Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2019 Oct 1.
Published in final edited form as: Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):e171–e184. doi: 10.1161/ATVBAHA.118.311717

Recent Highlights of ATVB: Reporting Sex and Sex Differences in Preclinical Studies

Hong S Lu 1, Ann Marie Schmidt 2, Robert A Hegele 3, Nigel Mackman 4, Daniel J Rader 5, Christian Weber 6, Alan Daugherty 1
PMCID: PMC6207213  NIHMSID: NIHMS1504442  PMID: 30354222

Introduction

ATVB aims to publish research work that advances scientific fields in a rigorous and reproducible manner. We have implemented multiple approaches to follow the National Institutes of Health (NIH) guidelines for rigor and reproducibility. In 2013, ATVB developed a “checklist” in the peer review process to facilitate comments on multiple technical requirements, including the sex of animals used in preclinical studies. We have also emphasized the NIH guidelines that encourage researchers to study both sexes in preclinical animal models. These include publishing a review1 entitled “Sex differences in the development of cardiovascular diseases” and an ATVB Council statement2 to encourage authors to consider sex differences in designing and reporting experimental arterial pathology studies that details the mode by which ATVB complies with the NIH guidelines.3 The journal appointed a technical review editor, Dr. Hong Lu, who assumed the role in September 2017 in order to assess the many elements required for adherence to the NIH guidelines. These include issues such as the rigor of statistical analyses and animal background strain, age, and sex. The designation of sex of origin in studies of primary cells derived from cell culture is not as common as it is in whole animal studies. This is probably due to the unproven assumption that the lack of the hormonal environment in cell culture eliminates the need for designation of sex. However, since the differences of X and Y sex chromosomes and possibly sex-related differences in genomic imprinting are preserved in cultured cells, these cells could theoretically retain the ability to respond in a sex-dependent manner.4 Therefore, we also encourage and will monitor the reporting of sex in primary cell isolation and culture.

In a recent letter to the ATVB editors, Ramirez and Hibbert5 performed a comprehensive literature search and detailed statistical analysis on articles focusing on atherosclerosis and aneurysms from 2006 through 2016. They concluded that publication of guidelines and statements alone is not sufficient to assure the reporting of sex and sex differences in preclinical studies. To more objectively assess whether and how sex information in preclinical research has been reported, the ATVB editors reviewed 332 basic science research articles published in ATVB between 2016 and 2017.6337 After excluding those that studied only human samples, human cells, cell lines, or computational models, 159 articles published in 2016 and 136 articles published in 2017 were analyzed (Tables 15), which reported studies in animal models and/or primary cells isolated from animals.6300 There were 7 species reported in these articles (Table 1), including zebrafish, mouse, rat, rabbit, dog, pig, and nonhuman primates. Among these 295 articles analyzed, 79% and 92% of those from 2016 and 2017, respectively, provided sex information for in vivo models. However, only 11% of the articles in 2016 and 21% in 2017 reported results from both males and females. One hundred and thirty three of 295 articles reported primary cells isolated from mouse, rat, cow, or pig. Twenty-eight percent of the articles in 2016 and 27% in 2017 provided sex information, whereas only 3 articles studied cells from both male and female animals.

Table 1.

All Animal Species Reported in Preclinical Studies

Species Article Number References
2016 2017
Zebrafish 5 3 6–13
Mouse 134 117 14–264
Rat 10 11 265–285
Rabbit 2 4 286–291
Dog 1 0 263
Pig 2 4 11, 292,293,295–297
Primate 3 0 298–300

Table 5.

Numbers of Articles Reporting Sex in Large Animals

Species Articles Reporting Sex/Total Article Number
Male Female Both
Rabbit 2/6 0/6 2/6
Dog - - 1/1
Pig 4/6 1/6 0/6
Primate 3/3 - -

In this “Recent Highlights” article, we provide results of analysis of reported data on sex from animal models (Tables 25) and primary animal cell cultures among basic science articles published in ATVB between 2016 and 2017.6300 We also discuss what we have already implemented and what we will aim to do in the future to encourage authors to report findings from both sexes in preclinical studies. We will continue to monitor and document the analytic results of reporting sex and sex differences in ATVB on an annual basis.

Table 2.

Reporting Sex of Animals in Preclinical Studies

Species Articles Reporting Sex (%)
2016 2017
Mouse 79% 91%
Rat 100% 91%
Rabbit 0 100%
Dog 100% -
Pig 50% 100%
Primate 100% -

Zebrafish

Zebrafish has become an increasingly valuable model to study cardiovascular development and functions. Zebrafish breed prodigiously and generate large numbers of offspring rapidly. Their larvae are transparent, which make many anatomical features easily visible during development. Zebrafish have similar genetic structure and organ distributions to humans and share approximately 70% of their genome with humans.338 The popularity and value of zebrafish research have also been reflected by the number of research articles published recently in ATVB. In 2016 and 2017, 8 articles reported zebrafish models,613 involving studies of lipoprotein signaling, endothelial development and functions, angiogenesis, and lymphangiogenesis. These articles studied zebrafish at stages during embryonic or larval development when the sex cannot be identified.

Sex determination is more complicated compared to mammalian organisms because zebrafish do not have sex chromosomes.339,340 However, there are multiple features that can help identify male and female zebrafish at the adult stage. Since sexual dimorphism has been noted in zebrafish (in a few examples341344), the ATVB editors encourage authors to study both sexes and provide the sex identification information if adult zebrafish are studied. If the sex cannot be identified before the adult stage, we encourage the authors to briefly state this potential limitation in the Methods section.

Rodent Models

Rodents are the most common species used to study cardiovascular functions and diseases. The most popular species are mice and rats. Among the 295 articles analyzed, 251 (85%) articles reported mouse models,14264 114 (39%) reported results on primary cells isolated from mice, 21 (7%) reported rat models,265285 and 14 (5%) reported results on primary cells isolated from rats. For in vivo studies, 84% of the articles reported sex in mouse models, and 95% reported sex in rat models after exclusion of those that only used embryos or neonates. The most commonly studied sex is male in both mice and rats (Tables 3 and 4). In adult mice and rats, the estrous cycle is approximately 4 – 5 days, which leads to striking changes in sex hormones during this brief interval.345,346 In addition, some cardiovascular diseases have milder phenotypes in females than in males.1,3 For these reasons, many researchers elect to focus their studies on male rodents, especially in mice.

Table 3.

Percent of Articles Reporting Sex in Mouse Studies

Reporting Sex Year of Publications
2016 2017
Male 60% 53%
Female 7% 15%
Both Male and Female 11% 23%

Table 4.

Percent of Articles Reporting Sex in Rat Studies

Reporting Sex Year of Publications
2016 2017
Male 90% 91%
Female 10% 0
Both Male and Female 0 0

For articles that studied rodent primary cell cultures, after excluding those that used cells from neonates, sex was reported in approximately 25% and 40% of the studies in mice and rats, respectively. Many studies included both in vivo studies and primary cell cultures from the rodent model. Most articles specified the sex of animals in the Methods section, but did not provide sex information for primary cell isolation and culture. Although it is very possible that same sex was used for both in vivo and in vitro studies, our analysis only counted the articles that clearly stated sex information in the primary cell isolation and culture sections.

ATVB publishes articles that cover a spectrum of research areas on lipoprotein metabolism, atherosclerosis, thrombosis, and vascular biology and related diseases. Sex differences are an important feature of these cardiovascular physiological and pathological states. One example is angiotensin II-induced abdominal aortic aneurysm (AAA) that was discussed in the recent ATVB Council statement.2 The incidence of angiotensin II-induced AAA is approximately 80 – 100% in male hypercholesterolemic mice, but only approximately 10% in female mice with the same genetic background. Although the first publication in apolipoprotein E deficient mice used females,347 the vast majority of subsequent studies evaluated only male mice,348 except for a few articles that have studied sex differences of the disease in this mouse model. Therefore, if a strong sexual dimorphism has already been identified and recognized by the research community, the ATVB editors recommend monitoring this specific issue and suggest that the authors provide a succinct justification in their manuscripts as to why a specific sex was studied. Otherwise, we recommend that the authors study both male and female rodent models.

Large Animal Models

Large animals are more expensive to maintain and study than rodent models and thus data are frequently derived from relatively small sample sizes. However, these larger models may have more relevance to human physiological and pathophysiological conditions.349 For example, atherosclerotic plaque rupture, a potentially fatal clinical condition, does not occur in the most commonly used mouse models of atherosclerosis.349 In addition, a common and disease-relevant location of human atherosclerosis is the coronary arteries, but atherosclerosis does not occur in coronary artery branches of mice.350 Large animals, especially pigs and nonhuman primates, not only mimic multiple features of human diseases, but also are valuable to test drug toxicology and potency. Therefore, the editors acknowledge the importance of and encourage cardiovascular research studies using large animals.

In articles published between 2016 and 2017 in ATVB, 6 studied rabbit models,286291 1 studied a dog model,263 6 studied pig models,11, 292,293, 295297 and 3 studied nonhuman primate studies. 298300 Among these 16 articles, 81% reported sex, 2 articles studied both sexes in rabbits, and 1 article reported both sexes in dogs (Table 5). There are multiple issues that limit large animal studies, such as sample size, the cost, and study duration. Although the journal does not require that both sexes should be evaluated in large animal studies, it is suggested that authors state clearly the sex of animals, provide a necessary justification why a specific sex was studied, and discuss the potential limitation if only one sex was studied.

Perspectives

ATVB implemented the Technical Review mechanism in September 2017, which did not impact reporting sex in the articles that were reviewed and analyzed between 2016 and 2017 (Tables 15). However, we note that more articles have reported both male and female mouse data (26 articles) in 2017, compared to publications (15 articles) in 2016 (Table 3). For those that only studied a single sex, reporting of female mice has also increased (17 articles in 2017 versus 9 articles in 2016; Table 3). The editors believe that this recently instituted technical review process will lead to a further increase in the reporting of sex and sex differences in ATVB.

The ATVB editors aim to evaluate each original research article with the following specific requests for reporting sex:

  • (1)

    Sex of in vivo animal models and ex vivo primary cell culture studies must be clearly stated in the Methods, Results, Tables, and Figure legends.

  • (2)

    If the authors studied only one sex, the authors will be asked to provide a justification for the selection of this specific sex.

We also recommend that the authors state the potential limitations of studying a single sex in either the Method or Discussion sections. The ATVB editors appreciate the responsiveness of authors to study sex differences in preclinical models more frequently. We hope that this continued effort from both the editors and authors will help the research community to enhance understanding and exploring sex differences of cardiovascular functions and diseases.

Acknowledgment

The ATVB editors in this writing group would like to thank the ATVB editorial office, the editors, reviewers, and authors for their tremendous efforts in supporting publishing high quality research articles that report sex and sex differences.

Footnotes

Disclosures

None.

References

  • 1.Arnold AP, Cassis LA, Eghbali M, Reue K, Sandberg K. Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases. Arterioscler Thromb Vasc Biol. 2017;37:746–756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Robinet P, Milewicz DM, Cassis LA, Leeper NJ, Lu HS, Smith JD. Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies-Statement From ATVB Council. Arterioscler Thromb Vasc Biol. 2018;38:292–303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Daugherty A, Hegele RA, Mackman N, Rader DJ, Schmidt AM, Weber C. Complying With the National Institutes of Health Guidelines and Principles for Rigor and Reproducibility: Refutations. Arterioscler Thromb Vasc Biol. 2016;36:1303–1304. [DOI] [PubMed] [Google Scholar]
  • 4.Shah K, McCormack CE, Bradbury NA. Do you know the sex of your cells? Am J Physiol Cell Physiol. 2014;306:C3–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ramirez FD, Hibbert B. Letter by Ramirez and Hibbert Regarding Article, “Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies: A Statement From the Arteriosclerosis, Thrombosis, and Vascular Biology Council”. Arterioscler Thromb Vasc Biol. 2018;38:e99–e100. [DOI] [PubMed] [Google Scholar]
  • 6.Gibbs-Bar L, Tempelhof H, Ben-Hamo R, Ely Y, Brandis A, Hofi R, Almog G, Braun T, Feldmesser E, Efroni S, Yaniv K. Autotaxin-Lysophosphatidic Acid Axis Acts Downstream of Apoprotein B Lipoproteins in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2016;36:2058–2067. [DOI] [PubMed] [Google Scholar]
  • 7.Castranova D, Davis AE, Lo BD, Miller MF, Paukstelis PJ, Swift MR, Pham VN, Torres-Vazquez J, Bell K, Shaw KM, Kamei M, Weinstein BM. Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway. Arterioscler Thromb Vasc Biol. 2016;36:655–662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Becker PW, Sacilotto N, Nornes S, Neal A, Thomas MO, Liu K, Preece C, Ratnayaka I, Davies B, Bou-Gharios G, De Val S. An Intronic Flk1 Enhancer Directs Arterial-Specific Expression via RBPJ-Mediated Venous Repression. Arterioscler Thromb Vasc Biol. 2016;36:1209–1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Yang C, Ohk J, Lee JY, Kim EJ, Kim J, Han S, Park D, Jung H, Kim C. Calmodulin Mediates Ca2+-Dependent Inhibition of Tie2 Signaling and Acts as a Developmental Brake During Embryonic Angiogenesis. Arterioscler Thromb Vasc Biol. 2016;36:1406–1416. [DOI] [PubMed] [Google Scholar]
  • 10.Chen J, Zhu RF, Li FF, Liang YL, Wang C, Qin YW, Huang S, Zhao XX, Jing Q. MicroRNA-126a Directs Lymphangiogenesis Through Interacting With Chemokine and Flt4 Signaling in Zebrafish. Arterioscler Thromb Vasc Biol. 2016;36:2381–2393. [DOI] [PubMed] [Google Scholar]
  • 11.Serbanovic-Canic J, de Luca A, Warboys C et al. Zebrafish Model for Functional Screening of Flow-Responsive Genes. Arterioscler Thromb Vasc Biol. 2017;37:130–143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Chrifi I, Louzao-Martinez L, Brandt M, van Dijk CGM, Burgisser P, Zhu C, Kros JM, Duncker DJ, Cheng C. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions. Arterioscler Thromb Vasc Biol. 2017;37:1098–1114. [DOI] [PubMed] [Google Scholar]
  • 13.Matrone G, Meng S, Gu Q, Lv J, Fang L, Chen K, Cooke JP. Lmo2 (LIM-Domain-Only 2) Modulates Sphk1 (Sphingosine Kinase) and Promotes Endothelial Cell Migration. Arterioscler Thromb Vasc Biol. 2017;37:1860–1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Liyanage SE, Fantin A, Villacampa P, Lange CA, Denti L, Cristante E, Smith AJ, Ali RR, Luhmann UF, Bainbridge JW, Ruhrberg C. Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization--Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:19–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Centa M, Gruber S, Nilsson D, Polyzos KA, Johansson DK, Hansson GK, Ketelhuth DF, Binder CJ, Malin S. Atherosclerosis Susceptibility in Mice Is Independent of the V1 Immunoglobulin Heavy Chain Gene. Arterioscler Thromb Vasc Biol. 2016;36:25–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Grimm M, Tischner D, Troidl K, Albarran Juarez J, Sivaraj KK, Ferreiros Bouzas N, Geisslinger G, Binder CJ, Wettschureck N. S1P2/G12/13 Signaling Negatively Regulates Macrophage Activation and Indirectly Shapes the Atheroprotective B1-Cell Population. Arterioscler Thromb Vasc Biol. 2016;36:37–48. [DOI] [PubMed] [Google Scholar]
  • 17.She ZG, Chang Y, Pang HB, Han W, Chen HZ, Smith JW, Stallcup WB. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2016;36:49–59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Schwanekamp JA, Lorts A, Vagnozzi RJ, Vanhoutte D, Molkentin JD. Deletion of Periostin Protects Against Atherosclerosis in Mice by Altering Inflammation and Extracellular Matrix Remodeling. Arterioscler Thromb Vasc Biol. 2016;36:60–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Lu H, Wu C, Howatt DA, Balakrishnan A, Moorleghen JJ, Chen X, Zhao M, Graham MJ, Mullick AE, Crooke RM, Feldman DL, Cassis LA, Vander Kooi CW, Daugherty A. Angiotensinogen exerts effects independent of angiotensin II. Arterioscler Thromb Vasc Biol. 2016;36:256–265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Diao Y, Mohandas R, Lee P, Liu Z, Sautina L, Mu W, Li S, Wen X, Croker B, Segal MS. Effects of Long-Term Type I Interferon on the Arterial Wall and Smooth Muscle Progenitor Cells Differentiation. Arterioscler Thromb Vasc Biol. 2016;36:266–273. [DOI] [PubMed] [Google Scholar]
  • 21.Nguyen SD, Maaninka K, Lappalainen J, Nurmi K, Metso J, Oorni K, Navab M, Fogelman AM, Jauhiainen M, Lee-Rueckert M, Kovanen PT. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol. 2016;36:274–284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.El Khoury P, Waldmann E, Huby T, Gall J, Couvert P, Lacorte JM, Chapman J, Frisdal E, Lesnik P, Parhofer KG, Le Goff W, Guerin M. Extended-Release Niacin/Laropiprant Improves Overall Efficacy of Postprandial Reverse Cholesterol Transport. Arterioscler Thromb Vasc Biol. 2016;36:285–294. [DOI] [PubMed] [Google Scholar]
  • 23.Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, El-Osta A, Calkin AC, Biessen EA, Touyz RM, Cooper ME, Schmidt HH, Jandeleit-Dahm KA. Reactive Oxygen Species Can Provide Atheroprotection via NOX4-Dependent Inhibition of Inflammation and Vascular Remodeling. Arterioscler Thromb Vasc Biol. 2016;36:295–307. [DOI] [PubMed] [Google Scholar]
  • 24.Liu D, Lei L, Desir M, Huang Y, Cleman J, Jiang W, Fernandez-Hernando C, Di Lorenzo A, Sessa WC, Giordano FJ. Smooth Muscle Hypoxia-Inducible Factor 1alpha Links Intravascular Pressure and Atherosclerosis--Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:442–44. [DOI] [PubMed] [Google Scholar]
  • 25.Palekar RU, Jallouk AP, Myerson JW, Pan H, Wickline SA. Inhibition of Thrombin With PPACK-Nanoparticles Restores Disrupted Endothelial Barriers and Attenuates Thrombotic Risk in Experimental Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:446–455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Foks AC, Engelbertsen D, Kuperwaser F, Alberts-Grill N, Gonen A, Witztum JL, Lederer J, Jarolim P, DeKruyff RH, Freeman GJ, Lichtman AH. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol. 2016;36:456–465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Chu Y, Lund DD, Doshi H et al. Fibrotic Aortic Valve Stenosis in Hypercholesterolemic/Hypertensive Mice. Arterioscler Thromb Vasc Biol. 2016;36:466–474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Shnerb Ganor R, Harats D, Schiby G, Gailani D, Levkovitz H, Avivi C, Tamarin I, Shaish A, Salomon O. Factor XI Deficiency Protects Against Atherogenesis in Apolipoprotein E/Factor XI Double Knockout Mice. Arterioscler Thromb Vasc Biol. 2016;36:475–481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Gerdes N, Seijkens T, Lievens D et al. Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arterioscler Thromb Vasc Biol. 2016;36:482–490. [DOI] [PubMed] [Google Scholar]
  • 30.Nakashiro S, Matoba T, Umezu R, Koga J, Tokutome M, Katsuki S, Nakano K, Sunagawa K, Egashira K. Pioglitazone-Incorporated Nanoparticles Prevent Plaque Destabilization and Rupture by Regulating Monocyte/Macrophage Differentiation in ApoE−/− Mice. Arterioscler Thromb Vasc Biol. 2016;36:491–500. [DOI] [PubMed] [Google Scholar]
  • 31.Yakushiji E, Ayaori M, Nishida T, Shiotani K, Takiguchi S, Nakaya K, Uto-Kondo H, Ogura M, Sasaki M, Yogo M, Komatsu T, Lu R, Yokoyama S, Ikewaki K. Probucol-Oxidized Products, Spiroquinone and Diphenoquinone, Promote Reverse Cholesterol Transport in Mice. Arterioscler Thromb Vasc Biol. 2016;36:591–597. [DOI] [PubMed] [Google Scholar]
  • 32.Babaev VR, Ding L, Zhang Y, May JM, Lin PC, Fazio S, Linton MF. Macrophage IKKalpha Deficiency Suppresses Akt Phosphorylation, Reduces Cell Survival, and Decreases Early Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:598–607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Rahtu-Korpela L, Maatta J, Dimova EY, Horkko S, Gylling H, Walkinshaw G, Hakkola J, Kivirikko KI, Myllyharju J, Serpi R, Koivunen P. Hypoxia-Inducible Factor Prolyl 4-Hydroxylase-2 Inhibition Protects Against Development of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:608–617. [DOI] [PubMed] [Google Scholar]
  • 34.Liang SJ, Zeng DY, Mai XY et al. Inhibition of Orai1 Store-Operated Calcium Channel Prevents Foam Cell Formation and Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:618–628. [DOI] [PubMed] [Google Scholar]
  • 35.Wang X, Raghavan A, Chen T, Qiao L, Zhang Y, Ding Q, Musunuru K. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:783–786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Boulaftali Y, Owens AP 3rd, Beale A, Piatt R, Casari C, Lee RH, Conley PB, Paul DS, Mackman N, Bergmeier W. CalDAG-GEFI Deficiency Reduces Atherosclerotic Lesion Development in Mice. Arterioscler Thromb Vasc Biol. 2016;36:792–799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Belmokhtar K, Robert T, Ortillon J, Braconnier A, Vuiblet V, Boulagnon-Rombi C, Diebold MD, Pietrement C, Schmidt AM, Rieu P, Toure F. Signaling of Serum Amyloid A Through Receptor for Advanced Glycation End Products as a Possible Mechanism for Uremia-Related Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:800–809. [DOI] [PubMed] [Google Scholar]
  • 38.Grandoch M, Kohlmorgen C, Melchior-Becker A et al. Loss of Biglycan Enhances Thrombin Generation in Apolipoprotein E-Deficient Mice: Implications for Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:e41–50. [DOI] [PubMed] [Google Scholar]
  • 39.Brinck JW, Thomas A, Lauer E et al. Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection. Arterioscler Thromb Vasc Biol. 2016;36:817–824. [DOI] [PubMed] [Google Scholar]
  • 40.Howatt DA, Balakrishnan A, Moorleghen JJ, Muniappan L, Rateri DL, Uchida HA, Takano J, Saido TC, Chishti AH, Baud L, Subramanian V. Leukocyte Calpain Deficiency Reduces Angiotensin II-Induced Inflammation and Atherosclerosis But Not Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol. 2016;36:835–845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Chen X, Howatt DA, Balakrishnan A, Moorleghen JJ, Wu C, Cassis LA, Daugherty A, Lu H. Angiotensin-converting enzyme in smooth muscle cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:1085–1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Li X, Fang P, Li Y et al. Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation. Arterioscler Thromb Vasc Biol. 2016;36:1090–100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Chellan B, Reardon CA, Getz GS, Hofmann Bowman MA. Enzymatically Modified Low-Density Lipoprotein Promotes Foam Cell Formation in Smooth Muscle Cells via Macropinocytosis and Enhances Receptor-Mediated Uptake of Oxidized Low-Density Lipoprotein. Arterioscler Thromb Vasc Biol. 2016;36:1101–1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Zhang N, Liu Z, Yao L, Mehta-D’souza P, McEver RP. P-Selectin Expressed by a Human SELP Transgene Is Atherogenic in Apolipoprotein E-Deficient Mice. Arterioscler Thromb Vasc Biol. 2016;36:1114–1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Babaev VR, Yeung M, Erbay E, Ding L, Zhang Y, May JM, Fazio S, Hotamisligil GS, Linton MF. Jnk1 Deficiency in Hematopoietic Cells Suppresses Macrophage Apoptosis and Increases Atherosclerosis in Low-Density Lipoprotein Receptor Null Mice. Arterioscler Thromb Vasc Biol. 2016;36:1122–1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Matsumoto T, Sasaki N, Yamashita T, Emoto T, Kasahara K, Mizoguchi T, Hayashi T, Yodoi K, Kitano N, Saito T, Yamaguchi T, Hirata K. Overexpression of Cytotoxic T-Lymphocyte-Associated Antigen-4 Prevents Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol. 2016;36:1141–1151. [DOI] [PubMed] [Google Scholar]
  • 47.Mehta NU, Grijalva V, Hama S, Wagner A, Navab M, Fogelman AM, Reddy ST. Apolipoprotein E−/− Mice Lacking Hemopexin Develop Increased Atherosclerosis via Mechanisms That Include Oxidative Stress and Altered Macrophage Function. Arterioscler Thromb Vasc Biol. 2016;36:1152–1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Srikakulapu P, Hu D, Yin C, Mohanta SK, Bontha SV, Peng L, Beer M, Weber C, McNamara CA, Grassia G, Maffia P, Manz RA, Habenicht AJ. Artery Tertiary Lymphoid Organs Control Multilayered Territorialized Atherosclerosis B-Cell Responses in Aged ApoE−/− Mice. Arterioscler Thromb Vasc Biol. 2016;36:1174–1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Tarling EJ, Edwards PA. Intracellular Localization of Endogenous Mouse ABCG1 Is Mimicked by Both ABCG1-L550 and ABCG1-P550-Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:1323–1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Westerterp M, Tsuchiya K, Tattersall IW, Fotakis P, Bochem AE, Molusky MM, Ntonga V, Abramowicz S, Parks JS, Welch CL, Kitajewski J, Accili D, Tall AR. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol. 2016;36:1328–1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Kockx M, Glaros E, Leung B, Ng TW, Berbee JF, Deswaerte V, Nawara D, Quinn C, Rye KA, Jessup W, Rensen PC, Meikle PJ, Kritharides L. Low-Density Lipoprotein Receptor-Dependent and Low-Density Lipoprotein Receptor-Independent Mechanisms of Cyclosporin A-Induced Dyslipidemia. Arterioscler Thromb Vasc Biol. 2016;36:1338–1349. [DOI] [PubMed] [Google Scholar]
  • 52.Liu J, Hernandez-Ono A, Graham MJ, Galton VA, Ginsberg HN. Type 1 Deiodinase Regulates ApoA-I Gene Expression and ApoA-I Synthesis Independent of Thyroid Hormone Signaling. Arterioscler Thromb Vasc Biol. 2016;36:1356–1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Shen J, Tong X, Sud N, Khound R, Song Y, Maldonado-Gomez MX, Walter J, Su Q. Low-Density Lipoprotein Receptor Signaling Mediates the Triglyceride-Lowering Action of Akkermansia muciniphila in Genetic-Induced Hyperlipidemia. J Mol Med (Berl). 2016;36:1448–1456. [DOI] [PubMed] [Google Scholar]
  • 54.Zhu L, Giunzioni I, Tavori H, Covarrubias R, Ding L, Zhang Y, Ormseth M, Major AS, Stafford JM, Linton MF, Fazio S. Loss of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 Confers Resistance to the Antiatherogenic Effects of Tumor Necrosis Factor-alpha Inhibition. Arterioscler Thromb Vasc Biol. 2016;36:1483–1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Butcher MJ, Waseem TC, Galkina EV. Smooth Muscle Cell-Derived Interleukin-17C Plays an Atherogenic Role via the Recruitment of Proinflammatory Interleukin-17A+ T Cells to the Aorta. Arterioscler Thromb Vasc Biol. 2016;36:1496–1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Stachon P, Geis S, Peikert A et al. Extracellular ATP Induces Vascular Inflammation and Atherosclerosis via Purinergic Receptor Y2 in Mice. Arterioscler Thromb Vasc Biol. 2016;36:1577–1586. [DOI] [PubMed] [Google Scholar]
  • 57.Meiler S, Smeets E, Winkels H, Shami A, Pascutti MF, Nolte MA, Beckers L, Weber C, Gerdes N, Lutgens E. Constitutive GITR Activation Reduces Atherosclerosis by Promoting Regulatory CD4+ T-Cell Responses-Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:1748–1752. [DOI] [PubMed] [Google Scholar]
  • 58.Park JG, Xu X, Cho S, Lee AH. Loss of Transcription Factor CREBH Accelerates Diet-Induced Atherosclerosis in Ldlr−/− Mice. Arterioscler Thromb Vasc Biol. 2016;36:1772–1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Aarup A, Pedersen TX, Junker N, Christoffersen C, Bartels ED, Madsen M, Nielsen CH, Nielsen LB. Hypoxia-Inducible Factor-1alpha Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:1782–1790. [DOI] [PubMed] [Google Scholar]
  • 60.Herbin O, Regelmann AG, Ramkhelawon B, Weinstein EG, Moore KJ, Alexandropoulos K. Monocyte Adhesion and Plaque Recruitment During Atherosclerosis Development Is Regulated by the Adapter Protein Chat-H/SHEP1. Arterioscler Thromb Vasc Biol. 2016;36:1791–1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Perisic Matic L, Rykaczewska U, Razuvaev A et al. Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM. Arterioscler Thromb Vasc Biol. 2016;36:1947–1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Jin X, Sviridov D, Liu Y, Vaisman B, Addadi L, Remaley AT, Kruth HS. ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages. Arterioscler Thromb Vasc Biol. 2016;36:2283–2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Mukhamedova N, Hoang A, Cui HL, Carmichael I, Fu Y, Bukrinsky M, Sviridov D. Small GTPase ARF6 Regulates Endocytic Pathway Leading to Degradation of ATP-Binding Cassette Transporter A1. Arterioscler Thromb Vasc Biol. 2016;36:2292–2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Katsube A, Hayashi H, Kusuhara H. Pim-1L Protects Cell Surface-Resident ABCA1 From Lysosomal Degradation in Hepatocytes and Thereby Regulates Plasma High-Density Lipoprotein Level. Arterioscler Thromb Vasc Biol. 2016;36:2304–2314. [DOI] [PubMed] [Google Scholar]
  • 65.Duval C, Ali M, Chaudhry WW, Ridger VC, Ariens RA, Philippou H. Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis. Arterioscler Thromb Vasc Biol. 2016;36:308–316. [DOI] [PubMed] [Google Scholar]
  • 66.Delaney MK, Kim K, Estevez B, Xu Z, Stojanovic-Terpo A, Shen B, Ushio-Fukai M, Cho J, Du X. Differential Roles of the NADPH-Oxidase 1 and 2 in Platelet Activation and Thrombosis. Arterioscler Thromb Vasc Biol. 2016;36:846–854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.van Eeuwijk JM, Stegner D, Lamb DJ, Kraft P, Beck S, Thielmann I, Kiefer F, Walzog B, Stoll G, Nieswandt B. The Novel Oral Syk Inhibitor, Bl1002494, Protects Mice From Arterial Thrombosis and Thromboinflammatory Brain Infarction. Arterioscler Thromb Vasc Biol. 2016;36:1247–1253. [DOI] [PubMed] [Google Scholar]
  • 68.Crescente M, Pluthero FG, Li L et al. Intracellular Trafficking, Localization, and Mobilization of Platelet-Borne Thiol Isomerases. Arterioscler Thromb Vasc Biol. 2016;36:1164–1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Munzer P, Walker-Allgaier B, Geue S et al. PDK1 Determines Collagen-Dependent Platelet Ca2+ Signaling and Is Critical to Development of Ischemic Stroke In Vivo. Arterioscler Thromb Vasc Biol. 2016;36:1507–1516. [DOI] [PubMed] [Google Scholar]
  • 70.Oe Y, Hayashi S, Fushima T, Sato E, Kisu K, Sato H, Ito S, Takahashi N. Coagulation Factor Xa and Protease-Activated Receptor 2 as Novel Therapeutic Targets for Diabetic Nephropathy. Arterioscler Thromb Vasc Biol. 2016;36:1525–1533. [DOI] [PubMed] [Google Scholar]
  • 71.Covarrubias R, Chepurko E, Reynolds A, Huttinger ZM, Huttinger R, Stanfill K, Wheeler DG, Novitskaya T, Robson SC, Dwyer KM, Cowan PJ, Gumina RJ. Role of the CD39/CD73 Purinergic Pathway in Modulating Arterial Thrombosis in Mice. Arterioscler Thromb Vasc Biol. 2016;36:1809–1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Chen W, Liang X, Syed AK, Jessup P, Church WR, Ware J, Josephson CD, Li R. Inhibiting GPIbalpha Shedding Preserves Post-Transfusion Recovery and Hemostatic Function of Platelets After Prolonged Storage. Arterioscler Thromb Vasc Biol. 2016;36:1821–1828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Dhanesha N, Prakash P, Doddapattar P, Khanna I, Pollpeter MJ, Nayak MK, Staber JM, Chauhan AK. Endothelial Cell-Derived von Willebrand Factor Is the Major Determinant That Mediates von Willebrand Factor-Dependent Acute Ischemic Stroke by Promoting Postischemic Thrombo-Inflammation. Arterioscler Thromb Vasc Biol. 2016;36:1829–1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Yeung J, Tourdot BE, Adili R, Green AR, Freedman CJ, Fernandez-Perez P, Yu J, Holman TR, Holinstat M. 12(S)-HETrE, a 12-Lipoxygenase Oxylipin of Dihomo-gamma-Linolenic Acid, Inhibits Thrombosis via Galphas Signaling in Platelets. Arterioscler Thromb Vasc Biol. 2016;36:2068–2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Baig AA, Haining EJ, Geuss E, Beck S, Swieringa F, Wanitchakool P, Schuhmann MK, Stegner D, Kunzelmann K, Kleinschnitz C, Heemskerk JW, Braun A, Nieswandt B. TMEM16F-Mediated Platelet Membrane Phospholipid Scrambling Is Critical for Hemostasis and Thrombosis but not Thromboinflammation in Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:2152–2157. [DOI] [PubMed] [Google Scholar]
  • 76.Zhou Y, Abraham S, Renna S, Edelstein LC, Dangelmaier CA, Tsygankov AY, Kunapuli SP, Bray PF, McKenzie SE. TULA-2 (T-Cell Ubiquitin Ligand-2) Inhibits the Platelet Fc Receptor for IgG IIA (FcgammaRIIA) Signaling Pathway and Heparin-Induced Thrombocytopenia in Mice. Arterioscler Thromb Vasc Biol. 2016;36:2315–2323. [DOI] [PubMed] [Google Scholar]
  • 77.Moraes LA, Unsworth AJ, Vaiyapuri S et al. Farnesoid X Receptor and Its Ligands Inhibit the Function of Platelets. Arterioscler Thromb Vasc Biol. 2016;36:2324–2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Liu CL, Wang Y, Liao M et al. Allergic Lung Inflammation Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol. 2016;36:69–77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, Mikhed Y, Munzel T, Daiber A, Forstermann U, Li H. Uncoupling of Endothelial Nitric Oxide Synthase in Perivascular Adipose Tissue of Diet-Induced Obese Mice. Arterioscler Thromb Vasc Biol. 2016;36:78–85. [DOI] [PubMed] [Google Scholar]
  • 80.Park C, Lee TJ, Bhang SH et al. Injury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2. Arterioscler Thromb Vasc Biol. 2016;36:86–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Godo S, Sawada A, Saito H, Ikeda S, Enkhjargal B, Suzuki K, Tanaka S, Shimokawa H. Disruption of Physiological Balance Between Nitric Oxide and Endothelium-Dependent Hyperpolarization Impairs Cardiovascular Homeostasis in Mice. Arterioscler Thromb Vasc Biol. 2016;36:97–107. [DOI] [PubMed] [Google Scholar]
  • 82.Gao C, Fu Y, Li Y, Zhang X, Zhang L, Yu F, Xu SS, Xu Q, Zhu Y, Guan Y, Wang X, Kong W. Microsomal Prostaglandin E Synthase-1-Derived PGE2 Inhibits Vascular Smooth Muscle Cell Calcification. Arterioscler Thromb Vasc Biol. 2016;36:108–121. [DOI] [PubMed] [Google Scholar]
  • 83.Schlosser A, Pilecki B, Hemstra LE et al. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation. Arterioscler Thromb Vasc Biol. 2016;36:122–133. [DOI] [PubMed] [Google Scholar]
  • 84.Johns RA, Takimoto E, Meuchel LW, Elsaigh E, Zhang A, Heller NM, Semenza GL, Yamaji-Kegan K. Hypoxia-Inducible Factor 1alpha Is a Critical Downstream Mediator for Hypoxia-Induced Mitogenic Factor (FIZZ1/RELMalpha)-Induced Pulmonary Hypertension. Arterioscler Thromb Vasc Biol. 2016;36:134–144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Daniel JM, Prock A, Dutzmann J, Sonnenschein K, Thum T, Bauersachs J, Sedding DG. Regulator of G-Protein Signaling 5 Prevents Smooth Muscle Cell Proliferation and Attenuates Neointima Formation. Arterioscler Thromb Vasc Biol. 2016;36:317–327. [DOI] [PubMed] [Google Scholar]
  • 86.Huk DJ, Austin BF, Horne TE, Hinton RB, Ray WC, Heistad DD, Lincoln J. Valve Endothelial Cell-Derived Tgfbeta1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification. Arterioscler Thromb Vasc Biol. 2016;36:328–338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Yan Z, Wang ZG, Segev N, Hu S, Minshall RD, Dull RO, Zhang M, Malik AB, Hu G. Rab11a Mediates Vascular Endothelial-Cadherin Recycling and Controls Endothelial Barrier Function. Arterioscler Thromb Vasc Biol. 2016;36:339–349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Grandoch M, Kohlmorgen C, Melchior-Becker A et al. Loss of Biglycan Enhances Thrombin Generation in Apolipoprotein E-Deficient Mice: Implications for Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:e41–50. [DOI] [PubMed] [Google Scholar]
  • 89.Mao H, Lockyer P, Townley-Tilson WH, Xie L, Pi X. LRP1 Regulates Retinal Angiogenesis by Inhibiting PARP-1 Activity and Endothelial Cell Proliferation. Arterioscler Thromb Vasc Biol. 2016;36:350–360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Yang P, Wei X, Zhang J, Yi B, Zhang GX, Yin L, Yang XF, Sun J. Antithrombotic Effects of Nur77 and Nor1 Are Mediated Through Upregulating Thrombomodulin Expression in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2016;36:361–369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Rajput C, Tauseef M, Farazuddin M, Yazbeck P, Amin MR, Avin Br V, Sharma T, Mehta D. MicroRNA-150 Suppression of Angiopoetin-2 Generation and Signaling Is Crucial for Resolving Vascular Injury. Arterioscler Thromb Vasc Biol. 2016;36:380–388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Krohn JB, Hutcheson JD, Martinez-Martinez E, Irvin WS, Bouten CV, Bertazzon S, Bendeck MP, Aikawa E. Discoidin Domain Receptor-1 Regulates Calcific Extracellular Vesicle Release in Vascular Smooth Muscle Cell Fibrocalcific Response via Transforming Growth Factor-ß Signaling. Arterioscler Thromb Vasc Biol. 2016;36:525–533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Ramakrishnan DP, Hajj-Ali RA, Chen Y, Silverstein RL. Extracellular Vesicles Activate a CD36-Dependent Signaling Pathway to Inhibit Microvascular Endothelial Cell Migration and Tube Formation. Arterioscler Thromb Vasc Biol. 2016;36:534–544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Sanada F, Kanbara Y, Taniyama Y, Otsu R, Carracedo M, Ikeda-Iwabu Y, Muratsu J, Sugimoto K, Yamamoto K, Rakugi H, Morishita R. Induction of Angiogenesis by a Type III Phosphodiesterase Inhibitor, Cilostazol, Through Activation of Peroxisome Proliferator-Activated Receptor-gamma and cAMP Pathways in Vascular Cells. Arterioscler Thromb Vasc Biol. 2016;36:545–552. [DOI] [PubMed] [Google Scholar]
  • 95.Hu W, Zhang Y, Wang L, Lau CW, Xu J, Luo JY, Gou L, Yao X, Chen ZY, Ma RC, Tian XY, Huang Y. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function. Arterioscler Thromb Vasc Biol. 2016;36:553–560. [DOI] [PubMed] [Google Scholar]
  • 96.Pachel C, Mathes D, Arias-Loza AP, Heitzmann W, Nordbeck P, Deppermann C, Lorenz V, Hofmann U, Nieswandt B, Frantz S. Inhibition of Platelet GPVI Protects Against Myocardial Ischemia-Reperfusion Injury. Arterioscler Thromb Vasc Biol. 2016;36:629–635. [DOI] [PubMed] [Google Scholar]
  • 97.Suzuki K, Satoh K, Ikeda S et al. Basigin Promotes Cardiac Fibrosis and Failure in Response to Chronic Pressure Overload in Mice. Arterioscler Thromb Vasc Biol. 2016;36:636–646. [DOI] [PubMed] [Google Scholar]
  • 98.Schossleitner K, Rauscher S, Groger M, Friedl HP, Finsterwalder R, Habertheuer A, Sibilia M, Brostjan C, Fodinger D, Citi S, Petzelbauer P. Evidence That Cingulin Regulates Endothelial Barrier Function In Vitro and In Vivo. Arterioscler Thromb Vasc Biol. 2016;36:647–654. [DOI] [PubMed] [Google Scholar]
