1,2-e][1,3]oxazine (Borah et al., 2014), 2-(2-nitro­phen­yl)-3-(5,6,7,8-tetra­hydro­naphthalen-1-yl)-1,3-thia­zolidin-4-one (Drawanz et al., 2017), N-(3,5-di­meth­oxy­phen­yl)-1,2-di­hydro-3′H-spiro­(benzo[f]chromene-3,1′-[2]ben­zo­furan)-1-amine (Wu et al., 2013) and methyl (5aR,6aR,9R,10aR)-4-benzoyl-7-methyl4,5,5a,6,6a,7,8,9,10,10adeca­hydro­indolo[4,3-fg]quinoline-9-carboxyl­ate dihydrate (Lee et al., 2015).

Hirshfeld surface analysis  

Hirshfield surface analysis was performed using CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions. The Hirshfeld surface mapped over d norm is illustrated in Fig. 3 [colour scale of −0.067 (red) to 1.262 (blue) Å]. Red spots on this surface indicate the inter­molecular contacts involved in strong hydrogen bonds and inter­atomic contacts (Gümüş et al., 2018; Kansiz et al., 2018; Sen et al., 2018).

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped over d norm.

Fig. 4 shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 5 a (H⋯H) shows the two-dimensional fingerprint of the (d i, d e) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to d i = d e = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (67.2%). The graph shown in Fig. 5 b (C⋯H/H⋯C) shows the contacts between the carbon atoms inside the surface and the hydrogen atoms outside the surface and vice versa. The plot shows two symmetrical wings on the left and right sides (26.7%). Further, there are C⋯C (2.5%), C⋯O/O⋯C (2%), N⋯H/H⋯N (1.4%) and O⋯H/H⋯O (0.2%) contacts.

Figure 4.

Figure 4

A fingerprint plot for the title compound.

Figure 5.

Figure 5

Two-dimensional fingerprint plots for (a) H⋯H (67.2%), (b) C⋯H/H⋯C (26.7%), (c) C⋯C (2.5%), (d) C⋯O/O⋯C (2%), (e) N⋯H/H⋯N (1.4%) and (f) O⋯H/H⋯O (0.2%) contacts.

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.048 to 0.033 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 6; the donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

Figure 6.

Figure 6

A view of the three-dimensional Hirshfeld surface plotted over electrostatic potential energy.

Synthesis and crystallization  

The title compound was prepared (Fig. 7) by refluxing a mixture of a solution containing 2-eth­oxy-1-naphthaldehyde (20.0 mg, 0.1 mmol) in ethanol (20 mL) and a solution containing 5,6,7,8-tetra­hydro-1-naphtyl­amine (14.72 mg, 0.1 mmol) in ethanol (20 mL). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield: 60%; m.p. 416–418 K) .

Figure 7.

Figure 7

The synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C23H23NO
M r 329.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.6628 (4), 20.3304 (9), 7.3838 (3)
β (°) 104.895 (3)
V3) 1837.01 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.61 × 0.47 × 0.25
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration
T min, T max 0.963, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 22781, 3419, 2128
R int 0.106
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.081, 0.255, 1.04
No. of reflections 3419
No. of parameters 226
No. of restraints 19
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.50

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXL2017/1 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018013117/xu5940sup1.cif

e-74-01513-sup1.cif (923.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013117/xu5940Isup2.hkl

e-74-01513-Isup2.hkl (273KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018013117/xu5940Isup3.cml

CCDC reference: 1843572

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C23H23NO F(000) = 704
Mr = 329.42 Dx = 1.191 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.6628 (4) Å Cell parameters from 16587 reflections
b = 20.3304 (9) Å θ = 1.7–27.9°
c = 7.3838 (3) Å µ = 0.07 mm1
β = 104.895 (3)° T = 296 K
V = 1837.01 (13) Å3 Prism, colourless
Z = 4 0.61 × 0.47 × 0.25 mm

Data collection

Stoe IPDS 2 diffractometer 3419 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2128 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.106
rotation method scans θmax = 25.5°, θmin = 1.7°
Absorption correction: integration h = −15→15
Tmin = 0.963, Tmax = 0.982 k = −24→24
22781 measured reflections l = −8→8

