Skip to main content
Frontiers in Physiology logoLink to Frontiers in Physiology
. 2018 Oct 30;9:1517. doi: 10.3389/fphys.2018.01517

Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity

Shanna Hamilton 1,2, Dmitry Terentyev 1,2,*
PMCID: PMC6218530  PMID: 30425651

Abstract

A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.

Keywords: Ca2+-dependent cardiac arrhythmia, diabetes, heart failure, L-type Ca2+ channels, Na+-Ca2+ exchanger type 1, ryanodine receptor type 2, sarco/endoplasmic reticulum Ca2+-ATPase type 2a

Introduction

Heart failure (HF) and sudden cardiac death (SCD) due to malignant ventricular arrhythmias remain a major cause of mortality and morbidity in the developed world, in part due to alarming growth in the rates of obesity and diabetes (Benjamin et al., 2018). Diabetic patients have a two-fold increased risk for SCD and approximately 70 % suffer cardiovascular complications (Chugh et al., 2008; Laakso, 2008; Spooner, 2008; Bergner and Goldberger, 2010; Siscovick et al., 2010; Vasiliadis et al., 2014). Defective intracellular Ca2+ homeostasis has been established as a key contributor to diabetes-related cardiac dysfunction and enhanced arrhythmogenesis independent of coronary heart disease or hypertension (Belke and Dillmann, 2004; Aneja et al., 2008; Junttila et al., 2010; Pappone and Santinelli, 2010; Axelsen et al., 2015; Singh et al., 2018).

Diabetes is a chronic metabolic disorder characterized by hyperglycemia and reduced glucose utilization due to defective insulin secretion or action (American Diabetes Association, 2009). Type 1 diabetes is caused by the autoimmune destruction of pancreatic β-cells and a deficiency in insulin production. Linked with increasing rates of obesity, the more prevalent Type 2 diabetes is caused by cellular resistance to insulin and the failure of β-cells to compensate. In the diabetic heart, mitochondrial energetics are altered, with a switch of metabolic substrate from glucose to fatty acids (Boudina and Abel, 2010; Bertero and Maack, 2018). An imbalance between energy production and substrate utilization results in increased myocardial oxygen consumption and lipotoxicity, leading to mitochondrial dysfunction and reduced cardiac efficiency (Bhatti et al., 2017; Bertero and Maack, 2018). Altered mitochondrial energetics also drive changes in morphology and enhance the emission of reactive oxygen species (ROS), resulting in increased oxidative stress of the myocardium (Shen et al., 2004; Dabkowski et al., 2009; Joubert et al., 2018). It is well established that cardiovascular complications are common in both types of diabetes (Laakso, 2008; Bergner and Goldberger, 2010).

In the heart the process of excitation-contraction (EC) coupling drives cyclic changes in intracellular Ca2+ concentration [Ca2+], leading to rhythmic contraction and relaxation of cardiomyocytes in response to variable metabolic demand (Bers, 2002). Cardiac contractility is precisely regulated by ion channels and exchangers that maintain beat-to-beat Ca2+ concentrations in the steady state, whereby Ca2+ influx must equal Ca2+ efflux (Eisner D. et al., 2013). Depolarization of the sarcolemma and activation of voltage-dependent L-type Ca2+ channels (LTCCs) leads to Ca2+ influx into the cytosol. This small influx subsequently triggers a much larger Ca2+-induced Ca2+ release (CICR; Fabiato, 1985) from the sarcoplasmic reticulum (SR) Ca2+ stores through ryanodine receptors (RyR2s). The significant global increase in cytosolic [Ca2+], known as the Ca2+ transient, activates contractile machinery and leads to muscle contraction. For relaxation to then occur, Ca2+ must be sequestered and the intracellular [Ca2+] decreased. This is primarily by extrusion from the cytosol via the Na+/Ca2+ exchanger (NCX1), or resequestration into the SR via the sarco/endoplasmic reticulum-ATPase (SERCa2a).

Abnormal function of components of Ca2+ cycling machinery has been implicated in reduced contractility and proarrhythmic electrical instabilities in a variety of inherited and acquired cardiac diseases including HF and diabetic cardiomyopathy (Lagadic-Gossmann et al., 1996; Aneja et al., 2008; Jia et al., 2018). Reduction of SR Ca2+ release during systole contributes to diminished contraction, while enhancement of spontaneous Ca2+ release promotes early and delayed after-depolarizations (i.e., EADs and DADs respectively) of sarcolemma implicated in initiation of triggered activity in the heart (Landstrom et al., 2017). In addition to trigger for arrhythmia initiation, abnormal Ca2+ cycling contributes to arrhythmia substrate to maintain and perpetuate it via beat-to-beat alternations of electrical activity of the heart, i.e., alternans (Edwards and Blatter, 2014).

Despite many similarities in diabetes-related remodeling of Ca2+ homeostasis in comparison to that in HF, there are also some differences. This may also be complicated by the various animal models and species used to study the condition, highlighted in the review of King (2012). Models of Type 1 diabetes include chemically induced hyperglycemia by injection of streptozotocin (STZ) or alloxan (Szkudelski, 2001), as well as animals with genetically induced β-cell destruction (Mathews et al., 2002). Type 2 diabetes is modeled in both obese and non-obese animals. Genetically obese models include ob/ob, db/db and Zucker diabetic fatty (ZDF) hyperglycemic rodents, while obesity can also be induced by high fat diet (HFD) or high-sucrose diet (King and Bowe, 2016). Although larger animal models have been studied more recently (Xie et al., 2013; Zhang et al., 2017; Liang et al., 2018; Yang et al., 2018), most research investigating diabetes-related ventricular arrhythmias to date has been performed on rodents and remains limited. Conversely, functional alterations of Ca2+ handling proteins and EC coupling in HF have been extensively researched over several decades, in both small and large animal models as well as failing human cardiomyocytes (Hasenfuss et al., 1994; Studer et al., 1994; Schmidt et al., 1999; Louch et al., 2004; Sossalla et al., 2010; Crossman et al., 2011; Ottolia et al., 2013; Zima et al., 2014; Gorski et al., 2015; Høydal et al., 2018).

To place defective Ca2+ homeostasis in the context of our current understanding of EC coupling in cardiac disease, this review summarizes the changes and contribution of major cardiac Ca2+ handling proteins LTCC, RyR2, SERCa2a, and NCX1 to the reduced cardiac contractility observed in both HF and diabetes. We discuss the role of perturbed EC coupling in arrhythmogenesis in diabetes and the potential of targeting Ca2+ handling proteins as an anti-arrhythmic strategy.

L-Type Ca2+ Channel

Ca2+ influx though voltage-dependent L-type Ca2+ channels (LTCC) during action potential initiates Ca2+ release from the sarcoplasmic reticulum (SR). The LTCC consists of the pore forming subunit α1c, and regulatory subunits α2/δ and β2 (Muralidharan et al., 2017). C-terminus associated calmodulin (CaM) confers Ca2+-dependent inactivation of the channel (Peterson et al., 1999; Zühlke et al., 1999). Activity of LTCC can be increased by PKA phosphorylation (Leach et al., 1996; Bünemann et al., 1999). Ca2+-dependent inactivation of LTCC can be lessened by CaMKII-phosphorylation, a process activated under oxidizing conditions (Xie et al., 2009). In addition, evidence suggests that the Ca2+ channel can be directly activated during oxidative stress, and Cysteine 543 of α1c subunit confers redox sensitivity (Muralidharan et al., 2017; Wilson et al., 2018). Clusters of ≤10 channels are primarily localized in T-tubules in the sites of contact with junctional SR, i.e., dyads, opposing clusters of RyR2 Ca2+ release channels (Inoue and Bridge, 2003). Such distribution ensures efficiency of Ca2+ release initiation during EC coupling.

L-Type Ca2+ Channel and Cardiac Arrhythmia

Abnormal LTCC function has been implicated in arrhythmogenesis. Gain of function mutations of Cav1.2α1c, as well as loss of function mutation of CaM (reduced Ca2+ sensitivity) were linked to hereditary Long QT syndrome type 8 and 14 (Venetucci et al., 2012; Crotti et al., 2013; Marsman et al., 2014). Changes in activation and inactivation parameters leading to widening of so called “window” current were linked to enhanced propensity of reactivation during late phases of AP and thereby generation of early after depolarizations (EADs) (Weiss et al., 2010). Reduction in LTCC expression levels is thought to promote arrhythmogenic Ca2+ alternans via reduced fidelity of channel coupling with RyR2s (Harvey and Hell, 2013). Interestingly, reduced LTCC expression levels in disease states are not always reflected by reduced current. For example, in ventricular cardiomyocytes from human failing hearts ICa was similar to controls, despite of a significant decrease in α1c expression levels, likely due to enhanced phosphorylation by PKA (Chen et al., 2002). Also, fidelity of LTCC-RyR2 coupling can be reduced due to structural remodeling and loss of T-tubules as in hypertrophy, myocardial infarct and HF (Wei et al., 2010).

L-Type Ca2+ Channel in Diabetes

The majority of studies using various models of diabetes did not find statistically significant changes in ICa with a few exceptions (Pereira et al., 2006; Lu et al., 2007). Pereira et al. (2006) showed that in db/db mice (Type 2), the decrease in ICa originates from a reduced number of channels in the sarcolemma. Similar results were obtained in the Akita mouse model (Type 1, Lu et al., 2007). In both models, steady state activation of ICa was shifted to more positive voltages which is expected to reduce ‘window current.’ However, in the latter model steady state inactivation was found shifted even further to the right, resulting in larger “window current.” The information as to whether LTCCs in diabetes undergo posttranslational modifications, or if their distribution with regard to RyR2s is altered, is scarce. While Shao et al. (2012) saw no T-tubular remodeling in STZ-diabetic rats, diminished T-tubular density was observed in db/db mice (Stølen et al., 2009). These findings, along with changes in LTCC in HF, are summarized in Table 1.

Table 1.

Changes in LTCC in HF, inherited syndromes and diabetes.

Change in function Comments Reference

L-type Ca2+ channel (LTCC)
Heart failure
No change in ICa
No change in basal ICa but significant increase in phosphorylation of LTCC to maintain it
Mewes and Ravens, 1994; Bodi et al., 2005
Chen et al., 2002
Changes in window current that drive EADs, less Ca2+-dependent inactivation of ICa Bers, 2006; Weiss et al., 2010
Impaired trafficking/reduced abundance in T tubules
LTCC-RyR2 coupling fidelity reduced
Hong et al., 2012
Harvey and Hell, 2013
Inherited syndromes
Gain of function mutations in Cav1.2 (Long QT syndrome 8)
Loss of function CaM mutation reduced Ca2+ sensitivity (Long QT syndrome 14)
Boczek et al., 2013; Ye et al., 2018
Crotti et al., 2013; Marsman et al., 2014
Type 1 diabetes
No change in ICa in STZ-induced diabetic rats Smail et al., 2016
Reduced ICa in Akita(ins2) mice Lu et al., 2007
Type 2 diabetes
No change in ICa in Goto-Kakizaki rats Salem et al., 2013
Reduced number of LTCC channels in sarcolemma in db/db mice
Reduced ICa in db/db mice
Pereira et al., 2006
Lu et al., 2011

The Ryanodine Receptor

The cardiac SR Ca2+ release channel, RyR2, is a large 2.2 MDa homotetramer consisting of four 565 kDa subunits (Tunwell et al., 1996). While a variety of physiological ligands can modulate RyR2 channel activity including Mg2+ and ATP, Ca2+ is the primary effector of function (Bers, 2002; Fill and Copello, 2002). During EC coupling, the LTCC-mediated influx of cytosolic Ca2+ and increase in [Ca2+] drives activation of other RyR2 channels within the cardiomyocyte via CICR (Fabiato, 1985). Activation of single RyR2 clusters consisting of 8–100 channels (Baddeley et al., 2009) generates a local increase in the concentration of cytosolic Ca2+, known as a Ca2+ spark (Cheng et al., 1996). The summation of Ca2+ sparks produced by activated RyR2 clusters throughout the cardiomyocyte leads to a global Ca2+ transient that initiates muscle contraction (Cheng et al., 1996).

The positive feedback nature of CICR means it is a self-regenerating process that would be inherently unstable without some mechanism for termination of RyR2-mediated Ca2+ release (Fill and Copello, 2002; Kunitomo and Terentyev, 2011). Several candidate mechanisms have been proposed. While it was originally thought that the binding of Ca2+ to cytosolic low affinity sites on the channel during Ca2+ release inactivated RyR2 channels (Fabiato, 1985), it is now apparent that cytosolic Ca2+ plays a limited role in the termination of CICR. There is an accumulation of evidence that demonstrates RyR2 responds to luminal Ca2+ concentrations (Sitsapesan and Williams, 1994; Lukyanenko et al., 1996; Györke and Györke, 1998; Terentyev et al., 2002), with Ca2+ spark termination occurring when SR [Ca2+] falls to a certain level (Brochet et al., 2005; Terentyev et al., 2008; Zima et al., 2008). Depletion may cause unbinding of Ca2+ from luminal activation sites and drive closing of the channel [i.e., deactivation (Jiang et al., 2007; Terentyev et al., 2008)]. More recently, in a hypothesis termed ‘induction decay’ or ‘pernicious attrition’ (Gillespie and Fill, 2013; Laver et al., 2013), it was hypothesized that by decreasing local concentrations of cytosolic Ca2+, a reduction in unitary current via RyR2 breaks the positive-feedback loop of CICR within a cluster. Another phenomenon related to termination is refractoriness of SR Ca2+ release, a period after RyR2 activation and deactivation during which another Ca2+ release event cannot occur (Sham et al., 1998; Szentesi et al., 2004; Györke and Terentyev, 2008). While it was thought that the refractory state persists until SR [Ca2+] is recovered to a critical level, SR Ca2+ load was shown to recover to pre-release levels long before spontaneous Ca2+ wave initiation (Belevych et al., 2012). Mechanisms that determine the refractoriness of CICR remain incompletely understood.

While RyR2 channels open and release Ca2+ from the SR in response to LTCC-mediated Ca2+ influx, channels are not completely closed and have a finite open probability, leading to substantial Ca2+ leak during diastole (Bers, 2014; Eisner et al., 2017). This Ca2+ leak, measurable as Ca2+ sparks, plays an important physiological role in determining the appropriate SR Ca2+ load of cardiomyocytes and threshold for SR Ca2+ release (Cheng et al., 1996; Eisner et al., 2017).

Multiple accessory proteins have been shown to coimmunoprecipitate with RyR2, indicative that the channels exist as large macromolecular complexes (Bers, 2004; Meissner, 2017). The Ca2+ binding protein calmodulin (CaM) directly associates with and regulates RyR2 channels (Samsó and Wagenknecht, 2002; Bers, 2004), while auxilliary proteins CSQ, triadin (TRDN) and junctin (JUN) form the luminal Ca2+ sensor of RyR2 within the SR (Györke et al., 2004; Györke and Terentyev, 2008). FK506 binding protein 12.6 (FKBP12.6) is also an accessory protein of RyR2, and the interaction was proposed to stabilize the channel, preventing spontaneous Ca2+ release and SR Ca2+ leak, although this phenomenon was not observed by many others (Marx et al., 2000; Prestle et al., 2001; George et al., 2003; Goonasekera et al., 2005; Wehrens et al., 2005).

During β-adrenergic stimulation as part of the ‘fight or flight’ response, several EC coupling proteins are targets for posttranslational modification, with phosphorylation well established as a regulatory mechanism modulates ion channel activity with positive chronotropic and inotropic effects to enhance cardiac function (Bers, 2002). The RyR2 channel complex includes a network of associated kinases (protein kinase A (PKA) and Ca2+-calmodulin dependent protein kinase II (CaMKII)) and phosphatases (PP1, PP2A, and PP2B) that dynamically and reversibly modulate its phosphorylation state (Belevych et al., 2011a; Niggli et al., 2013; Terentyev and Hamilton, 2016). Three major phosphorylation sites have been identified – PKA-specific Serine 2808 (S2808) and Serine 2031 (S2031), and CaMKII-specific Serine 2814 (S2814) (Witcher et al., 1991; Wehrens et al., 2004b; Xiao et al., 2005).

Another major posttranslational modification of RyR2 function is oxidation (Zima and Mazurek, 2016). To maintain a fine-tuned balance of reduced and oxidized proteins within the cardiomyocytes, there are multiple sources of ROS as well as antioxidant defense components (Xu et al., 1998). There are approximately 21 cysteine residues within RyR2 that are reduced under physiological conditions, and the channel is known to be susceptible to reversible redox modification (Xu et al., 1998; Dulhunty et al., 2000). At the single channel level, oxidation of RyR2 increases channel open probability and increases the sensitivity to activating Ca2+, while reducing agents have opposite effects (Boraso and Williams, 1994; Xu et al., 1998; Salama et al., 2000).

The Ryanodine Receptor and Cardiac Arrhythmia

Under pathophysiological conditions, diastolic Ca2+ leak from the SR is increased, thus exceeding the critical threshold level and increasing RyR2 channel activation, which in turn activates other channels and results in proarrhythmic diastolic Ca2+ waves (Cheng et al., 1996). This subsequently activates NCX1, driving a net inward current that gives rise to delayed after depolarizations (DADs) and arrhythmias (Ferrier et al., 1973; Mechmann and Pott, 1986; Landstrom et al., 2017). Evidence suggests that increased refractory period shortening, thus increased RyR2-mediated SR Ca2+ leak, promotes Ca2+-dependent arrhythmias in failing hearts (Belevych et al., 2012; Brunello et al., 2013; Cooper et al., 2013).