  • 99.Ma Q, Xia X, Tao Q, Lu K, Shen J, Xu Q, Hu X, Tang Y, Block NL, Webster KA, Schally AV, Wang J, Yu H. Profound Actions of an Agonist of Growth Hormone-Releasing Hormone on Angiogenic Therapy by Mesenchymal Stem Cells. Arterioscler Thromb Vasc Biol. 2016;36:663–672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Trachet B, Piersigilli A, Fraga-Silva RA, Aslanidou L, Sordet-Dessimoz J, Astolfo A, Stampanoni MF, Segers P, Stergiopulos N. Ascending aortic aneurysm in angiotensin II-infused mice: Formation, progression, and the role of focal dissections. Arterioscler Thromb Vasc Biol. 2016;36:673–681. [DOI] [PubMed] [Google Scholar]
  • 101.Harmon DB, Srikakulapu P, Kaplan JL et al. Protective Role for B-1b B Cells and IgM in Obesity-Associated Inflammation, Glucose Intolerance, and Insulin Resistance. Arterioscler Thromb Vasc Biol. 2016;36:682–691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Gkatzis K, Thalgott J, Dos-Santos-Luis D et al. Interaction Between ALK1 Signaling and Connexin40 in the Development of Arteriovenous Malformations. Arterioscler Thromb Vasc Biol. 2016;36:707–717. [DOI] [PubMed] [Google Scholar]
  • 103.Reddy MA, Das S, Zhuo C, Jin W, Wang M, Lanting L, Natarajan R. Regulation of Vascular Smooth Muscle Cell Dysfunction Under Diabetic Conditions by miR-504. Arterioscler Thromb Vasc Biol. 2016;36:864–873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Sun JY, Li C, Shen ZX et al. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Neointimal Hyperplasia and Suppresses Macrophage Inflammation Through SGK1-AP1/NF-kappaB Pathways. Arterioscler Thromb Vasc Biol. 2016;36:874–885. [DOI] [PubMed] [Google Scholar]
  • 105.Wakita D, Kurashima Y, Crother TR et al. Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease-Associated Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol. 2016;36:886–897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Moran CS, Rush CM, Dougan T, Jose RJ, Biros E, Norman PE, Gera L, Golledge J. Modulation of Kinin B2 Receptor Signaling Controls Aortic Dilatation and Rupture in the Angiotensin II-Infused Apolipoprotein E-Deficient Mouse. Arterioscler Thromb Vasc Biol. 2016;36:898–907. [DOI] [PubMed] [Google Scholar]
  • 107.Sharma AK, Salmon MD, Lu G, Su G, Pope NH, Smith JR, Weiss ML, Upchurch GR Jr. Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol. 2016;36:908–918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Ferruzzi J, Murtada SI, Li G, Jiao Y, Uman S, Ting MY, Tellides G, Humphrey JD. Pharmacologically Improved Contractility Protects Against Aortic Dissection in Mice With Disrupted Transforming Growth Factor-beta Signaling Despite Compromised Extracellular Matrix Properties. Arterioscler Thromb Vasc Biol. 2016;36:919–927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Liverani E, Rico MC, Tsygankov AY, Kilpatrick LE, Kunapuli SP. P2Y12 Receptor Modulates Sepsis-Induced Inflammation. Arterioscler Thromb Vasc Biol. 2016;36:961–971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Stiber JA, Wu JH, Zhang L, Nepliouev I, Zhang ZS, Bryson VG, Brian L, Bentley RC, Gordon-Weeks PR, Rosenberg PB, Freedman NJ. The actin-binding protein drebrin inhibits neointimal hyperplasia. Arterioscler Thromb Vasc Biol. 2016;36:984–993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Talia DM, Deliyanti D, Agrotis A, Wilkinson-Berka JL. Inhibition of the Nuclear Receptor RORgamma and Interleukin-17A Suppresses Neovascular Retinopathy: Involvement of Immunocompetent Microglia. Arterioscler Thromb Vasc Biol. 2016;36:1186–1196. [DOI] [PubMed] [Google Scholar]
  • 112.Ren B, Best B, Ramakrishnan DP, Walcott BP, Storz P, Silverstein RL. LPA/PKD-1-FoxO1 Signaling Axis Mediates Endothelial Cell CD36 Transcriptional Repression and Proangiogenic and Proarteriogenic Reprogramming. Arterioscler Thromb Vasc Biol. 2016;36:1197–1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Becker PW, Sacilotto N, Nornes S, Neal A, Thomas MO, Liu K, Preece C, Ratnayaka I, Davies B, Bou-Gharios G, De Val S. An Intronic Flk1 Enhancer Directs Arterial-Specific Expression via RBPJ-Mediated Venous Repression. Arterioscler Thromb Vasc Biol. 2016;36:1209–1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Shindo T, Ito K, Ogata T et al. Low-Intensity Pulsed Ultrasound Enhances Angiogenesis and Ameliorates Left Ventricular Dysfunction in a Mouse Model of Acute Myocardial Infarction. Arterioscler Thromb Vasc Biol. 2016;36:1220–1229. [DOI] [PubMed] [Google Scholar]
  • 115.Sun Y, Wang K, Ye P, Wu J, Ren L, Zhang A, Huang X, Deng P, Wu C, Yue Z, Chen Z, Ding X, Chen J, Xia J. MicroRNA-155 Promotes the Directional Migration of Resident Smooth Muscle Progenitor Cells by Regulating Monocyte Chemoattractant Protein 1 in Transplant Arteriosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:1230–1239. [DOI] [PubMed] [Google Scholar]
  • 116.Shikatani EA, Chandy M, Besla R, Li CC, Momen A, El-Mounayri O, Robbins CS, Husain M. c-Myb Regulates Proliferation and Differentiation of Adventitial Sca1+ Vascular Smooth Muscle Cell Progenitors by Transactivation of Myocardin. Arterioscler Thromb Vasc Biol. 2016;36:1367–1376. [DOI] [PubMed] [Google Scholar]
  • 117.Gomez-Stallons MV, Wirrig-Schwendeman EE, Hassel KR, Conway SJ, Yutzey KE. Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification. Arterioscler Thromb Vasc Biol. 2016;36:1398–1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Williams H, Mill CA, Monk BA, Hulin-Curtis S, Johnson JL, George SJ. Wnt2 and WISP-1/CCN4 Induce Intimal Thickening via Promotion of Smooth Muscle Cell Migration. Arterioscler Thromb Vasc Biol. 2016;36:1417–1424. [DOI] [PubMed] [Google Scholar]
  • 119.Boeckel JN, Derlet A, Glaser SF, Luczak A, Lucas T, Heumuller AW, Kruger M, Zehendner CM, Kaluza D, Doddaballapur A, Ohtani K, Treguer K, Dimmeler S. JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2016;36:1425–1433. [DOI] [PubMed] [Google Scholar]
  • 120.Wu H, Cheng XW, Hu L et al. Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K-Akt/p-HDAC6 Signaling Pathway. Arterioscler Thromb Vasc Biol. 2016;36:1549–1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Brandes RP, Harenkamp S, Schurmann C et al. The Cytosolic NADPH Oxidase Subunit NoxO1 Promotes an Endothelial Stalk Cell Phenotype. Arterioscler Thromb Vasc Biol. 2016;36:1558–1565. [DOI] [PubMed] [Google Scholar]
  • 122.Li DJ, Huang F, Ni M, Fu H, Zhang LS, Shen FM. alpha7 Nicotinic Acetylcholine Receptor Relieves Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Raising Nicotinamide Adenine Dinucleotide-Dependent SIRT1 Activity. Arterioscler Thromb Vasc Biol. 2016;36:1566–1576. [DOI] [PubMed] [Google Scholar]
  • 123.Martorell S, Hueso L, Gonzalez-Navarro H, Collado A, Sanz MJ, Piqueras L. Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice. Arterioscler Thromb Vasc Biol. 2016;36:1587–1597. [DOI] [PubMed] [Google Scholar]
  • 124.Kauffenstein G, Tamareille S, Prunier F et al. Central Role of P2Y6 UDP Receptor in Arteriolar Myogenic Tone. Arterioscler Thromb Vasc Biol. 2016;36:1598–1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Hibender S, Franken R, van Roomen C et al. Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model. Arterioscler Thromb Vasc Biol. 2016;36:1618–1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Sung DC, Bowen CJ, Vaidya KA, Zhou J, Chapurin N, Recknagel A, Zhou B, Chen J, Kotlikoff M, Butcher JT. Cadherin-11 Overexpression Induces Extracellular Matrix Remodeling and Calcification in Mature Aortic Valves. Arterioscler Thromb Vasc Biol. 2016;36:1627–1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Batchu N, Hughson A, Wadosky KM, Morrell CN, Fowell DJ, Korshunov VA. Role of Axl in T-Lymphocyte Survival in Salt-Dependent Hypertension. Arterioscler Thromb Vasc Biol. 2016;36:1638–1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Yan H, Zhou HF, Akk A, Hu Y, Springer LE, Ennis TL, Pham CT. Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation. Arterioscler Thromb Vasc Biol. 2016;36:1660–1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Lu H, Howatt DA, Balakrishnan A, Graham MJ, Mullick AE, Daugherty A. Hypercholesterolemia Induced by a PCSK9 Gain-of-Function Mutation Augments Angiotensin II-Induced Abdominal Aortic Aneurysms in C57BL/6 Mice. Arterioscler Thromb Vasc Biol. 2016;36:1753–1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Zhu H, Zhang M, Liu Z, Xing J, Moriasi C, Dai X, Zou MH. AMP-Activated Protein Kinase alpha1 in Macrophages Promotes Collateral Remodeling and Arteriogenesis in Mice In Vivo. Arterioscler Thromb Vasc Biol. 2016;36:1868–1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Saker M, Lipskaia L, Marcos E et al. Osteopontin, a Key Mediator Expressed by Senescent Pulmonary Vascular Cells in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol. 2016;36:1879–1890. [DOI] [PubMed] [Google Scholar]
  • 132.Kirsch J, Schneider H, Pagel JI et al. Endothelial Dysfunction, and A Prothrombotic, Proinflammatory Phenotype Is Caused by Loss of Mitochondrial Thioredoxin Reductase in Endothelium. Arterioscler Thromb Vasc Biol. 2016;36:1891–1899. [DOI] [PubMed] [Google Scholar]
  • 133.Kassan M, Ait-Aissa K, Radwan E, Mali V, Haddox S, Gabani M, Zhang W, Belmadani S, Irani K, Trebak M, Matrougui K. Essential Role of Smooth Muscle STIM1 in Hypertension and Cardiovascular Dysfunction. Arterioscler Thromb Vasc Biol. 2016;36:1900–1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Gong Y, Fu Z, Edin ML et al. Cytochrome P450 Oxidase 2C Inhibition Adds to omega-3 Long-Chain Polyunsaturated Fatty Acids Protection Against Retinal and Choroidal Neovascularization. Arterioscler Thromb Vasc Biol. 2016;36:1919–1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Takei Y, Tanaka T, Kent KC, Yamanouchi D. Osteoclastogenic Differentiation of Macrophages in the Development of Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol. 2016;36:1962–1971. [DOI] [PubMed] [Google Scholar]
  • 136.Jiang L, Konishi H, Nurwidya F, Satoh K, Takahashi F, Ebinuma H, Fujimura K, Takasu K, Jiang M, Shimokawa H, Bujo H, Daida H. Deletion of LR11 Attenuates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation With Medial Thickening in Mice. Arterioscler Thromb Vasc Biol. 2016; 36:1972–1979. [DOI] [PubMed] [Google Scholar]
  • 137.Dutta P, Hoyer FF, Sun Y, Iwamoto Y, Tricot B, Weissleder R, Magnani JL, Swirski FK, Nahrendorf M. E-Selectin Inhibition Mitigates Splenic HSC Activation and Myelopoiesis in Hypercholesterolemic Mice With Myocardial Infarction. Arterioscler Thromb Vasc Biol. 2016;36:1802–1808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C, Wilkins MR, Toshner M, Wojciak-Stothard B. Neutrophil Extracellular Traps Promote Angiogenesis: Evidence From Vascular Pathology in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol. 2016;36:2078–2087. [DOI] [PubMed] [Google Scholar]
  • 139.Imanishi M, Chiba Y, Tomita N, Matsunaga S, Nakagawa T, Ueno M, Yamamoto K, Tamaki T, Tomita S. Hypoxia-Inducible Factor-1alpha in Smooth Muscle Cells Protects Against Aortic Aneurysms-Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:2158–2162. [DOI] [PubMed] [Google Scholar]
  • 140.Liao Z, Cantor JM. Endothelial Cells Require CD98 for Efficient Angiogenesis-Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:2163–2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Ji Y, Weng Z, Fish P, Goyal N, Luo M, Myears SP, Strawn TL, Chandrasekar B, Wu J, Fay WP. Pharmacological Targeting of Plasminogen Activator Inhibitor-1 Decreases Vascular Smooth Muscle Cell Migration and Neointima Formation. Arterioscler Thromb Vasc Biol. 2016;36:2167–2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Lu WW, Jia LX, Ni XQ, Zhao L, Chang JR, Zhang JS, Hou YL, Zhu Y, Guan YF, Yu YR, Du J, Tang CS, Qi YF. Intermedin1–53 Attenuates Abdominal Aortic Aneurysm by Inhibiting Oxidative Stress. Arterioscler Thromb Vasc Biol. 2016;36:2176–2190. [DOI] [PubMed] [Google Scholar]
  • 143.Schaheen B, Downs EA, Serbulea V, Almenara CC, Spinosa M, Su G, Zhao Y, Srikakulapu P, Butts C, McNamara CA, Leitinger N, Upchurch GR Jr, Meher AK, Ailawadi G. B-Cell Depletion Promotes Aortic Infiltration of Immunosuppressive Cells and Is Protective of Experimental Aortic Aneurysm. Arterioscler Thromb Vasc Biol. 2016;36:2191–2202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.He H, Mack JJ, Guc E, Warren CM, Squadrito ML, Kilarski WW, Baer C, Freshman RD, McDonald AI, Ziyad S, Swartz MA, De Palma M, Iruela-Arispe ML. Perivascular Macrophages Limit Permeability. Arterioscler Thromb Vasc Biol. 2016;36:2203–2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Kick K, Nekolla K, Rehberg M, Vollmar AM, Zahler S. New View on Endothelial Cell Migration: Switching Modes of Migration Based on Matrix Composition. Arterioscler Thromb Vasc Biol. 2016;36:2346–2357. [DOI] [PubMed] [Google Scholar]
  • 146.Shentu TP, He M, Sun X, Zhang J, Zhang F, Gongol B, Marin TL, Zhang J, Wen L, Wang Y, Geary GG, Zhu Y, Johnson DA, Shyy JY. AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arterioscler Thromb Vasc Biol. 2016;36:2358–2368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Peghaire C, Bats ML, Sewduth R, Jeanningros S, Jaspard B, Couffinhal T, Duplaa C, Dufourcq P. Fzd7 (Frizzled-7) Expressed by Endothelial Cells Controls Blood Vessel Formation Through Wnt/beta-Catenin Canonical Signaling. Arterioscler Thromb Vasc Biol. 2016;36:2369–2380. [DOI] [PubMed] [Google Scholar]
  • 148.Li Q, Kim YR, Vikram A, Kumar S, Kassan M, Gabani M, Lee SK, Jacobs JS, Irani K. P66Shc-Induced MicroRNA-34a Causes Diabetic Endothelial Dysfunction by Downregulating Sirtuin1. Arterioscler Thromb Vasc Biol. 2016;36:2394–2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Wang C, Chen H, Zhu W et al. Nicotine Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice by Activating alpha7 Nicotinic Acetylcholine Receptor on Mast Cells. Arterioscler Thromb Vasc Biol. 2017;37:53–65. [DOI] [PubMed] [Google Scholar]
  • 150.Sasaki N, Yamashita T, Kasahara K et al. UVB Exposure Prevents Atherosclerosis by Regulating Immunoinflammatory Responses. Arterioscler Thromb Vasc Biol. 2017;37:66–74. [DOI] [PubMed] [Google Scholar]
  • 151.Chen X, Qian S, Hoggatt A, Tang H, Hacker TA, Obukhov AG, Herring PB, Seye CI. Endothelial Cell-Specific Deletion of P2Y2 Receptor Promotes Plaque Stability in Atherosclerosis-Susceptible ApoE-Null Mice. Arterioscler Thromb Vasc Biol. 2017;37:75–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Xu R, Li C, Wu Y, Shen L, Ma J, Qian J, Ge J. Role of KCa3.1 Channels in Macrophage Polarization and Its Relevance in Atherosclerotic Plaque Instability. Arterioscler Thromb Vasc Biol. 2017;37:226–236. [DOI] [PubMed] [Google Scholar]
  • 153.Sanz-Garcia C, Sanchez A, Contreras-Jurado C, Cales C, Barranquero C, Munoz M, Merino R, Escudero P, Sanz MJ, Osada J, Aranda A, Alemany S. Map3k8 Modulates Monocyte State and Atherogenesis in ApoE−/− Mice. Arterioscler Thromb Vasc Biol. 2017;37:237–246. [DOI] [PubMed] [Google Scholar]
  • 154.Nicolaou A, Zhao Z, Northoff BH, Sass K, Herbst A, Kohlmaier A, Chalaris A, Wolfrum C, Weber C, Steffens S, Rose-John S, Teupser D, Holdt LM. Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice. Arterioscler Thromb Vasc Biol. 2017;37:247–257. [DOI] [PubMed] [Google Scholar]
  • 155.McNeill E, Iqbal AJ, Jones D, Patel J, Coutinho P, Taylor L, Greaves DR, Channon KM. Tracking Monocyte Recruitment and Macrophage Accumulation in Atherosclerotic Plaque Progression Using a Novel hCD68GFP/ApoE−/− Reporter Mouse-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:258–263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Mistry RH, Verkade HJ, Tietge UJ. Reverse Cholesterol Transport Is Increased in Germ-Free Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:419–422. [DOI] [PubMed] [Google Scholar]
  • 157.Nelson JK, Koenis DS, Scheij S, Cook EC, Moeton M, Santos A, Lobaccaro JA, Baron S, and Zelcer N EEPD1 Is a Novel LXR Target Gene in Macrophages Which Regulates ABCA1 Abundance and Cholesterol Efflux. 2017;37: 3:423–432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Hasanov Z, Ruckdeschel T, Konig C, Mogler C, Kapel SS, Korn C, Spegg C, Eichwald V, Wieland M, Appak S, Augustin HG. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495–505. [DOI] [PubMed] [Google Scholar]
  • 159.Kurano M, Hara M, Ikeda H, Tsukamoto K, Yatomi Y. Involvement of CETP (Cholesteryl Ester Transfer Protein) in the Shift of Sphingosine-1-Phosphate Among Lipoproteins and in the Modulation of its Functions. Arterioscler Thromb Vasc Biol. 2017;37:506–514. [DOI] [PubMed] [Google Scholar]
  • 160.Niu X, Pi SL, Baral S, Xia YP, He QW, Li YN, Jin HJ, Li M, Wang MD, Mao L, Hu B. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515–524. [DOI] [PubMed] [Google Scholar]
  • 161.Glinzer A, Ma X, Prakash J et al. Targeting Elastase for Molecular Imaging of Early Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol. 2017;37:525–533. [DOI] [PubMed] [Google Scholar]
  • 162.Rossignoli A, Shang MM, Gladh H, Moessinger C, Foroughi Asl H, Talukdar HA, Franzen O, Mueller S, Bjorkegren JL, Folestad E, Skogsberg J. Poliovirus Receptor-Related 2: A Cholesterol-Responsive Gene Affecting Atherosclerosis Development by Modulating Leukocyte Migration. Arterioscler Thromb Vasc Biol. 2017;37:534–542. [DOI] [PubMed] [Google Scholar]
  • 163.Samsoondar JP, Burke AC, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Pinkosky SL, Newton RS, Huff MW. Prevention of Diet-Induced Metabolic Dysregulation, Inflammation, and Atherosclerosis in Ldlr(−/−) Mice by Treatment With the ATP-Citrate Lyase Inhibitor Bempedoic Acid. Arterioscler Thromb Vasc Biol. 2017;37:647–656. [DOI] [PubMed] [Google Scholar]
  • 164.Ouweneel AB, Heestermans M, Verwilligen RAF, Gijbels MJJ, Reitsma PH, Van Eck M, van Vlijmen BJM. Silencing of Anticoagulant Protein C Evokes Low-Incident but Spontaneous Atherothrombosis in Apolipoprotein E-Deficient Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:782–785. [DOI] [PubMed] [Google Scholar]
  • 165.Konaniah ES, Kuhel DG, Basford JE, Weintraub NL, Hui DY. Deficiency of LRP1 in Mature Adipocytes Promotes Diet-Induced Inflammation and Atherosclerosis-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:1046–1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X, Bandler RC, Rahman K, Fisher EA, Rayner KJ, Pezacki JP, Tabas I, Moore KJ. microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37:1058–1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Bermudez B, Dahl TB, Medina I et al. Leukocyte Overexpression of Intracellular NAMPT Attenuates Atherosclerosis by Regulating PPAR?-Dependent Monocyte Differentiation and Function. Arterioscler Thromb Vasc Biol. 2017;37:1157–1167. [DOI] [PubMed] [Google Scholar]
  • 168.Kayashima Y, Makhanova N, Maeda N. DBA/2J Haplotype on Distal Chromosome 2 Reduces Mertk Expression, Restricts Efferocytosis, and Increases Susceptibility to Atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37:e82–e91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Sun L, Yang X, Li Q et al. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol. 2017;37:1290–1300. [DOI] [PubMed] [Google Scholar]
  • 170.Ditiatkovski M, Palsson J, Chin-Dusting J, Remaley AT, Sviridov D. Apolipoprotein A-I Mimetic Peptides: Discordance Between In Vitro and In Vivo Properties-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:1301–1306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.van der Heijden T, Kritikou E, Venema W, van Duijn J, van Santbrink PJ, Slutter B, Foks AC, Bot I, Kuiper J. NLRP3 Inflammasome Inhibition by MCC950 Reduces Atherosclerotic Lesion Development in Apolipoprotein E-Deficient Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:1457–1461. [DOI] [PubMed] [Google Scholar]
  • 172.Chen Y, Huang W, Yang M, Xin G, Cui W, Xie Z, Silverstein RL. Cardiotonic Steroids Stimulate Macrophage Inflammatory Responses Through a Pathway Involving CD36, TLR4, and Na/K-ATPase. Arterioscler Thromb Vasc Biol. 2017;37:1462–1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Wang Y, Wang W, Wang N, Tall AR, Tabas I. Mitochondrial Oxidative Stress Promotes Atherosclerosis and Neutrophil Extracellular Traps in Aged Mice. Arterioscler Thromb Vasc Biol. 2017;37:e99–e107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Bai L, Li Z, Li Q, Guan H, Zhao S, Liu R, Wang R, Zhang J, Jia Y, Fan J, Wang N, Reddy JK, Shyy JY, Liu E. Mediator 1 Is Atherosclerosis Protective by Regulating Macrophage Polarization. Arterioscler Thromb Vasc Biol. 2017;37:1470–1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Chadwick AC, Wang X, Musunuru K. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vasc Biol. 2017;37:1741–1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Hohensinner PJ, Baumgartner J, Kral-Pointner JB, Uhrin P, Ebenbauer B, Thaler B, Doberer K, Stojkovic S, Demyanets S, Fischer MB, Huber K, Schabbauer G, Speidl WS, Wojta J. PAI-1 (Plasminogen Activator Inhibitor-1) Expression Renders Alternatively Activated Human Macrophages Proteolytically Quiescent. Arterioscler Thromb Vasc Biol. 2017;37:1913–1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Marcovecchio PM, Thomas GD, Mikulski Z, Ehinger E, Mueller KAL, Blatchley A, Wu R, Miller YI, Nguyen AT, Taylor AM, McNamara CA, Ley K, Hedrick CC. Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:2043–2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Trenteseaux C, Gaston AT, Aguesse A, Poupeau G, de Coppet P, Andriantsitohaina R, Laschet J, Amarger V, Krempf M, Nobecourt-Dupuy E, Ouguerram K. Perinatal Hypercholesterolemia Exacerbates Atherosclerosis Lesions in Offspring by Altering Metabolism of Trimethylamine-N-Oxide and Bile Acids. Arterioscler Thromb Vasc Biol. 2017;37:2053–2063. [DOI] [PubMed] [Google Scholar]
  • 179.Trigueros-Motos L, van Capelleveen JC, Torta F et al. PABCA8 Regulates Cholesterol Efflux and High-Density Lipoprotein Cholesterol Levels. Arterioscler Thromb Vasc Biol. 2017;37:2147–2155. [DOI] [PubMed] [Google Scholar]
  • 180.Khound R, Taher J, Baker C, Adeli K, Su Q. GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance. Arterioscler Thromb Vasc Biol. 2017;37:2252–2259. [DOI] [PubMed] [Google Scholar]
  • 181.Xu B, Gillard BK, Gotto AM Jr, Rosales C, Pownall HJ. ABCA1-Derived Nascent High-Density Lipoprotein-Apolipoprotein AI and Lipids Metabolically Segregate. Arterioscler Thromb Vasc Biol. 2017;37:2260–2270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Zhu QM, Ko KA, Ture S, Mastrangelo MA, Chen MH, Johnson AD, O’Donnell CJ, Morrell CN, Miano JM, Lowenstein CJ. Novel Thrombotic Function of a Human SNP in STXBP5 Revealed by CRISPR/Cas9 Gene Editing in Mice. Arterioscler Thromb Vasc Biol. 2017;37:264–270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Unsworth AJ, Flora GD, Sasikumar P, Bye AP, Sage T, Kriek N, Crescente M, Gibbins JM. RXR Ligands Negatively Regulate Thrombosis and Hemostasis. Arterioscler Thromb Vasc Biol. 2017;37:812–822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Smith CW, Thomas SG, Raslan Z, Patel P, Byrne M, Lordkipanidze M, Bem D, Meyaard L, Senis YA, Watson SP, Mazharian A. Mice Lacking the Inhibitory Collagen Receptor LAIR-1 Exhibit a Mild Thrombocytosis and Hyperactive Platelets. Arterioscler Thromb Vasc Biol. 2017;37:823–835. [DOI] [PubMed] [Google Scholar]
  • 185.Verhenne S, Vandeputte N, Pareyn I, Izsvak Z, Rottensteiner H, Deckmyn H, De Meyer SF, Vanhoorelbeke K. Long-Term Prevention of Congenital Thrombotic Thrombocytopenic Purpura in ADAMTS13 Knockout Mice by Sleeping Beauty Transposon-Mediated Gene Therapy. Arterioscler Thromb Vasc Biol. 2017;37:836–844. [DOI] [PubMed] [Google Scholar]
  • 186.Margraf A, Nussbaum C, Rohwedder I et al. Maturation of Platelet Function During Murine Fetal Development In Vivo. Arterioscler Thromb Vasc Biol. 2017;37:1076–1086. [DOI] [PubMed] [Google Scholar]
  • 187.Chang CH, Chung CH, Tu YS, Tsai CC, Hsu CC, Peng HC, Tseng YJ, Huang TF. Trowaglerix Venom Polypeptides As a Novel Antithrombotic Agent by Targeting Immunoglobulin-Like Domains of Glycoprotein VI in Platelet. Arterioscler Thromb Vasc Biol. 2017;37:1307–1314. [DOI] [PubMed] [Google Scholar]
  • 188.Laurance S, Bertin FR, Ebrahimian T, Kassim Y, Rys RN, Lehoux S, Lemarie CA, Blostein MD. Gas6 Promotes Inflammatory (CCR2(hi)CX3CR1(lo)) Monocyte Recruitment in Venous Thrombosis. Arterioscler Thromb Vasc Biol. 2017;37:1315–1322. [DOI] [PubMed] [Google Scholar]
  • 189.Rothmeier AS, Marchese P, Langer F, Kamikubo Y, Schaffner F, Cantor J, Ginsberg MH, Ruggeri ZM, Ruf W. Tissue Factor Prothrombotic Activity Is Regulated by Integrin-arf6 Trafficking. Arterioscler Thromb Vasc Biol. 2017;37:1323–1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Beckers CML, Simpson KR, Griffin KJ, Brown JM, Cheah LT, Smith KA, Vacher J, Cordell PA, Kearney MT, Grant PJ, Pease RJ. Cre/lox Studies Identify Resident Macrophages as the Major Source of Circulating Coagulation Factor XIII-A. Arterioscler Thromb Vasc Biol. 2017;37:1494–1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Choo HJ, Kholmukhamedov A, Zhou C, Jobe S. Inner Mitochondrial Membrane Disruption Links Apoptotic and Agonist-Initiated Phosphatidylserine Externalization in Platelets. Arterioscler Thromb Vasc Biol. 2017;37:1503–1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Fidler TP, Middleton EA, Rowley JW, Boudreau LH, Campbell RA, Souvenir R, Funari T, Tessandier N, Boilard E, Weyrich AS, Abel ED. Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation. Arterioscler Thromb Vasc Biol. 2017;37:1628–1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Adili R, Tourdot BE, Mast K, Yeung J, Freedman JC, Green A, Luci DK, Jadhav A, Simeonov A, Maloney DJ, Holman TR, Holinstat M. First Selective 12-LOX Inhibitor, ML355, Impairs Thrombus Formation and Vessel Occlusion In Vivo With Minimal Effects on Hemostasis. Arterioscler Thromb Vasc Biol. 2017;37:1828–1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Liu Y, Hu M, Luo D, Yue M, Wang S, Chen X, Zhou Y, Wang Y, Cai Y, Hu X, Ke Y, Yang Z, Hu H. Class III PI3K Positively Regulates Platelet Activation and Thrombosis via PI(3)P-Directed Function of NADPH Oxidase. Arterioscler Thromb Vasc Biol. 2017;37:2075–2086. [DOI] [PubMed] [Google Scholar]
  • 195.Chen W, Druzak SA, Wang Y, Josephson CD, Hoffmeister KM, Ware J, Li R. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets. Arterioscler Thromb Vasc Biol. 2017;37:2271–2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Zhuang J, Luan P, Li H, Wang K, Zhang P, Xu Y, Peng W. The Yin-Yang Dynamics of DNA Methylation Is the Key Regulator for Smooth Muscle Cell Phenotype Switch and Vascular Remodeling. Arterioscler Thromb Vasc Biol. 2017;37:84–97. [DOI] [PubMed] [Google Scholar]
  • 197.Bianchi R, Russo E, Bachmann SB, Proulx ST, Sesartic M, Smaadahl N, Watson SP, Buckley CD, Halin C, and Detmar M Postnatal Deletion of Podoplanin in Lymphatic Endothelium Results in Blood Filling of the Lymphatic System and Impairs Dendritic Cell Migration to Lymph Nodes. 2017;37: 1:108–117. [DOI] [PubMed] [Google Scholar]
  • 198.Lin YC, Chao TY, Yeh CT, Roffler SR, Kannagi R, Yang RB. Endothelial SCUBE2 Interacts With VEGFR2 and Regulates VEGF-Induced Angiogenesis. Arterioscler Thromb Vasc Biol. 2017;37:144–155. [DOI] [PubMed] [Google Scholar]
  • 199.Harada T, Yoshimura K, Yamashita O, Ueda K, Morikage N, Sawada Y, Hamano K. Focal Adhesion Kinase Promotes the Progression of Aortic Aneurysm by Modulating Macrophage Behavior. Arterioscler Thromb Vasc Biol. 2017;37:156–165. [DOI] [PubMed] [Google Scholar]
  • 200.Yan YF, Pei JF, Zhang Y, Zhang R, Wang F, Gao P, Zhang ZQ, Wang TT, She ZG, Chen HZ, Liu DP. The Paraoxonase Gene Cluster Protects Against Abdominal Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol. 2017;37:291–300. [DOI] [PubMed] [Google Scholar]
  • 201.Endorf EB, Qing H, Aono J, Terami N, Doyon G, Hyzny E, Jones KL, Findeisen HM, Bruemmer D. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes. Arterioscler Thromb Vasc Biol. 2017;37:301–311. [DOI] [PubMed] [Google Scholar]
  • 202.de Jong RJ, Paulin N, Lemnitzer P, Viola JR, Winter C, Ferraro B, Grommes J, Weber C, Reutelingsperger C, Drechsler M, Soehnlein O. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312–315. [DOI] [PubMed] [Google Scholar]
  • 203.Ceneri N, Zhao L, Young BD et al. Rac2 Modulates Atherosclerotic Calcification by Regulating Macrophage Interleukin-1beta Production. Arterioscler Thromb Vasc Biol. 2017;37:328–340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Friederich-Persson M, Nguyen Dinh Cat A, Persson P, Montezano AC, Touyz RM. Brown Adipose Tissue Regulates Small Artery Function Through NADPH Oxidase 4-Derived Hydrogen Peroxide and Redox-Sensitive Protein Kinase G-1alpha. Arterioscler Thromb Vasc Biol. 2017;37:455–465. [DOI] [PubMed] [Google Scholar]
  • 205.Den Hartigh LJ, Omer M, Goodspeed L, Wang S, Wietecha T, O’Brien KD, Han CY. Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity. Arterioscler Thromb Vasc Biol. 2017;37:466–475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Krishna SM, Seto SW, Jose RJ, Li J, Morton SK, Biros E, Wang Y, Nsengiyumva V, Lindeman JH, Loots GG, Rush CM, Craig JM, Golledge J. Wnt Signaling Pathway Inhibitor Sclerostin Inhibits Angiotensin II-Induced Aortic Aneurysm and Atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37:553–566. [DOI] [PubMed] [Google Scholar]
  • 207.Lee HW, Chong DC, Ola R, Dunworth WP, Meadows S, Ka J, Kaartinen VM, Qyang Y, Cleaver O, Bautch VL, Eichmann A, Jin SW. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis. Arterioscler Thromb Vasc Biol. 2017;37:657–663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Wu D, Ren P, Zheng Y, Zhang L, Xu G, Xie W, Lloyd EE, Zhang S, Zhang Q, Curci JA, Coselli JS, Milewicz DM, Shen YH, LeMaire SA. NLRP3 (Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3)-Caspase-1 Inflammasome Degrades Contractile Proteins: Implications for Aortic Biomechanical Dysfunction and Aneurysm and Dissection Formation. Arterioscler Thromb Vasc Biol. 2017;37:694–706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Chen D, Tang J, Wan Q, Zhang J, Wang K, Shen Y, Yu Y. E-Prostanoid 3 Receptor Mediates Sprouting Angiogenesis Through Suppression of the Protein Kinase A/beta-Catenin/Notch Pathway. Arterioscler Thromb Vasc Biol. 2017;37:856–866. [DOI] [PubMed] [Google Scholar]
  • 210.Ghori A, Freimann FB, Nieminen-Kelha M, Kremenetskaia I, Gertz K, Endres M, Vajkoczy P. EphrinB2 Activation Enhances Vascular Repair Mechanisms and Reduces Brain Swelling After Mild Cerebral Ischemia. Arterioscler Thromb Vasc Biol. 2017;37:867–878. [DOI] [PubMed] [Google Scholar]
  • 211.Riascos-Bernal DF, Chinnasamy P, Gross JN, Almonte V, Egana-Gorrono L, Parikh D, Jayakumar S, Guo L, Sibinga NES. Inhibition of Smooth Muscle beta-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017; 37:879–888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Candela J, Wang R, White C. Microvascular Endothelial Dysfunction in Obesity Is Driven by Macrophage-Dependent Hydrogen Sulfide Depletion. Arterioscler Thromb Vasc Biol. 2017;37:889–899. [DOI] [PubMed] [Google Scholar]
  • 213.Desjarlais M, Dussault S, Dhahri W, Mathieu R, Rivard A. MicroRNA-150 Modulates Ischemia-Induced Neovascularization in Atherosclerotic Conditions. Arterioscler Thromb Vasc Biol. 2017;37:900–908. [DOI] [PubMed] [Google Scholar]
  • 214.Chenu C, Adlanmerini M, Boudou F, Chantalat E, Guihot AL, Toutain C, Raymond-Letron I, Vicendo P, Gadeau AP, Henrion D, Arnal JF, Lenfant F. Testosterone Prevents Cutaneous Ischemia and Necrosis in Males Through Complementary Estrogenic and Androgenic Actions. Arterioscler Thromb Vasc Biol. 2017;37:909–919. [DOI] [PubMed] [Google Scholar]
  • 215.Mao Y, Luo W, Zhang L, Wu W, Yuan L, Xu H, Song J, Fujiwara K, Abe JI, LeMaire SA, Wang XL, Shen YH. STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity. Arterioscler Thromb Vasc Biol. 2017;37:920–929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Jiao Y, Li G, Korneva A, Caulk AW, Qin L, Bersi MR, Li Q, Li W, Mecham RP, Humphrey JD, Tellides G. Deficient Circumferential Growth Is the Primary Determinant of Aortic Obstruction Attributable to Partial Elastin Deficiency. Arterioscler Thromb Vasc Biol. 2017;37:930–941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Zhu LP, Zhou JP, Zhang JX, Wang JY, Wang ZY, Pan M, Li LF, Li CC, Wang KK, Bai YP, Zhang GG. MiR-15b-5p Regulates Collateral Artery Formation by Targeting AKT3 (Protein Kinase B-3). Arterioscler Thromb Vasc Biol. 2017;37:957–968. [DOI] [PubMed] [Google Scholar]
  • 218.Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, Blobe GC. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115–1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.McRobb LS, McGrath KCY, Tsatralis T, Liong EC, Tan JTM, Hughes G, Handelsman DJ, Heather AK. Estrogen Receptor Control of Atherosclerotic Calcification and Smooth Muscle Cell Osteogenic Differentiation. Arterioscler Thromb Vasc Biol. 2017;37:1127–1137. [DOI] [PubMed] [Google Scholar]
  • 220.Xue C, Sowden M, Berk BC. Extracellular Cyclophilin A, Especially Acetylated, Causes Pulmonary Hypertension by Stimulating Endothelial Apoptosis, Redox Stress, and Inflammation. Arterioscler Thromb Vasc Biol. 2017;37:1138–1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Kuwahara G, Hashimoto T, Tsuneki M et al. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation. Arterioscler Thromb Vasc Biol. 2017;37:1147–1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Dou H, Feher A, Davila AC, Romero MJ, Patel VS, Kamath VM, Gooz MB, Rudic RD, Lucas R, Fulton DJ, Weintraub NL, Bagi Z. Role of Adipose Tissue Endothelial ADAM17 in Age-Related Coronary Microvascular Dysfunction. Arterioscler Thromb Vasc Biol. 2017;37:1180–1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Reventun P, Alique M, Cuadrado I, Marquez S, Toro R, Zaragoza C, Saura M. iNOS-Derived Nitric Oxide Induces Integrin-Linked Kinase Endocytic Lysosome-Mediated Degradation in the Vascular Endothelium. Arterioscler Thromb Vasc Biol. 2017;37:1272–1281. [DOI] [PubMed] [Google Scholar]
  • 224.Hood KY, Mair KM, Harvey AP, Montezano AC, Touyz RM, MacLean MR. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol. 2017;37:1361–1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Pieterse E, Rother N, Garsen M, Hofstra JM, Satchell SC, Hoffmann M, Loeven MA, Knaapen HK, van der Heijden OWH, Berden JHM, Hilbrands LB, van der Vlag J. Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition. Arterioscler Thromb Vasc Biol. 2017;37:1371–1379. [DOI] [PubMed] [Google Scholar]
  • 226.Lu YW, Lowery AM, Sun LY, Singer HA, Dai G, Adam AP, Vincent PA, Schwarz JJ. Endothelial Myocyte Enhancer Factor 2c Inhibits Migration of Smooth Muscle Cells Through Fenestrations in the Internal Elastic Lamina. Arterioscler Thromb Vasc Biol. 2017;37:1380–1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Dhanesha N, Doddapattar P, Chorawala MR, Nayak MK, Kokame K, Staber JM, Lentz SR, Chauhan AK. ADAMTS13 Retards Progression of Diabetic Nephropathy by Inhibiting Intrarenal Thrombosis in Mice. Arterioscler Thromb Vasc Biol. 2017;37:1332–1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Lockyer P, Mao H, Fan Q, Li L, Yu-Lee LY, Eissa NT, Patterson C, Xie L, Pi X. LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Arterioscler Thromb Vasc Biol. 2017;37:1524–1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Lopez-Diez R, Shen X, Daffu G, Khursheed M, Hu J, Song F, Rosario R, Xu Y, Li Q, Xi X, Zou YS, Li H, Schmidt AM, Yan SF. Ager Deletion Enhances Ischemic Muscle Inflammation, Angiogenesis, and Blood Flow Recovery in Diabetic Mice. Arterioscler Thromb Vasc Biol. 2017;37:1536–1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Tojais NF, Cao A, Lai YJ, Wang L, Chen PI, Alcazar MAA, de Jesus Perez VA, Hopper RK, Rhodes CJ, Bill MA, Sakai LY, Rabinovitch M. Codependence of Bone Morphogenetic Protein Receptor 2 and Transforming Growth Factor-beta in Elastic Fiber Assembly and Its Perturbation in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol. 2017;37:1559–1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Schloss MJ, Hilby M, Nitz K, Guillamat Prats R, Ferraro B, Leoni G, Soehnlein O, Kessler T, He W, Luckow B, Horckmans M, Weber C, Duchene J, Steffens S. Ly6C(high) Monocytes Oscillate in the Heart During Homeostasis and After Myocardial Infarction-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:1640–1645. [DOI] [PubMed] [Google Scholar]
  • 232.Bharath LP, Cho JM, Park SK et al. Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler Thromb Vasc Biol. 2017;37:1646–1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Jiao Y, Li G, Li Q, Ali R, Qin L, Li W, Qyang Y, Greif DM, Geirsson A, Humphrey JD, Tellides G. mTOR (Mechanistic Target of Rapamycin) Inhibition Decreases Mechanosignaling, Collagen Accumulation, and Stiffening of the Thoracic Aorta in Elastin-Deficient Mice. Arterioscler Thromb Vasc Biol. 2017;37:1657–1666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Hara T, Monguchi T, Iwamoto N et al. Targeted Disruption of JCAD (Junctional Protein Associated With Coronary Artery Disease)/KIAA1462, a Coronary Artery Disease-Associated Gene Product, Inhibits Angiogenic Processes In Vitro and In Vivo. Arterioscler Thromb Vasc Biol. 2017;37:1667–1673. [DOI] [PubMed] [Google Scholar]
  • 235.Menendez MT, Ong EC, Shepherd BT, Muthukumar V, Silasi-Mansat R, Lupu F, Griffin CT. BRG1 (Brahma-Related Gene 1) Promotes Endothelial Mrtf Transcription to Establish Embryonic Capillary Integrity. Arterioscler Thromb Vasc Biol. 2017;37:1674–1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236.Hubert A, Bochenek ML, Schutz E, Gogiraju R, Munzel T, Schafer K. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice. Arterioscler Thromb Vasc Biol. 2017;37:1683–1697. [DOI] [PubMed] [Google Scholar]
  • 237.Yu B, Liu Z, Fu Y, Wang Y, Zhang L, Cai Z, Yu F, Wang X, Zhou J, Kong W. CYLD Deubiquitinates Nicotinamide Adenine Dinucleotide Phosphate Oxidase 4 Contributing to Adventitial Remodeling. Arterioscler Thromb Vasc Biol. 2017;37:1698–1709. [DOI] [PubMed] [Google Scholar]
  • 238.Regano D, Visintin A, Clapero F, Bussolino F, Valdembri D, Maione F, Serini G, Giraudo E. Sema3F (Semaphorin 3F) Selectively Drives an Extraembryonic Proangiogenic Program. Arterioscler Thromb Vasc Biol. 2017;37:1710–1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Prakash S, Borreguero LJJ, Sylva M, Flores Ruiz L, Rezai F, Gunst QD, de la Pompa JL, Ruijter JM, van den Hoff MJB. Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease. Arterioscler Thromb Vasc Biol. 2017;37:e116–e130. [DOI] [PubMed] [Google Scholar]
  • 240.Sawada H, Rateri DL, Moorleghen JJ, Majesky MW, Daugherty A. Smooth muscle cells rerived from second heart field and cardiac neural crest reside in spatially distinct domains in the media of the ascending aorta-Brief Report. Arterioscler Thromb Vasc Biol. 2017; 37:1722–1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Wang D, Wu F, Yuan H, Wang A, Kang GJ, Truong T, Chen L, McCallion AS, Gong X, Li S. Sox10(+) Cells Contribute to Vascular Development in Multiple Organs-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:1727–1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Pujol F, Hodgson T, Martinez-Corral I, Prats AC, Devenport D, Takeichi M, Genot E, Makinen T, Francis-West P, Garmy-Susini B, Tatin F. Dachsous1-Fat4 Signaling Controls Endothelial Cell Polarization During Lymphatic Valve Morphogenesis-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:1732–1735. [DOI] [PubMed] [Google Scholar]
  • 243.Ayme G, Adam F, Legendre P, Bazaa A, Proulle V, Denis CV, Christophe OD, Lenting PJ. A Novel Single-Domain Antibody Against von Willebrand Factor A1 Domain Resolves Leukocyte Recruitment and Vascular Leakage During Inflammation-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:1736–1740. [DOI] [PubMed] [Google Scholar]
  • 244.Tavakoli S, Downs K, Short JD, Nguyen HN, Lai Y, Jerabek PA, Goins B, Toczek J, Sadeghi MM, Asmis R. Characterization of Macrophage Polarization States Using Combined Measurement of 2-Deoxyglucose and Glutamine Accumulation: Implications for Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37:1840–1848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Miao SB, Xie XL, Yin YJ et al. Accumulation of Smooth Muscle 22alpha Protein Accelerates Senescence of Vascular Smooth Muscle Cells via Stabilization of p53 In Vitro and In Vivo. Arterioscler Thromb Vasc Biol. 2017;37:1849–1859. [DOI] [PubMed] [Google Scholar]
  • 246.Ijaz T, Sun H, Pinchuk IV, Milewicz DM, Tilton RG, Brasier AR. Deletion of NF-kappaB/RelA in Angiotensin II-Sensitive Mesenchymal Cells Blocks Aortic Vascular Inflammation and Abdominal Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol. 2017;37:1881–1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Chong DC, Yu Z, Brighton HE, Bear JE, Bautch VL. Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis. Arterioscler Thromb Vasc Biol. 2017;37:1903–1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Zhang K, Zhang Y, Feng W, Chen R, Chen J, Touyz RM, Wang J, Huang H. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation. Arterioscler Thromb Vasc Biol. 2017;37:1933–1943. [DOI] [PubMed] [Google Scholar]
  • 249.Jourd’heuil FL, Xu H, Reilly T et al. The Hemoglobin Homolog Cytoglobin in Smooth Muscle Inhibits Apoptosis and Regulates Vascular Remodeling. Arterioscler Thromb Vasc Biol. 2017;37:1944–1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Serbanovic-Canic J, de Luca A, Warboys C et al. Zebrafish Model for Functional Screening of Flow-Responsive Genes. Arterioscler Thromb Vasc Biol. 2017;37:130–143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Angelov SN, Hu JH, Wei H, Airhart N, Shi M, Dichek DA. TGF-beta (Transforming Growth Factor-beta) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms. Arterioscler Thromb Vasc Biol. 2017;37:2102–2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Xie Y, Potter CMF, Le Bras A, Nowak WN, Gu W, Bhaloo SI, Zhang Z, Hu Y, Zhang L, Xu Q. Leptin Induces Sca-1(+) Progenitor Cell Migration Enhancing Neointimal Lesions in Vessel-Injury Mouse Models. Arterioscler Thromb Vasc Biol. 2017;37:2114–2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Karlsen TV, Reikvam T, Tofteberg A, Nikpey E, Skogstrand T, Wagner M, Tenstad O, Wiig H. Lymphangiogenesis Facilitates Initial Lymph Formation and Enhances the Dendritic Cell Mobilizing Chemokine CCL21 Without Affecting Migration. Arterioscler Thromb Vasc Biol. 2017;37:2128–2135. [DOI] [PubMed] [Google Scholar]
  • 254.Haefliger JA, Allagnat F, Hamard L, Le Gal L, Meda P, Nardelli-Haefliger D, Genot E, Alonso F. Targeting Cx40 (Connexin40) Expression or Function Reduces Angiogenesis in the Developing Mouse Retina. Arterioscler Thromb Vasc Biol. 2017;37:2136–2146. [DOI] [PubMed] [Google Scholar]
  • 255.Nakao T, Horie T, Baba O et al. Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways. Arterioscler Thromb Vasc Biol. 2017;37:2161–2170. [DOI] [PubMed] [Google Scholar]
  • 256.Lareyre F, Clement M, Raffort J, Pohlod S, Patel M, Esposito B, Master L, Finigan A, Vandestienne M, Stergiopulos N, Taleb S, Trachet B, Mallat Z. TGFbeta (Transforming Growth Factor-beta) Blockade Induces a Human-Like Disease in a Nondissecting Mouse Model of Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol. 2017;37:2171–2181. [DOI] [PubMed] [Google Scholar]
  • 257.Zhang L, Chen Q, An W, Yang F, Maguire EM, Chen D, Zhang C, Wen G, Yang M, Dai B, Luong LA, Zhu J, Xu Q, Xiao Q. Novel Pathological Role of hnRNPA1 (Heterogeneous Nuclear Ribonucleoprotein A1) in Vascular Smooth Muscle Cell Function and Neointima Hyperplasia. Arterioscler Thromb Vasc Biol. 2017;37:2182–2194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Moran CS, Biros E, Krishna SM, Wang Y, Tikellis C, Morton SK, Moxon JV, Cooper ME, Norman PE, Burrell LM, Thomas MC, Golledge J. Resveratrol Inhibits Growth of Experimental Abdominal Aortic Aneurysm Associated With Upregulation of Angiotensin-Converting Enzyme 2. Arterioscler Thromb Vasc Biol. 2017;37:2195–2203. [DOI] [PubMed] [Google Scholar]
  • 259.Pogoda K, Mannell H, Blodow S, Schneider H, Schubert KM, Qiu J, Schmidt A, Imhof A, Beck H, Tanase LI, Pfeifer A, Pohl U, Kameritsch P. NO Augments Endothelial Reactivity by Reducing Myoendothelial Calcium Signal Spreading: A Novel Role for Cx37 (Connexin 37) and the Protein Tyrosine Phosphatase SHP-2. Arterioscler Thromb Vasc Biol. 2017;37:2280–2290. [DOI] [PubMed] [Google Scholar]
  • 260.Paquin-Veillette J, Lizotte F, Robillard S, Beland R, Breton MA, Guay A, Despatis MA, Geraldes P. Deletion of AT2 Receptor Prevents SHP-1-Induced VEGF Inhibition and Improves Blood Flow Reperfusion in Diabetic Ischemic Hindlimb. Arterioscler Thromb Vasc Biol. 2017;37:2291–2300. [DOI] [PubMed] [Google Scholar]
  • 261.Jin Y, Xie Y, Ostriker AC et al. Opposing Actions of AKT (Protein Kinase B) Isoforms in Vascular Smooth Muscle Injury and Therapeutic Response. Arterioscler Thromb Vasc Biol. 2017;37:2311–2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Shi P, Zhang L, Zhang M, Yang W, Wang K, Zhang J, Otsu K, Huang G, Fan X, Liu J. Platelet-Specific p38alpha Deficiency Improved Cardiac Function After Myocardial Infarction in Mice. Arterioscler Thromb Vasc Biol. 2017;37:e185–e196. [DOI] [PubMed] [Google Scholar]
  • 263.Li DJ, Huang F, Ni M, Fu H, Zhang LS, Shen FM. alpha7 Nicotinic Acetylcholine Receptor Relieves Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Raising Nicotinamide Adenine Dinucleotide-Dependent SIRT1 Activity. Arterioscler Thromb Vasc Biol. 2016;36:1566–1576. [DOI] [PubMed] [Google Scholar]
  • 264.Lu WW, Jia LX, Ni XQ, Zhao L, Chang JR, Zhang JS, Hou YL, Zhu Y, Guan YF, Yu YR, Du J, Tang CS, Qi YF. Intermedin1–53 Attenuates Abdominal Aortic Aneurysm by Inhibiting Oxidative Stress. Arterioscler Thromb Vasc Biol. 2016;36:2176–2190. [DOI] [PubMed] [Google Scholar]
  • 265.Gremmel T, Yanachkov IB, Yanachkova MI, Wright GE, Wider J, Undyala VV, Michelson AD, Frelinger AL 3rd, Przyklenk K. Synergistic Inhibition of Both P2Y1 and P2Y12 Adenosine Diphosphate Receptors As Novel Approach to Rapidly Attenuate Platelet-Mediated Thrombosis. Arterioscler Thromb Vasc Biol. 2016;36:501–509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Dimitrievska S, Gui L, Weyers A et al. New Functional Tools for Antithrombogenic Activity Assessment of Live Surface Glycocalyx. Arterioscler Thromb Vasc Biol. 2016;36:1847–1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Gao C, Fu Y, Li Y, Zhang X, Zhang L, Yu F, Xu SS, Xu Q, Zhu Y, Guan Y, Wang X, Kong W. Microsomal Prostaglandin E Synthase-1-Derived PGE2 Inhibits Vascular Smooth Muscle Cell Calcification. Arterioscler Thromb Vasc Biol. 2016;36:108–121. [DOI] [PubMed] [Google Scholar]
  • 268.Chiu AP, Wan A, Lal N, Zhang D, Wang F, Vlodavsky I, Hussein B, Rodrigues B. Cardiomyocyte VEGF Regulates Endothelial Cell GPIHBP1 to Relocate Lipoprotein Lipase to the Coronary Lumen During Diabetes Mellitus. Arterioscler Thromb Vasc Biol. 2016;36:145–155. [DOI] [PubMed] [Google Scholar]
  • 269.Talia DM, Deliyanti D, Agrotis A, Wilkinson-Berka JL. Inhibition of the Nuclear Receptor RORgamma and Interleukin-17A Suppresses Neovascular Retinopathy: Involvement of Immunocompetent Microglia. Arterioscler Thromb Vasc Biol. 2016;36:1186–1196. [DOI] [PubMed] [Google Scholar]
  • 270.Bussey CE, Withers SB, Aldous RG, Edwards G, Heagerty AM. Obesity-Related Perivascular Adipose Tissue Damage Is Reversed by Sustained Weight Loss in the Rat. Arterioscler Thromb Vasc Biol. 2016;36:1377–1385. [DOI] [PubMed] [Google Scholar]
  • 271.Sun L, Bai Y, Zhao R, Sun T, Cao R, Wang F, He G, Zhang W, Chen Y, Ye P, Du G. Oncological miR-182–3p, a Novel Smooth Muscle Cell Phenotype Modulator, Evidences From Model Rats and Patients. Arterioscler Thromb Vasc Biol. 2016;36:1386–1397. [DOI] [PubMed] [Google Scholar]
  • 272.Shi L, Zhang Y, Liu Y, Gu B, Cao R, Chen Y, Zhao T. Exercise Prevents Upregulation of RyRs-BKCa Coupling in Cerebral Arterial Smooth Muscle Cells From Spontaneously Hypertensive Rats. Arterioscler Thromb Vasc Biol. 2016;36:1607–1617. [DOI] [PubMed] [Google Scholar]
  • 273.Lerchenmuller C, Heissenberg J, Damilano F, Bezzeridis VJ, Kramer I, Bochaton-Piallat ML, Hirschberg K, Busch M, Katus HA, Peppel K, Rosenzweig A, Busch H, Boerries M, Most P. S100A6 Regulates Endothelial Cell Cycle Progression by Attenuating Antiproliferative Signal Transducers and Activators of Transcription 1 Signaling. Arterioscler Thromb Vasc Biol. 2016;36:1854–1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Song SH, Kim K, Jo EK, Kim YW, Kwon JS, Bae SS, Sung JH, Park SG, Kim JT, Suh W. Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate. Arterioscler Thromb Vasc Biol. 2016;36:1928–1936. [DOI] [PubMed] [Google Scholar]
  • 275.Stott JB, Barrese V, Greenwood IA. Kv7 Channel Activation Underpins EPAC-Dependent Relaxations of Rat Arteries. Arterioscler Thromb Vasc Biol. 2016;36:2404–2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.de Boer JF, Schonewille M, Dikkers A, Koehorst M, Havinga R, Kuipers F, Tietge UJ, Groen AK. Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:643–646. [DOI] [PubMed] [Google Scholar]
  • 277.Hoffmann BR, Stodola TJ, Wagner JR, Didier DN, Exner EC, Lombard JH, Greene AS. Mechanisms of Mas1 Receptor-Mediated Signaling in the Vascular Endothelium. Arterioscler Thromb Vasc Biol. 2017;37:433–445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278.Shi N, Li CX, Cui XB, Tomarev SI, Chen SY. Olfactomedin 2 Regulates Smooth Muscle Phenotypic Modulation and Vascular Remodeling Through Mediating Runt-Related Transcription Factor 2 Binding to Serum Response Factor. Arterioscler Thromb Vasc Biol. 2017;37:446–454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Ye Q, Pang S, Zhang W, Guo X, Wang J, Zhang Y, Liu Y, Wu X, Jiang F. Therapeutic Targeting of RNA Polymerase I With the Small-Molecule CX-5461 for Prevention of Arterial Injury-Induced Neointimal Hyperplasia. Arterioscler Thromb Vasc Biol. 2017;37:476–484. [DOI] [PubMed] [Google Scholar]
  • 280.Li Y, Liu Y, Tian X, Zhang Y, Song H, Liu M, Zhang X, Liu H, Zhang J, Zhang Q, Liu D, Peng C, Yan C, Han Y. Cellular Repressor of E1A-Stimulated Genes Is a Critical Determinant of Vascular Remodeling in Response to Angiotensin II. Arterioscler Thromb Vasc Biol. 2017;37:485–494. [DOI] [PubMed] [Google Scholar]
  • 281.Wang YC, Cui XB, Chuang YH, Chen SY. Janus Kinase 3, a Novel Regulator for Smooth Muscle Proliferation and Vascular Remodeling. Arterioscler Thromb Vasc Biol. 2017;37:1352–1360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282.Hodroge A, Trécherel E, Cornu M et al. Oligogalacturonic Acid Inhibits Vascular Calcification by Two Mechanisms: Inhibition of Vascular Smooth Muscle Cell Osteogenic Conversion and Interaction With Collagen. Arterioscler Thromb Vasc Biol. 2017;37:1391–1401. [DOI] [PubMed] [Google Scholar]
  • 283.Meloche J, Lampron MC, Nadeau V, Maltais M, Potus F, Lambert C, Tremblay E, Vitry G, Breuils-Bonnet S, Boucherat O, Charbonneau E, Provencher S, Paulin R, Bonnet S. Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol. 2017;37:1513–1523. [DOI] [PubMed] [Google Scholar]
  • 284.Zhang K, Zhang Y, Feng W, Chen R, Chen J, Touyz RM, Wang J, Huang H. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation. Arterioscler Thromb Vasc Biol. 2017;37:1933–1943. [DOI] [PubMed] [Google Scholar]
  • 285.Jourd’heuil FL, Xu H, Reilly T et al. The Hemoglobin Homolog Cytoglobin in Smooth Muscle Inhibits Apoptosis and Regulates Vascular Remodeling. Arterioscler Thromb Vasc Biol. 2017;37:1944–1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Li S, Wang YN, Niimi M, Ning B, Chen Y, Kang D, Wang Z, Yu Q, Waqar AB, Liu E, Zhang J, Shiomi M, Chen YE, Fan J. Angiotensin II Destabilizes Coronary Plaques in Watanabe Heritable Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol. 2016;36:810–816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 287.Hytonen J, Leppanen O, Braesen JH et al. Activation of Peroxisome Proliferator-Activated Receptor-delta as Novel Therapeutic Strategy to Prevent In-Stent Restenosis and Stent Thrombosis. Arterioscler Thromb Vasc Biol. 2016;36:1534–1548. [DOI] [PubMed] [Google Scholar]
  • 288.Wacker BK, Dronadula N, Zhang J, Dichek DA. Local Vascular Gene Therapy With Apolipoprotein A-I to Promote Regression of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37:316–327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Zhang J, Niimi M, Yang D et al. Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits. Arterioscler Thromb Vasc Biol. 2017;37:1068–1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Wang C, Nishijima K, Kitajima S, Niimi M, Yan H, Chen Y, Ning B, Matsuhisa F, Liu E, Zhang J, Chen YE, Fan J. Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet-Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits. Arterioscler Thromb Vasc Biol. 2017;37:1282–1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291.Wu BJ, Li Y, Ong KL, Sun Y, Shrestha S, Hou L, Johns D, Barter PJ, Rye KA. Reduction of In-Stent Restenosis by Cholesteryl Ester Transfer Protein Inhibition. Arterioscler Thromb Vasc Biol. 2017;37:2333–2341. [DOI] [PubMed] [Google Scholar]
  • 292.Chen S, Swier VJ, Boosani CS, Radwan MM, Agrawal DK. Vitamin D Deficiency Accelerates Coronary Artery Disease Progression in Swine. Arterioscler Thromb Vasc Biol. 2016;36:1651–1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 293.Lester PA, Coleman DM, Diaz JA, Jackson TO, Hawley AE, Mathues AR, Grant BT, Knabb RM, Ramacciotti E, Frost CE, Song Y, Wakefield TW, Myers DD Jr. Apixaban Versus Warfarin for Mechanical Heart Valve Thromboprophylaxis in a Swine Aortic Heterotopic Valve Model. Arterioscler Thromb Vasc Biol. 2017;37:942–948. [DOI] [PubMed] [Google Scholar]
  • 294.Gomez-Stallons MV, Wirrig-Schwendeman EE, Hassel KR, Conway SJ, Yutzey KE. Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification. Arterioscler Thromb Vasc Biol. 2016;36:1398–1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 295.Huk DJ, Austin BF, Horne TE, Hinton RB, Ray WC, Heistad DD, Lincoln J. Valve Endothelial Cell-Derived Tgfbeta1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification. Arterioscler Thromb Vasc Biol. 2016;36:328–338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 296.He YH, Wang XQ, Zhang J, Liu ZH, Pan WQ, Shen Y, Zhu ZB, Wang LJ, Yan XX, Yang K, Zhang RY, Shen WF, Ding FH, Lu L. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717–729. [DOI] [PubMed] [Google Scholar]
  • 297.Uzuka H, Matsumoto Y, Nishimiya K et al. Renal Denervation Suppresses Coronary Hyperconstricting Responses After Drug-Eluting Stent Implantation in Pigs In Vivo Through the Kidney-Brain-Heart Axis. Arterioscler Thromb Vasc Biol. 2017;37:1869–1880. [DOI] [PubMed] [Google Scholar]
  • 298.Ouimet M, Hennessy EJ, van Solingen C et al. miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arterioscler Thromb Vasc Biol. 2016;36:942–951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299.Zilberman-Rudenko J, Itakura A, Wiesenekker CP, Vetter R, Maas C, Gailani D, Tucker EI, Gruber A, Gerdes C, McCarty OJ. Coagulation Factor XI Promotes Distal Platelet Activation and Single Platelet Consumption in the Bloodstream Under Shear Flow. Arterioscler Thromb Vasc Biol. 2016;36:510–517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 300.Zhang J, Zhao X, Vatner DE, McNulty T, Bishop S, Sun Z, Shen YT, Chen L, Meininger GA, Vatner SF. Extracellular Matrix Disarray as a Mechanism for Greater Abdominal Versus Thoracic Aortic Stiffness With Aging in Primates. Arterioscler Thromb Vasc Biol. 2016;36:700–706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Gupta RM, Meissner TB, Cowan CA, Musunuru K. Genome-Edited Human Pluripotent Stem Cell-Derived Macrophages as a Model of Reverse Cholesterol Transport--Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:15–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Gu HM, Wang F, Alabi A, Deng S, Qin S, Zhang DW. Identification of an Amino Acid Residue Critical for Plasma Membrane Localization of ATP-Binding Cassette Transporter G1--Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:253–255. [DOI] [PubMed] [Google Scholar]
  • 303.Apro J, Tietge UJ, Dikkers A, Parini P, Angelin B, Rudling M. Impaired Cholesterol Efflux Capacity of High-Density Lipoprotein Isolated From Interstitial Fluid in Type 2 Diabetes Mellitus-Brief Report. Arterioscler Thromb Vasc Biol. 2016;36:787–791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 304.Furuhashi M, Fuseya T, Murata M et al. Local Production of Fatty Acid-Binding Protein 4 in Epicardial/Perivascular Fat and Macrophages Is Linked to Coronary Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:825–834. [DOI] [PubMed] [Google Scholar]
  • 305.Edsfeldt A, Duner P, Stahlman M, Mollet IG, Asciutto G, Grufman H, Nitulescu M, Persson AF, Fisher RM, Melander O, Orho-Melander M, Boren J, Nilsson J, Goncalves I. Sphingolipids Contribute to Human Atherosclerotic Plaque Inflammation. Arterioscler Thromb Vasc Biol. 2016;36:1132–1140. [DOI] [PubMed] [Google Scholar]
  • 306.Rodriguez A, Gonzalez L, Ko A et al. Molecular Characterization of the Lipid Genome-Wide Association Study Signal on Chromosome 18q11.2 Implicates HNF4A-Mediated Regulation of the TMEM241 Gene. Arterioscler Thromb Vasc Biol. 2016;36:1350–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 307.Hunegnaw R, Vassylyeva M, Dubrovsky L, Pushkarsky T, Sviridov D, Anashkina AA, Uren A, Brichacek B, Vassylyev DG, Adzhubei AA, Bukrinsky M. Interaction Between HIV-1 Nef and Calnexin: From Modeling to Small Molecule Inhibitors Reversing HIV-Induced Lipid Accumulation. Arterioscler Thromb Vasc Biol. 2016;36:1758–1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 308.O’Sullivan JM, Jenkins PV, Rawley O, Gegenbauer K, Chion A, Lavin M, Byrne B, O’Kennedy R, Preston RJ, Brophy TM, O’Donnell JS. Galectin-1 and Galectin-3 Constitute Novel-Binding Partners for Factor VIII. Arterioscler Thromb Vasc Biol. 2016;36:855–863. [DOI] [PubMed] [Google Scholar]
  • 309.Santoso S, Wihadmadyatami H, Bakchoul T, Werth S, Al-Fakhri N, Bein G, Kiefel V, Zhu J, Newman PJ, Bayat B, Sachs UJ. Antiendothelial alphavbeta3 Antibodies Are a Major Cause of Intracranial Bleeding in Fetal/Neonatal Alloimmune Thrombocytopenia. Arterioscler Thromb Vasc Biol. 2016;36:1517–1524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 310.Leiderman K, Chang WC, Ovanesov M, Fogelson AL. Synergy Between Tissue Factor and Exogenous Factor XIa in Initiating Coagulation. Arterioscler Thromb Vasc Biol. 2016;36:2334–2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 311.Sinha RK, Yang XV, Fernandez JA, Xu X, Mosnier LO, Griffin JH. Apolipoprotein E Receptor 2 Mediates Activated Protein C-Induced Endothelial Akt Activation and Endothelial Barrier Stabilization. Arterioscler Thromb Vasc Biol. 2016;36:518–524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 312.Durand MJ, Zinkevich NS, Riedel M, Gutterman DD, Nasci VL, Salato VK, Hijjawi JB, Reuben CF, North PE, Beyer AM. Vascular Actions of Angiotensin 1–7 in the Human Microcirculation: Novel Role for Telomerase. Arterioscler Thromb Vasc Biol. 2016;36:1254–1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 313.Manes TD, Pober JS. Significant Differences in Antigen-Induced Transendothelial Migration of Human CD8 and CD4 T Effector Memory Cells. Arterioscler Thromb Vasc Biol. 2016;36:1910–1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 314.Zhao J, Zhang W, Lin M, Wu W, Jiang P, Tou E, Xue M, Richards A, Jourd’heuil D, Asif A, Zheng D, Singer HA, Miano JM, Long X. MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program. Arterioscler Thromb Vasc Biol. 2016;36:2088–2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 315.Zhang J, Zamani M, Thiele C, Taher J, Amir Alipour M, Yao Z, Adeli K. AUP1 (Ancient Ubiquitous Protein 1) Is a Key Determinant of Hepatic Very-Low-Density Lipoprotein Assembly and Secretion. Arterioscler Thromb Vasc Biol. 2017;37:633–642. [DOI] [PubMed] [Google Scholar]
  • 316.Zhou L, Hussain MM. Human MicroRNA-548p Decreases Hepatic Apolipoprotein B Secretion and Lipid Synthesis. Arterioscler Thromb Vasc Biol. 2017;37:786–793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 317.Velagapudi S, Yalcinkaya M, Piemontese A, Meier R, Norrelykke SF, Perisa D, Rzepiela A, Stebler M, Stoma S, Zanoni P, Rohrer L, von Eckardstein A. VEGF-A Regulates Cellular Localization of SR-BI as Well as Transendothelial Transport of HDL but Not LDL. Arterioscler Thromb Vasc Biol. 2017;37:794–803. [DOI] [PubMed] [Google Scholar]
  • 318.Denimal D, Monier S, Brindisi MC, Petit JM, Bouillet B, Nguyen A, Demizieux L, Simoneau I, Pais de Barros JP, Verges B, Duvillard L. Impairment of the Ability of HDL From Patients With Metabolic Syndrome but Without Diabetes Mellitus to Activate eNOS: Correction by S1P Enrichment. Arterioscler Thromb Vasc Biol. 2017;37:804–811. [DOI] [PubMed] [Google Scholar]
  • 319.Loregger A, Raaben M, Tan J, Scheij S, Moeton M, van den Berg M, Gelberg-Etel H, Stickel E, Roitelman J, Brummelkamp T, Zelcer N. Haploid Mammalian Genetic Screen Identifies UBXD8 as a Key Determinant of HMGCR Degradation and Cholesterol Biosynthesis. Arterioscler Thromb Vasc Biol. 2017;37:2064–2074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 320.Zhang H, Shi J, Hachet MA, Xue C, Bauer RC, Jiang H, Li W, Tohyama J, Millar J, Billheimer J, Phillips MC, Razani B, Rader DJ, Reilly MP. CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:2156–2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 321.Sane AT, Seidman E, Peretti N, Kleme ML, Delvin E, Deslandres C, Garofalo C, Spahis S, Levy E. Understanding Chylomicron Retention Disease Through Sar1b Gtpase Gene Disruption: Insight From Cell Culture. Arterioscler Thromb Vasc Biol. 2017;37:2243–2251. [DOI] [PubMed] [Google Scholar]
  • 322.Tutwiler V, Peshkova AD, Andrianova IA, Khasanova DR, Weisel JW, Litvinov RI. Contraction of Blood Clots Is Impaired in Acute Ischemic Stroke. Arterioscler Thromb Vasc Biol. 2017;37:271–279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 323.Johnson KE, Forward JA, Tippy MD, Ceglowski JR, El-Husayni S, Kulenthirarajan R, Machlus KR, Mayer EL, Italiano JE Jr, Battinelli EM. Tamoxifen Directly Inhibits Platelet Angiogenic Potential and Platelet-Mediated Metastasis. Arterioscler Thromb Vasc Biol. 2017;37:664–674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 324.Brophy TM, Ward SE, McGimsey TR, Schneppenheim S, Drakeford C, O’Sullivan JM, Chion A, Budde U, O’Donnell JS. Plasmin Cleaves Von Willebrand Factor at K1491-R1492 in the A1-A2 Linker Region in a Shear- and Glycan-Dependent Manner In Vitro. Arterioscler Thromb Vasc Biol. 2017;37:845–855. [DOI] [PubMed] [Google Scholar]
  • 325.Berrou E, Adam F, Lebret M, Planche V, Fergelot P, Issertial O, Coupry I, Bordet JC, Nurden P, Bonneau D, Colin E, Goizet C, Rosa JP, Bryckaert M. Gain-of-Function Mutation in Filamin A Potentiates Platelet Integrin alphaIIbbeta3 Activation. Arterioscler Thromb Vasc Biol. 2017;37:1087–1097. [DOI] [PubMed] [Google Scholar]
  • 326.Smeets MWJ, Mourik MJ, Niessen HWM, Hordijk PL. Stasis Promotes Erythrocyte Adhesion to von Willebrand Factor. Arterioscler Thromb Vasc Biol. 2017;37:1618–1627. [DOI] [PubMed] [Google Scholar]
  • 327.Campbell RA, Vieira-de-Abreu A, Rowley JW, Franks ZG, Manne BK, Rondina MT, Kraiss LW, Majersik JJ, Zimmerman GA, Weyrich AS. Clots Are Potent Triggers of Inflammatory Cell Gene Expression: Indications for Timely Fibrinolysis. Arterioscler Thromb Vasc Biol. 2017;37:1819–1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 328.Wu RF, Liao C, Hatoum H, Fu G, Ochoa CD, Terada LS. RasGRF Couples Nox4-Dependent Endoplasmic Reticulum Signaling to Ras. Arterioscler Thromb Vasc Biol. 2017;37:98–107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 329.Ruiz M, Frej C, Holmer A, Guo LJ, Tran S, Dahlback B. High-Density Lipoprotein-Associated Apolipoprotein M Limits Endothelial Inflammation by Delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1. Arterioscler Thromb Vasc Biol. 2017;37:118–129. [DOI] [PubMed] [Google Scholar]
  • 330.Kapustin AN, Schoppet M, Schurgers LJ, Reynolds JL, McNair R, Heiss A, Jahnen-Dechent W, Hackeng TM, Schlieper G, Harrison P, Shanahan CM. Prothrombin Loading of Vascular Smooth Muscle Cell-Derived Exosomes Regulates Coagulation and Calcification. Arterioscler Thromb Vasc Biol. 2017;37:e22–e32. [DOI] [PubMed] [Google Scholar]
  • 331.Albanese I, Yu B, Al-Kindi H, Barratt B, Ott L, Al-Refai M, de Varennes B, Shum-Tim D, Cerruti M, Gourgas O, Rheaume E, Tardif JC, Schwertani A. Role of Noncanonical Wnt Signaling Pathway in Human Aortic Valve Calcification. Arterioscler Thromb Vasc Biol. 2017;37:543–552. [DOI] [PubMed] [Google Scholar]
  • 332.Chui A, Gunatillake T, Brennecke SP et al. Expression of Biglycan in First Trimester Chorionic Villous Sampling Placental Samples and Altered Function in Telomerase-Immortalized Microvascular Endothelial Cells. Arterioscler Thromb Vasc Biol. 2017;37:1168–1179. [DOI] [PubMed] [Google Scholar]
  • 333.Li F, Song R, Ao L, Reece TB, Cleveland JC Jr, Dong N, Fullerton DA, Meng X. ADAMTS5 Deficiency in Calcified Aortic Valves Is Associated With Elevated Pro-Osteogenic Activity in Valvular Interstitial Cells. Arterioscler Thromb Vasc Biol. 2017;37:1339–1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 334.Xiao J, Feng Y, Li X, Li W, Fan L, Liu J, Zeng X, Chen K, Chen X, Zhou X, Zheng XL, Chen S. Expression of ADAMTS13 in Normal and Abnormal Placentae and Its Potential Role in Angiogenesis and Placenta Development. Arterioscler Thromb Vasc Biol. 2017;37:1748–1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 335.van den Eshof BL, Hoogendijk AJ, Simpson PJ, van Alphen FPJ, Zanivan S, Mertens K, Meijer AB, van den Biggelaar M. Paradigm of Biased PAR1 (Protease-Activated Receptor-1) Activation and Inhibition in Endothelial Cells Dissected by Phosphoproteomics. Arterioscler Thromb Vasc Biol. 2017;37:1891–1902. [DOI] [PubMed] [Google Scholar]
  • 336.Farhan MA, Azad AK, Touret N, Murray AG. FGD5 Regulates VEGF Receptor-2 Coupling to PI3 Kinase and Receptor Recycling. Arterioscler Thromb Vasc Biol. 2017;37:2301–2310. [DOI] [PubMed] [Google Scholar]
  • 337.Morris GE, Braund PS, Moore JS, Samani NJ, Codd V, Webb TR. Coronary Artery Disease-Associated LIPA Coding Variant rs1051338 Reduces Lysosomal Acid Lipase Levels and Activity in Lysosomes. Arterioscler Thromb Vasc Biol. 2017;37:1050–1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 338.Howe K, Clark MD, Torroja CF et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 339.Liew WC, Orban L. Zebrafish sex: a complicated affair. Brief Funct Genomics. 2014;13:172–187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 340.Nagabhushana A, Mishra RK. Finding clues to the riddle of sex determination in zebrafish. J Biosci. 2016;41:145–155. [DOI] [PubMed] [Google Scholar]
  • 341.Lee SLJ, Horsfield JA, Black MA, Rutherford K, Gemmell NJ. Identification of sex differences in zebrafish (Danio rerio) brains during early sexual differentiation and masculinisation using 17alpha-methyltestoterone. Biol Reprod. 2017; [DOI] [PubMed] [Google Scholar]
  • 342.Zheng W, Xu H, Lam SH, Luo H, Karuturi RK, Gong Z. Transcriptomic analyses of sexual dimorphism of the zebrafish liver and the effect of sex hormones. PLoS One. 2013;8:e53562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 343.Huang P, Xiong S, Kang J, Mei J, Gui JF. Stat5b Regulates Sexually Dimorphic Gene Expression in Zebrafish Liver. Front Physiol. 2018;9:676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 344.Roy T, Bhat A. Divergences in learning and memory among wild zebrafish: Do sex and body size play a role? Learn Behav. 2018;46:124–133. [DOI] [PubMed] [Google Scholar]
  • 345.Caligioni CS. Assessing reproductive status/stages in mice. Curr Protoc Neurosci. 2009;Appendix 4:Appendix 4I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 346.Wood GA, Fata JE, Watson KL, Khokha R. Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus. Reproduction. 2007;133:1035–1044. [DOI] [PubMed] [Google Scholar]
  • 347.Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest. 2000;105:1605–1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 348.Trachet B, Fraga-Silva RA, Jacquet PA, Stergiopulos N, Segers P. Incidence, severity, mortality, and confounding factors for dissecting AAA detection in angiotensin II-infused mice: a meta-analysis. Cardiovasc Res. 2015;108:159–170. [DOI] [PubMed] [Google Scholar]
  • 349.Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, Garcia-Cardena G, Lusis AJ, Owens AP 3rd, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol. 2017;37:e131–e157. [DOI] [PubMed] [Google Scholar]
  • 350.Hu W, Polinsky P, Sadoun E, Rosenfeld ME, Schwartz SM. Atherosclerotic lesions in the common coronary arteries of ApoE knockout mice. Cardiovasc Pathol. 2005;14:120–125. [DOI] [PubMed] [Google Scholar]

RESOURCES