Refinement

Refinement on F2 19 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081 H-atom parameters constrained
wR(F2) = 0.255 w = 1/[σ2(Fo2) + (0.1536P)2 + 0.1088P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3419 reflections Δρmax = 0.44 e Å3
226 parameters Δρmin = −0.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3883 (2) 0.69673 (14) 0.5168 (4) 0.0625 (7)
C2 0.3335 (2) 0.75663 (16) 0.4960 (4) 0.0705 (8)
C3 0.2195 (3) 0.7603 (2) 0.4580 (5) 0.0854 (10)
H3 0.184711 0.800998 0.441177 0.102*
C4 0.1603 (3) 0.7044 (2) 0.4460 (5) 0.0881 (11)
H4 0.084543 0.707238 0.418648 0.106*
C5 0.2102 (3) 0.64177 (19) 0.4739 (4) 0.0768 (9)
C6 0.1485 (3) 0.5844 (2) 0.4686 (5) 0.0945 (11)
H6 0.073038 0.587938 0.447096 0.113*
C7 0.1946 (4) 0.5244 (2) 0.4937 (5) 0.1018 (12)
H7 0.151649 0.487132 0.490683 0.122*
C8 0.3094 (3) 0.51870 (19) 0.5248 (5) 0.0917 (10)
H8 0.342052 0.477395 0.540440 0.110*
C9 0.3719 (3) 0.57345 (16) 0.5317 (4) 0.0758 (8)
H9 0.447121 0.568790 0.552983 0.091*
C10 0.3259 (2) 0.63747 (15) 0.5075 (4) 0.0666 (8)
C11 0.3496 (3) 0.87489 (16) 0.5162 (5) 0.0818 (10)
H11A 0.307563 0.876744 0.608818 0.098*
H11B 0.301597 0.884936 0.394231 0.098*
C12 0.4418 (4) 0.92253 (19) 0.5636 (7) 0.1034 (12)
H12A 0.413575 0.966242 0.566169 0.155*
H12B 0.488685 0.911972 0.684440 0.155*
H12C 0.482748 0.920123 0.470930 0.155*
C13 0.5070 (2) 0.69926 (14) 0.5483 (4) 0.0637 (7)
H13 0.537591 0.740457 0.541243 0.076*
C14 0.6849 (2) 0.66195 (13) 0.6046 (4) 0.0620 (7)
C15 0.7241 (3) 0.69702 (15) 0.4745 (5) 0.0827 (10)
H15 0.675637 0.716373 0.372129 0.099*
C16 0.8353 (3) 0.70314 (18) 0.4975 (6) 0.0942 (12)
H16 0.861669 0.726596 0.410256 0.113*
C17 0.9070 (3) 0.67484 (17) 0.6482 (6) 0.0859 (10)
H17 0.981742 0.679759 0.663076 0.103*
C18 0.8696 (2) 0.63895 (14) 0.7789 (5) 0.0725 (8)
C19 0.9511 (3) 0.6076 (2) 0.9406 (7) 0.1064 (12)
H19A 0.998028 0.578883 0.890880 0.128*
H19B 0.996683 0.641912 1.011812 0.128*
C20 0.9048 (4) 0.5702 (3) 1.0659 (9) 0.1519 (18)
H20A 0.944397 0.528870 1.087031 0.182*
H20B 0.922970 0.593431 1.184568 0.182*
C21 0.7955 (4) 0.5545 (4) 1.0294 (9) 0.169 (2)
H21A 0.775939 0.555005 1.148089 0.203*
H21B 0.787436 0.509438 0.984530 0.203*
C22 0.7136 (3) 0.5943 (2) 0.8964 (5) 0.0927 (11)
H22A 0.680842 0.624872 0.966960 0.111*
H22B 0.656127 0.565356 0.828032 0.111*
C23 0.7575 (2) 0.63267 (13) 0.7572 (4) 0.0628 (7)
N1 0.5720 (2) 0.65120 (12) 0.5839 (4) 0.0702 (7)
O1 0.39688 (19) 0.81145 (11) 0.5147 (4) 0.0871 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0606 (16) 0.0751 (19) 0.0516 (14) 0.0063 (14) 0.0141 (12) −0.0002 (12)
C2 0.0663 (18) 0.083 (2) 0.0631 (16) 0.0111 (15) 0.0186 (13) 0.0067 (14)
C3 0.075 (2) 0.099 (3) 0.087 (2) 0.0223 (19) 0.0294 (17) 0.0176 (18)
C4 0.0625 (19) 0.124 (3) 0.079 (2) 0.012 (2) 0.0196 (15) 0.0103 (19)
C5 0.0659 (18) 0.109 (3) 0.0561 (16) −0.0054 (18) 0.0159 (13) 0.0011 (15)
C6 0.074 (2) 0.125 (3) 0.083 (2) −0.018 (2) 0.0178 (17) −0.009 (2)
C7 0.103 (3) 0.110 (3) 0.093 (3) −0.039 (3) 0.027 (2) −0.014 (2)
C8 0.098 (3) 0.090 (2) 0.087 (2) −0.013 (2) 0.0226 (18) −0.0086 (18)
C9 0.0753 (19) 0.079 (2) 0.0730 (18) −0.0078 (16) 0.0182 (14) −0.0048 (15)
C10 0.0665 (18) 0.083 (2) 0.0504 (14) 0.0030 (14) 0.0149 (12) −0.0019 (13)
C11 0.102 (2) 0.080 (2) 0.0724 (18) 0.0309 (19) 0.0378 (17) 0.0109 (16)
C12 0.117 (3) 0.075 (2) 0.129 (3) 0.010 (2) 0.050 (3) −0.003 (2)
C13 0.0644 (16) 0.0644 (17) 0.0626 (16) 0.0029 (14) 0.0169 (13) 0.0032 (12)
C14 0.0608 (16) 0.0511 (14) 0.0773 (17) 0.0031 (12) 0.0236 (13) 0.0022 (13)
C15 0.093 (2) 0.072 (2) 0.091 (2) 0.0124 (17) 0.0383 (18) 0.0218 (16)
C16 0.100 (3) 0.082 (2) 0.123 (3) 0.000 (2) 0.068 (2) 0.014 (2)
C17 0.0700 (19) 0.075 (2) 0.124 (3) −0.0022 (17) 0.046 (2) −0.005 (2)
C18 0.0618 (17) 0.0638 (17) 0.093 (2) −0.0009 (14) 0.0229 (15) −0.0081 (15)
C19 0.066 (2) 0.119 (3) 0.123 (3) 0.006 (2) 0.0051 (19) 0.007 (2)
C20 0.104 (3) 0.190 (4) 0.142 (4) 0.011 (3) −0.003 (3) 0.065 (3)
C21 0.121 (3) 0.221 (4) 0.144 (3) −0.013 (3) −0.002 (3) 0.097 (3)
C22 0.074 (2) 0.115 (3) 0.090 (2) −0.0050 (19) 0.0225 (17) 0.031 (2)
C23 0.0603 (16) 0.0541 (15) 0.0766 (18) −0.0005 (12) 0.0225 (13) 0.0002 (13)
N1 0.0605 (14) 0.0681 (15) 0.0816 (16) 0.0047 (12) 0.0173 (11) 0.0063 (12)
O1 0.0777 (14) 0.0726 (14) 0.1156 (19) 0.0173 (11) 0.0335 (13) 0.0041 (12)

