Skip to main content
Springer logoLink to Springer
. 2018 Sep 21;137(2):207–208. doi: 10.1007/s12064-018-0270-9

Correction to: Some theoretical insights into the hologenome theory of evolution and the role of microbes in speciation

Adrian Stencel 1,, Dominika M Wloch-Salamon 2
PMCID: PMC6208840  PMID: 30238406

Correction to: Theory in Biosciences 10.1007/s12064-018-0268-3

The original version of this article unfortunately contained a mistake.

The entry Suárez, J. Symbiosis (2018). 10.1007/s13199-018-0556-1 was missing in the reference list.

The corrected reference list is given below.

References

  1. Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Ann Rev Microbiol. 2005;59:155–189. doi: 10.1146/annurev.micro.59.030804.121041. [DOI] [PubMed] [Google Scholar]
  2. Brandvain Y, Wade MJ. The functional transfer of genes from the mitochondria to the nucleus: the effects of selection, mutation, population size and rate of self-fertilization. Genetics. 2005;182(4):1129–1139. doi: 10.1534/genetics.108.100024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brucker RM, Bordenstein SR. Speciation by symbiosis. Trends Ecol Evol. 2012;27:443–451. doi: 10.1016/j.tree.2012.03.011. [DOI] [PubMed] [Google Scholar]
  4. Brucker RM, Bordenstein SR. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science. 2013;341:667–669. doi: 10.1126/science.1240659. [DOI] [PubMed] [Google Scholar]
  5. Chandler J, Turelli M. Comment on “The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia”. Science. 2014;345(6200):1011. doi: 10.1126/science.1251997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coyne JA, Orr HA. Speciation. Sunderland: Sinauer Associates; 2004. [Google Scholar]
  7. Dawkins R. The selfish gene. Oxford: Oxford University Press; 1976. [Google Scholar]
  8. Dawkins R. The extended phenotype. Oxford: W. H. Freeman; 1982. [Google Scholar]
  9. Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937. [Google Scholar]
  10. Douglas AE, Werren JH. Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio. 2016;7(2):e02099. doi: 10.1128/mBio.02099-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson R, Atkinson R, Gordon J. The biology of vestimentiferan tubeworms. Oceanogr Mar Biol Annu Rev. 2010;48:213–266. [Google Scholar]
  12. Gilbert SF, Sapp J, Tauber AI. A symbiotic view of life: we have never been individuals. Q Rev Biol. 2012;87:325–341. doi: 10.1086/668166. [DOI] [PubMed] [Google Scholar]
  13. Godfrey-Smith P. Darwinian populations and natural selection. Oxford: Oxford University Press; 2009. [Google Scholar]
  14. Godfrey-Smith P. Darwinian individuals. In: Bouchard F, Huneman P, editors. From groups to individuals: perspectives on biological associations and emerging individuality. Cambridge: MIT Press; 2012. pp. 17–36. [Google Scholar]
  15. Godfrey-Smith P. Reproduction, symbiosis, and the eukaryotic cell. Peter Godfrey-Smith. Proc Natl Acad Sci. 2015;112(33):10120–10125. doi: 10.1073/pnas.1421378112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Godoy-Vitorino F, Leal SJ, Diaz WA, Rosales J, Goldfarb KC, Garcia-Amado MA, Michelangeli F, Brodie EL, Dominguez-Bello MG. Differences in crop bacterial community structure between hoatzins from different geographical locations. Res Microbiol. 2012;163:211–220. doi: 10.1016/j.resmic.2012.01.001. [DOI] [PubMed] [Google Scholar]
  17. Griesemer J. The units of evolutionary transition. Selection. 2001;1:67–80. doi: 10.1556/Select.1.2000.1-3.7. [DOI] [Google Scholar]
  18. Harrison MJ. Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol. 2005;59:19–42. doi: 10.1146/annurev.micro.58.030603.123749. [DOI] [PubMed] [Google Scholar]
  19. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273. doi: 10.1126/science.1223490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol. 2006;4:1841–1851. doi: 10.1371/journal.pbio.0040337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hull DL. Individuality and selection. Ann Rev Ecol Syst. 1980;11:311–332. doi: 10.1146/annurev.es.11.110180.001523. [DOI] [Google Scholar]
  22. Hutter T, Gimbert Carine, Bouchard Frédéric, Lapointe François-Joseph. Being human is a gut feeling. Microbiome. 2015;3:9. doi: 10.1186/s40168-015-0076-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klose J, Polz MF, Wagner M, Schimak MP, Gollner S, Bright M. Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. Proc Natl Acad Sci USA. 2015;112(36):11300–11305. doi: 10.1073/pnas.1501160112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koonin EV, Wolf YI. Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol. 2012;2:119. doi: 10.3389/fcimb.2012.00119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Laudan L. A confutation of convergent realism. Philos Sci. 1981;48(1):19–49. doi: 10.1086/288975. [DOI] [Google Scholar]
  26. Lewontin RC. The units of selection. Ann Rev Ecol Syst. 1970;1:1–18. doi: 10.1146/annurev.es.01.110170.000245. [DOI] [Google Scholar]
  27. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–848. doi: 10.1016/j.cell.2006.02.017. [DOI] [PubMed] [Google Scholar]
  28. Linnenbrink M, Wang J, Hardouin EA, Kunzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol. 2013;22:1904–1916. doi: 10.1111/mec.12206. [DOI] [PubMed] [Google Scholar]
  29. Margulis L. Origins of species: acquired genomes and individuality. BioSystems. 1993;31:121–125. doi: 10.1016/0303-2647(93)90039-F. [DOI] [PubMed] [Google Scholar]
  30. Mazmanian S, Liu C, Tzianabos A, Kasper D. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–118. doi: 10.1016/j.cell.2005.05.007. [DOI] [PubMed] [Google Scholar]
  31. Moran NA, Sloan DB. The hologenome concept: helpful or hollow? PLoS Biol. 2015;13(12):e1002311. doi: 10.1371/journal.pbio.1002311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O’Malley MA, Dupre J. Size doesn’t matter: towards a more inclusive philosophy of biology. Biol Philos. 2007;22:155–191. doi: 10.1007/s10539-006-9031-0. [DOI] [Google Scholar]
  33. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J. 2010;4:377–387. doi: 10.1038/ismej.2009.123. [DOI] [PubMed] [Google Scholar]
  34. Okasha S. Evolution and the levels of selection. Oxford: Oxford University Press; 2006. [Google Scholar]
  35. Pradeu T. What is an organism? an immunological answer. Hist Philos Life Sci. 2010;32:247–268. [PubMed] [Google Scholar]
  36. Pradeu T. A mixed self: the role of symbiosis in development. Biol Theory. 2011;6:80–88. doi: 10.1007/s13752-011-0011-5. [DOI] [Google Scholar]
  37. Pradeu T. Organisms or biological individuals? combining physiological and evolutionary individuality. Special issue on biological individuality (T. Pradeu, ed.) Biol Philos. 2016;31(6):797–817. doi: 10.1007/s10539-016-9551-1. [DOI] [Google Scholar]
  38. Queller DC, Strasmann JE. Beyond society: the evolution of organismality. Philos Trans R Soc. 2009;B364:3143–3155. doi: 10.1098/rstb.2009.0095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Queller DC, Strasmann JE. The social organism: congresses, parties, and committees. Evolution. 2010;64(3):606–615. doi: 10.1111/j.1558-5646.2009.00929.x. [DOI] [PubMed] [Google Scholar]
  40. Queller D, Strasmann J. Problems of multi-species organisms: endosymbionts to holobionts. Biol Philos. 2016;31(6):855–873. doi: 10.1007/s10539-016-9547-x. [DOI] [Google Scholar]
  41. Rees T, Bosch T, Douglas AE. How the microbiome challenges our concept of self. PLoS Biol. 2018;16(2):e2005358. doi: 10.1371/journal.pbio.2005358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rose MR, Oakley TH. The new biology: beyond the modern synthesis. Biol Direct. 2007;2:30. doi: 10.1186/1745-6150-2-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73. doi: 10.1186/s12967-017-1175-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Skillings DJ. Holobionts and the ecology of organisms—multi-species communities or integrated individuals? Biol Philos. 2016;31:875. doi: 10.1007/s10539-016-9544-0. [DOI] [Google Scholar]
  46. Stencel A. The relativity of darwinian populations and the ecology of endosymbiosis. Biol Philos. 2016;31:619–637. doi: 10.1007/s10539-016-9531-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stencel A, Proszewska A. How research on microbiomes is changing biology: a discussion on the concept of the organism. Found Sci. 2017 doi: 10.1007/s10699-017-9543-x. [DOI] [Google Scholar]
  48. Suárez J. Symbiosis. 2018 doi: 10.1007/s13199-018-0556-1. [DOI] [Google Scholar]
  49. Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, Cryan JF, Gilbert SF, Goodnight CJ, Lloyd EA, Sapp J, Vandenkoornhuyse P, Zilber-Rosenberg I, Rosenberg E, Bordenstein SR. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems. 2016;1(2):e00028-16. doi: 10.1128/mSystems.00028-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017;40:21–49. doi: 10.1146/annurev-neuro-072116-031347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wang B, Qiu Y-L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299–363. doi: 10.1007/s00572-005-0033-6. [DOI] [PubMed] [Google Scholar]
  52. Wang JK, Steck B, Turner B, et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat Commun. 2015;6:6440. doi: 10.1038/ncomms7440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber JC, Clemente D. Human gut microbiome viewed across age and geography and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32:723–735. doi: 10.1111/j.1574-6976.2008.00123.x. [DOI] [PubMed] [Google Scholar]

Articles from Theory in Biosciences are provided here courtesy of Springer

RESOURCES