Abnormal Ca2+ release is the driving force for arrhythmia observed in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition characterized by pathogenic mutations in RyR2 (Priori et al., 2002; Priori and Chen, 2011), as well as in associated accessory proteins including CSQ (Terentyev et al., 2006; Nyegaard et al., 2012; Roux-Buisson et al., 2012). The condition presents under conditions of enhanced catecholaminergic drive, in the absence of any structural defects in the heart (Priori et al., 2002; Tester et al., 2005). Premature ventricular contractions (PVCs) that often manifest during exercise or periods of stress can degenerate into polymorphic or bidirectional ventricular tachycardia (VT) or fibrillation (VF) and subsequently lead to SCD. Mutations in RyR2 associated with CPVT usually cause increased SR Ca2+ leak that is exacerbated by β-adrenergic stimulation, but both gain- and loss-of-function mutations have been reported (Wehrens et al., 2003; Loaiza et al., 2013; Zhao et al., 2015; Landstrom et al., 2017; Uehara et al., 2017). Mutations in CSQ cause reduction or complete loss of protein expression, and without CSQ-mediated Ca2+ buffering within the SR, RyR2 channels are prone to spontaneous activation, offering a trigger for arrhythmia (Yano and Zarain-Herzberg, 1994; Lahat et al., 2001; Knollmann et al., 2006; Faggioni et al., 2012).

The significance of altered PKA-mediated phosphorylation of RyR2 function in the pathogenesis of cardiac arrhythmia remains controversial. Hyperphosphorylation of RyR2 at S2808 was originally hypothesized to cause dissociation of FKBP12.6, destabilizing the channel and thus increasing open channel probability (Marx et al., 2000). However, the significance of both phosphorylation at this site and the role of PKA-mediated phosphorylation on the function of RyR2 remains a disputed subject (Jiang et al., 2002; Benkusky et al., 2007; Curran et al., 2007; Belevych et al., 2011b; Bovo et al., 2017). The role of CaMKII-mediated Ry2 phosphorylation in modulating channel function is more strongly supported, with consensus that activation of CaMKII as opposed to PKA increases SR Ca2+ leak (Ai et al., 2005; Curran et al., 2007; Niggli et al., 2013), although this is not universal (Wehrens et al., 2006; Yang et al., 2007). It is also well established that chronic CaMKII activity in cardiac disease is a major regulator of RyR2 function with arrhythmogenic consequences (Ai et al., 2005; Zhang et al., 2005; Terentyev et al., 2009; Belevych et al., 2012; Respress et al., 2012; Uchinoumi et al., 2016). Additionally, oxidation as a posttranslational modification may alter RyR2 function in cardiac disease. In the healthy heart, oxidation may serve to transiently enhance Ca2+ release, increasing cardiac output (Niggli et al., 2013). However, in conditions of severe oxidative stress such as HF, increased RyR2 oxidation by ROS can lead to RyR2 activation and increased proarrhythmic SR Ca2+ leak (Mochizuki et al., 2007; Belevych et al., 2011a,b). Modulation of RyR2 activity by ROS can also be indirect, via the oxidation of CaMKII and subsequent increased CaMKII-mediated phosphorylation of the channel (Chelu et al., 2009; Anderson, 2015).

The SR Ca2+ load is thought to be a critical factor of cardiac alternans, a repetitive beat-to-beat fluctuation in cellular repolarization at a constant heart rate that closely linked to development of ventricular arrhythmias (Edwards and Blatter, 2014). Any impairment in the refractoriness of RyR2-mediated Ca2+ release or the recovery after channel inactivation may facilitate the onset of alternans, due to a reduction in the subsequent Ca2+ transient amplitude (Edwards and Blatter, 2014). These properties of RyR2 have been shown to be a major component underlying generation of alternans in both computational and experimental studies (Sobie et al., 2006; Nivala and Qu, 2012; Shkryl et al., 2012; Alvarez-Lacalle et al., 2013; Sun et al., 2018).

The Ryanodine Receptor in Diabetes

It is well established that increased SR Ca2+ leak due to enhanced RyR2 channel activity significantly contributes to arrhythmogenic potential in diabetic cardiomyopathy.

Injection of STZ destroys insulin-producing β cells and has long been used for the generation of Type 1 diabetes phenotypes. Early studies of RyR2-mediated Ca2+ release in diabetes utilized STZ-diabetic rat models. Work of Yu et al. (1994) showed that cardiomyocytes from STZ-diabetic rats had reduced maximum rates of shortening and relengthening, as well as depressed SR Ca2+ content. Using [3H] ryanodine binding assay as an indication of RyR2 channel functionality, isolated SR membranes from diabetic rats showed reduced high-affinity binding sites. Bidasee et al. (2001) also reported decreased [3H] ryanodine binding in 6-week post STZ injection, but posited this was due to dysfunctional RyR2 rather than a decrease in protein expression or mRNA level as observed in Teshima et al. (2000) and Choi et al. (2002). Interestingly, Zhao et al. (2014) found that Ca2+ spark frequency showed a gradual decline in correlation with progression of STZ-diabetes, with significant differences between 4-week and 12-week post-injection groups.

Yaras et al. (2005) importantly showed increased Ca2+ spark frequency in cardiomyocytes from STZ-diabetic rat, with a reduced Ca2+ transient amplitude and depressed SR Ca2+ loading. This was accompanied by significantly increased phosphorylation of RyR2 at S2808 and a ∼40% decrease in FKBP12.6 association. Similar findings were reported by other groups, where these phenomena were suggested to underscore depressed SR Ca2+ release in STZ-diabetic cardiomyocytes (Shao et al., 2007, 2009; Tuncay et al., 2014), indicative that Ca2+ leak via hyperactive RyR2 contributes to the disease phenotype. Later work showed that exercise training for 4 weeks could attenuate this, reducing S2808 phosphorylation and increase levels of FKBP12.6 expression (Shao et al., 2009). However, the functional role of PKA-mediated RyR2 phosphorylation remains controversial and many studies have shown phosphorylation at the S2808 site does not modulate channel activity in other cardiac disease states (Xiao et al., 2004; Guo et al., 2010). An increase in endogenous CaMKII-mediated phosphorylation of RyR2 has also been implicated in the aberrant Ca2+ handling observed in STZ-diabetic rats (Netticadan et al., 2001) and db/db mice (Stølen et al., 2009). Conversely, Tian et al. (2011) posited that gain-of-function changes in RyR2 function observed in single channel recordings were independent of phosphorylation at either S2808 or S2814 sites. Instead, the increase in open channel probability and 20% reduction in conductance was attributed to increased responsiveness to cytoplasmic activators including Ca2+, alterations in the threshold for activation by luminal Ca2+, and a blunted response to physiological inhibitors.

Other posttranslational modifications of RyR2 in Type 1 diabetes have also been suggested to underscore channel dysfunction. Bidasee et al. (2003a) suggested RyR2 dysfunction, evidenced by decreased [3H] ryanodine binding in STZ-diabetic rats, was in part due to formation of disulfide bonds between adjacent sulfhydryl groups. The same group also showed that non-cross-linking advanced glycation end products (AGEs) on RyR2 are significantly increased in diabetic heart tissue, and this increase could be partially attenuated with insulin treatment (Bidasee et al., 2003b). Extensive carbonylation of RyR2 by increased reactive carbonyl species (RCS) in STZ- diabetic rats was suggested to reduce the responsiveness of RyR2 to cytoplasmic Ca2+. While expression levels of RyR2 remained unchanged, there was an increase in non-functional RyR2 channels, but also an increase in the activity of others. The increased heterogeneity of RyR2 channels was posited to increase spontaneous and dyssynchronous SR Ca2+ release in isolated cardiomyocytes, thus providing a trigger for arrhythmia. Treatment of diabetic rats with RCS scavengers attenuated spontaneous SR Ca2+ release, reduced RyR2 carbonylation and normalized channel functionality.

Fewer studies have investigated changes in RyR2-mediated Ca2+ handling in models of Type 2 diabetes. In the non-failing myocardium of type 2 diabetic patients RyR2 protein expression was decreased, while mRNA levels were decreased in the Goto-Kakizaki model (Reuter et al., 2008; Gaber et al., 2014). In a prediabetic model of metabolic syndrome, whereby dogs were chronically fed a high fat diet (HFD), phosphorylation of RyR2 at S2808 was significantly elevated and the channel’s ability to bind [3H] ryanodine significantly depressed in the ventricles compared to healthy controls, while no changes in RyR2 mRNA or protein expression were observed (Dinçer et al., 2006). Okatan et al. (2016) also observed increased RyR2 phosphorylation at S2808 in rats with high sucrose diet-induced metabolic syndrome, accompanied by reduced FKBP12.6 expression. Through studies of electric-field stimulated intracellular Ca2+ handling, cardiomyocytes isolated from rats with metabolic syndrome showed significantly increased SR Ca2+ leak, depressed SR Ca2+ loading and reduced Ca2+ transient amplitude vs. controls. This data is suggestive that alterations in RyR2 function and SR Ca2+ release may be an important mechanism of early cardiac dysfunction in insulin resistance and diabetes development.

Abnormal intracellular lipid concentration is a hallmark of both obesity and diabetes, and Joseph et al. (2016) recently studied Ca2+ handling in cardiomyocytes from a transgenic model of cardiac lipid overload, with peroxisome proliferator-activated receptor-γ (PPARg) overexpression. This revealed increased Ca2+ spark activity compared to controls that could be reduced by application of antioxidant mitoTEMPO. A significant increase in mitochondrial oxidative stress was suggested to increase RyR2 oxidation and subsequent SR Ca2+ release. In 8-week mice with HFD-induced obesity, Sánchez et al. (2018) reported a shift in the distribution of single RyR2 channel responsiveness to activating cytosolic [Ca2+], whereby channels were much more active to those isolated from control mice. No changes were observed in RyR2 expression levels or phosphorylation status at S2808 or S2814 sites. Instead, this phenomenon was attributed to significantly increased RyR2 oxidation in HFD-mice, implicating the diabetes-related increase in oxidative stress in abnormal Ca2+ handling. Changes in RyR2 in HF and diabetes are summarized in Table 2.

Table 2.

Changes in RyR2 in HF, inherited syndromes and diabetes.

Change in function Comments Reference

Ryanodine Receptor (RyR2)
Heart failure
Increases diastolic SR Ca2+ leak, resulting in diastolic Ca2+ waves
Increased phosphorylation (S2808)
Decreased FKBP12.6 association
Increased phosphorylation (S2031)
Increased phosphorylation (S2814)

Increased oxidation

Other posttranslational modifications
Belevych et al., 2011b; Cheng et al., 1996
Marx et al., 2000
Marx et al., 2000; Wehrens et al., 2003; Wehrens et al., 2005
Xiao et al., 2005
Ai et al., 2005; Curran et al., 2007; Terentyev et al., 2009; Sossalla et al., 2010; Belevych et al., 2011b; Respress et al., 2012; Dries et al., 2018
Mochizuki et al., 2007; Terentyev et al., 2008;
Belevych et al., 2011b
Xu et al., 1998; Barouch et al., 2002
Inherited syndromes
CPVT; mostly gain of function RyR2 mutations, or mutations in accessory proteins Yano and Zarain-Herzberg, 1994; Lahat et al., 2001; Priori et al., 2002; Terentyev et al., 2006; Roux-Buisson et al., 2012
Type 1 diabetes
Decreased protein expression/mRNA level in STZ-diabetic rats (increased activity due to posttranslational modification)
Increased PKA-mediated phosphorylation (S2808) in STZ-diabetic rats

Decreased FKBP12.6 association in STZ-diabetic rats

Increased CaMKII-mediated phosphorylation (S2814) in STZ-diabetic rats
Other posttranslational modification in STZ-diabetic rats (oxidation, carbonylation, AGEs)
Change in sensitivity to cytosolic or luminal Ca2+ activation in STZ diabetic rats
Teshima et al., 2000; Yaras et al., 2005; Zhao et al., 2014; Chou et al., 2017
Netticadan et al., 2001; Yaras et al., 2005; Shao et al., 2007, 2009
Yaras et al., 2005; Shao et al., 2007, 2009; Tuncay et al., 2014; Zhao et al., 2014
Netticadan et al., 2001; Shao et al., 2009
Bidasee et al., 2003a,b; Shao et al., 2012

Tian et al., 2011; Shao et al., 2012
Type 2 diabetes
Reduced protein expression in nonfailing diabetic human myocardium, with increased phosphorylation
Reduced mRNA levels in Goto-Kakizaki rats
Reduced protein expression levels in PPARg mice with lipid overload
Increased PKA-mediated phosphorylation (S2808) in high-sucrose diet rats and HFD dogs
Increased oxidation in PPARg mice with lipid overload and HFD mice
Change in sensitivity to cytosolic or luminal Ca2+ activation in HFD mice
Reuter et al., 2008

Gaber et al., 2014
Joseph et al., 2016
Dinçer et al., 2006; Okatan et al., 2016

Joseph et al., 2016; Sánchez et al., 2018
Sánchez et al., 2018

Sarco/Endoplasmic Reticulum Ca2+-Atpase

For relaxation to occur, intracellular [Ca2+] is decreased primarily via sequestration into the SR by SERCa2a, the primary cardiac SERCa isoform (Bers, 2002). While SERCa2a interacts with multiple proteins (including calreticulin, HRC, PP1, S100A, sarcolipin, SUMO), the most important regulator of function is phospholamban (PLB) (Kranias and Hajjar, 2012). Unphosphorylated PLB has an inhibitory effect on SERCa2a activity, lowering affinity of the pump for Ca2+. Conversely phosphorylation of PLB, either by PKA at Serine 16 (S16) or CaMKII at Threonine 17 (T17), relieves SERCa2a inhibition and increases activity (Simmerman et al., 1986). Oxidative thiol modification of SERCa2a at Cysteine 674 also enhances function (Lancel et al., 2009). Upregulated SERCa2a function is the primary mechanism for positive lusitropic (accelerated relaxation) and inotropic (increased contraction) responses during β-adrenergic stimulation (Fearnley et al., 2011; Vervliet et al., 2018).

Sarco/Endoplasmic Reticulum Ca2+-ATPase and Cardiac Arrhythmia

In HF, impaired SERCa2a expression and activity blunts Ca2+ transient amplitude and rate of decay (Winslow et al., 1999). Reduced sequestration of Ca2+ into the SR drives Ca2+ extrusion from the cardiomyocyte via NCX1. This generates a net inward depolarizing current that can prolong action potential and thus facilitate triggered activity (O’Rourke et al., 1999; Bers et al., 2002). Diminished SR Ca2+ uptake by SERCa2a is also associated with the initiation of cardiac alternans (Merchant and Armoundas, 2012; Nivala and Qu, 2012).

While it may seem counterintuitive to increase SR Ca2+ uptake as a therapeutic strategy, given that SR Ca2+ overload may exacerbate SR Ca2+ leak through RyR2, accumulated evidence suggests the contrary. Upregulation of SERCa2a in small and large animal studies has been shown to protect against development of arrhythmias, improve contractile function and normalize intracellular Ca2+ handling (Meyer and Dillmann, 1998; del Monte et al., 2001, 2004; Suarez et al., 2004; Prunier et al., 2008; Lyon et al., 2011; Fernandez-Tenorio and Niggli, 2018). Multicenter SERCa2a gene therapy trials in humans with HF have been completed, but with limited success (Jaski et al., 2009; Jessup et al., 2011; Zsebo et al., 2014; Greenberg et al., 2016). Increased SERCa2a activity also suppressed cardiac alternans in both computational models and experimental studies (Cutler et al., 2009; Stary et al., 2016).

Sarco/Endoplasmic Reticulum Ca2+-ATPase in Diabetes

Diminished SR Ca2+ uptake has been identified as a primary mechanism for decreased cardiac contractility observed in diabetic cardiomyopathy (Ganguly et al., 1983). Dysfunction of SERCa2a has been established at early stages of type 1 diabetes development and is primarily ascribed to decreased mRNA levels or expression of the protein, resulting in reduced Ca2+ transient amplitudes and a slower rate of transient decay (Ganguly et al., 1983; Trost et al., 2002; Bidasee et al., 2004; Hu et al., 2005; Lacombe et al., 2007). Increased oxidative stress and intracellular ROS concentrations in diabetic hearts can reduce SERCa2a activity by oxidizing Cysteine 674, as well as interfering with the ATP binding site (Xu et al., 1997; Ying et al., 2008). Other molecular mechanisms suggested to drive SERCa2a downregulation include increased carbonylation, glycation and O-GlcNAcylation (Bidasee et al., 2004; Hu et al., 2005; Shao et al., 2011). Changes in PLB expression and phosphorylation have also been reported in STZ-diabetic rats, but this finding is not universal (Wold et al., 2005). Gene therapy with recombinant PLB antibody, which could mimic PLB phosphorylation thus activate SERCa2a, was also shown to increase the rate of whole heart relaxation, contraction and pressure development in a diabetic mouse model and cardiomyopathic hamsters (Meyer et al., 2004; Dieterle et al., 2005).

The pathophysiological role of SERCa2a in cardiomyopathy observed in type 2 diabetes remains to be fully elucidated, although activity is mostly reduced in various models (Zarain-Herzberg et al., 2014). Decreased SERCa2a mRNA levels were observed in the obese fa/fa rats while levels of protein, but not mRNA, were reduced in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. No changes in protein expression were observed in the db/db mouse, but rather an increased PLB expression was posited to account for diminished SR Ca2+ uptake in this model. Stølen et al. (2009) reported reduced SERCa2a protein expression, increased PLB phosphorylation and overall reduced SERCa2a Ca2+ uptake in db/db mice. Conversely, increased expression of SERCa2a and reduced PLB mRNA was observed in ZDF rats, which could be further increased with insulin treatment in a concentration-dependent manner (Fredersdorf et al., 2012). Upregulation of SR Ca2+ uptake via SERCa2a may offer protection in early phases of disease development, countering volume overload and impaired relaxation (Fredersdorf et al., 2012; Zarain-Herzberg et al., 2014). Changes in SERCa2a expression and function in both HF and diabetes are summarized in Table 3.

Table 3.

Changes in SERCa2a in HF, inherited syndromes and diabetes.