Geometric parameters (Å, º)

C1—C2 1.390 (4) C13—N1 1.262 (3)
C1—C10 1.432 (4) C13—H13 0.9300
C1—C13 1.462 (4) C14—C15 1.387 (4)
C2—O1 1.359 (4) C14—C23 1.392 (4)
C2—C3 1.400 (4) C14—N1 1.415 (4)
C3—C4 1.352 (5) C15—C16 1.380 (5)
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.413 (5) C16—C17 1.368 (5)
C4—H4 0.9300 C16—H16 0.9300
C5—C6 1.398 (5) C17—C18 1.387 (5)
C5—C10 1.425 (4) C17—H17 0.9300
C6—C7 1.345 (6) C18—C23 1.393 (4)
C6—H6 0.9300 C18—C19 1.504 (5)
C7—C8 1.417 (6) C19—C20 1.434 (7)
C7—H7 0.9300 C19—H19A 0.9700
C8—C9 1.359 (5) C19—H19B 0.9700
C8—H8 0.9300 C20—C21 1.378 (6)
C9—C10 1.418 (4) C20—H20A 0.9700
C9—H9 0.9300 C20—H20B 0.9700
C11—O1 1.423 (4) C21—C22 1.474 (6)
C11—C12 1.488 (5) C21—H21A 0.9700
C11—H11A 0.9700 C21—H21B 0.9700
C11—H11B 0.9700 C22—C23 1.506 (4)
C12—H12A 0.9600 C22—H22A 0.9700
C12—H12B 0.9600 C22—H22B 0.9700
C12—H12C 0.9600
C2—C1—C10 118.6 (3) C15—C14—C23 120.1 (3)
C2—C1—C13 116.7 (3) C15—C14—N1 122.4 (3)
C10—C1—C13 124.7 (2) C23—C14—N1 117.4 (2)
O1—C2—C1 116.2 (3) C16—C15—C14 119.8 (3)
O1—C2—C3 121.8 (3) C16—C15—H15 120.1
C1—C2—C3 121.9 (3) C14—C15—H15 120.1
C4—C3—C2 119.6 (3) C17—C16—C15 120.3 (3)
C4—C3—H3 120.2 C17—C16—H16 119.8
C2—C3—H3 120.2 C15—C16—H16 119.8
C3—C4—C5 121.9 (3) C16—C17—C18 120.9 (3)
C3—C4—H4 119.0 C16—C17—H17 119.6
C5—C4—H4 119.0 C18—C17—H17 119.6
C6—C5—C4 121.4 (3) C17—C18—C23 119.2 (3)
C6—C5—C10 119.8 (3) C17—C18—C19 119.2 (3)
C4—C5—C10 118.8 (3) C23—C18—C19 121.5 (3)
C7—C6—C5 122.2 (4) C20—C19—C18 115.2 (3)
C7—C6—H6 118.9 C20—C19—H19A 108.5
C5—C6—H6 118.9 C18—C19—H19A 108.5
C6—C7—C8 119.2 (4) C20—C19—H19B 108.5
C6—C7—H7 120.4 C18—C19—H19B 108.5
C8—C7—H7 120.4 H19A—C19—H19B 107.5
C9—C8—C7 120.1 (4) C21—C20—C19 123.6 (4)
C9—C8—H8 119.9 C21—C20—H20A 106.4
C7—C8—H8 119.9 C19—C20—H20A 106.4
C8—C9—C10 122.1 (3) C21—C20—H20B 106.4
C8—C9—H9 119.0 C19—C20—H20B 106.4
C10—C9—H9 119.0 H20A—C20—H20B 106.5
C9—C10—C5 116.6 (3) C20—C21—C22 120.2 (5)
C9—C10—C1 124.3 (3) C20—C21—H21A 107.3
