Abstract
Severe acute pancreatitis (SAP) is a common disease with a poor prognosis. Heart failure is one cause of SAP patient death. Intermedin (IMD) is a potent endogenous cardio-protective substance. Administration of exogenous IMD showed beneficial effects in cardiovascular diseases. The aim of this study was to investigate the myocardial damage in SAP and to determine the therapeutic potential of IMD for SAP. Using an SAP rat model, we examined endogenous IMD expression following SAP induction, and determined the effect of IMD on myocardial function, histological morphology, apoptosis-related gene expression, and prognosis. Our results indicated that the cardiac function and histological structure were significantly disrupted in SAP rats. Infusion of exogenous IMD significantly preserved cardiac function and ameliorated myocardial damage. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) revealed that myocardial apoptosis was extensively present in SAP rats, and IMD infusion led to increased expression of the prosurvival factor Bcl-2, but decreased pro-apoptotic factors Bax and caspase-3. In addition, IMD infusion also reversed the change of IMD receptor systems in SAP rat heart tissue. Furthermore, we found that IMD infusion greatly decreased mortality of SAP rats. In conclusion, administration of SAP produced therapeutic effects in SAP through modulating apoptotic and pro-survival gene expression, inhibiting myocardial apoptosis, preserving cardiac function, and a useful therapeutic agent for SAP, and provides us an insight for a clinical trial of IMD for treating human severe acute pancreatitis.
Electronic Supplementary Material
Supplementary material is available for this article at 10.2478/s11658-011-0020-1 and is accessible for authorized users.
Key words: Severe acute pancreatitis, Myocardial damage, Apoptosis, Intermedin treatment
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Abbreviations used
- ADM
adrenomedullin
- CGRP
calcitonin gene-related peptide
- CL
calcitonin receptor-like receptor
- IMD
intermedin
- MODS
multiple organ dysfunction syndrome
- RAMP
receptor-activity-modifying protein
- SAP
severe acute pancreatitis
- TUNEL
terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
References
- 1.Waldthaler A., Schutte K., Malfertheiner P. Causes and mechanisms in acute pancreatitis. Dig. Dis. 2010;28:364–372. doi: 10.1159/000319416. [DOI] [PubMed] [Google Scholar]
- 2.Harper S.J., Cheslyn-Curtis S. Acute pancreatitis. Ann. Clin. Biochem. 2011;48:23–37. doi: 10.1258/acb.2010.010196. [DOI] [PubMed] [Google Scholar]
- 3.McKay C.J., Imrie C.W. The continuing challenge of early mortality in acute pancreatitis. Brit. J. Surg. 2004;91:1243–1244. doi: 10.1002/bjs.4750. [DOI] [PubMed] [Google Scholar]
- 4.Gravante G., Garcea G., Ong S.L., Metcalfe M.S., Berry D.P., Lloyd D.M., Dennison A.R. Prediction of mortality in acute pancreatitis: a systematic review of the published evidence. Pancreatology. 2009;9:601–614. doi: 10.1159/000212097. [DOI] [PubMed] [Google Scholar]
- 5.Isenmann R., Rau B., Beger H.G. Bacterial infection and extent of necrosis are determinants of organ failure in patients with acute necrotizing pancreatitis. Brit. J. Surg. 1999;86:1020–1024. doi: 10.1046/j.1365-2168.1999.01176.x. [DOI] [PubMed] [Google Scholar]
- 6.Takeda K., Matsuno S., Sunamura M., Kobari M. Surgical aspects and management of acute necrotizing pancreatitis: recent results of a cooperative national survey in Japan. Pancreas. 1998;16:316–322. doi: 10.1097/00006676-199804000-00018. [DOI] [PubMed] [Google Scholar]
- 7.Pandol S.J., Saluja A.K., Imrie C.W., Banks P.A. Acute pancreatitis: bench to the bedside. Gastroenterology. 2007;132:1127–1151. doi: 10.1053/j.gastro.2007.01.055. [DOI] [PubMed] [Google Scholar]
- 8.Darvas K., Futo J., Okros I., Gondos T., Csomos A., Kupcsulik P. Principles of intensive care in severe acute pancreatitis in 2008. Orv. Hetil. 2008;149:2211–2220. doi: 10.1556/OH.2008.28482. [DOI] [PubMed] [Google Scholar]
- 9.Yegneswaran B., Kostis J.B., Pitchumoni C.S. Cardiovascular manifestations of acute pancreatitis. J. Crit. Care. 2011;26:225.e11–8. doi: 10.1016/j.jcrc.2010.10.013. [DOI] [PubMed] [Google Scholar]
- 10.Chang C.L., Roh J., Hsu S.Y. Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates. Peptides. 2004;25:1633–1642. doi: 10.1016/j.peptides.2004.05.021. [DOI] [PubMed] [Google Scholar]
- 11.Takei Y., Hyodo S., Katafuchi T., Minamino N. Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides. 2004;25:1643–1656. doi: 10.1016/j.peptides.2004.06.026. [DOI] [PubMed] [Google Scholar]
- 12.Takei Y., Inoue K., Ogoshi M., Kawahara T., Bannai H., Miyano S. Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett. 2004;556:53–58. doi: 10.1016/S0014-5793(03)01368-1. [DOI] [PubMed] [Google Scholar]
- 13.Roh J., Chang C.L., Bhalla A., Klein C., Hsu S.Y. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J. Biol. Chem. 2004;279:7264–7274. doi: 10.1074/jbc.M305332200. [DOI] [PubMed] [Google Scholar]
- 14.Mizunuma T., Mizunuma K.S., Kishino Y. Effects of injecting excess arginine on rat pancreas. J. Nutr. 1984;114:467–471. doi: 10.1093/jn/114.3.467. [DOI] [PubMed] [Google Scholar]
- 15.Hegyi P., Rakonczay Z., Jr., Sari R., Gog C., Lonovics J., Takacs T., Czako L. L-arginine-induced experimental pancreatitis. World J. Gastroenterol. 2004;10:2003–2009. doi: 10.3748/wjg.v10.i14.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Ren Y.S., Yang J.H., Zhang J., Pan C.S., Yang J., Zhao J., Pang Y.Z., Tang C.S., Qi Y.F. Intermedin 1–53 in central nervous system elevates arterial blood pressure in rats. Peptides. 2006;27:74–79. doi: 10.1016/j.peptides.2005.06.011. [DOI] [PubMed] [Google Scholar]
- 17.Bell D., McDermott B.J. Intermedin (adrenomedullin-2): a novel counterregulatory peptide in the cardiovascular and renal systems. Br. J. Pharmacol. 2008;153(Suppl1):S247–262. doi: 10.1038/sj.bjp.0707494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Zhao Y., Bell D., Smith L.R., Zhao L., Devine A.B., McHenry E.M., Nicholls D.P., McDermott B.J. Differential expression of components of the cardiomyocyte adrenomedullin/intermedin receptor system following blood pressure reduction in nitric oxide-deficient hypertension. J. Pharmacol. Exp. Ther. 2006;316:1269–1281. doi: 10.1124/jpet.105.092783. [DOI] [PubMed] [Google Scholar]
- 19.Cobelens P.M., van Putte B.P., Kavelaars A., Heijnen C.J., Kesecioglu J. Inflammatory consequences of lung ischemia-reperfusion injury and lowpressure ventilation. J. Surg. Res. 2009;153:295–301. doi: 10.1016/j.jss.2008.04.022. [DOI] [PubMed] [Google Scholar]
- 20.Yang K.M., Pyo J.O., Kim G.Y., Yu R., Han I.S., Ju S.A., Kim W.H., Kim B.S. Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cell. Mol. Biol. Lett. 2009;14:497–510. doi: 10.2478/s11658-009-0016-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Nagae T., Mukoyama M., Sugawara A., Mori K., Yahata K., Kasahara M., Suganami T., Makino H., Fujinaga Y., Yoshioka T., Tanaka I., Nakao K. Rat receptor-activity-modifying proteins (RAMPs) for adrenomedullin/CGRP receptor: cloning and upregulation in obstructive nephropathy. Biochem. Biophys. Res. Commun. 2000;270:89–93. doi: 10.1006/bbrc.2000.2390. [DOI] [PubMed] [Google Scholar]
- 22.Jia Y.X., Yang J.H., Pan C.S., Geng B., Zhang J., Xiao Y., Zhao J., Gerns H., Yang J., Chang J.K., Wen J.K., Tang C.S., Qi Y.F. Intermedin 1–53 protects the heart against isoproterenol-induced ischemic injury in rats. Eur. J. Pharmacol. 2006;549:117–123. doi: 10.1016/j.ejphar.2006.07.054. [DOI] [PubMed] [Google Scholar]
- 23.Gottlieb R.A., Burleson K.O., Kloner R.A., Babior B.M., Engler R.L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest. 1994;94:1621–1628. doi: 10.1172/JCI117504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Sargent S. Pathophysiology, diagnosis and management of acute pancreatitis. Br. J. Nurs. 2006;15:999–1005. doi: 10.12968/bjon.2006.15.18.22025. [DOI] [PubMed] [Google Scholar]
- 25.Yang J.H., Jia Y.X., Pan C.S., Zhao J., Ouyang M., Yang J., Chang J.K., Tang C.S., Qi Y.F. Effects of intermedin(1–53) on cardiac function and ischemia/reperfusion injury in isolated rat hearts. Biochem. Biophys. Res. Commun. 2005;327:713–719. doi: 10.1016/j.bbrc.2004.12.071. [DOI] [PubMed] [Google Scholar]
- 26.Holleyman C.R., Larson D.F. Apoptosis in the ischemic reperfused myocardium. Perfusion. 2001;16:491–502. doi: 10.1177/026765910101600609. [DOI] [PubMed] [Google Scholar]
- 27.Pan C.S., Yang J.H., Cai D.Y., Zhao J., Gerns H., Yang J., Chang J.K., Tang C.S., Qi Y.F. Cardiovascular effects of newly discovered peptide intermedin/adrenomedullin 2. Peptides. 2005;26:1640–1646. doi: 10.1016/j.peptides.2005.02.013. [DOI] [PubMed] [Google Scholar]
- 28.Grossini E., Molinari C., Mary D.A., Uberti F., Caimmi P.P., Vacca G. Intracoronary intermedin 1–47 augments cardiac perfusion and function in anesthetized pigs: role of calcitonin receptors and beta-adrenoreceptor-mediated nitric oxide release. J. Appl. Physiol. 2009;107:1037–1050. doi: 10.1152/japplphysiol.00569.2009. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.