Change in function Comments Reference

Sarco/endoplasmic reticulum Ca2+ ATPase (SERCa2a)
Heart failure
Depressed activity

Reduced mRNA levels/protein expression

Decreased PLB expression

Decreased PLB phosphorylation
Increased PLB phosphorylation
Dissociation of SUMO1
Pieske et al., 1995; Schmidt et al., 1998, 1999; Currie and Smith, 1999; Jiang et al., 2002
Kiss et al., 1995; Currie and Smith, 1999; Armoundas et al., 2007
O’Rourke et al., 1999; Jiang et al., 2002; Armoundas et al., 2007
Schwinger et al., 1998, 1999
Currie and Smith, 1999
Schmidt et al., 1999
Inherited syndromes
PLB mutation, reduced SERCa2a activity Schmitt et al., 2003
PLB deletion mutation, enhanced SERCa2a activity Haghighi et al., 2003, 2006
Type 1 diabetes
Reduced SERCa2a activity in alloxan and STZ-induced diabetic rats
Decreased mRNA levels/protein expression levels in STZ-diabetic rats


Decreased SERCa2a expression, increased CaMKII phosphorylation of SERCa2a and PLB in STZ-diabetic rats
Increased oxidation in diabetic pig aorta
Increased carbonylation, glycation and O-GlcNAcylation in STZ-diabetic rats
Lopaschuk et al., 1983; Allo et al., 1991
Teshima et al., 2000; Choi et al., 2002; Trost et al., 2002; Bidasee et al., 2004; Hu et al., 2005; Lacombe et al., 2007
Netticadan et al., 2001

Ying et al., 2008
Bidasee et al., 2004; Hu et al., 2005; Shao et al., 2011
Type 2 diabetes
Increased SERCa2a expression but reduced PLB mRNA in Zucker rats Fredersdorf et al., 2012
Slowed SR Ca2+ uptake without changes in SERCa2a expression but increased PLB phosphorylation in rats fed high starch/sucrose
Decreased mRNA levels/protein expression levels in obese fa/fa and OLETF rats
No change in SERCa2a expression but increased PLB expression in db/db mouse
Reduced SERCa2a expression but increased in phosphorylation of PLB in PPARg mice
Reduced SERCa2a expression but enhanced CaMKII-mediated phosphorylation of PLB in ob/ob mice.
Wold et al., 2005

Zarain-Herzberg et al., 2014
Zarain-Herzberg et al., 2014
Joseph et al., 2016
Stølen et al., 2009

Na+/Ca2+ Exchanger

To maintain the cardiac contraction cycle, equal amount of Ca2+ that enters the cell though LTCCs must be removed to the extracellular milieu. The Na+/Ca2+ exchanger is the main route for Ca2+ extrusion from myocytes. Cardiac NCX (NCX1, 110 kDa) is activated by intracellular Ca2+ in submicromolar range transporting one Ca2+ ion in exchange to thee Na2+ ions (Despa and Bers, 2013). In the early phases of action potential at voltages more positive than reversal potential of NCX1, a small amount of Ca2+ enters the cell. This “primes” RyR2 clusters for activation during subsequent openings of LTCCs, enhancing efficiency of CICR (Neco et al., 2010). At later stages of action potential during the Ca2+ transient, NCX1 works in a forward mode extruding Ca2+, and, since it is electrogenic, contributes to depolarization. Increase in intracellular [Na2+] can significantly increase NCX1-mediated Ca2+ influx and reduce removal. Although NCX1 activity was demonstrated being increased in the presence of oxidants (Kuster et al., 2010), evidence also exists that enhanced production of ROS leads to NCX1 inhibition (Liu and O’Rourke, 2013).

Na+/Ca2+ Exchanger and Cardiac Arrhythmia

Enhanced expression and activity of NCX1 is thought to be one of the major causes of increased arrhythmogenesis in HF (Pogwizd et al., 1999; Bers et al., 2002). NCX1 translates intracellular [Ca2+] during spontaneous Ca2+ waves into depolarizations, i.e., DADs, which can lead to activation of Na2+ channels and extrasystolic action potentials. During systole enhanced NCX1 prolongs APD allowing LTCCs to reactivate thereby contributing to generation of EADs. Increased NCX1-mediated Ca2+ influx during reverse mode due to increased intracellular [Na2+] characteristic of HF or ischemia may increase cytosolic Ca2+ and thereby activity of RyR2s (Satoh et al., 2000; Szepesi et al., 2015). Pharmacological inhibition of NCX1 substantially reduced triggered activity in various models of ventricular arrhythmia with perturbed Ca2+ homeostasis (Bourgonje et al., 2013; Jost et al., 2013; Nagy et al., 2014; Zhong et al., 2018). Experiments using mouse ventricular myocytes with reduced NCX1 demonstrated that genetic inhibition of NCX1 suppressed arrhythmogenic after depolarizations (Bögeholz et al., 2015), while transgenic overexpression promoted generation of EADs due to prolonged repolarization and spontaneous action potentials (Pott et al., 2012).

Na+/Ca2+ Exchanger in Diabetes

The levels and activity of NCX1 vary in different diabetes models. Alloxan or STZ- injected mice with diabetes type 1 showed reduction in NCX1 activity, reduced expression and mRNA levels (Makino et al., 1987; Pierce et al., 1990; Golfman et al., 1998; Hattori et al., 2000). A number of studies shows increased intracellular [Na+] in myocytes from diabetic hearts which enhances NCX1-mediated Ca2+ influx and reduces extrusion (Doliba et al., 2000; Wickley et al., 2007), but reduced NCX1 expression levels have also been reported (Bilginoglu et al., 2013). Belke et al. (2004) using the diabetes type 2 db/db mouse model showed no difference in NCX1 activity. In db/db mice, Stølen et al. (2009) reported increased NCX1 function. Insulin-resistant sucrose-fed rats with diastolic dysfunction showed normal expression and function of NCX1 (Wold et al., 2005). No changes in INCX were reported in high fat diet mouse model (Ricci et al., 2006). An increase in mRNA levels of NCX1 was shown in human patients with diabetes type 2 (Ashrafi et al., 2017). A similar increase was demonstrated in the mouse model with lipid overload (Joseph et al., 2016) and diabetes type 1 Akita(ins2) mouse model of cardiomyopathy (LaRocca et al., 2012). Alterations in NCX1 expression and function in HF and diabetes are summarized in Table 4.

Table 4.

Changes in NCX1 in HF, inherited syndromes and diabetes.

Change in function Comments Reference

Na+/Ca2+-exchanger (NCX1)
Heart failure
No change in NCX1 function in end-stage human HF Piacentino et al., 2003
Increased protein expression and enhanced activity

Enhanced reverse mode activity, with Ca2+ entry into
the myocyte
Pogwizd et al., 1999, 2001; O’Rourke et al., 1999; Bers et al., 2002; Ottolia et al., 2013
Despa et al., 2002; Weber et al., 2003
Inherited syndromes
N/A
Type 1 diabetes
Increased activity
Increased mRNA levels in Akita(ins2) mice
Doliba et al., 2000; Wickley et al., 2007
LaRocca et al., 2012
Depressed activity in STZ-diabetic rats

Reduced mRNA levels/protein expression in STZ-diabetic rats
Pierce et al., 1990; Allo et al., 1991; Hattori et al., 2000
Hattori et al., 2000
Type 2 diabetes
No change in NCX1 activity/protein expression in db/db mice, high-sucrose diet rats, HFD mice Belke et al., 2004; Wold et al., 2005; Ricci et al., 2006
Increased mRNA levels in human left ventricle
Increased mRNA levels in PPAR mice with lipid overload
Increased activity in db/db mice
Ashrafi et al., 2017
Joseph et al., 2016
Stølen et al., 2009

Mechanisms of Ca2+ Dependent Arrhythmia in Diabetes

The enhanced propensity to ventricular tachyarrhythmias in diabetic and obese patients is well established (Tse et al., 2016). The arrhythmic potential increases relatively early in the course of development of diabetic cardiomyopathy before the onset of systolic dysfunction. Lacombe et al. (2007) showed dramatic increase in EADs and DADs in ventricular myocytes from diabetic rats with diastolic dysfunction 8 weeks after STZ injection. Sommese et al. (2016) demonstrated enhanced arrhythmogenesis in vivo in fructose rich diet (FRD) prediabetic mice. The authors showed increased activity of RyR2 manifested in enhanced frequency of spontaneous Ca2+ waves in field-stimulated myocytes. Mice expressing SR-targeted CaMKII inhibitor peptide AIP showed less ectopic activity that WT FRD mice, and in rats FRD-mediated increase in pro-arrhythmic spontaneous Ca2+ release was eliminated by incubation of myocytes with pharmacological inhibitor of CaMKII KN93 or antioxidant Tempol. The authors conclude that RyR2 phosphorylation by ROS-activated CaMKII at CaMKII site S2814 plays a major role in diabetes-related arrhythmogenesis. Interestingly, the authors did not find changes in RyR2 phosphorylation at PKA site S2808. Earlier work by Erickson et al. (2013) linked diabetic hyperglycemia-mediated activation of CaMKII with Ca2+-dependent triggered activity in rats. The authors proposed that acute hyperglycemia causes covalent modification of CaMKII by O-linked N-acetylglucosamine (O-GlcNAc), resulting in prolonged activation of CaMKII and subsequent increase in RyR2 CaMKII phosphorylation and thereby its activity.

Diabetes is associated with oxidative stress and mitochondrial dysfunction plays significant role in enhanced production of ROS (Akar, 2013; Xie et al., 2013; Teshima et al., 2014). It is postulated that a micro-domain between the SR and mitochondria allows for control by Ca2+ of mitochondrial function and SR Ca2+ handling machinery by mitochondrial ROS (Ruiz-Meana et al., 2010; Eisner V. et al., 2013; Lopez-Cristosto et al., 2017). The close proximity of mitochondria to SR Ca2+ release sites (∼37–270 nm; Sharma et al., 2000) facilitates not only mitochondrial Ca2+ uptake and subsequent alterations in mitochondrial function (Csordás et al., 2001; Dorn and Maack, 2013), but also ROS-mediated modification of RyR2 and SERCa2a, both of which are redox sensitive (Zima and Blatter, 2006). In the PPARg overexpression mouse, it was demonstrated that oxidative stress due to mitochondrial dysfunction causes increased SR Ca2+ leak by oxidizing RyR2 channels (Joseph et al., 2016). This promoted ventricular ectopy, which was significantly reduced in vivo by a mitochondrial-targeted antioxidant mitoTEMPO. Sánchez et al. (2018) reported increased incidences of PVCs and non-sustained VT in HFD-mice vs. controls and this phenomenon was attributed to significantly increased RyR2 oxidation. When antioxidant apocynin was provided in the drinking water, appearance of ventricular arrhythmias in this model was completely abolished. Interestingly, results from Fauconnier et al. (2007) and Llano-Diez et al. (2016) suggest that in ob/ob and HFD mice at certain stages of disease development, mitochondrial ROS emission is reduced. Fauconnier et al. (2007) proposed that during prolonged exposure to increased fatty acid levels due to the switch in mitochondrial substrate utilization, cardiomyocytes from the ob/ob mouse adapt to preferential use of fatty acids for metabolism, so further exposure to fatty acids improved intracellular Ca2+ homeostasis in this model.

Increased NCX1 activity has also been identified as a mechanism promoting arrhythmia via enhancement of depolarization during spontaneous SR Ca2+ release events (Pott et al., 2011). Joseph et al. (2016) showed that in the PPARg overexpression model, NCX1 was upregulated. Importantly, in left ventricular tissue samples from type 2 diabetes human patients NCX1 expression was found significantly higher than in control patients with hypertrophy (Ashrafi et al., 2017).

Direct evidence that diabetes-related aberrant Ca2+ homeostasis can contribute to reentrant mechanisms of arrhythmia was obtained by Chou et al. (2017) who showed that optically mapped hearts from obese db/db mice exhibit concordant Ca2+/Vm alternans at lower stimulation frequencies than controls. The authors attributed it to lower expression levels of RyR2 and enhanced activity of CaMKII. Interestingly, previous studies using this model showed that the expression levels of LTCCs are substantially reduced (Pereira et al., 2006), while RyR2- mediated leak enhanced; and SERCA2a function severely depressed because of enhanced expression of PLB (Belke et al., 2004). Indeed, reduced fidelity of LTCC/RyR2 coupling and impaired ability to re-sequester Ca2+ into the SR are thought to be major underlying causes for beat-to-beat alternations of intracellular Ca2+ transient amplitude (Edwards and Blatter, 2014).

Therapeutic Strategies to Improve Ca2+ Homeostasis in Diabetes

Profound changes in cardiac Ca2+ homeostasis were reported in multiple animal models of diabetes at various states of disease progression, yet mechanisms underlying Ca2+ mishandling remain to be fully understood. While many experimental studies have sought to elucidate mechanisms underlying the enhanced propensity for arrhythmia in insulin-dependent models of type 1 diabetes, those driving arrhythmogenesis in type 2 diabetes are far less investigated. Given the prevalence of acquired diabetes is drastically increasing due to higher rates of obesity in the developed world, future studies are necessary to understand this complex phenotype.

Insulin Replacement

Strategies to manage diabetes include insulin replacement and aerobic exercise regimes (Winnick et al., 2008). Insulin elicits positive inotropic effects on the myocardium, inducing SERCa2a activity (Pierce et al., 1985), while endurance exercise has been shown to improve intracellular Ca2+ cycling and protect against oxidative stress in diabetic animal models (Kim et al., 1996; Shao et al., 2009; Stølen et al., 2009). Combined therapy was shown to increase expression of Ca2+ handling proteins, restore Ca2+ handling and improve basal cardiac function in type 1 diabetic rats (Le Douairon Lahaye et al., 2012; da Silva et al., 2015). However, due to the multifaceted nature of the disease, diabetes remains a prime risk factor for cardiovascular disease despite beneficial effects of these frontline treatments (Leon and Maddox, 2015).

Inhibition of the Renin-Angiotensin System

During the progression of diabetic cardiomyopathy, hyperglycemia is known to increase activity of the renin-angiotensin system (RAS) (Sechi et al., 1994; Ohishi, 2018). Angiotensin II has been shown to have direct effects on cardiomyocytes, with activation of its receptor (AT1) increasing generation of oxidants and increasing intracellular [Ca2+], as well as activating protein kinase C (PKC) and PKA (Malhotra et al., 1997; de Lannoy et al., 1998; Dostal, 2000; Raimondi et al., 2004). Angiotensin-converting enzyme (ACE) inhibitors and AT1 blockers are used to prevent hypertension and cardiovascular disease in diabetic patients (Mancia et al., 2013; Singh et al., 2018). Antagonism of angiotensin II was demonstrated to alleviate diminished SERCa2a activity in HF models (Okuda et al., 2004; Gassanov et al., 2006), while administration of AT1 blockers to STZ-diabetic rat cardiomyocytes reduced cellular oxidative stress as well as phosphorylation levels of RyR2, improving Ca2+ homeostasis (Privratsky et al., 2003; Yaras et al., 2007; Ozdemir et al., 2009).

β-Blockade

Current and conventional treatments of diabetes are limited in terms of preventing ventricular arrhythmias and SCD. Blockade of the β-adrenergic stimulation cascade remains a primary treatment of HF in a bid to reduce arrhythmogenic responses, including those of Ca2+ handling proteins (Klapholz, 2009; Rehsia and Dhalla, 2010). However, use of antagonists in diabetic patients remains controversial, given β-blockers have been associated with increased risk for cardiovascular events in diabetic patients and can have hypoglycemic side effects (Casiglia and Tikhonoff, 2017; Tsujimoto et al., 2017).

Targeting LTCC or NCX1

As it stands, inhibition of LTCC or NCX1 does not appear to be an appropriate strategy in ameliorating Ca2+ mishandling in diabetic hearts. Current density of LTCC is reported as unaltered or reduced in diabetic models (Pereira et al., 2006; Lu et al., 2007). A reduction of ICa in this setting would diminish the trigger for RyR2-mediated Ca2+ release and thereby may exacerbate systolic dysfunction and increase propensity to Ca2+ alternans. Pharmacological inhibition of NCX1 is generally viewed as beneficial since it reduces Ca2+ influx during reverse mode limiting Ca2+ overload and attenuates depolarization during forward mode reducing triggered activity (Antoons et al., 2012). However, if NCX1 is already diminished as shown in many models of diabetes (Makino et al., 1987; Pierce et al., 1990; Golfman et al., 1998; Hattori et al., 2000) additional inhibition was proven to be detrimental leading to adverse accumulation of Ca2+ in cytosol and cell death (Bögeholz et al., 2017).

Targeting SERCa2a

SERCa2a overexpression and/or enhancement may be a more suitable approach to ameliorate reduced contractility in diabetic cardiomyopathy, given the majority of studies report diminished pump activity. Insulin treatment has been shown to restore SERCa2a expression levels and improve Ca2+ homeostasis in obese type 2 diabetic rats (Fredersdorf et al., 2012). Transgenic overexpression of SERCa2a (or SERCa1a) in diabetic models increased SR Ca2+ uptake and attenuated diminished contractile function (Trost et al., 2002; Vetter et al., 2002; Waller et al., 2015). As previously discussed, studies using adenoviral mediated SERCa2a gene transfer in both small and large animal models of HF demonstrated similar results (del Monte et al., 2001, 2004; Lyon et al., 2011). While gene transfer via adeno-associated virus showed promise in the first human trial, it has shown limited success in others. Improvements and advances in gene therapy technology are likely to facilitate efficient and effective strategies to treat cardiac disease in the future (Ishikawa and Hajjar, 2017).