C5—C10—C1 119.1 (3) C22—C21—H21A 107.3
O1—C11—C12 106.6 (3) C20—C21—H21B 107.3
O1—C11—H11A 110.4 C22—C21—H21B 107.3
C12—C11—H11A 110.4 H21A—C21—H21B 106.9
O1—C11—H11B 110.4 C21—C22—C23 114.8 (3)
C12—C11—H11B 110.4 C21—C22—H22A 108.6
H11A—C11—H11B 108.6 C23—C22—H22A 108.6
C11—C12—H12A 109.5 C21—C22—H22B 108.6
C11—C12—H12B 109.5 C23—C22—H22B 108.6
H12A—C12—H12B 109.5 H22A—C22—H22B 107.6
C11—C12—H12C 109.5 C14—C23—C18 119.7 (3)
H12A—C12—H12C 109.5 C14—C23—C22 119.4 (3)
H12B—C12—H12C 109.5 C18—C23—C22 120.9 (3)
N1—C13—C1 126.6 (3) C13—N1—C14 119.4 (2)
N1—C13—H13 116.7 C2—O1—C11 120.4 (3)
C1—C13—H13 116.7
C10—C1—C2—O1 177.0 (2) N1—C14—C15—C16 −176.8 (3)
C13—C1—C2—O1 −2.6 (4) C14—C15—C16—C17 −0.1 (5)
C10—C1—C2—C3 −2.9 (4) C15—C16—C17—C18 0.8 (6)
C13—C1—C2—C3 177.5 (3) C16—C17—C18—C23 −1.0 (5)
O1—C2—C3—C4 −178.1 (3) C16—C17—C18—C19 178.9 (3)
C1—C2—C3—C4 1.8 (5) C17—C18—C19—C20 −178.6 (5)
C2—C3—C4—C5 1.1 (5) C23—C18—C19—C20 1.3 (6)
C3—C4—C5—C6 177.4 (3) C18—C19—C20—C21 9.9 (10)
C3—C4—C5—C10 −2.8 (5) C19—C20—C21—C22 −22.6 (12)
C4—C5—C6—C7 179.6 (3) C20—C21—C22—C23 22.4 (9)
C10—C5—C6—C7 −0.3 (5) C15—C14—C23—C18 0.2 (4)
C5—C6—C7—C8 −0.6 (6) N1—C14—C23—C18 176.8 (3)
C6—C7—C8—C9 0.9 (6) C15—C14—C23—C22 −179.5 (3)
C7—C8—C9—C10 −0.4 (5) N1—C14—C23—C22 −2.9 (4)
C8—C9—C10—C5 −0.5 (4) C17—C18—C23—C14 0.5 (4)
C8—C9—C10—C1 178.9 (3) C19—C18—C23—C14 −179.4 (3)
C6—C5—C10—C9 0.8 (4) C17—C18—C23—C22 −179.8 (3)
C4—C5—C10—C9 −179.0 (3) C19—C18—C23—C22 0.3 (5)
C6—C5—C10—C1 −178.6 (3) C21—C22—C23—C14 168.1 (4)
C4—C5—C10—C1 1.6 (4) C21—C22—C23—C18 −11.6 (6)
C2—C1—C10—C9 −178.2 (3) C1—C13—N1—C14 177.9 (3)
C13—C1—C10—C9 1.4 (4) C15—C14—N1—C13 −49.8 (4)
C2—C1—C10—C5 1.2 (4) C23—C14—N1—C13 133.7 (3)
C13—C1—C10—C5 −179.3 (3) C1—C2—O1—C11 −173.1 (3)
C2—C1—C13—N1 174.5 (3) C3—C2—O1—C11 6.8 (4)
C10—C1—C13—N1 −5.1 (5) C12—C11—O1—C2 172.7 (3)
C23—C14—C15—C16 −0.4 (5)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C5–C10 and C14–C23 rings.