To enhance SERCa2a activity one could also modulate the inhibitory action of the accessory protein PLB. Ablation or knockdown of PLB has been demonstrated to suppress pro-arrhythmic Ca2+ waves generation in a model of CPVT (Bai et al., 2013), improve mortality rates in CSQ-transgenic mice [severe HF model, (Kaneko et al., 2016)] and importantly, improve contractile function in failing human cardiomyocytes (del Monte et al., 2002). However, ablation has not alleviated HF development in all models and a mutant form of PLB unable to inhibit SERCa has been linked to lethal dilated cardiomyopathy in humans (Haghighi et al., 2003; Song et al., 2003; Sipido and Vangheluwe, 2010; Zhang et al., 2010).

Targeting RyR2

Abnormally high activity of RyR2 is the most universal finding demonstrated across several models of diabetes. Compounds thought to modulate RyR2 including JTV-519 (K201), carvedilol, dantrolene and tetracaine analogs have previously been tested for therapeutic potential (Kaneko et al., 1997; Wehrens et al., 2004a; Kobayashi et al., 2010; Zhou et al., 2011; Zhang et al., 2015). However, there remains a need for drugs without off-target effects and significant effort is currently being made to identify small novel modulators of the channel that will prevent arrhythmogenic Ca2+ leak (Li et al., 2017; Rebbeck et al., 2017).

Stabilization of RyR2-mediated Ca release can be achieved indirectly by targeting CaMKII, given chronic activity in cardiac disease has been linked to RyR2 channel dysfunction (Ai et al., 2005; Uchinoumi et al., 2016; Zhang, 2017). It has been demonstrated that blockade of CaMKII and inhibition of RyR2 phosphorylation in cardiac disease improves intracellular Ca2+ homeostasis and attenuates arrhythmogenesis (Ather et al., 2013; Tzimas et al., 2015; Uchinoumi et al., 2016), including in a rat model of type 2 diabetes (Sommese et al., 2016), but this is also not a universal finding (Chakraborty et al., 2014). Alternatively, stabilization could be achieved by a reduction of RyR2 oxidation. In mouse and rat models of type 2 diabetes, it was demonstrated that treatment with ROS scavengers protects against spontaneous Ca2+ release events, blunting diastolic dysfunction and arrhythmogenesis in vivo (Shao et al., 2011; Joseph et al., 2016; Sommese et al., 2016; Sánchez et al., 2018). Antioxidants may also reduce ROS-dependent CaMKII activation, hence reduce RyR2 phosphorylation and elevated SR Ca2+ leak (Luczak and Anderson, 2014; Sommese et al., 2016; Uchinoumi et al., 2016). While increased oxidative stress and ROS concentrations are a hallmark of multiple cardiac disease states including diabetes, usage of ROS scavengers as a therapeutic strategy is not straightforward because certain levels of intracellular ROS are essential for many physiological processes and the ability to target antioxidants to specific subcellular compartments remains limited (Zima et al., 2014; Dietl and Maack, 2017).

Targeting accessory proteins of RyR2 also offers therapeutic potential. Adenoviral overexpression of sorcin in the hearts of diabetic mice improved contractile function and increased the Ca2+ transient amplitude of isolated rat cardiomyocytes (Suarez et al., 2004). In recent work of Liu et al. (2018) it was demonstrated that gene transfer of modified CaM prolonged refractoriness of RyR2-mediated SR Ca2+ release, abolishing ventricular arrhythmias observed in a mouse model of CPVT.

Conclusion

In conclusion, changes in cardiac Ca2+ homeostasis vary across different models of diabetes and obesity. Diabetes is a progressive disease and therefore results from different laboratories using the same model can differ. Longitudinal studies are warranted to resolve the ongoing discrepancies. Although there are many similarities with HF, there are substantial differences in Ca2+ handling in diabetic cardiomyopathy so the treatment strategies could be different.

Abnormalities in Ca2+ cycling sufficient to increase arrhythmic potential appear very early during disease progression of diabetes. The most consistent finding even at very early stages of disease is enhanced RyR2 activity, making it an attractive therapeutic target. Future studies are needed to identify the most suitable approaches for RyR2 stabilization in diabetes. SERCa2a is also attractive target, especially at the later stages of disease progression and cardiomyopathy development. However, it remains unclear whether SERCa2a function is depressed at the early stages when arrhythmic risk is already high. The emerging concept of a mitochondria-SR microdomain and its potential as a therapeutic target may warrant investigation, given mitochondrial dysfunction is a well-established in diabetes. However, levels of mitochondrial ROS emission should be confirmed at different stages of disease, given work of some laboratories suggesting there may be an adaptive improvement in metabolism of fatty acids and thus a reduction in ROS emission. Furthermore, there remains a need for studies using larger animal models of type 2 diabetes with physiology more analogous to that of humans.

Author Contributions

SH and DT obtained funding, conceived of, and wrote the manuscript.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Footnotes

Funding. This work was supported by American Heart Association Grant #18POST33960456 to SH and NIH Grant HL128507 to DT.

References

  1. Ai X., Curran J. W., Shannon T. R., Bers D. M., Pogwizd S. M. (2005). Ca2 + /calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2 + leak in heart failure. Circ. Res. 97 1314–1322. 10.1161/01.RES.0000194329.41863.89 [DOI] [PubMed] [Google Scholar]
  2. Akar F. G. (2013). Mitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention? J. Interv. Card Electrophysiol. 37 249–258. 10.1007/s10840-013-9809-3 [DOI] [PubMed] [Google Scholar]
  3. Allo S. N., Lincoln T. M., Wilson G. L., Green F. J., Watanabe A. M., Schaffer S. W. (1991). Non-insulin-dependent diabetes-induced defects in cardiac cellular calcium regulation. Am. J. Physiol. 260 C1165–C1171. 10.1152/ajpcell.1991.260.6.C1165 [DOI] [PubMed] [Google Scholar]
  4. Alvarez-Lacalle E., Cantalapiedra I. R., Peñaranda A., Cinca J., Hove-Madsen L., Echebarria B. (2013). Dependency of calcium alternans on ryanodine receptor refractoriness. PLoS One 8:e55042. 10.1371/journal.pone.0055042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. American Diabetes Association. (2009). Diagnosis, and classification of diabetes mellitus. Diabetes Care 32(Suppl. 1), S62–S67. 10.2337/dc09-S062 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anderson M. E. (2015). Oxidant stress promotes disease by activating CaMKII. J. Mol. Cell. Cardiol. 89 160–167. 10.1016/j.yjmcc.2015.10.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Aneja A., Tang W. H., Bansilal S., Garcia M. J., Farkouh M. E. (2008). Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am. J. Med. 121 748–757. 10.1016/j.amjmed.2008.03.046 [DOI] [PubMed] [Google Scholar]
  8. Antoons G., Willems R., Sipido K. R. (2012). Alternative strategies in arrhythmia therapy: evaluation of Na/Ca exchange as an anti-arrhythmic target. Pharmacol. Ther. 134 26–42. 10.1016/j.pharmthera.2011.12.001 [DOI] [PubMed] [Google Scholar]
  9. Armoundas A. A., Rose J., Aggarwal R., Stuyvers B. D., O’Rourke B., Kass D. A., et al. (2007). Cellular and molecular determinants of altered Ca2 + handling in the failing rabbit heart: primary defects in SR Ca2 + uptake and release mechanisms. Am. J. Physiol. Heart Circ. Physiol. 292 H1607–H1618. 10.1152/ajpheart.00525.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ashrafi R., Modi P., Oo A. Y., Pullan D. M., Jian K., Zhang H., et al. (2017). Arrhythmogenic gene remodelling in elderly patients with type 2 diabetes with aortic stenosis and normal left ventricular ejection fraction. Exp. Physiol. 102 1424–1434. 10.1113/EP086412 [DOI] [PubMed] [Google Scholar]
  11. Ather S., Wang W., Wang Q., Li N., Anderson M. E., Wehrens X. H. (2013). Inhibition of CaMKII phosphorylation of RyR2 prevents inducible ventricular arrhythmias in mice with Duchenne muscular dystrophy. Heart Rhythm. 10 592–599. 10.1016/j.hrthm.2012.12.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Axelsen L. N., Calloe K., Braunstein T. H., Riemann M., Hofgaard J. P., Liang B., et al. (2015). Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis. Cardiovasc. Diabetol. 14:87. 10.1186/s12933-015-0246-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Baddeley D., Jayasinghe I. D., Lam L., Rossberger S., Cannell M. B., Soeller C. (2009). Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U.S.A. 106 22275–22280. 10.1073/pnas.0908971106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bai Y., Jones P. P., Guo J., Zhong X., Clark R. B., Zhou Q., et al. (2013). Phospholamban knockout breaks arrhythmogenic Ca2+ waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice. Circ. Res. 113 517–526. 10.1161/CIRCRESAHA.113.301678 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Barouch L. A., Harrison R. W., Skaf M. W., Rosas G. O., Cappola T. P., Kobeissi Z. A., et al. (2002). Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416 337–339. 10.1038/416337a [DOI] [PubMed] [Google Scholar]
  16. Belevych A. E., Sansom S. E., Terentyeva R., Ho H. T., Nishijima Y., Martin M. M., et al. (2011a). MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One 6:e28324. 10.1371/journal.pone.0028324 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Belevych A. E., Terentyev D., Terentyeva R., Ho H. T., Györke I., Bonilla I. M., et al. (2012). Shortened Ca2 + signaling refractoriness underlies cellular arrhythmogenesis in a postinfarction model of sudden cardiac death. Circ. Res. 110 569–577. 10.1161/CIRCRESAHA.111.260455 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Belevych A. E., Terentyev D., Terentyeva R., Nishijima Y., Sridhar A., Hamlin R. L., et al. (2011b). The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc. Res. 90 493–502. 10.1093/cvr/cvr025 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Belke D. D., Dillmann W. H. (2004). Altered cardiac calcium handling in diabetes. Curr. Hypertens. Rep. 6 424–429. 10.1007/s11906-004-0035-3 [DOI] [PubMed] [Google Scholar]
  20. Belke D. D., Swanson E. A., Dillmann W. H. (2004). Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53 3201–3208. 10.2337/diabetes.53.12.3201 [DOI] [PubMed] [Google Scholar]
  21. Benjamin E. J., Virani S. S., Callaway C. W., Chamberlain A. M., Chang A. R., Cheng S., et al. (2018). Heart disease and stroke statistics-2018 update: a report from the American heart association. Circulation 137 e67–e492. 10.1161/CIR.0000000000000558 [DOI] [PubMed] [Google Scholar]
  22. Benkusky N. A., Weber C. S., Scherman J. A., Farrell E. F., Hacker T. A., John M. C., et al. (2007). Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ. Res. 101 819–829. 10.1161/CIRCRESAHA.107.153007 [DOI] [PubMed] [Google Scholar]
  23. Bergner D. W., Goldberger J. J. (2010). Diabetes mellitus and sudden cardiac death: what are the data? Cardiol. J. 17 117–129. [PubMed] [Google Scholar]
  24. Bers D. M. (2002). Cardiac excitation-contraction coupling. Nature 415 198–205. 10.1038/415198a [DOI] [PubMed] [Google Scholar]
  25. Bers D. M. (2004). Macromolecular complexes regulating cardiac ryanodine receptor function. J. Mol. Cell. Cardiol. 37 417–429. 10.1016/j.yjmcc.2004.05.026 [DOI] [PubMed] [Google Scholar]
  26. Bers D. M. (2006). Altered cardiac myocyte Ca regulation in heart failure. Physiology 21 380–387. 10.1152/physiol.00019.2006 [DOI] [PubMed] [Google Scholar]
  27. Bers D. M. (2014). Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu. Rev. Physiol. 76 107–127. 10.1146/annurev-physiol-020911-153308 [DOI] [PubMed] [Google Scholar]
  28. Bers D. M., Pogwizd S. M., Schlotthauer K. (2002). Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure. Basic Res. Cardiol. 97(Suppl. 1), I36–I42. 10.1007/s003950200027 [DOI] [PubMed] [Google Scholar]
  29. Bertero E., Maack C. (2018). Metabolic remodelling in heart failure. Nat. Rev. Cardiol. 15 457–470. 10.1038/s41569-018-0044-6 [DOI] [PubMed] [Google Scholar]
  30. Bhatti J. S., Bhatti G. K., Reddy P. H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta 1863 1066–1077. 10.1016/j.bbadis.2016.11.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Bidasee K. R., Dinçer U. D., Besch H. R., Jr. (2001). Ryanodine receptor dysfunction in hearts of streptozotocin-induced diabetic rats. Mol. Pharmacol. 60 1356–1364. 10.1124/mol.60.6.1356 [DOI] [PubMed] [Google Scholar]
  32. Bidasee K. R., Nallani K., Besch H. R., Jr., Dinçer U. D. (2003a). Streptozotocin-induced diabetes increases disulfide bond formation on cardiac ryanodine receptor (RyR2). J. Pharmacol. Exp. Ther. 305 989–998. 10.1124/jpet.102.046201 [DOI] [PubMed] [Google Scholar]
  33. Bidasee K. R., Nallani K., Yu Y., Cocklin R. R., Zhang Y., Wang M., et al. (2003b). Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes 521825–1836. [DOI] [PubMed] [Google Scholar]
  34. Bidasee K. R., Zhang Y., Shao C. H., Wang M., Patel K. P., Dinçer U. D., et al. (2004). Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+ -ATPase. Diabetes 53 463–473. 10.2337/diabetes.53.2.463 [DOI] [PubMed] [Google Scholar]
  35. Bilginoglu A., Kandilci H. B., Turan B. (2013). Intracellular levels of Na(+) and TTX-sensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes. Cardiovasc. Toxicol. 13 138–147. 10.1007/s12012-012-9192-9 [DOI] [PubMed] [Google Scholar]
  36. Boczek N. J., Best J. M., Tester D. J., Giudicessi J. R., Middha S., Evans J. M., et al. (2013). Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ. Cardiovasc. Genet. 6 279–289. 10.1161/CIRCGENETICS.113.000138 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Bodi I., Mikala G., Koch S. E., Akhter S. A., Schwartz A. (2005). The L-type calcium channel in the heart: the beat goes on. J. Clin. Invest. 115 3306–3317. 10.1172/JCI27167 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Bögeholz N., Pauls P., Bauer B. K., Schulte J. S., Dechering D. G., Frommeyer G., et al. (2015). Suppression of early and late afterdepolarizations by heterozygous knockout of the Na + /Ca2 + exchanger in a murine model. Circ. Arrhythm. Electrophysiol. 8 1210–1218. 10.1161/CIRCEP.115.002927 [DOI] [PubMed] [Google Scholar]
  39. Bögeholz N., Schulte J. S., Kaese S., Bauer B. K., Pauls P., Dechering D. G., et al. (2017). The effects of SEA0400 on Ca2 + transient amplitude and proarrhythmia depend on the Na + /Ca2 + exchanger expression level in murine models. Front. Pharmacol. 21:649. 10.3389/fphar.2017.00649 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Boraso A., Williams A. J. (1994). Modification of the gating of the cardiac sarcoplasmic reticulum Ca(2 + )-release channel by H2O2 and dithiothreitol. Am. J. Physiol. 267(3 Pt 2), H1010–H1016. 10.1152/ajpheart.1994.267.3.H1010 [DOI] [PubMed] [Google Scholar]
  41. Boudina S., Abel E. D. (2010). Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord. 11 31–39. 10.1007/s11154-010-9131-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Bourgonje V. J., Vos M. A., Ozdemir S., Doisne N., Acsai K., Varro A., et al. (2013). Combined Na( + )/Ca(2 + ) exchanger and L-type calcium channel block as a potential strategy to suppress arrhythmias and maintain ventricular function. Circ. Arrhythm. Electrophysiol. 6 371–379. 10.1161/CIRCEP.113.000322 [DOI] [PubMed] [Google Scholar]
  43. Bovo E., Huke S., Blatter L. A., Zima A. V. (2017). The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Ca2 + leak in ventricular myocytes. J. Mol. Cell. Cardiol. 104 9–16. 10.1016/j.yjmcc.2017.01.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Brochet D. X., Yang D., Di Maio A., Lederer W. J., Franzini-Armstrong C., Cheng H. (2005). Ca2 + blinks: rapid nanoscopic store calcium signaling. Proc. Natl. Acad. Sci. U.S.A. 102 3099–3104. 10.1073/pnas.0500059102 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Brunello L., Slabaugh J. L., Radwanski P. B., Ho H. T., Belevych A. E., Lou Q., et al. (2013). Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca2 + release in a genetic model of arrhythmia. Proc. Natl. Acad. Sci. U.S.A. 110 10312–10317. 10.1073/pnas.1300052110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Bünemann M., Gerhardstein B. L., Gao T., Hosey M. M. (1999). Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J. Biol. Chem. 26 33851–33854. 10.1074/jbc.274.48.33851 [DOI] [PubMed] [Google Scholar]
  47. Casiglia E., Tikhonoff V. (2017). Long-standing problem of β-blocker-elicited hypoglycemia in diabetes mellitus. Hypertension 70 42–43. 10.1161/HYPERTENSIONAHA.117.09378 [DOI] [PubMed] [Google Scholar]
  48. Chakraborty A., Pasek D. A., Huang T. Q., Gomez A. C., Yamaguchi N., Anderson M. E., et al. (2014). Inhibition of CaMKII does not attenuate cardiac hypertrophy in mice with dysfunctional ryanodine receptor. PLoS One 9:e104338. 10.1371/journal.pone.0104338 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Chelu M. G., Sarma S., Sood S., Wang S., van Oort R. J., Skapura D. G., et al. (2009). Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2 + leak promotes atrial fibrillation in mice. J. Clin. Invest. 119 1940–1951. 10.1172/JCI37059 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Chen X., Piacentino V., III, Furukawa S., Goldman B., Margulies K. B., Houser S. R. (2002). L-type Ca2 + channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ. Res. 20 517–524. 10.1161/01.RES.0000033988.13062.7C [DOI] [PubMed] [Google Scholar]
  51. Cheng H., Lederer M. R., Lederer W. J., Cannell M. B. (1996). Calcium sparks and [Ca2 + ]i waves in cardiac myocytes. Am. J. Physiol. 270(1 Pt 1), C148–C159. 10.1152/ajpcell.1996.270.1.C148 [DOI] [PubMed] [Google Scholar]
  52. Choi K. M., Zhong Y., Hoit B. D., Grupp I. L., Hahn H., Dilly K. W., et al. (2002). Defective intracellular Ca(2 + ) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am. J. Physiol. Heart Circ. Physiol. 283 H1398–H1408. 10.1152/ajpheart.00313.2002 [DOI] [PubMed] [Google Scholar]
  53. Chou C. C., Ho C. T., Lee H. L., Chu Y., Yen T. H., Wen M. S., et al. (2017). Roles of impaired intracellular calcium cycling in arrhythmogenicity of diabetic mouse model. Pacing Clin. Electrophysiol. 40 1087–1095. 10.1111/pace.13166 [DOI] [PubMed] [Google Scholar]
  54. Chugh S. S., Reinier K., Teodorescu C., Evanado A., Kehr E., Al Samara M., et al. (2008). Epidemiology of sudden cardiac death: clinical and research implications. Prog. Cardiovasc. Dis. 51 213–228. 10.1016/j.pcad.2008.06.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Cooper L. L., Li W., Lu Y., Centracchio J., Terentyeva R., Koren G., et al. (2013). Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2 + handling in ageing rabbit hearts. J. Physiol. 591 5895–5911. 10.1113/jphysiol.2013.260521 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Crossman D. J., Ruygrok P. N., Soeller C., Cannell M. B. (2011). Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS One 6:e17901. 10.1371/journal.pone.0017901 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Crotti L., Johnson C. N., Graf E., De Ferrari G. M., Cuneo B. F., Ovadia M., et al. (2013). Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127 1009–1017. 10.1161/CIRCULATIONAHA.112.001216 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Csordás G., Thomas A. P., Hajnóczky G. (2001). Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle. Trends Cardiovasc. Med. 11 269–275. 10.1016/S1050-1738(01)00123-2 [DOI] [PubMed] [Google Scholar]
  59. Curran J., Hinton M. J., Ríos E., Bers D. M., Shannon T. R. (2007). Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ. Res. 100 391–398. 10.1161/01.RES.0000258172.74570.e6 [DOI] [PubMed] [Google Scholar]
  60. Currie S., Smith G. L. (1999). Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2 + ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc. Res. 41 135–146. 10.1016/S0008-6363(98)00241-7 [DOI] [PubMed] [Google Scholar]
  61. Cutler M. J., Wan X., Laurita K. R., Hajjar R. J., Rosenbaum D. S. (2009). Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. Circ. Arrhythm. Electrophysiol. 2 686–694. 10.1161/CIRCEP.109.863118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. da Silva M. F., Natali A. J., da Silva E., Gomes G. J., Teodoro B. G., Cunha D. N., et al. (2015). Attenuation of Ca2 + homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise? J. Appl. Physiol. 119 148–156. 10.1152/japplphysiol.00915.2014 [DOI] [PubMed] [Google Scholar]
  63. Dabkowski E. R., Williamson C. L., Bukowski V. C., Chapman R. S., Leonard S. S., Peer C. J., et al. (2009). Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am. J. Physiol. Heart Circ. Physiol. 296 H359–H369. 10.1152/ajpheart.00467.2008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. de Lannoy L. M., Danser A. H., Bouhuizen A. M., Saxena P. R., Schalekamp M. A. (1998). Localization and production of angiotensin II in the isolated perfused rat heart. Hypertension 31 1111–1117. 10.1161/01.HYP.31.5.1111 [DOI] [PubMed] [Google Scholar]
  65. del Monte F., Hajjar R. J., Harding S. E. (2001). Overwhelming evidence of the beneficial effects of SERCA gene transfer in heart failure. Circ. Res. 88 E66–E67. 10.1161/hh1101.092004 [DOI] [PubMed] [Google Scholar]
  66. del Monte F., Harding S. E., Dec G. W., Gwathmey J. K., Hajjar R. J. (2002). Targeting phospholamban by gene transfer in human heart failure. Circulation 105 904–907. 10.1161/hc0802.105564 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. del Monte F., Lebeche D., Guerrero J. L., Tsuji T., Doye A. A., Gwathmey J. K., et al. (2004). Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc. Natl. Acad. Sci. U.S.A. 101 5622–5627. 10.1073/pnas.0305778101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Despa S., Bers D. M. (2013). Na+ transport in the normal and failing heart - remember the balance. J. Mol. Cell. Cardiol. 61 2–10. 10.1016/j.yjmcc.2013.04.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Despa S., Islam M. A., Weber C. R., Pogwizd S. M., Bers D. M. (2002). Intracellular Na( + ) concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105 2543–2548. 10.1161/01.CIR.0000016701.85760.97 [DOI] [PubMed] [Google Scholar]
  70. Dieterle T., Meyer M., Gu Y., Belke D. D., Swanson E., Iwatate M., et al. (2005). Gene transfer of a phospholamban-targeted antibody improves calcium handling and cardiac function in heart failure. Cardiovasc. Res. 67 678–688. 10.1016/j.cardiores.2005.04.029 [DOI] [PubMed] [Google Scholar]
  71. Dietl A., Maack C. (2017). Targeting mitochondrial calcium handling and reactive oxygen species in heart failure. Curr. Heart Fail. Rep. 14 338–349. 10.1007/s11897-017-0347-7 [DOI] [PubMed] [Google Scholar]
  72. Dinçer U. D., Araiza A., Knudson J. D., Shao C. H., Bidasee K. R., Tune J. D. (2006). Dysfunction of cardiac ryanodine receptors in the metabolic syndrome. J. Mol. Cell. Cardiol. 41 108–114. 10.1016/j.yjmcc.2006.04.018 [DOI] [PubMed] [Google Scholar]
  73. Doliba N. M., Babsky A. M., Wehrli S. L., Ivanics T. M., Friedman M. F., Osbakken M. D. (2000). Metabolic control of sodium transport in streptozotocin-induced diabetic rat hearts. Biochemistry 65 502–508. [PubMed] [Google Scholar]
  74. Dorn G. W., Maack C. (2013). SR and mitochondria: calcium cross-talk between kissing cousins. J. Mol. Cell. Cardiol. 55 42–49. 10.1016/j.yjmcc.2012.07.015 [DOI] [PubMed] [Google Scholar]
  75. Dostal D. E. (2000). The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. Regul. Pept. 28 1–11. 10.1016/S0167-0115(99)00123-8 [DOI] [PubMed] [Google Scholar]
  76. Dries E., Santiago D. J., Gilbert G., Lenaerts I., Vandenberk B., Nagaraju C. K., et al. (2018). Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovasc. Res. 114 1512–1524. 10.1093/cvr/cvy088 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Dulhunty A., Haarmann C., Green D., Hart J. (2000). How many cysteine residues regulate ryanodine receptor channel activity? Antioxid. Redox Signal. 2 27–34. 10.1089/ars.2000.2.1-27 [DOI] [PubMed] [Google Scholar]
  78. Edwards J. N., Blatter L. A. (2014). Cardiac alternans and intracellular calcium cycling. Clin. Exp. Pharmacol. Physiol. 41 524–532. 10.1111/1440-1681.12231 [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Eisner D., Bode E., Venetucci L., Trafford A. (2013). Calcium flux balance in the heart. J. Mol. Cell. Cardiol. 58 110–117. 10.1016/j.yjmcc.2012.11.017 [DOI] [PubMed] [Google Scholar]
  80. Eisner V., Csordás G., Hajnóczky G. (2013). Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca2+ and reactive oxygen species signaling. J. Cell. Sci. 126(Pt 14), 2965–2978. 10.1242/jcs.093609 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Eisner D. A., Caldwell J. L., Kistamás K., Trafford A. W. (2017). Calcium and excitation-contraction coupling in the heart. Circ. Res. 121 181–195. 10.1161/CIRCRESAHA.117.310230 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Erickson J. R., Pereira L., Wang L., Han G., Ferguson A., Dao K., et al. (2013). Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502 372–376. 10.1038/nature12537 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Fabiato A. (1985). Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85 247–289. 10.1085/jgp.85.2.247 [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Faggioni M., Kryshtal D. O., Knollmann B. C. (2012). Calsequestrin mutations and catecholaminergic polymorphic ventricular tachycardia. Pediatr. Cardiol. 33 959–967. 10.1007/s00246-012-0256-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Fauconnier J., Andersson D. C., Zhang S. J., Lanner J. T., Wibom R., Katz A. (2007). Effects of palmitate on Ca(2 + ) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56 1136–1142. 10.2337/db06-0739 [DOI] [PubMed] [Google Scholar]
  86. Fearnley C. J., Roderick H. L., Bootman M. D. (2011). Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect. Biol. 3:a004242. 10.1101/cshperspect.a004242 [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Fernandez-Tenorio M., Niggli E. (2018). Stabilization of Ca2 + signaling in cardiac muscle by stimulation of SERCA. J. Mol. Cell. Cardiol. 119 87–95. 10.1016/j.yjmcc.2018.04.015 [DOI] [PubMed] [Google Scholar]
  88. Ferrier G. R., Saunders J. H., Mendez C. (1973). A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ. Res. 32 600–609. 10.1161/01.RES.32.5.600 [DOI] [PubMed] [Google Scholar]
  89. Fill M., Copello J. A. (2002). Ryanodine receptor calcium release channels. Physiol. Rev. 82 893–922. 10.1152/physrev.00013.2002 [DOI] [PubMed] [Google Scholar]
  90. Fredersdorf S., Thumann C., Zimmermann W. H., Vetter R., Graf T., Luchner A., et al. (2012). Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: In vivo and in vitro data. Cardiovasc. Diabetol. 11:57. 10.1186/1475-2840-11-57 [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Gaber E. M., Jayaprakash P., Qureshi M. A., Parekh K., Oz M., Adrian T. E., et al. (2014). Effects of a sucrose-enriched diet on the pattern of gene expression, contraction and Ca(2 + ) transport in Goto-Kakizaki type 2 diabetic rat heart. Exp. Physiol. 99 881–893. 10.1113/expphysiol.2013.077594 [DOI] [PubMed] [Google Scholar]
  92. Ganguly P. K., Pierce G. N., Dhalla K. S., Dhalla N. S. (1983). Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am. J. Physiol. 244 E528–E535. 10.1152/ajpendo.1983.244.6.E528 [DOI] [PubMed] [Google Scholar]
  93. Gassanov N., Brandt M. C., Michels G., Lindner M., Er F., Hoppe U. C. (2006). Angiotensin II-induced changes of calcium sparks and ionic currents in human atrial myocytes: potential role for early remodeling in atrial fibrillation. Cell Calcium 39 175–186. 10.1016/j.ceca.2005.10.008 [DOI] [PubMed] [Google Scholar]
  94. George C. H., Sorathia R., Bertrand B. M., Lai F. A. (2003). In situ modulation of the human cardiac ryanodine receptor (hRyR2) by FKBP12.6. Biochem. J. 370(Pt 2), 579–589. 10.1042/BJ20021433 [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Gillespie D., Fill M. (2013). Pernicious attrition and inter-RyR2 CICR current control in cardiac muscle. J. Mol. Cell. Cardiol. 58 53–58. 10.1016/j.yjmcc.2013.01.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Golfman L., Dixon I. M., Takeda N., Lukas A., Dakshinamurti K., Dhalla N. S. (1998). Cardiac sarcolemmal Na( + )-Ca2 + exchange and Na( + )-K + ATPase activities and gene expression in alloxan-induced diabetes in rats. Mol. Cell. Biochem. 188 91–101. 10.1023/A:1006824623496 [DOI] [PubMed] [Google Scholar]
  97. Goonasekera S. A., Chen S. R., Dirksen R. T. (2005). Reconstitution of local Ca2 + signaling between cardiac L-type Ca2 + channels and ryanodine receptors: insights into regulation by FKBP12.6. Am. J. Physiol. Cell Physiol. 289 C1476–C1484. 10.1152/ajpcell.00250.2005 [DOI] [PubMed] [Google Scholar]
  98. Gorski P. A., Ceholski D. K., Hajjar R. J. (2015). Altered myocardial calcium cycling and energetics in heart failure–a rational approach for disease treatment. Cell Metab. 21 183–194. 10.1016/j.cmet.2015.01.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Greenberg B., Butler J., Felker G. M., Ponikowski P., Voors A. A., Desai A. S., et al. (2016). Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387 1178–1186. 10.1016/S0140-6736(16)00082-9 [DOI] [PubMed] [Google Scholar]
  100. Guo T., Cornea R. L., Huke S., Camors E., Yang Y., Picht E., et al. (2010). Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and effects on Ca sparks. Circ. Res. 106 1743–1752. 10.1161/CIRCRESAHA.110.219816 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Györke I., Györke S. (1998). Regulation of the cardiac ryanodine receptor channel by luminal Ca2 + involves luminal Ca2 + sensing sites. Biophys. J. 75 2801–2810. 10.1016/S0006-3495(98)77723-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Györke I., Hester N., Jones L. R., Györke S. (2004). The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 86 2121–2128. 10.1016/S0006-3495(04)74271-X [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Györke S., Terentyev D. (2008). Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc. Res. 77 245–255. 10.1093/cvr/cvm038 [DOI] [PubMed] [Google Scholar]
  104. Haghighi K., Kolokathis F., Gramolini A. O., Waggoner J. R., Pater L., Lynch R. A., et al. (2006). A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc. Natl. Acad. Sci. U.S.A. 103 1388–1393. 10.1073/pnas.0510519103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Haghighi K., Kolokathis F., Pater L., Lynch R. A., Asahi M., Gramolini A. O., et al. (2003). Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest. 111 869–876. 10.1172/JCI17892 [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Harvey R. D., Hell J. W. (2013). CaV1.2 signaling complexes in the heart. J. Mol. Cell. Cardiol. 58 143–152. 10.1016/j.yjmcc.2012.12.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Hasenfuss G., Reinecke H., Studer R., Meyer M., Pieske B., Holtz J., et al. (1994). Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2 + )-ATPase in failing and nonfailing human myocardium. Circ. Res. 75 434–442. 10.1161/01.RES.75.3.434 [DOI] [PubMed] [Google Scholar]
  108. Hattori Y., Matsuda N., Kimura J., Ishitani T., Tamada A., Gando S., et al. (2000). Diminished function and expression of the cardiac Na + -Ca2 + exchanger in diabetic rats: implication in Ca2 + overload. J. Physiol. 15(527 Pt 1), 85–94. 10.1111/j.1469-7793.2000.00085.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Hong T. T., Smyth J. W., Chu K. Y., Vogan J. M., Fong T. S., Jensen B. C., et al. (2012). BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm. 9 812–820. 10.1016/j.hrthm.2011.11.055 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Høydal M. A., Kirkeby-Garstad I., Karevold A., Wiseth R., Haaverstad R., Wahba A., et al. (2018). Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure. ESC Heart Fail. 5 332–342. 10.1002/ehf2.12271 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Hu Y., Belke D., Suarez J., Swanson E., Clark R., Hoshijima M., et al. (2005). Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ. Res. 96 1006–1013. 10.1161/01.RES.0000165478.06813.58 [DOI] [PubMed] [Google Scholar]
  112. Inoue M., Bridge J. H. (2003). Ca2 + sparks in rabbit ventricular myocytes evoked by action potentials: involvement of clusters of L-type Ca2 + channels. Circ. Res. 92 532–538. 10.1161/01.RES.0000064175.70693.EC [DOI] [PubMed] [Google Scholar]
  113. Ishikawa K., Hajjar R. J. (2017). Current methods in cardiac gene therapy: overview. Methods Mol. Biol. 1521 3–14. 10.1007/978-1-4939-6588-5_1 [DOI] [PubMed] [Google Scholar]
  114. Jaski B. E., Jessup M. L., Mancini D. M., Cappola T. P., Pauly D. F., Greenberg B., et al. (2009). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J. Card Fail. 15 171–181. 10.1016/j.cardfail.2009.01.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Jessup M., Greenberg B., Mancini D., Cappola T., Pauly D. F., Jaski B., et al. (2011). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2 + -ATPase in patients with advanced heart failure. Circulation 124 304–313. 10.1161/CIRCULATIONAHA.111.022889 [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Jia G., Hill M. A., Sowers J. R. (2018). Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122 624–638. 10.1161/CIRCRESAHA.117.311586 [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Jiang D., Chen W., Wang R., Zhang L., Chen S. R. (2007). Loss of luminal Ca2 + activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. Proc. Natl. Acad. Sci. U.S.A. 104 18309–18314. 10.1073/pnas.0706573104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Jiang M. T., Lokuta A. J., Farrell E. F., Wolff M. R., Haworth R. A., Valdivia H. H. (2002). Abnormal Ca2 + release, but normal ryanodine receptors, in canine and human heart failure. Circ. Res. 29 1015–1022. 10.1161/01.RES.0000043663.08689.05 [DOI] [PubMed] [Google Scholar]
  119. Joseph L. C., Subramanyam P., Radlicz C., Trent C. M., Iyer V., Colecraft H. M., et al. (2016). Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm. 13 1699–1706. 10.1016/j.hrthm.2016.05.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Jost N., Nagy N., Corici C., Kohajda Z., Horváth A., Acsai K., et al. (2013). ORM-10103, a novel specific inhibitor of the Na + /Ca2 + exchanger, decreases early and delayed afterdepolarizations in the canine heart. Br J Pharmacol. 170 768–778. 10.1111/bph.12228 [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Joubert M., Manrique A., Cariou B., Prieur X. (2018). Diabetes-related cardiomyopathy: The sweet story of glucose overload from epidemiology to cellular pathways. Diabetes Metab. 10.1016/j.diabet.2018.07.003 [Epub ahead of print]. [DOI] [PubMed] [Google Scholar]
  122. Junttila M. J., Barthel P., Myerburg R. J., Mäkikallio T. H., Bauer A., Ulm K., et al. (2010). Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. Heart Rhythm. 7 1396–1403. 10.1016/j.hrthm.2010.07.031 [DOI] [PubMed] [Google Scholar]
  123. Kaneko M., Hashikami K., Yamamoto S., Matsumoto H., Nishimoto T. (2016). Phospholamban ablation using CRISPR/Cas9 system improves mortality in a murine heart failure model. PLoS One 11:e0168486. 10.1371/journal.pone.0168486 [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Kaneko N., Matsuda R., Toda M., Shimamoto K. (1997). Inhibition of annexin V-dependent Ca2 + movement in large unilamellar vesicles by K201, a new 1,4-benzothiazepine derivative. Biochim. Biophys. Acta 13 1–7. 10.1016/S0005-2736(97)00132-6 [DOI] [PubMed] [Google Scholar]
  125. Kim J. D., Yu B. P., McCarter R. J., Lee S. Y., Herlihy J. T. (1996). Exercise and diet modulate cardiac lipid peroxidation and antioxidant defenses. Free Radic. Biol. Med. 20 83–88. 10.1016/0891-5849(95)02023-3 [DOI] [PubMed] [Google Scholar]
  126. King A., Bowe J. (2016). Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem. Pharmacol. 99 1–10. 10.1016/j.bcp.2015.08.108 [DOI] [PubMed] [Google Scholar]
  127. King A. J. F. (2012). The use of animal models in diabetes research. Br. J. Pharmacol. 166 877–894. 10.1111/j.1476-5381.2012.01911.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Kiss E., Ball N. A., Kranias E. G., Walsh R. A. (1995). Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2 + )-ATPase protein levels. Effects on Ca2 + transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ. Res. 77 759–764. 10.1161/01.RES.77.4.759 [DOI] [PubMed] [Google Scholar]
  129. Klapholz M. (2009). Beta-blocker use for the stages of heart failure. Mayo Clin. Proc. 84 718–729. 10.4065/84.8.718 [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Knollmann B. C., Chopra N., Hlaing T., Akin B., Yang T., Ettensohn K., et al. (2006). Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2 + release, and catecholaminergic polymorphic ventricular tachycardia. J. Clin. Invest. 116 2510–2520. 10.1172/JCI29128 [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Kobayashi S., Yano M., Uchinoumi H., Suetomi T., Susa T., Ono M., et al. (2010). Dantrolene, a therapeutic agent for malignant hyperthermia, inhibits catecholaminergic polymorphic ventricular tachycardia in a RyR2(R2474S/ + ) knock-in mouse model. Circ. J. 74 2579–2584. 10.1253/circj.CJ-10-0680 [DOI] [PubMed] [Google Scholar]
  132. Kranias E. G., Hajjar R. J. (2012). Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ. Res. 110 1646–1660. 10.1161/CIRCRESAHA.111.259754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Kunitomo Y., Terentyev D. (2011). How to stop the fire? Control of Ca2+-induced Ca2+ release in cardiac muscle. J. Physiol. 589(Pt 24), 5899–5900. 10.1113/jphysiol.2011.222554 [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Kuster G. M., Lancel S., Zhang J., Communal C., Trucillo M. P., Lim C. C., et al. (2010). Redox-mediated reciprocal regulation of SERCA and Na + -Ca2 + exchanger contributes to sarcoplasmic reticulum Ca2 + depletion in cardiac myocytes. Free Radic. Biol Med. 48 1182–1187. 10.1016/j.freeradbiomed.2010.01.038 [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Laakso M. (2008). Diabetes as a ’cardiovascular disease equivalent’: implications for treatment. Nat. Clin. Pract. Cardiovasc. Med. 5 682–683. 10.1038/ncpcardio1344 [DOI] [PubMed] [Google Scholar]
  136. Lacombe V. A., Viatchenko-Karpinski S., Terentyev D., Sridhar A., Emani S., Bonagura J. D., et al. (2007). Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293 R1787–R1797. 10.1152/ajpregu.00059.2007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Lagadic-Gossmann D., Buckler K. J., Le Prigent K., Feuvray D. (1996). Altered Ca2 + handling in ventricular myocytes isolated from diabetic rats. Am. J. Physiol. 270(5 Pt 2), H1529–H1537. 10.1152/ajpheart.1996.270.5.H1529 [DOI] [PubMed] [Google Scholar]
  138. Lahat H., Pras E., Olender T., Avidan N., Ben-Asher E., Man O., et al. (2001). A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet. 69 1378–1384. 10.1086/324565 [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Lancel S., Zhang J., Evangelista A., Trucillo M. P., Tong X., Siwik D. A., et al. (2009). Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674. Circ. Res. 104 720–723. 10.1161/CIRCRESAHA.108.188441 [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Landstrom A. P., Dobrev D., Wehrens X. H. T. (2017). Calcium signaling and cardiac arrhythmias. Circ. Res. 120 1969–1993. 10.1161/CIRCRESAHA.117.310083 [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. LaRocca T. J., Fabris F., Chen J., Benhayon D., Zhang S., McCollum L., et al. (2012). Na + /Ca2 + exchanger-1 protects against systolic failure in the Akitains2 model of diabetic cardiomyopathy via a CXCR4/NF-κB pathway. Am. J. Physiol. Heart Circ. Physiol. 303 H353–H367. 10.1152/ajpheart.01198.2011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Laver D. R., Kong C. H., Imtiaz M. S., Cannell M. B. (2013). Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J. Mol. Cell. Cardiol. 54 98–100. 10.1016/j.yjmcc.2012.10.009 [DOI] [PubMed] [Google Scholar]
  143. Le Douairon Lahaye S., Gratas-Delamarche A., Malardé L., Zguira S., Vincent S., Lemoine Morel S., et al. (2012). Combined insulin treatment and intense exercise training improved basal cardiac function and Ca(2 + )-cycling proteins expression in type 1 diabetic rats. Appl. Physiol. Nutr. Metab. 37 53–62. 10.1139/h11-127 [DOI] [PubMed] [Google Scholar]
  144. Leach R. N., Brickley K., Norman R. I. (1996). Cyclic AMP-dependent protein kinase phosphorylates residues in the C-terminal domain of the cardiac L-type calcium channel alpha1 subunit. Biochim. Biophys. Acta. 11 205–212. 10.1016/0005-2736(96)00013-2 [DOI] [PubMed] [Google Scholar]
  145. Leon B. M., Maddox T. M. (2015). Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 6 1246–1258. 10.4239/wjd.v6.i13.1246 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Li N., Wang Q., Sibrian-Vazquez M., Klipp R. C., Reynolds J. O., Word T. A., et al. (2017). Treatment of catecholaminergic polymorphic ventricular tachycardia in mice using novel RyR2-modifying drugs. Int. J. Cardiol. 15 668–673. 10.1016/j.ijcard.2016.10.078 [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Liang X., Zhang Q., Wang X., Yuan M., Zhang Y., Xu Z., et al. (2018). Reactive oxygen species mediated oxidative stress links diabetes and atrial fibrillation. Mol. Med. Rep. 17 4933–4940. 10.3892/mmr.2018.8472 [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Liu B, 1 Walton S. D., Ho H. T., Belevych A. E., Tikunova S. B., Bonilla I., et al. (2018). Gene transfer of engineered calmodulin alleviates ventricular arrhythmias in a calsequestrin-associated mouse model of catecholaminergic polymorphic ventricular tachycardia. J. Am. Heart Assoc. 7:e008155. 10.1161/JAHA.117.008155 [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Liu T., O’Rourke B. (2013). Regulation of the Na + /Ca2 + exchanger by pyridine nucleotide redox potential in ventricular myocytes. J. Biol. Chem. 288 31984–31992. 10.1074/jbc.M113.496588 [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Llano-Diez M., Sinclair J., Yamada T., Zong M., Fauconnier J., Zhang S. J., et al. (2016). The role of reactive oxygen species in β-adrenergic signaling in cardiomyocytes from mice with the metabolic syndrome. PLoS One 11:e0167090. 10.1371/journal.pone.0167090 [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Loaiza R., Benkusky N. A., Powers P. P., Hacker T., Noujaim S., Ackerman M. J., et al. (2013). Heterogeneity of ryanodine receptor dysfunction in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 112 298–308. 10.1161/CIRCRESAHA.112.274803 [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Lopaschuk G. D., Katz S., McNeill J. H. (1983). The effect of alloxan- and streptozotocin-induced diabetes on calcium transport in rat cardiac sarcoplasmic reticulum. The possible involvement of long chain acylcarnitines. Can. J. Physiol. Pharmacol. 61 439–448. 10.1139/y83-068 [DOI] [PubMed] [Google Scholar]
  153. Lopez-Crisosto C., Pennanen C., Vasquez-Trincado C., Morales P. E., Bravo-Sagua R., Quest A. F. G., et al. (2017). Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat. Rev. Cardiol. 14 342–360. 10.1038/nrcardio.2017.23 [DOI] [PubMed] [Google Scholar]
  154. Louch W. E., Bito V., Heinzel F. R., Macianskiene R., Vanhaecke J., Flameng W., et al. (2004). Reduced synchrony of Ca2 + release with loss of T-tubules-a comparison to Ca2 + release in human failing cardiomyocytes. Cardiovasc. Res. 62 63–73. 10.1016/j.cardiores.2003.12.031 [DOI] [PubMed] [Google Scholar]
  155. Lu Z., Ballou L. M., Jiang Y. P., Cohen I. S., Lin R. Z. (2011). Restoration of defective L-type Ca2 + current in cardiac myocytes of type 2 diabetic db/db mice by Akt and PKC-ι. J. Cardiovasc. Pharmacol. 58 439–445. 10.1097/FJC.0b013e318228e68c [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Lu Z., Jiang Y. P., Xu X. H., Ballou L. M., Cohen I. S., Lin R. Z. (2007). Decreased L-type Ca2 + current in cardiac myocytes of type 1 diabetic Akita mice due to reduced phosphatidylinositol 3-kinase signaling. Diabetes Metab. Res. Rev. 56 2780–2789. 10.2337/db06-1629 [DOI] [PubMed] [Google Scholar]
  157. Luczak E. D., Anderson M. E. (2014). CaMKII oxidative activation and the pathogenesis of cardiac disease. J. Mol. Cell. Cardiol. 73 112–116. 10.1016/j.yjmcc.2014.02.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Lukyanenko V., Györke I., Györke S. (1996). Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflugers Arch. 432 1047–1054. 10.1007/s004240050233 [DOI] [PubMed] [Google Scholar]
  159. Lyon A. R., Bannister M. L., Collins T., Pearce E., Sepehripour A. H., Dubb S. S., et al. (2011). SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ. Arrhythm. Electrophysiol. 4 362–372. 10.1161/CIRCEP.110.961615 [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Makino N., Dhalla K. S., Elimban V., Dhalla N. S. (1987). Sarcolemmal Ca2 + transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am. J. Physiol. 253(2 Pt 1), E202–E207. 10.1152/ajpendo.1987.253.2.E202 [DOI] [PubMed] [Google Scholar]
  161. Malhotra A., Reich D., Reich D., Nakouzi A., Sanghi V., Geenen D. L., et al. (1997). Experimental diabetes is associated with functional activation of protein kinase C epsilon and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ. Res. 81 1027–1033. 10.1161/01.RES.81.6.1027 [DOI] [PubMed] [Google Scholar]
  162. Mancia G., Fagard R., Narkiewicz K., Redón J., Zanchetti A., Böhm M., et al. (2013). 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 31 1281–1357. 10.1097/01.hjh.0000431740.32696.cc [DOI] [PubMed] [Google Scholar]
  163. Marsman R. F., Barc J., Beekman L., Alders M., Dooijes D., van den Wijngaard A. (2014). A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J. Am. Coll. Cardiol. 63 259–266. 10.1016/j.jacc.2013.07.091 [DOI] [PubMed] [Google Scholar]
  164. Marx S. O., Reiken S., Hisamatsu Y., Jayaraman T., Burkhoff D., Rosemblit N., et al. (2000). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101 365–376. 10.1016/S0092-8674(00)80847-8 [DOI] [PubMed] [Google Scholar]
  165. Mathews C. E., Langley S. H., Leiter E. H. (2002). New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 73 1333–1336. 10.1097/00007890-200204270-00024 [DOI] [PubMed] [Google Scholar]
  166. Mechmann S., Pott L. (1986). Identification of Na-Ca exchange current in single cardiac myocytes. Nature 319 597–599. 10.1038/319597a0 [DOI] [PubMed] [Google Scholar]
  167. Meissner G. (2017). The structural basis of ryanodine receptor ion channel function. J. Gen. Physiol. 149 1065–1089. 10.1085/jgp.201711878 [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Merchant F. M., Armoundas A. A. (2012). Role of substrate and triggers in the genesis of cardiac alternans, from the myocyte to the whole heart: implications for therapy. Circulation 125 539–549. 10.1161/CIRCULATIONAHA.111.033563 [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Mewes T., Ravens U. (1994). L-type calcium currents of human myocytes from ventricle of non-failing and failing hearts and from atrium. J. Mol. Cell. Cardiol. 26 1307–1320. 10.1006/jmcc.1994.1149 [DOI] [PubMed] [Google Scholar]
  170. Meyer M., Belke D. D., Trost S. U., Swanson E., Dieterle T., Scott B., et al. (2004). A recombinant antibody increases cardiac contractility by mimicking phospholamban phosphorylation. FASEB J. 18 1312–1314. 10.1096/fj.03-1231fje [DOI] [PubMed] [Google Scholar]
  171. Meyer M., Dillmann W. H. (1998). Sarcoplasmic reticulum Ca(2 + )-ATPase overexpression by adenovirus mediated gene transfer and in transgenic mice. Cardiovasc. Res. 37 360–366. 10.1016/S0008-6363(97)00270-8 [DOI] [PubMed] [Google Scholar]
  172. Mochizuki M., Yano M., Oda T., Tateishi H., Kobayashi S., Yamamoto T., et al. (2007). Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2 + leak via stabilization of ryanodine receptor in heart failure. J. Am. Coll. Cardiol. 49 1722–1732. 10.1016/j.jacc.2007.01.064 [DOI] [PubMed] [Google Scholar]
  173. Muralidharan P., Cserne Szappanos H., Ingley E., Hool L. C. (2017). The cardiac L-type calcium channel alpha subunit is a target for direct redox modification during oxidative stress-the role of cysteine residues in the alpha interacting domain. Clin. Exp. Pharmacol. Physiol. 44(Suppl. 1), 46–54. 10.1111/1440-1681.12750 [DOI] [PubMed] [Google Scholar]
  174. Nagy N., Kormos A., Kohajda Z., Szebeni Á, Szepesi J., Pollesello P., et al. (2014). Selective Na( + ) /Ca(2 + ) exchanger inhibition prevents Ca(2 + ) overload-induced triggered arrhythmias. Br. J. Pharmacol. 171 5665–5681. 10.1111/bph.12867 [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Neco P., Rose B., Huynh N., Zhang R., Bridge J. H., Philipson K. D., et al. (2010). Sodium-calcium exchange is essential for effective triggering of calcium release in mouse heart. Biophys. J. 99 755–764. 10.1016/j.bpj.2010.04.071 [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Netticadan T., Temsah R. M., Kent A., Elimban V., Dhalla N. S. (2001). Depressed levels of Ca2 + -cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50 2133–2138. 10.2337/diabetes.50.9.2133 [DOI] [PubMed] [Google Scholar]
  177. Niggli E., Ullrich N. D., Gutierrez D., Kyrychenko S., Poláková E., Shirokova N. (2013). Posttranslational modifications of cardiac ryanodine receptors: Ca(2 + ) signaling and EC-coupling. Biochim. Biophys. Acta 1833 866–875. 10.1016/j.bbamcr.2012.08.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Nivala M., Qu Z. (2012). Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load. Am. J. Physiol. Heart Circ. Physiol. 303 H341–H352. 10.1152/ajpheart.00302.2012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Nyegaard M., Overgaard M. T., Søndergaard M. T., Vranas M., Behr E. R., Hildebrandt L. L., et al. (2012). Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am. J. Hum. Genet. 91 703–712. 10.1016/j.ajhg.2012.08.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Ohishi M. (2018). Hypertension with diabetes mellitus: physiology and pathology. Hypertens. Res. 41 389–393. 10.1038/s41440-018-0034-4 [DOI] [PubMed] [Google Scholar]
  181. Okatan E. N., Durak A. T., Turan B. (2016). Electrophysiological basis of metabolic-syndrome-induced cardiac dysfunction. Can. J. Physiol. Pharmacol. 94 1064–1073. 10.1139/cjpp-2015-0531 [DOI] [PubMed] [Google Scholar]
  182. Okuda S., Yano M., Doi M., Oda T., Tokuhisa T., Kohno M., et al. (2004). Valsartan restores sarcoplasmic reticulum function with no appreciable effect on resting cardiac function in pacing-induced heart failure. Circulation 109 911–919. 10.1161/01.CIR.0000115526.92541.D2 [DOI] [PubMed] [Google Scholar]
  183. O’Rourke B., Kass D. A., Tomaselli G. F., Kääb S., Tunin R., Marbán E. (1999). Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure. I: experimental studies. Circ. Res. 84 562–570. 10.1161/01.RES.84.5.562 [DOI] [PubMed] [Google Scholar]
  184. Ottolia M., Torres N., Bridge J. H., Philipson K. D., Goldhaber J. I. (2013). Na/Ca exchange and contraction of the heart. J. Mol. Cell. Cardiol. 61 28–33. 10.1016/j.yjmcc.2013.06.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Ozdemir S., Tandogan B., Ulusu N. N., Turan B. (2009). Angiotensin II receptor blockage prevents diabetes-induced oxidative damage in rat heart. Folia Biol. 55 11–16. [PubMed] [Google Scholar]
  186. Pappone C., Santinelli V. (2010). Cardiac electrophysiology in diabetes. Minerva Cardioangiol. 58 269–276. [PubMed] [Google Scholar]
  187. Pereira L., Matthes J., Schuster I., Valdivia H. H., Herzig S., Richard S., et al. (2006). Mechanisms of [Ca2 + ]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55 608–615. 10.2337/diabetes.55.03.06.db05-1284 [DOI] [PubMed] [Google Scholar]
  188. Peterson B. Z., DeMaria C. D., Adelman J. P., Yue D. T. (1999). Calmodulin is the Ca2 + sensor for Ca2 + -dependent inactivation of L-type calcium channels. Neuron 22 549–558. 10.1016/S0896-6273(00)80709-6 [DOI] [PubMed] [Google Scholar]
  189. Piacentino V., III, Weber C. R., Chen X., Weisser-Thomas J., Margulies K. B., Bers D. M., et al. (2003). Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ. Res. 92 651–658. 10.1161/01.RES.0000062469.83985.9B [DOI] [PubMed] [Google Scholar]
  190. Pierce G. N., Ganguly P. K., Dzurba A., Dhalla N. S. (1985). Modification of the function of cardiac subcellular organelles by insulin. Adv. Myocardiol. 6 113–125. [PubMed] [Google Scholar]
  191. Pierce G. N., Ramjiawan B., Dhalla N. S., Ferrari R. (1990). Na( + )-H + exchange in cardiac sarcolemmal vesicles isolated from diabetic rats. Am. J. Physiol. 258(1 Pt 2), H255–H261. 10.1152/ajpheart.1990.258.1.H255 [DOI] [PubMed] [Google Scholar]
  192. Pieske B., Kretschmann B., Meyer M., Holubarsch C., Weirich J., Posival H., et al. (1995). Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92 1169–1178. 10.1161/01.CIR.92.5.1169 [DOI] [PubMed] [Google Scholar]
  193. Pogwizd S. M., Qi M., Yuan W., Samarel A. M., Bers D. M. (1999). Upregulation of Na( + )/Ca(2 + ) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ. Res. 85 1009–1019. 10.1161/01.RES.85.11.1009 [DOI] [PubMed] [Google Scholar]
  194. Pogwizd S. M., Schlotthauer K., Li L., Yuan W., Bers D. M. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88 1159–1167. 10.1161/hh1101.091193 [DOI] [PubMed] [Google Scholar]
  195. Pott C., Eckardt L., Goldhaber J. I. (2011). Triple threat: the Na + /Ca2 + exchanger in the pathophysiology of cardiac arrhythmia, ischemia and heart failure. Curr. Drug Targets 12 737–747. 10.2174/138945011795378559 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Pott C., Muszynski A., Ruhe M., Bögeholz N., Schulte J. S., Milberg P., et al. (2012). Proarrhythmia in a non-failing murine model of cardiac-specific Na + /Ca2 + exchanger overexpression: whole heart and cellular mechanisms. Basic Res. Cardiol. 107:247. 10.1007/s00395-012-0247-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Prestle J., Janssen P. M., Janssen A. P., Zeitz O., Lehnart S. E., Bruce L., et al. (2001). Overexpression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptor-mediated Ca(2 + ) leak from the sarcoplasmic reticulum and increases contractility. Circ. Res. 88 188–194. 10.1161/01.RES.88.2.188 [DOI] [PubMed] [Google Scholar]
  198. Priori S. G., Chen S. R. (2011). Inherited dysfunction of sarcoplasmic reticulum Ca2 + handling and arrhythmogenesis. Circ. Res. 108 871–883. 10.1161/CIRCRESAHA.110.226845 [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Priori S. G., Napolitano C., Memmi M., Colombi B., Drago F., Gasparini M., et al. (2002). Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2 69–74. 10.1161/01.CIR.0000020013.73106.D8 [DOI] [PubMed] [Google Scholar]
  200. Privratsky J. R., Wold L. E., Sowers J. R., Quinn M. T., Ren J. (2003). AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension 42 206–212. 10.1161/01.HYP.0000082814.62655.85 [DOI] [PubMed] [Google Scholar]
  201. Prunier F., Kawase Y., Gianni D., Scapin C., Danik S. B., Ellinor P. T., et al. (2008). Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2 + ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation 118 614–624. 10.1161/CIRCULATIONAHA.108.770883 [DOI] [PubMed] [Google Scholar]
  202. Raimondi L., De Paoli P., Mannucci E., Lonardo G., Sartiani L., Banchelli G., et al. (2004). Restoration of cardiomyocyte functional properties by angiotensin II receptor blockade in diabetic rats. Diabetes 53 1927–1933. 10.2337/diabetes.53.7.1927 [DOI] [PubMed] [Google Scholar]
  203. Rebbeck R. T., Essawy M. M., Nitu F. R., Grant B. D., Gillispie G. D., Thomas D. D., et al. (2017). High-throughput screens to discover small-molecule modulators of ryanodine receptor calcium release channels. SLAS Discov. 22 176–186. 10.1177/1087057116674312 [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Rehsia N. S., Dhalla N. S. (2010). Exp clin cardiol. Winter 15 e86–e95. [PMC free article] [PubMed] [Google Scholar]
  205. Respress J. L., van Oort R. J., Li N., Rolim N., Dixit S. S., deAlmeida A., et al. (2012). Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ. Res. 110 1474–1483. 10.1161/CIRCRESAHA.112.268094 [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Reuter H., Grönke S., Adam C., Ribati M., Brabender J., Zobel C., et al. (2008). Sarcoplasmic Ca2 + release is prolonged in nonfailing myocardium of diabetic patients. Mol. Cell. Biochem. 308 141–149. 10.1007/s11010-007-9622-3 [DOI] [PubMed] [Google Scholar]
  207. Ricci E., Smallwood S., Chouabe C., Mertani H. C., Raccurt M., Morel G., et al. (2006). Electrophysiological characterization of left ventricular myocytes from obese Sprague-Dawley rat. Obesity 14 778–786. 10.1038/oby.2006.90 [DOI] [PubMed] [Google Scholar]
  208. Roux-Buisson N., Cacheux M., Fourest-Lieuvin A., Fauconnier J., Brocard J., Denjoy I., et al. (2012). Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum. Mol. Genet. 21 2759–2767. 10.1093/hmg/dds104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Ruiz-Meana M., Fernandez-Sanz C., Garcia-Dorado D. (2010). The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc. Res. 88 30–39. 10.1093/cvr/cvq225 [DOI] [PubMed] [Google Scholar]
  210. Salama G., Menshikova E. V., Abramson J. J. (2000). Molecular interaction between nitric oxide and ryanodine receptors of skeletal and cardiac sarcoplasmic reticulum. Antioxid. Redox. Signal. 2 5–16. 10.1089/ars.2000.2.1-5 [DOI] [PubMed] [Google Scholar]
  211. Salem K. A., Qureshi M. A., Sydorenko V., Parekh K., Jayaprakash P., Iqbal T., et al. (2013). Effects of exercise training on excitation-contraction coupling and related mRNA expression in hearts of Goto-Kakizaki type 2 diabetic rats. Mol. Cell. Biochem. 380 83–96. 10.1007/s11010-013-1662-2 [DOI] [PubMed] [Google Scholar]
  212. Samsó M., Wagenknecht T. (2002). Apocalmodulin and Ca2 + -calmodulin bind to neighboring locations on the ryanodine receptor. J. Biol. Chem. 11 1349–1353. 10.1074/jbc.M109196200 [DOI] [PubMed] [Google Scholar]
  213. Sánchez G., Araneda F., Peña J. P., Finkelstein J. P., Riquelme J. A., Montecinos L., et al. (2018). High-fat-diet-induced obesity produces spontaneous ventricular arrhythmias and increases the activity of ryanodine receptors in mice. Int. J. Mol. Sci. 19:E533. 10.3390/ijms19020533 [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Satoh H., Ginsburg K. S., Qing K., Terada H., Hayashi H., Bers D. M. (2000). KB-R7943 block of Ca(2 + ) influx via Na( + )/Ca(2 + ) exchange does not alter twitches or glycoside inotropy but prevents Ca(2 + ) overload in rat ventricular myocytes. Circulation 101 1441–1446. 10.1161/01.CIR.101.12.1441 [DOI] [PubMed] [Google Scholar]
  215. Schmidt U., Hajjar R. J., Helm P. A., Kim C. S., Doye A. A., Gwathmey J. K. (1998). Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J. Mol. Cell. Cardiol. 30 1929–1937. 10.1006/jmcc.1998.0748 [DOI] [PubMed] [Google Scholar]
  216. Schmidt U., Hajjar R. J., Kim C. S., Lebeche D., Doye A. A., Gwathmey J. K. (1999). Human heart failure: cAMP stimulation of SR Ca(2 + )-ATPase activity and phosphorylation level of phospholamban. Am. J. Physiol. 277(2 Pt 2), H474–H480. 10.1152/ajpheart.1999.277.2.H474 [DOI] [PubMed] [Google Scholar]
  217. Schmitt J. P., Kamisago M., Asahi M., Li G. H., Ahmad F., Mende U., et al. (2003). Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299 1410–1413. 10.1126/science.1081578 [DOI] [PubMed] [Google Scholar]
  218. Schwinger R. H., Bölck B., Münch G., Brixius K., Müller-Ehmsen J., Erdmann E. (1998). cAMP-dependent protein kinase A-stimulated sarcoplasmic reticulum function in heart failure. Ann. N. Y. Acad. Sci. 853 240–250. 10.1111/j.1749-6632.1998.tb08272.x [DOI] [PubMed] [Google Scholar]
  219. Schwinger R. H., Münch G., Bölck B., Karczewski P., Krause E. G., Erdmann E. (1999). Reduced Ca(2 + )-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J. Mol. Cell. Cardiol. 31 479–491. 10.1006/jmcc.1998.0897 [DOI] [PubMed] [Google Scholar]
  220. Sechi L. A., Griffin C. A., Schambelan M. (1994). The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 43 1180–1184. 10.2337/diab.43.10.1180 [DOI] [PubMed] [Google Scholar]
  221. Sham J. S., Song L. S., Chen Y., Deng L. H., Stern M. D., Lakatta E. G., et al. (1998). Termination of Ca2 + release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc. Natl Acad. Sci. U.S.A. 95 15096–15101. 10.1073/pnas.95.25.15096 [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Shao C. H., Capek H. L., Patel K. P., Wang M., Tang K., DeSouza C., et al. (2011). Carbonylation contributes to SERCA2a activity loss and diastolic dysfunction in a rat model of type 1 diabetes. Diabetes 60 947–959. 10.2337/db10-1145 [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Shao C. H., Rozanski G. J., Patel K. P., Bidasee K. R. (2007). Dyssynchronous (non-uniform) Ca2 + release in myocytes from streptozotocin-induced diabetic rats. J. Mol. Cell. Cardiol. 42 234–246. 10.1016/j.yjmcc.2006.08.018 [DOI] [PubMed] [Google Scholar]
  224. Shao C. H., Tian C., Ouyang S., Moore C. J., Alomar F., Nemet I., et al. (2012). Carbonylation induces heterogeneity in cardiac ryanodine receptor function in diabetes mellitus. Mol. Pharmacol. 82 383–399. 10.1124/mol.112.078352 [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Shao C. H., Wehrens X. H., Wyatt T. A., Parbhu S., Rozanski G. J., Patel K. P., et al. (2009). Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. J. Appl. Physiol. 106 1280–1292. 10.1152/japplphysiol.91280.2008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Sharma V. K., Ramesh V., Franzini-Armstrong C., Sheu S. S. (2000). Transport of Ca2 + from sarcoplasmic reticulum to mitochondria in rat ventricular myocytes. J. Bioenerg. Biomembr. 32 97–104. 10.1023/A:1005520714221 [DOI] [PubMed] [Google Scholar]
  227. Shen X., Zheng S., Thongboonkerd V., Xu M., Pierce W. M., Jr., Klein J. B., et al. (2004). Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 287 E896–E905. 10.1152/ajpendo.00047.2004 [DOI] [PubMed] [Google Scholar]
  228. Shkryl V. M., Maxwell J. T., Domeier T. L., Blatter L. A. (2012). Refractoriness of sarcoplasmic reticulum Ca2 + release determines Ca2 + alternans in atrial myocytes. Am. J. Physiol. Heart Circ. Physiol. 302 H2310–H2320. 10.1152/ajpheart.00079.2012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Simmerman H. K., Collins J. H., Theibert J. L., Wegener A. D., Jones L. R. (1986). Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J. Biol. Chem. 261 13333–13341. [PubMed] [Google Scholar]
  230. Singh R. M., Waqar T., Howarth F. C., Adeghate E., Bidasee K., Singh J. (2018). Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart. Heart Fail. Rev. 23 37–54. 10.1007/s10741-017-9663-y [DOI] [PubMed] [Google Scholar]
  231. Sipido K. R., Vangheluwe P. (2010). Targeting sarcoplasmic reticulum Ca2 + uptake to improve heart failure: hit or miss. Circ. Res. 106 230–233. 10.1161/CIRCRESAHA.109.210740 [DOI] [PubMed] [Google Scholar]
  232. Siscovick D. S., Sotoodehnia N., Rea T. D., Raghunathan T. E., Jouven X., Lemaitre R. N. (2010). Type 2 diabetes mellitus and the risk of sudden cardiac arrest in the community. Rev. Endocr. Metab. Disord. 11 53–59. 10.1007/s11154-010-9133-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Sitsapesan R., Williams A. J. (1994). Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca(2 + )-release channel by luminal Ca2 +. J. Membr. Biol. 137 215–226. 10.1007/BF00232590 [DOI] [PubMed] [Google Scholar]
  234. Smail M. M., Qureshi M. A., Shmygol A., Oz M., Singh J., Sydorenko V., et al. (2016). Regional effects of streptozotocin-induced diabetes on shortening and calcium transport in epicardial and endocardial myocytes from rat left ventricle. Physiol. Rep. 4:e13034. 10.14814/phy2.13034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Sobie E. A., Song L. S., Lederer W. J. (2006). Restitution of Ca(2 + ) release and vulnerability to arrhythmias. J. Cardiovasc. Electrophysiol. 17(Suppl. 1), S64–S70. 10.1111/j.1540-8167.2006.00385.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Sommese L., Valverde C. A., Blanco P., Castro M. C., Rueda O. V., Kaetzel M., et al. (2016). Ryanodine receptor phosphorylation by CaMKII promotes spontaneous Ca(2 + ) release events in a rodent model of early stage diabetes: the arrhythmogenic substrate. Int. J. Cardiol. 202 394–406. 10.1016/j.ijcard.2015.09.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Song Q., Schmidt A. G., Hahn H. S., Carr A. N., Frank B., Pater L., et al. (2003). Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy. J. Clin. Invest. 111 859–867. 10.1172/JCI16738 [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Sossalla S., Fluschnik N., Schotola H., Ort K. R., Neef S., Schulte T., et al. (2010). Inhibition of elevated Ca2 + /calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ. Res. 107 1150–1161. 10.1161/CIRCRESAHA.110.220418 [DOI] [PubMed] [Google Scholar]
  239. Spooner P. M. (2008). Sudden cardiac death: influence of diabetes. Diabetes Obes. Metab. 10 523–532. 10.1111/j.1463-1326.2007.00723.x [DOI] [PubMed] [Google Scholar]
  240. Stary V., Puppala D., Scherrer-Crosbie M., Dillmann W. H., Armoundas A. A. (2016). SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition. J. Appl. Physiol. 120 865–875. 10.1152/japplphysiol.00588.2015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Stølen T. O., Høydal M. A., Kemi O. J., Catalucci D., Ceci M., Aasum E., et al. (2009). Interval training normalizes cardiomyocyte function, diastolic Ca2 + control, and SR Ca2 + release synchronicity in a mouse model of diabetic cardiomyopathy. Circ. Res. 105 527–536. 10.1161/CIRCRESAHA.109.199810 [DOI] [PubMed] [Google Scholar]
  242. Studer R., Reinecke H., Bilger J., Eschenhagen T., Böhm M., Hasenfuss G., et al. (1994). Gene expression of the cardiac Na( + )-Ca2 + exchanger in end-stage human heart failure. Circ. Res. 75 443–453. 10.1161/01.RES.75.3.443 [DOI] [PubMed] [Google Scholar]
  243. Suarez J., Belke D. D., Gloss B., Dieterle T., McDonough P. M., Kim Y. K., et al. (2004). In vivo adenoviral transfer of sorcin reverses cardiac contractile abnormalities of diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 286 H68–H75. 10.1152/ajpheart.00245.2003 [DOI] [PubMed] [Google Scholar]
  244. Sun B., Wei J., Zhong X., Guo W., Yao J., Wang R., et al. (2018). The cardiac ryanodine receptor, but not sarcoplasmic reticulum Ca2 + -ATPase, is a major determinant of Ca2 + alternans in intact mouse hearts. J. Biol. Chem. 293:jbc.RA118.003760. 10.1074/jbc.RA118.003760 [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Szentesi P., Pignier C., Egger M., Kranias E. G., Niggli E. (2004). Sarcoplasmic reticulum Ca2 + refilling controls recovery from Ca2 + -induced Ca2 + release refractoriness in heart muscle. Circ. Res. 95 807–813. 10.1161/01.RES.0000146029.80463.7d [DOI] [PubMed] [Google Scholar]
  246. Szepesi J., Acsai K., Sebok Z., Prorok J., Pollesello P., Levijoki J., et al. (2015). Comparison of the efficiency of Na + /Ca2 + exchanger or Na + /H + exchanger inhibition and their combination in reducing coronary reperfusion-induced arrhythmias. J Physiol. Pharmacol. 66 215–226. [PubMed] [Google Scholar]
  247. Szkudelski T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50 537–546. [PubMed] [Google Scholar]
  248. Terentyev D., Belevych A. E., Terentyeva R., Martin M. M., Malana G. E., Kuhn D. E., et al. (2009). miR-1 overexpression enhances Ca(2 + ) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104 514–521. 10.1161/CIRCRESAHA.108.181651 [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Terentyev D., Hamilton S. (2016). Regulation of sarcoplasmic reticulum Ca2 + release by serine-threonine phosphatases in the heart. J. Mol. Cell. Cardiol. 101 156–164. 10.1016/j.yjmcc.2016.08.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Terentyev D., Kubalova Z., Valle G., Nori A., Vedamoorthyrao S., Terentyeva R., et al. (2008). Modulation of SR Ca release by luminal Ca and calsequestrin in cardiac myocytes: effects of CASQ2 mutations linked to sudden cardiac death. Biophys. J. 95 2037–2048. 10.1529/biophysj.107.128249 [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Terentyev D., Nori A., Santoro M., Viatchenko-Karpinski S., Kubalova Z., Györke I., et al. (2006). Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ. Res. 98 1151–1158. 10.1161/01.RES.0000220647.93982.08 [DOI] [PubMed] [Google Scholar]
  252. Terentyev D., Viatchenko-Karpinski S., Valdivia H. H., Escobar A. L., Györke S. (2002). Luminal Ca2+ controls termination and refractory behavior of Ca2+ -induced Ca2+ release in cardiac myocytes. Circ. Res. 6 414–420. 10.1161/01.RES.0000032490.04207.BD [DOI] [PubMed] [Google Scholar]
  253. Teshima Y., Takahashi N., Nishio S., Saito S., Kondo H., Fukui A., et al. (2014). Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ. J. 78 300–306. 10.1253/circj.CJ-13-1187 [DOI] [PubMed] [Google Scholar]
  254. Teshima Y., Takahashi N., Saikawa T., Hara M., Yasunaga S., Hidaka S., et al. (2000). Diminished expression of sarcoplasmic reticulum Ca(2 + )-ATPase and ryanodine sensitive Ca(2 + )Channel mRNA in streptozotocin-induced diabetic rat heart. J. Mol. Cell. Cardiol. 32 655–664. 10.1006/jmcc.2000.1107 [DOI] [PubMed] [Google Scholar]
  255. Tester D. J., Kopplin L. J., Will M. L., Ackerman M. J. (2005). Spectrum and prevalence of cardiac ryanodine receptor (RyR2) mutations in a cohort of unrelated patients referred explicitly for long QT syndrome genetic testing. Heart Rhythm. 2 1099–1105. 10.1016/j.hrthm.2005.07.012 [DOI] [PubMed] [Google Scholar]
  256. Tian C., Shao C. H., Moore C. J., Kutty S., Walseth T., DeSouza C., et al. (2011). Gain of function of cardiac ryanodine receptor in a rat model of type 1 diabetes. Cardiovasc. Res. 91 300–309. 10.1093/cvr/cvr076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Trost S. U., Belke D. D., Bluhm W. F., Meyer M., Swanson E., Dillmann W. H. (2002). Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51 1166–1171. 10.2337/diabetes.51.4.1166 [DOI] [PubMed] [Google Scholar]
  258. Tse G., Lai E. T., Tse V., Yeo J. M. (2016). Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus. J. Diabetes Res. 2016:2848759. 10.1155/2016/2848759 [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Tsujimoto T., Sugiyama T., Shapiro M. F., Noda M., Kajio H. (2017). Risk of cardiovascular events in patients with diabetes mellitus on β-blockers. Hypertension 70 103–110. 10.1161/HYPERTENSIONAHA.117.09259 [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Tuncay E., Okatan E. N., Toy A., Turan B. (2014). Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2 + and Ca2 + and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid. Med. Cell. Longev. 2014:290381. 10.1155/2014/290381 [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Tunwell R. E., Wickenden C., Bertrand B. M., Shevchenko V. I., Walsh M. B., Allen P. D., et al. (1996). The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem. J. 318( Pt 2), 477–487. 10.1042/bj3180477 [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Tzimas C., Terrovitis J., Lehnart S. E., Kranias E. G., Sanoudou D. (2015). Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition ameliorates arrhythmias elicited by junctin ablation under stress conditions. Heart Rhythm. 12 1599–1610. 10.1016/j.hrthm.2015.03.043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Uchinoumi H., Yang Y., Oda T., Li N., Alsina K. M., Puglisi J. L., et al. (2016). CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. J. Mol. Cell. Cardiol. 98 62–72. 10.1016/j.yjmcc.2016.06.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Uehara A., Murayama T., Yasukochi M., Fill M., Horie M., Okamoto T., et al. (2017). Extensive Ca2 + leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2 + hypersensitivity. J. Gen. Physiol. 149 199–218. 10.1085/jgp.201611624 [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Vasiliadis I., Kolovou G., Mavrogeni S., Nair D. R., Mikhailidis D. P. (2014). Sudden cardiac death and diabetes mellitus. J. Diabetes Complications 28 573–579. 10.1016/j.jdiacomp.2014.02.003 [DOI] [PubMed] [Google Scholar]
  266. Venetucci L., Denegri M., Napolitano C., Priori S. G. (2012). Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat. Rev. Cardiol. 9 561–575. 10.1038/nrcardio.2012.93 [DOI] [PubMed] [Google Scholar]
  267. Vervliet T., Robinson E. L., Roderick H. L. (2018). Lnc’ing Ca2 +. SERCA and cardiac disease. Cell Calcium 72 132–134. 10.1016/j.ceca.2018.05.005 [DOI] [PubMed] [Google Scholar]
  268. Vetter R., Rehfeld U., Reissfelder C., Weiss W., Wagner K. D., Günther J., et al. (2002). Transgenic overexpression of the sarcoplasmic reticulum Ca2 + ATPase improves reticular Ca2 + handling in normal and diabetic rat hearts. FASEB J. 16 1657–1659. 10.1096/fj.01-1019fje [DOI] [PubMed] [Google Scholar]
  269. Waller A. P., Kalyanasundaram A., Hayes S., Periasamy M., Lacombe V. A. (2015). Sarcoplasmic reticulum Ca2 + ATPase pump is a major regulator of glucose transport in the healthy and diabetic heart. Biochim. Biophys. Acta 1852 873–881. 10.1016/j.bbadis.2015.01.009 [DOI] [PubMed] [Google Scholar]
  270. Weber C. R., Piacentino V., III, Houser S. R., Bers D. M. (2003). Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation 108 2224–2229. 10.1161/01.CIR.0000095274.72486.94 [DOI] [PubMed] [Google Scholar]
  271. Wehrens X. H., Lehnart S. E., Huang F., Vest J. A., Reiken S. R., Mohler P. J., et al. (2003). FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 27 829–840. 10.1016/S0092-8674(03)00434-3 [DOI] [PubMed] [Google Scholar]
  272. Wehrens X. H., Lehnart S. E., Reiken S., van der Nagel R., Morales R., Sun J., et al. (2005). Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proc. Natl. Acad. Sci. U.S.A. 102 9607–9612. 10.1073/pnas.0500353102 [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Wehrens X. H., Lehnart S. E., Reiken S., Vest J. A., Wronska A., Marks A. R. (2006). Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc. Natl. Acad. Sci. U.S.A. 103 511–518. 10.1073/pnas.0510113103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Wehrens X. H., Lehnart S. E., Reiken S. R., Deng S. X., Vest J. A., Cervantes D., et al. (2004a). Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304 292–296. 10.1126/science.1094301 [DOI] [PubMed] [Google Scholar]
  275. Wehrens X. H., Lehnart S. E., Reiken S. R., Marks A. R. (2004b). Ca2 + /calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res. 94 e61–e70. 10.1161/01.RES.0000125626.33738.E2 [DOI] [PubMed] [Google Scholar]
  276. Wei S., Guo A., Chen B., Kutschke W., Xie Y. P., Zimmerman K., et al. (2010). T-tubule remodeling during transition from hypertrophy to heart failure. Circ. Res. 107 520–531. 10.1161/CIRCRESAHA.109.212324 [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Weiss J. N., Garfinkel A., Karagueuzian H. S., Chen P. S., Qu Z. (2010). Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm. 7 1891–1899. 10.1016/j.hrthm.2010.09.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Wickley P. J., Shiga T., Murray P. A., Damron D. S. (2007). Propofol modulates Na + -Ca2 + exchange activity via activation of protein kinase C in diabetic cardiomyocytes. Anesthesiology 106 302–311. 10.1097/00000542-200702000-00019 [DOI] [PubMed] [Google Scholar]
  279. Wilson A. J., Gill E. K., Abudalo R. A., Edgar K. S., Watson C. J., Grieve D. J. (2018). Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart 104 293–299. 10.1136/heartjnl-2017-311448 [DOI] [PubMed] [Google Scholar]
  280. Winnick J. J., Sherman W. M., Habash D. L., Stout M. B., Failla M. L., Belury M. A., et al. (2008). Short-term aerobic exercise training in obese humans with type 2 diabetes mellitus improves whole-body insulin sensitivity through gains in peripheral, not hepatic insulin sensitivity. J. Clin. Endocrinol. Metab. 93 771–778. 10.1210/jc.2007-1524 [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Winslow R. L., Rice J., Jafri S., Marbán E., O’Rourke B. (1999). Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure. II: model studies. Circ. Res. 19 571–586. 10.1161/01.RES.84.5.571 [DOI] [PubMed] [Google Scholar]
  282. Witcher D. R., Kovacs R. J., Schulman H., Cefali D. C., Jones L. R. (1991). Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J. Biol. Chem. 15 11144–11152. [PubMed] [Google Scholar]
  283. Wold L. E., Dutta K., Mason M. M., Ren J., Cala S. E., Schwanke M. L., et al. (2005). Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J. Mol. Cell. Cardiol. 39 297–307. 10.1016/j.yjmcc.2005.03.014 [DOI] [PubMed] [Google Scholar]
  284. Xiao B., Jiang M. T., Zhao M., Yang D., Sutherland C., Lai F. A., et al. (2005). Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ. Res. 96 847–855. 10.1161/01.RES.0000163276.26083.e8 [DOI] [PubMed] [Google Scholar]
  285. Xiao B., Sutherland C., Walsh M. P., Chen S. R. (2004). Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2 + -release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ. Res. 94 487–495. 10.1161/01.RES.0000115945.89741.22 [DOI] [PubMed] [Google Scholar]
  286. Xie C., Biary N., Tocchetti C. G., Aon M. A., Paolocci N., Kauffman J., et al. (2013). Glutathione oxidation unmasks proarrhythmic vulnerability of chronically hyperglycemic guinea pigs. Am. J. Physiol. Heart Circ. Physiol. 304 H916–H926. 10.1152/ajpheart.00026.2012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Xie L. H., Chen F., Karagueuzian H. S., Weiss J. N. (2009). Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ. Res. 104 79–86. 10.1161/CIRCRESAHA.108.183475 [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. Xu K. Y., Zweier J. L., Becker L. C. (1997). Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2 + )-ATPase function by direct attack on the ATP binding site. Circ. Res. 80 76–81. 10.1161/01.RES.80.1.76 [DOI] [PubMed] [Google Scholar]
  289. Xu L., Eu J. P., Meissner G., Stamler J. S. (1998). Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 9 234–237. 10.1126/science.279.5348.234 [DOI] [PubMed] [Google Scholar]
  290. Yang D., Zhu W. Z., Xiao B., Brochet D. X., Chen S. R., Lakatta E. G., et al. (2007). Ca2 + /calmodulin kinase II-dependent phosphorylation of ryanodine receptors suppresses Ca2 + sparks and Ca2 + waves in cardiac myocytes. Circ. Res. 100 399–407. 10.1161/01.RES.0000258022.13090.55 [DOI] [PubMed] [Google Scholar]
  291. Yang Y., Zhao J., Qiu J., Li J., Liang X., Zhang Z., et al. (2018). Xanthine oxidase inhibitor allopurinol prevents oxidative stress-mediated atrial remodeling in alloxan-induced diabetes mellitus rabbits. J. Am. Heart Assoc. 7:e008807. 10.1161/JAHA.118.008807 [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Yano K., Zarain-Herzberg A. (1994). Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol. Cell. Biochem. 15 61–70. 10.1007/BF00925961 [DOI] [PubMed] [Google Scholar]
  293. Yaras N., Bilginoglu A., Vassort G., Turan B. (2007). Restoration of diabetes-induced abnormal local Ca2 + release in cardiomyocytes by angiotensin II receptor blockade. Am. J. Physiol. Heart Circ. Physiol. 292 H912–H920. 10.1152/ajpheart.00824.2006 [DOI] [PubMed] [Google Scholar]
  294. Yaras N., Ugur M., Ozdemir S., Gurdal H., Purali N., Lacampagne A., et al. (2005). Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2 + homeostasis in rat heart. Diabetes Metab. Res. Rev. 54 3082–3088. 10.2337/diabetes.54.11.3082 [DOI] [PubMed] [Google Scholar]
  295. Ye D., Tester D. J., Zhou W., Papagiannis J., Ackerman M. J. (2018). A pore-localizing CACNA1C-E1115K missense mutation, identified in a patient with idiopathic qt prolongation, bradycardia, and autism spectrum disorder, converts the l-type calcium channel into a hybrid non-selective monovalent cation channel. Heart Rhythm. 10.1016/j.hrthm.2018.08.030 [Epub ahead of print]. [DOI] [PubMed] [Google Scholar]
  296. Ying J., Sharov V., Xu S., Jiang B., Gerrity R., Schöneich C., et al. (2008). Cysteine-674 oxidation and degradation of sarcoplasmic reticulum Ca(2 + ) ATPase in diabetic pig aorta. Free Radic. Biol. Med. 45 756–762. 10.1016/j.freeradbiomed.2008.05.029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Yu Z., Tibbits G. F., McNeill J. H. (1994). Cellular functions of diabetic cardiomyocytes: contractility, rapid-cooling contracture, and ryanodine binding. Am. J Physiol. 266(5 Pt 2), H2082–H2089. 10.1152/ajpheart.1994.266.5.H2082 [DOI] [PubMed] [Google Scholar]
  298. Zarain-Herzberg A., García-Rivas G., Estrada-Avilés R. (2014). Regulation of SERCA pumps expression in diabetes. Cell Calcium 56 302–310. 10.1016/j.ceca.2014.09.005 [DOI] [PubMed] [Google Scholar]
  299. Zhang J., Zhou Q., Smith C. D., Chen H., Tan Z., Chen B., et al. (2015). Non-β-blocking R-carvedilol enantiomer suppresses Ca2 + waves and stress-induced ventricular tachyarrhythmia without lowering heart rate or blood pressure. Biochem. J. 470 233–242. 10.1042/BJ20150548 [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Zhang P. (2017). CaMKII: the molecular villain that aggravates cardiovascular disease. Exp. Ther. Med. 13 815–820. 10.3892/etm.2017.4034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  301. Zhang R., Khoo M. S., Wu Y., Yang Y., Grueter C. E., Ni G., et al. (2005). Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 11 409–417. 10.1038/nm1215 [DOI] [PubMed] [Google Scholar]
  302. Zhang T., Guo T., Mishra S., Dalton N. D., Kranias E. G., Peterson K. L., et al. (2010). Phospholamban ablation rescues sarcoplasmic reticulum Ca(2 + ) handling but exacerbates cardiac dysfunction in CaMKIIdelta(C) transgenic mice. Circ. Res. 106 354–362. 10.1161/CIRCRESAHA.109.207423 [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Zhang X., Zhang Z., Zhao Y., Jiang N., Qiu J., Yang Y., et al. (2017). Alogliptin, a dipeptidyl peptidase-4 inhibitor, alleviates atrial remodeling and improves mitochondrial function and biogenesis in diabetic rabbits. J. Am. Heart Assoc. 6:e005945. 10.1161/JAHA.117.005945 [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Zhao S. M., Wang Y. L., Guo C. Y., Chen J. L., Wu Y. Q. (2014). Progressive decay of Ca2 + homeostasis in the development of diabetic cardiomyopathy. Cardiovasc. Diabetol. 13:75. 10.1186/1475-2840-13-75 [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Zhao Y. T., Valdivia C. R., Gurrola G. B., Powers P. P., Willis B. C., Moss R. L., et al. (2015). Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. Proc. Natl. Acad. Sci. U.S.A. 112 E1669–E1677. 10.1073/pnas.1419795112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Zhong M., Rees C. M., Terentyev D., Choi B. R., Koren G., Karma A. (2018). NCX-mediated subcellular Ca2 + dynamics underlying early afterdepolarizations in LQT2 cardiomyocytes. Biophys. J. 115 1019–1032. 10.1016/j.bpj.2018.08.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Zhou Q., Xiao J., Jiang D., Wang R., Vembaiyan K., Wang A., et al. (2011). Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2 + release. Nat. Med. 17 1003–1009. 10.1038/nm.2406 [DOI] [PMC free article] [PubMed] [Google Scholar]
  308. Zima A. V., Blatter L. A. (2006). Redox regulation of cardiac calcium channels and transporters. Cardiovasc. Res. 71 310–321. 10.1016/j.cardiores.2006.02.019 [DOI] [PubMed] [Google Scholar]
  309. Zima A. V., Bovo E., Mazurek S. R., Rochira J. A., Li W., Terentyev D. (2014). Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch. 466 1129–1137. 10.1007/s00424-014-1469-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  310. Zima A. V., Mazurek S. R. (2016). Functional impact of ryanodine receptor oxidation on intracellular calcium regulation in the heart. Rev. Physiol. Biochem. Pharmacol. 171 39–62. 10.1007/112_2016_2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Zima A. V., Picht E., Bers D. M., Blatter L. A. (2008). Termination of cardiac Ca2 + sparks: role of intra-SR [Ca2 + ], release flux, and intra-SR Ca2 + diffusion. Circ. Res. 103 e105–e115. 10.1161/CIRCRESAHA.107.183236 [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Zsebo K., Yaroshinsky A., Rudy J. J., Wagner K., Greenberg B., Jessup M., et al. (2014). Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ. Res. 114 101–108. 10.1161/CIRCRESAHA.113.302421 [DOI] [PubMed] [Google Scholar]
  313. Zühlke R. D., Pitt G. S., Deisseroth K., Tsien R. W., Reuter H. (1999). Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399 159–162. 10.1038/20200 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Physiology are provided here courtesy of Frontiers Media SA

RESOURCES