D—H···A D—H H···A D···A D—H···A
C11—H11B···Cg1i 0.97 2.91 3.799 153
C16—H16···Cg2i 0.93 2.96 3.728 141

Symmetry code: (i) x, −y+3/2, z−1/2.

References

  1. Borah, R., Dutta, A. K., Sarma, P., Dutta, C. & Sarma, B. (2014). RSC Adv. 4, 10912–10917.
  2. Calligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. Rev. 7, 385–403.
  3. Drawanz, B. B., Zimmer, G. C., Rodrigues, L. V., Nörnberg, A. B., Hörner, M., Frizzo, C. P. & Cunico, W. (2017). Synthesis, 49, 5167–5175.
  4. El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.
  8. Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. [DOI] [PubMed]
  9. Kansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220. [DOI] [PMC free article] [PubMed]
  10. Lee, K., Poudel, Y. B., Glinkerman, C. M. & Boger, D. L. (2015). Tetrahedron, 71, 5897–5905. [DOI] [PMC free article] [PubMed]
  11. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  12. Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994–997. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  16. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.
  17. Wu, H., He, Y.-P. & Gong, L.-Z. (2013). Org. Lett. 15, 460–463. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018013117/xu5940sup1.cif

e-74-01513-sup1.cif (923.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013117/xu5940Isup2.hkl

e-74-01513-Isup2.hkl (273KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018013117/xu5940Isup3.cml

CCDC reference: 1843572

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES