Skip to main content
Endocrinology logoLink to Endocrinology
. 2018 Dec 3;160(1):81–100. doi: 10.1210/en.2018-00591

Impact of Genes and Environment on Obesity and Cardiovascular Disease

Yoriko Heianza 1, Lu Qi 1,2,
PMCID: PMC6304107  PMID: 30517623

Abstract

Obesity and abdominal obesity have been closely related to cardiovascular outcomes, and recent evidence has indicated that environmental and genetic factors act in concert in determining the risks of these conditions. Improving adherence to healthy lifestyle habits and healthy dietary patterns can at least partly counteract genetic variations related to risks of obesity and cardiovascular disease (CVD). Other factors, such as epigenetic alterations, may also modulate a relationship between genetic susceptibility and these disorders. In this review, we highlight data from recent studies on gene and environmental risk factors for obesity and CVD, and describe how these findings might inform understanding of the complex roles of interactions between genes and environmental factors in the development of obesity and CVD.


The prevalence of obesity has been rising dramatically worldwide, resulting in a variety of hazardous health problems such as cardiovascular disease (CVD) and premature death (1). Abdominal obesity, which is usually assessed by waist circumference or waist-to-hip ratio (WHR), is associated with increased risks of cardiovascular events and mortality, independent of general obesity measured by body mass index (BMI) (2–5). Taking advantage of the rapid advances in genomic techniques, genomewide association studies (GWASs) have contributed to revealing the genetic architecture of “common” types of general obesity and abdominal obesity, as well as body fatness. Common genetic variants at more than 500 loci for adiposity have been identified to date (6), and a large-scale analysis by the Genetic Investigation of Anthropometric Traits (GIANT) consortium has identified low-frequency and rare variants to determine adiposity and energy metabolism (7). Similar collaborative efforts have led to the identification of genetic variants associated with risks of coronary artery disease (CAD) and stroke (8–15). These findings enable assessment of overall genetic susceptibility by polygenetic risk scores (GRSs) that are sums of all the risk alleles related to specific obesity phenotypes, in magnitude comparable to the monogenic mutations (16).

On the other hand, genetic variations may explain a small proportion of variations in certain phenotypes, and it has been suggested that the effect of gene-environment interaction, in which the genetic variants trigger the occurrence of diseases in high-risk environments (17), may explain part of the missing variance. The epidemic of obesity has coincided with a profound shift in our living environment, such as unhealthy dietary patterns, a sedentary lifestyle, physical inactivity, and poor sleeping habits (18). In addition to these modifiable risk factors, environmental agents, such as endocrine-disrupting chemicals (EDCs), can also alter body weight, adipose tissue expansion, circulating lipid profiles, and adipogenesis (19). The obesogenic EDCs include nonsteroidal estrogens, parabens, phthalates, polychlorinated biphenyls, organotin, and bisphenols (19). Notably, exposure to EDCs in early life may be related to an increased risk of obesity-related disorders later in life (20, 21).

A study has shown that the magnitude of a relationship between obesity and the genetic risk may be stronger in more recent birth cohorts than in earlier years of birth cohorts, suggesting that the genetic predisposition to obesity may have a more influential effect in more recent obesogenic environments (22). Results of a recent GWAS also suggest that environmental risk factors such as smoking and physical activity may alter the genetic susceptibility to overall adiposity and body fat distribution (23, 24). We discuss findings on genetic and environmental risk factors for obesity and CVD that would contribute to understanding the complex architecture of interactions between genes and environmental factors in the development of obesity and CVD.

Genetics of Obesity and CVD: Overview

The number of susceptibility loci of obesity has grown dramatically; ≈200 loci for BMI (25, 26), 50 loci for WHR (27), and >10 loci for body fat percentage (28) have been identified and replicated in European populations. In the GIANT consortium, a total of 97 loci for BMI have been identified, and 77 loci reached genomewide significance among individuals of European descent (25). Cross-sectional data of the GWAS suggest that combining loci for BMI explains only a small proportion (∼3%) of the phenotypic differences (25, 26). In a longitudinal analysis of women in the Nurses’ Health Study, each 10-allele increment in GRS of BMI (based on the 97 loci) was associated with an average BMI gain of 0.54 kg/m2 during early adulthood (29). In a recent GWAS of BMI in Japanese persons (n = 173,430), 51 loci for BMI were identified, including five loci on the X chromosome and two loci with sex-dependent effects (26). Combining the results with GWASs of Europeans resulted in the identification of 61 new loci, bringing the total number of known susceptibility loci to >200 (26). The investigation of diverse populations contributed to identifying novel loci and narrowing the candidate genomic region in their study (26).

For abdominal obesity, which is defined by WHR after adjustment for BMI, a total of 49 loci have been identified in a GWAS by the GIANT consortium (27). European ancestry (n = 210,088) sex-combined analysis identified 39 of the 49 loci, and European ancestry sex-specific analysis identified nine additional loci, eight of which were new and important only in women (27). A higher GRS for abdominal obesity, which was generated on the basis of these findings, has been related to increased risks of various cardiometabolic diseases, such as type 2 diabetes and coronary heart disease (CHD) (30, 31). Another meta-analysis of 114 studies (n = >320,000 individuals) investigated genetic loci with age- or sex-dependent effects on body size and shape (32). For BMI, 15 loci showed important age-specific effects, of which 11 had more substantial effects in younger (<50 years) than in older adults (≥50 years) (32). For WHR, 44 loci showed sex-specific effects, of which 28 had larger effects in women than in men, five had more substantial effects in men than in women, and 11 had opposite effects between women and men. On the other hand, no age-dependent effects were identified for WHR (32).

In a GWAS of 100,716 individuals for body fat percentage (28), a total of 12 loci have been identified; eight of these loci were previously associated with overall adiposity, and four loci (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, and CRTC1) were novel (28). When they compared effects of the 12 loci on body fat percentage and BMI, seven loci (TOMM40/APOE, IRS1, SPRY2, COBLL1/GRB14, IGF2BP1, PLA2G6, and CRCT1) showed a more substantial effect on body fat percentage than on BMI, suggesting that these variants may be primarily associated with body fat. The remaining five loci (FTO, TMEM18, MC4R, SEC16B, and TUFM/SH2B1) showed stronger associations with BMI than with body fat percentage, suggesting potential effects on both fat and lean mass (28).

A recent meta-analysis of exome-targeted genotyping data (n = 718,734) showed associations of rare and low-frequency coding variants with BMI (7). In the study, researchers identified 14 coding variants in 13 genes, of which eight variants have not previously been implicated in human obesity. Pathway analyses showed a critical role for neuronal processes and implicated adipocyte and energy expenditure biology. The study also reported associations for two variants in GIPR; two variants in MC4R and KSR2 loci previously were observed to be mutated in extreme obesity. Although each variant contributes little to the BMI variation in general populations, the effect sizes of these rare variants may be ∼10 times larger than those of common variants at an individual level (7). The most considerable effect was observed in carriers of an MC4R mutation introducing a stop codon; the carriers of the mutation weighed on average 7 kg more than noncarriers. (7).

Large collaborative studies, including the Myocardial Infarction Genetics Consortium (33), Coronary Artery Disease (C4D) Genetics Consortium (34), the Coronary Artery Disease Genomewide Replication and Meta-Analysis (CARDIoGRAM) consortium (15), the CARDIoGRAMplusC4D Consortium (14), and other studies, have successfully identified genomewide significant loci associated with CAD. A GWAS of 60,801 CAD cases and 123,504 control subjects showed that among 48 loci previously reported at genomewide levels of significance, a total of 47 loci showed nominally significant associations with CAD, and 36 loci were at genomewide significance level. In this GWAS, 10 CAD loci were identified; three lower-frequency and moderately well-imputed single nucleotide polymorphisms (SNPs) in LPA and APOE showed strong associations (13). Also, key SNPs in the APOE and PCSK9 genes have been strongly associated with CAD, and evidence suggests these variants may mediate their effects on CAD via low-density lipoprotein cholesterol (LDL-C)–linked pathways (13). In the Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia, investigators identified six new loci associated with CAD at genomewide significance level: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP) (9). In a study investigating the relationship between protein truncating variants in CETP and CHD, carriers of the protein truncating variants displayed higher levels of high-density lipoprotein cholesterol (HDL-C), and lower levels of LDL-C and triglycerides, as well as lower risk for CHD, as compared with noncarriers (35). In another GWAS, a total of 15 new genomic regions associated with CAD were identified, and nine genomewide significant loci were found only in Europeans (10). In that study (10), of the 58 previously reported CAD loci, 34 showed directionally concordant associations with at least nominal significance (P < 0.05) in either European- or all-ancestry cohorts. In a GWAS among participants of the UK Biobank, a total of 15 novel loci for CAD were identified, including CCDC92, which likely affects CAD through insulin resistance pathways (11). To date, a total of 95 CAD-associated regions have been identified. A more recent GWAS included 34,541 CAD cases and 261,984 control subjects from the UK Biobank as the discovery set, a total of 88,192 cases and 162,544 controls from the CARDIoGRAMplusC4D as the replication set. In this study, 64 new loci were identified (8). Although common variants that have a strong effect for CAD have been reported [e.g., those in the CDKN2A-CDKN2B (9p21): odds ratio, 1.3 per risk allele; (15) and LPA loci: odds ratio, 1.5 per risk allele (36)], a larger sample size of subjects and a meta-analytic approach to data derived from large studies have led to the identification of additional loci with a moderate to low effect for the outcome. Some studies (35, 37–39), considering potential physiological pathways behind diseases, further investigated candidate loci. The identified CAD-susceptible loci also have shared genetic associations with other cardiovascular traits (13), but the underlying biological mechanisms remain mostly unknown.

Aortic valve stenosis is common valvular heart disease. In a GWAS of 2,457 Icelandic aortic valve stenosis cases and 349,342 control subjects with a follow-up analysis of 4,850 cases and 451,731 control subjects of European ancestry, two new loci on chromosome 1p21 near PALMD (rs7543130) and chromosome 2q22 in TEX41 (rs1830321) were identified (40). For stroke, in a recent multiancestry GWAS of 521,612 individuals, 32 genomewide significant loci for stroke were identified, 22 of which were new. Genomewide significance level was observed for 18 loci (12 novel loci) for any stroke, 20 (12 novel loci) for any ischemic stroke, 6 loci (3 novel loci) for large-artery atherosclerotic stroke, 4 loci (2 novel loci) for cardioembolic stroke, and 2 for small-vessel stroke (41).

On the basis of these findings, GRSs have been created by combining multiple SNPs associated with CVD (42). Accumulating evidence suggests the GRSs for common diseases, such as CAD, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer, may be useful to identify individuals with a risk equivalent to monogenic mutations (16). In a study of men with hyperlipidemia enrolled in a randomized controlled trial for the primary prevention of CHD (43), statin therapy conferred greater relative benefit among those at high genetic risk (assessed by a 57-SNP GRS for CHD) compared with other participants, suggesting the use of the GRS may be useful for identifying individuals at higher risk for coronary events (43). Nonetheless, more research would be needed to validate these findings and to assess the cost-effectiveness. Also, needed would be consideration of the potential interplay between genetic susceptibility and lifestyle, socioeconomic status, and other factors.

Interplay Between Genetics and the Environment

Epidemiological studies have identified a variety of modifiable risk factors for obesity and CVD, such as sugar-sweetened beverages, fried foods, poor diet quality, sedentary lifestyle, and physical inactivity (18). Accumulating evidence has suggested that such environmental risk factors may modify the genetic risk of obesity and related diseases (Table 1). Recent GWASs have also underscored the importance of taking into account gene-environment interactions in the discovery of new genetic variants (23, 24). Several reviews have summarized major findings of studies on gene-environment interactions and discussed the clinical implications (62–65). Here, we highlight data from more recent studies examining dietary, lifestyle, and other risk factors that may modify the genetic risks of adiposity and CVD.

Table 1.

Diet and Lifestyle Factors That May Modify the Genetic Risk of Obesity and Cardiovascular Disease

Factor Genetic Risk Main Outcome Study
Sugar-sweetened beverages
GRS of 32 SNPs for BMI BMI Qi et al. (44)
GRS of 50 SNPs for BMI, WC, WHR Change in body weight, WC, and BMI-adjusted WC Olsen et al. (45)
GRS of 30 SNPs for BMI BMI Brunkwell et al. (46)
FTO genotype (rs9939609) BMI Livingstone et al. (47)
SNPs at the chromosome 9p21 locus: rs10757274, rs4977574, rs2383206, and rs1333049 Nonfatal myocardial infarction Zheng et al. (48)
Fried foods GRS of 32 SNPs for BMI BMI Qi et al. (49)
Dietary saturated fatty acids GRS of 63 obesity-associated SNPs BMI Casas-Agustench et al. (50)
No/low consumption of wine SNPs rs4977574 at the 9p21 locus CVD Hindy et al. (51)
Vegetable SNPs rs4977574 at the 9p21 locus CVD Hindy et al. (51)
Prudent diet (high in raw vegetables and fruits) SNPs rs2383206 at 9p21 locus Myocardial infarction/CVD Do et al. (52)
Diet score GRS of 32 SNP for BMI; GRS of 14 SNPs for WHR BMI and BMI-adjusted WHR Nettleton et al. (53)
Diet-quality changes GRS of 97 SNPs or 77 SNPs for BMI Changes in BMI and changes in body weight Wang et al. (54)
Physical activity
GRS of 32 SNP for BMI BMI Qi et al. (55)
GRS of 12 SNPs for obesity; FTO rs1121980 BMI Ahmed et al. (56)
GRS of 69 SNPs for BMI BMI Tyrrell et al. (57)
FTO rs9941349 BMI Graff et al. (24)
Physical activity (e.g., stair climbing, frequencies of light, moderate, or vigorous exercise) GRS of 94 SNPs for BMI BMI Rask-Andersen et al. (58)
Waking pace GRS of 94 SNPs for BM. BMI Rask-Andersen et al. (58)
Grip strength, cardiorespiratory fitness GRS of ≈60 SNPs for CHD CHD Tikkanen et al. (59)
Sedentary lifestyle, such as television watching
GRS of 32 SNPs for BMI BMI Qi et al. (55)
GRS of 94 SNPs for BMI BMI Rask-Andersen et al. (58)
GRS of 69 SNPs for BMI BMI Tyrrell et al. (57)
Physical activity changes GRS of 77 SNPs for BMI; GRS of 12 SNPs for body fat percentage Changes in BMI and changes in body weight Wang et al. (60)
Healthy lifestyle GRS of 50 SNPs for CAD CHD Khera et al. (61)

Abbreviation: WC, waist circumference.

Diet quality

The obesity epidemic has coincided with overnutrition and unhealthy dietary patterns during the past decades. Although continuing efforts have been made to improve diet quality, the overall dietary quality remains poor in the US population (66). In addition to reducing intake of unhealthy foods such as sugar-sweetened beverages and fried foods that are a major source of calorie intake, the adherence to healthier dietary patterns and better diet quality have been recommended to prevent obesity and CVD (67). For example, studies have shown that the Alternate Healthy Eating Index (AHEI), which is based on foods and nutrients (68), is predictive of risks of major chronic diseases such as obesity, CHD, and type 2 diabetes (69–71), and is also predictive of healthy aging (72). The AHEI includes assessments of vegetables, fruits, nuts and legumes, whole grains, red or processed meat, sugar-sweetened beverages, alcohol, sodium, trans fat, long-chain ω-3 fatty acids, and other polyunsaturated fats. As compared with a single assessment of individual foods, diet scores consider combinations and quantities of different foods, which may well capture synergistic and cumulative effects of foods. Among participants of the Nurses' Health Study and the Health Professionals Follow-Up Study, changes in diet quality as assessed by the AHEI, Alternate Mediterranean Diet, and the Dietary Approaches to Stop Hypertension diet were consistently associated with risks of mortality and cardiovascular events (69, 70). Plant-based diets emphasize the consumption of healthy plant foods and discourage most or all animal products; vegetarian diets typically have beneficial nutrients for cardiovascular health, such as a high amount of dietary fiber, plant-based bioactives, and less saturated fatty acids (73). Vegetarian diets and plant-based diets are also related to lower risks of CHD (74, 75) and metabolic risk factors for CVD (76–78). In a nested case-control study of men and women, better adherence to the Mediterranean dietary pattern was associated with lower risk of obesity among individuals with risk alleles of the FTO gene, as compared with subjects with lower adherence to the dietary pattern and lower genetic susceptibility to obesity (79). In a study of data from 18 cohorts of European ancestry (53), associations of GRSs based on 32 BMI- and 14 WHR-associated SNPs with a composite diet score representing healthy diet (which was calculated on the basis of self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds and red/processed meats, sweets, sugar-sweetened beverages, and fried potatoes) have been investigated. The diet score did not modify the association of the BMI-GRS with BMI, whereas there was nominal evidence that a higher diet score (representing a healthier diet) strengthened the association of WHR-GRS with BMI-adjusted WHR (53). In a recent study of participants in the Nurses' Health Study and the Health Professionals Follow-Up Study, there were consistent interactions between changes in diet quality scores and GRS-BMI for long-term changes in BMI and body weight (54). The study findings suggested that improving adherence to healthy dietary patterns assessed by the AHEI-2010 and Dietary Approaches to Stop Hypertension score attenuated the genetic association with long-term weight gain (54). Intriguingly, the beneficial effect of improved diet quality on weight regulation was more pronounced among people at high genetic risk for obesity (54). Such a combined effect of beneficial bioactivities of healthy dietary patterns may partly explain the modifying effect on genetic predisposition to weight gain. In addition to a large sample size and reliable measurements of dietary intake and outcomes, research on interactions between genetic variations and dietary intake may require a long-term follow-up to capture potential effects of exposures for the outcomes. In earlier studies, it was noted that the risk of CVD conferred by chromosome 9p21 SNPs were attenuated by intakes of healthful plant-based foods, such as vegetables and fruits (51, 52) whereas higher intake of sugar-sweetened beverages exacerbated the effects of chromosome 9p21 variants on CAD (48). However, these studies only analyzed a single food or did not consider a number of loci that have been identified in the recent GWASs.

Stimulators of food intake

Previous results in GWASs also highlight the potential of genetic variation for determining preference of macronutrient intake. For example, MC4R deficiency represents common monogenic obesity disorder (80), and in a study, a common variant (rs17782313) near the MC4R gene was significantly associated with higher intakes of total energy and dietary fat (81). Also, the MC4R genotype was related to greater long-term weight changes and increased risk of diabetes in women (81). A GWAS has identified that the genetic variants near the FGF21 and FTO loci were among the top associations with intakes of dietary protein and carbohydrate (82, 83). Among overweight and obese adults who participated in a 2-year weight-loss dietary intervention trial [the Preventing Obesity Using Novel Dietary Strategies (POUNDS) Lost Trial], the FTO genotype was found to interact with dietary protein in relation to changes in appetite control (84). Another study in the POUNDS Lost trial also found that dietary protein intake modified the relation between the MC4R genotype and measures of appetite during the diet intervention (85). The GWAS consistently showed that the genetic variation in the FGF21 region was associated with carbohydrate or fat intake (82, 83). Blood levels of FGF21 increase in response to carbohydrate intake (86, 87), and several recent studies provided possible mechanisms for the role of FGF21 in regulating sweet preference (88–90). FGF21 stimulates insulin sensitivity, energy expenditure, weight loss, and associated with cardiometabolic abnormalities (91, 92). A genetic variant in the FGF21 region was significantly associated with improvements in central adiposity and body fat composition among overweight and obese people in the POUNDS Lost trial, and the associations were modified by carbohydrate and fat intakes (93). A study by Solon-Biet et al. (94) introduced the Geometric Framework, a nutritional modeling platform, and 25 different types of diets, and showed that maximal FGF21 elevation occurred with low-protein, high-carbohydrate intake, suggesting that metabolic effects of FGF21 depend on macronutrient context. The Geometric Framework can integrate key aspects of nutritional systems (e.g., nutrients, foods, diets, appetites, and nutritional homeostatic physiology) and map the relationship between nutrient intakes and health outcomes (95). This method has been used in observational and experimental studies in humans to understand dietary determinants of chronic diseases associated with obesity (96, 97).

Physical activity and sedentary lifestyle

One of the most reproducible findings in gene-environment interactions for obesity is that physical activity and sedentary lifestyle may modify the genetic risk of obesity (55–57, 98, 99). In particular, a relationship between the FTO genotype and obesity is attenuated among people with high levels of physical activity (98). Results of a large-scale study among >200,000 adults confirmed the interactions between genetic variants and physical activity on adiposity; the BMI-increasing effect was attenuated by up to 30% in physically active individuals compared with inactive individuals (24). A sedentary lifestyle, as assessed by prolonged hours of watching television, also strengthens the genetic effect of obesity (55). The findings have been replicated in different studies (57, 58); in the Hispanic Community Health Study/Study of Latinos, finding suggested individuals with lower levels of physical activity and more sedentary behavior may be more susceptible to genetic effects on adiposity, supporting the roles of gene–physical activity and gene–sedentary behavior interactions in the development of obesity (100). In a study of >362,000 participants from the UK Biobank, there were also significant interactions between the GRS based on 94 SNPs for BMI and several factors related to physical activity, such as usual walking pace, stair climbing, and television watching, as well as frequencies of light, moderate, and vigorous exercise (58). In particular, the association of the GRS with BMI was 2.5 times higher among participants who reported having a slow walking pace compared with participants who reported having a brisk walking pace (58). Wang et al. (60) examined whether changes in physical activity over time modified the genetic susceptibility to long-term weight gain. The study examined associations of GRS for BMI (n = 77 SNPs) and GRS for body fat percentage (n = 12 SNPs) with long-term changes in body weight and BMI over 20 years of follow-up among US men and women (60). Their study showed that changes in physical activity significantly interacted with the body-fat GRS for changes in BMI, showing that higher physical activity levels attenuated the genetic associations of body fat percentage (60). In a study of the UK Biobank cohort, higher levels of grip strength, physical activity, and cardiorespiratory fitness were associated with lower risks of cardiovascular events (59). Also, it was found that the association of grip strength with CHD risk was strongest among those with the lowest GRS of CHD (P for interaction = 0.0002). A similar interaction pattern was observed between GRS and cardiorespiratory fitness for CHD risk (P for interaction = 0.03), although physical activity as assessed by the International Physical Activity Questionnaire did not show significant differences for CHD across GRS (P for interaction = 0.52) (59). Taken together, evidence has consistently demonstrated that physical activity and sedentary behavior may modify the genetic risk of obesity, weight gain, and cardiovascular outcomes.

Healthy lifestyle patterns

Although individual lifestyle factors are related to the incidence of CVD, adherence to a healthy lifestyle pattern, which is a combination of several behaviors, has been related to the burden of obesity and CVD (101, 102). It has been estimated that ∼73% of CHD incident cases were attributable to poor adherence to healthy lifestyle behaviors (a combination of not smoking, normal BMI, physical activity ≥2.5 h/wk, television viewing ≤7 h/week, higher adherence to healthy diet, and moderate alcohol intake) (101).

A study examined whether the genetic risk (based on 50 SNPs for CAD) was modified by the adherence of healthy lifestyle behaviors in relation to CHD incidence (61). Among participants at high genetic risk, a favorable lifestyle was associated with a 46% lower risk of coronary events than was an unfavorable lifestyle (61). However, there was no evidence of a significant interaction between the genetic risk and lifestyle factors in the study (61). In the UK Biobank cohort (103), genetic predisposition and combined health behaviors had an additive effect for the incidence of CVD, and there was no significant interaction between the genetic risk and health behaviors for the CVD risk. In another study of the UK Biobank cohort, healthy lifestyle score (which was calculated by BMI, healthy diet, sedentary lifestyle, alcohol consumption, smoking, and urinary sodium excretion levels) was associated with CVD events regardless of blood pressure–associated GRS (104). In comparison with an unfavorable lifestyle, there was a ∼30% lower risk of CVD among participants in low, middle, and high genetic risk groups, without significant interactions between the blood pressure–associated GRS and the healthy lifestyles (104). This study did not identify statistically significant gene-healthy lifestyle interactions in the development of CVD. In results of the Look AHEAD (Action for Health in Diabetes) Study among overweight/obese individuals with type 2 diabetes, a GRS comprising 153 SNPs significantly predicted cardiovascular outcomes, and the intensive lifestyle intervention, which included weight loss and physical activity, did not modify the genetic association (105). This evidence is limited to assessing whether people at higher genetic risk can benefit more from reducing CVD risk by adherence to healthier lifestyles as compared with those at lower genetic risk. Also, whether adherence to healthier lifestyles may modify the genetic risk of complications in patients with type 2 diabetes would be an important clinical issue.

Vitamin D

Epidemiological and mechanistic studies have provided strong support for a potentially protective effect of vitamin D on metabolic abnormalities (106). An inverse relationship between serum 25-hydroxyvitamin D levels and BMI has been reported in adults, except for women living in developing countries (107). In the Nurses’ Health Study, higher 25-hydroxyvitamin D levels were associated with a lower CHD risk (108). Previous GWASs of serum 25-hydroxyvitamin D concentrations identified four genomewide significant loci (GC, NADSYN1/DHCR7, CYP2R1, and CYP24A1) (109, 110). A recent GWAS of European populations expanded the sample size and identified two additional loci harboring genomewide significant variants at rs8018720 in SEC23A, and rs10745742 in AMDHD1 (111). Data from a Mendelian randomization analysis indicated that the relation between 25-hydroxyvitamin D and risk of type 2 diabetes was unlikely to be causal (112). However, findings of another, more recent Mendelian randomization study involving approximately 82,500 adults living in China support the causality between vitamin D levels and risk of type 2 diabetes (113). In the combined analysis of >58,000 cases and 370,000 control subjects in European and Chinese adults, genetically instrumented increase in vitamin D status was related to a 14% lower risk of diabetes (113). Mendelian randomization studies and randomized clinical trials have not shown significant effects of vitamin D on cardiovascular events, but these trials were not designed to investigate cardiovascular outcomes in vitamin D–deficient individuals (114).

Lipids and lipoprotein

In a GWAS of 188,577 individuals of European ancestry in the Global Lipids Genetics Consortium (115), a total of 157 loci (including 62 novel loci) associated with lipid levels have been identified. These loci for lipids were also associated with other cardiometabolic traits such as CAD, type 2 diabetes, and adiposity measures (115). Activation of LPL was associated with lower levels of triglycerides and reduced risks for CAD and type 2 diabetes without increasing liver fat (116). In a population-based prospective cohort from Northern Sweden [the Gene-Lifestyle interactions and Complex Traits Involved in Elevated Disease Risk (GLACIER) Study], seven novel genomic regions were associated with long-term (10-year) changes in blood lipids, of which three also increased the CAD risk (117). In the study, chr19:50121999 at APOE was associated with changes in triglycerides and multiple SNPs in the APOA1/A4/C3/A5 region at genomewide significant level (117). SNP rs7412 at APOE was associated with changes in total cholesterol levels in the GLACIER study (117). In an updated study from the Global Lipids Genetics Consortium and Stroke Genetics Network, a causal role of LDL-C, HDL-C, and triglycerides in the development of ischemic stroke were examined through the Mendelian randomization approach (118). The study used 185 genomewide lipids-associated SNPs as instrumental variables (76 SNPs for LDL-C, 86 SNPs for HDL-C, and 51 SNPs for triglycerides) and showed a causal relationship between LDL-C and ischemic stroke. A 1-SD genetically elevated LDL-C level was associated with a 12% increased risk of ischemic stroke and a 28% increased risk of large-artery atherosclerosis stroke. The study also showed an inverse relationship between HDL-C and small-artery occlusion stroke (118). In a genomewide association meta-analysis of survival of 606,059 parents, HDL-C levels were one of the most positively genetically correlated factors with lifespan (119). These studies have shown that genetic variants determining lipid metabolism may contribute the cardiovascular outcomes by moderating lipid traits, but potential interplays among diet and lifestyles and genetic risk in relation to CVD need to be investigated further.

Epigenetics

Epigenetics can be defined as heritable changes that affect gene expression through mechanisms not associated with alterations in the DNA sequence. The most-studied epigenetic modification is methylation of cytosine in CpG dinucleotides in DNA. The alterations in CpG sites may be predominantly the consequence, rather than the cause, of obesity (120). Epigenome-wide association studies have identified methylation at numerous CpG sites associated with adiposity (120–124). In the first epigenome-wide analysis of methylation at CpG sites in relation to BMI among European populations (121), elevated BMI was associated with increased methylation at the HIF3A locus in blood cells and adipose tissue (121). A study of African Americans confirmed previously identified methylation loci for obesity and related traits (CPT1A, ABCG1, and HIF3A), and also identified numerous additional novel loci related to both DNA methylation in blood and adipose tissue and adiposity traits (123). According to results of the Nurses' Health Study and the Health Professionals Follow-Up Study, the DNA methylation variant in the HIF3A was significantly related to BMI changes, showing interactions between dietary intake of total or supplemental vitamin B2, vitamin B12, and folate (125). In two dietary intervention trials, dietary fat significantly modified the genetic effect of HNF1A on weight loss and reduction in waist circumference (126). In an epigenome-wide association study, CpG site, cg11024682 (intronic to sterol regulatory element binding transcription factor 1, SREBF1), was associated with BMI (124). Interestingly, DNA methylation–associated genetic variant rs752579 in the SREBF1 gene significantly interacted with dietary intake of food-source B vitamins on 6-year change in BMI among participants of the Women's Health Initiative Memory Study (127). These results suggest that habitual intake of food-source B vitamins may modify the effect of DNA methylation–related genetic variant on long-term changes in adiposity (127). The latest epigenome-wide association study identified changes in DNA methylation in 187 genetic loci, and the disturbances in DNA methylation (assessed by a methylation risk score) were also predictive of future type 2 diabetes (120). In the epigenome-wide association study, the NFATC2IP genetic polymorphism (rs11150675), cis-DNA methylation at cg26663590 CpG sites was identified as causally related to BMI (120). Among overweight and obese adults who participated in a 2-year weight-loss dietary intervention trial, there were significant interactions between intake of dietary fat and the genetic and transcriptional (ILMN_1725441) variations at the NFATC2IP locus for 2-year weight change (128). The genetic variants related to DNA methylation may contribute to regulation of obesity, and the associations may be modified by different dietary intake. However, the details of this process and physiological mechanisms remain to be clarified. Another epigenome-wide analysis (129) examined the association of DNA methylation with metabolic traits in humans, using adipose tissue samples from the Metabolic Syndrome in Men cohort. The study examined a total of 32 clinical traits related to diabetes and obesity, and identified 18 candidate genes, including known and novel genes associated with diabetes and obesity traits. This study suggests that profiling DNA methylation in adipose tissue may become a powerful tool for understanding the molecular effects of metabolic syndrome on adipose tissue (129).

In conclusion, unhealthy dietary habits, physical inactivity, and sedentary lifestyle are major modifiable risk factors related to obesity and CVD, and more studies are investigating gene-environment interactions associated with these diseases. Improving diet quality, increasing physical activity levels, and reducing sedentary time may reduce risks of weight gain and adiposity, even among participants with a high genetic risk of the disease. On the other hand, most of the previous studies did not identify gene-environmental interactions relative to the incidence of CHD and stroke at statistically significant levels. More sufficient follow-up, larger sample size, accurate assessments of environmental risk factors, and valid statistical methods for testing interaction are critical in studying the gene-environmental interactions in the development of obesity and CVD. Nonetheless, many challenges exist to clarify the underlying mechanisms of and the interplay between genetic and environmental factors on these disorders, and to translate the scientific findings into prevention and treatment practices.

Acknowledgments

Financial Support: This work was supported by National Institutes of Health (NIH) National Heart, Lung, and Blood Institute (Grants HL071981, HL034594, and HL126024 to L.Q.) and National Institute of Diabetes and Digestive and Kidney Diseases (Grants DK115679, DK091718, DK100383, and DK078616 to L.Q.); the Boston Obesity Nutrition Research Center (Grant DK46200), and United States–Israel Binational Science Foundation (Grant 2011036). L.Q. was a recipient of the American Heart Association Scientist Development Award (0730094N). Y.H. was a recipient of a Grant-in-Aid for Scientific Research and Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science. The sponsors had no role in the design or conduct of the study.

Disclosure Summary: The authors have nothing to disclose.

Glossary

Abbreviations:

AHEI

Alternate Healthy Eating Index

BMI

body mass index

CAD

coronary artery disease

CHD

coronary heart disease

CVD

cardiovascular disease

EDC

endocrine-disrupting chemical

GRS

genetic susceptibility by polygenetic risk score

GWAS

genomewide association study

HDL-C

high-density lipoprotein cholesterol

LDL-C

low-density lipoprotein cholesterol

POUNDS

Preventing Obesity Using Novel Dietary Strategies

SNP

single nucleotide polymorphism

WHR

waist-to-hip ratio

References

  • 1. Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, Kushner RF, Daniels SR, Wadden TA, Tsai AG, Hu FB, Jakicic JM, Ryan DH, Wolfe BM, Inge TH. The science of obesity management: an Endocrine Society Scientific Statement. Endocr Rev. 2018;39(2):79–132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Fan H, Li X, Zheng L, Chen X, Lan Q, Wu H, Ding X, Qian D, Shen Y, Yu Z, Fan L, Chen M, Tomlinson B, Chan P, Zhang Y, Liu Z. Abdominal obesity is strongly associated with cardiovascular disease and its risk factors in elderly and very elderly community-dwelling Chinese. Sci Rep. 2016;6(1):21521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Bodenant M, Kuulasmaa K, Wagner A, Kee F, Palmieri L, Ferrario MM, Montaye M, Amouyel P, Dallongeville J; MORGAM Project . Measures of abdominal adiposity and the risk of stroke: the MOnica Risk, Genetics, Archiving and Monograph (MORGAM) study. Stroke. 2011;42(10):2872–2877. [DOI] [PubMed] [Google Scholar]
  • 4. Sahakyan KR, Somers VK, Rodriguez-Escudero JP, Hodge DO, Carter RE, Sochor O, Coutinho T, Jensen MD, Roger VL, Singh P, Lopez-Jimenez F. Normal-weight central obesity: implications for total and cardiovascular mortality. Ann Intern Med. 2015;163(11):827–835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Zhang C, Rexrode KM, van Dam RM, Li TY, Hu FB. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117(13):1658–1667. [DOI] [PubMed] [Google Scholar]
  • 6. Loos RJ. The genetics of adiposity. Curr Opin Genet Dev. 2018;50:86–95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D’Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Di Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe HJ, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland Ø, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jørgensen ME, Jørgensen T, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kathiresan S, Kee F, Kiemeney LA, Kim E, Kitajima H, Komulainen P, Kooner JS, Kooperberg C, Korhonen T, Kovacs P, Kuivaniemi H, Kutalik Z, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange EM, Lange LA, Langenberg C, Larson EB, Lee NR, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin KH, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Liu Y, Lo KS, Lophatananon A, Lotery AJ, Loukola A, Luan J, Lubitz SA, Lyytikäinen LP, Männistö S, Marenne G, Mazul AL, McCarthy MI, McKean-Cowdin R, Medland SE, Meidtner K, Milani L, Mistry V, Mitchell P, Mohlke KL, Moilanen L, Moitry M, Montgomery GW, Mook-Kanamori DO, Moore C, Mori TA, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Narisu N, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Nyholt DR, O’Connel JR, O’Donoghue ML, Olde Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Palmer ND, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Person TN, Peters A, Petersen ERB, Peyser PA, Pirie A, Polasek O, Polderman TJ, Puolijoki H, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Renström F, Rheinberger M, Ridker PM, Rioux JD, Rivas MA, Roberts DJ, Robertson NR, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sapkota Y, Sattar N, Schoen RE, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah SH, Sheu WH, Sim X, Slater AJ, Small KS, Smith AV, Southam L, Spector TD, Speliotes EK, Starr JM, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swift AJ, Tada H, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Uusitupa M, Laan SW, Duijn CM, Leeuwen N, van Setten J, Vanhala M, Varbo A, Varga TV, Varma R, Velez Edwards DR, Vermeulen SH, Veronesi G, Vestergaard H, Vitart V, Vogt TF, Völker U, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wang Y, Ware EB, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Witte DR, Wood AR, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhao W, Zhou W, Zondervan KT, Rotter JI, Pospisilik JA, Rivadeneira F, Borecki IB, Deloukas P, Frayling TM, Lettre G, North KE, Lindgren CM, Hirschhorn JN, Loos RJF; CHD Exome+ Consortium; EPIC-CVD Consortium; ExomeBP Consortium; Global Lipids Genetic Consortium; GoT2D Genes Consortium; EPIC InterAct Consortium; INTERVAL Study; ReproGen Consortium; T2D-Genes Consortium; MAGIC Investigators; Understanding Society Scientific Group . Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity [published correction appears in Nat Genet. 2018;50(5):765–776] Nat Genet. 2018;50(1):26–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res. 2018;122(3):433–443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NG, Jansen H, Kanoni S, Nelson CP, Ferrario PG, König IR, Eicher JD, Johnson AD, Hamby SE, Betsholtz C, Ruusalepp A, Franzén O, Schadt EE, Björkegren JL, Weeke PE, Auer PL, Schick UM, Lu Y, Zhang H, Dube MP, Goel A, Farrall M, Peloso GM, Won HH, Do R, van Iperen E, Kruppa J, Mahajan A, Scott RA, Willenborg C, Braund PS, van Capelleveen JC, Doney AS, Donnelly LA, Asselta R, Merlini PA, Duga S, Marziliano N, Denny JC, Shaffer C, El-Mokhtari NE, Franke A, Heilmann S, Hengstenberg C, Hoffmann P, Holmen OL, Hveem K, Jansson JH, Jöckel KH, Kessler T, Kriebel J, Laugwitz KL, Marouli E, Martinelli N, McCarthy MI, Van Zuydam NR, Meisinger C, Esko T, Mihailov E, Escher SA, Alver M, Moebus S, Morris AD, Virtamo J, Nikpay M, Olivieri O, Provost S, AlQarawi A, Robertson NR, Akinsansya KO, Reilly DF, Vogt TF, Yin W, Asselbergs FW, Kooperberg C, Jackson RD, Stahl E, Müller-Nurasyid M, Strauch K, Varga TV, Waldenberger M, Zeng L, Chowdhury R, Salomaa V, Ford I, Jukema JW, Amouyel P, Kontto J, Nordestgaard BG, Ferrières J, Saleheen D, Sattar N, Surendran P, Wagner A, Young R, Howson JM, Butterworth AS, Danesh J, Ardissino D, Bottinger EP, Erbel R, Franks PW, Girelli D, Hall AS, Hovingh GK, Kastrati A, Lieb W, Meitinger T, Kraus WE, Shah SH, McPherson R, Orho-Melander M, Melander O, Metspalu A, Palmer CN, Peters A, Rader DJ, Reilly MP, Loos RJ, Reiner AP, Roden DM, Tardif JC, Thompson JR, Wareham NJ, Watkins H, Willer CJ, Samani NJ, Schunkert H, Deloukas P, Kathiresan S; Wellcome Trust Case Control Consortium; MORGAM Investigators; Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators . Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69(7):823–836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Howson JMM, Zhao W, Barnes DR, Ho WK, Young R, Paul DS, Waite LL, Freitag DF, Fauman EB, Salfati EL, Sun BB, Eicher JD, Johnson AD, Sheu WHH, Nielsen SF, Lin WY, Surendran P, Malarstig A, Wilk JB, Tybjærg-Hansen A, Rasmussen KL, Kamstrup PR, Deloukas P, Erdmann J, Kathiresan S, Samani NJ, Schunkert H, Watkins H, Do R, Rader DJ, Johnson JA, Hazen SL, Quyyumi AA, Spertus JA, Pepine CJ, Franceschini N, Justice A, Reiner AP, Buyske S, Hindorff LA, Carty CL, North KE, Kooperberg C, Boerwinkle E, Young K, Graff M, Peters U, Absher D, Hsiung CA, Lee WJ, Taylor KD, Chen YH, Lee IT, Guo X, Chung RH, Hung YJ, Rotter JI, Juang JJ, Quertermous T, Wang TD, Rasheed A, Frossard P, Alam DS, Majumder AAS, Di Angelantonio E, Chowdhury R, Chen YI, Nordestgaard BG, Assimes TL, Danesh J, Butterworth AS, Saleheen D; CARDIoGRAMplusC4D; EPIC-CVD . Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet. 2017;49(7):1113–1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Klarin D, Zhu QM, Emdin CA, Chaffin M, Horner S, McMillan BJ, Leed A, Weale ME, Spencer CCA, Aguet F, Segrè AV, Ardlie KG, Khera AV, Kaushik VK, Natarajan P, Kathiresan S; CARDIoGRAMplusC4D Consortium . Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat Genet. 2017;49(9):1392–1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Stitziel NO, Stirrups KE, Masca NG, Erdmann J, Ferrario PG, König IR, Weeke PE, Webb TR, Auer PL, Schick UM, Lu Y, Zhang H, Dube MP, Goel A, Farrall M, Peloso GM, Won HH, Do R, van Iperen E, Kanoni S, Kruppa J, Mahajan A, Scott RA, Willenberg C, Braund PS, van Capelleveen JC, Doney AS, Donnelly LA, Asselta R, Merlini PA, Duga S, Marziliano N, Denny JC, Shaffer CM, El-Mokhtari NE, Franke A, Gottesman O, Heilmann S, Hengstenberg C, Hoffman P, Holmen OL, Hveem K, Jansson JH, Jöckel KH, Kessler T, Kriebel J, Laugwitz KL, Marouli E, Martinelli N, McCarthy MI, Van Zuydam NR, Meisinger C, Esko T, Mihailov E, Escher SA, Alver M, Moebus S, Morris AD, Müller-Nurasyid M, Nikpay M, Olivieri O, Lemieux Perreault LP, AlQarawi A, Robertson NR, Akinsanya KO, Reilly DF, Vogt TF, Yin W, Asselbergs FW, Kooperberg C, Jackson RD, Stahl E, Strauch K, Varga TV, Waldenberger M, Zeng L, Kraja AT, Liu C, Ehret GB, Newton-Cheh C, Chasman DI, Chowdhury R, Ferrario M, Ford I, Jukema JW, Kee F, Kuulasmaa K, Nordestgaard BG, Perola M, Saleheen D, Sattar N, Surendran P, Tregouet D, Young R, Howson JM, Butterworth AS, Danesh J, Ardissino D, Bottinger EP, Erbel R, Franks PW, Girelli D, Hall AS, Hovingh GK, Kastrati A, Lieb W, Meitinger T, Kraus WE, Shah SH, McPherson R, Orho-Melander M, Melander O, Metspalu A, Palmer CN, Peters A, Rader D, Reilly MP, Loos RJ, Reiner AP, Roden DM, Tardif JC, Thompson JR, Wareham NJ, Watkins H, Willer CJ, Kathiresan S, Deloukas P, Samani NJ, Schunkert H; Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators . Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374(12):1134–1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou T, Nelson CP, Hopewell JC, Webb TR, Zeng L, Dehghan A, Alver M, Armasu SM, Auro K, Bjonnes A, Chasman DI, Chen S, Ford I, Franceschini N, Gieger C, Grace C, Gustafsson S, Huang J, Hwang SJ, Kim YK, Kleber ME, Lau KW, Lu X, Lu Y, Lyytikäinen LP, Mihailov E, Morrison AC, Pervjakova N, Qu L, Rose LM, Salfati E, Saxena R, Scholz M, Smith AV, Tikkanen E, Uitterlinden A, Yang X, Zhang W, Zhao W, de Andrade M, de Vries PS, van Zuydam NR, Anand SS, Bertram L, Beutner F, Dedoussis G, Frossard P, Gauguier D, Goodall AH, Gottesman O, Haber M, Han BG, Huang J, Jalilzadeh S, Kessler T, König IR, Lannfelt L, Lieb W, Lind L, Lindgren CM, Lokki ML, Magnusson PK, Mallick NH, Mehra N, Meitinger T, Memon FU, Morris AP, Nieminen MS, Pedersen NL, Peters A, Rallidis LS, Rasheed A, Samuel M, Shah SH, Sinisalo J, Stirrups KE, Trompet S, Wang L, Zaman KS, Ardissino D, Boerwinkle E, Borecki IB, Bottinger EP, Buring JE, Chambers JC, Collins R, Cupples LA, Danesh J, Demuth I, Elosua R, Epstein SE, Esko T, Feitosa MF, Franco OH, Franzosi MG, Granger CB, Gu D, Gudnason V, Hall AS, Hamsten A, Harris TB, Hazen SL, Hengstenberg C, Hofman A, Ingelsson E, Iribarren C, Jukema JW, Karhunen PJ, Kim BJ, Kooner JS, Kullo IJ, Lehtimäki T, Loos RJF, Melander O, Metspalu A, März W, Palmer CN, Perola M, Quertermous T, Rader DJ, Ridker PM, Ripatti S, Roberts R, Salomaa V, Sanghera DK, Schwartz SM, Seedorf U, Stewart AF, Stott DJ, Thiery J, Zalloua PA, O’Donnell CJ, Reilly MP, Assimes TL, Thompson JR, Erdmann J, Clarke R, Watkins H, Kathiresan S, McPherson R, Deloukas P, Schunkert H, Samani NJ, Farrall M. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, König IR, Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, Lundmark P, Lyytikäinen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, Tikkanen E, Van Zuydam N, Voight BF, Waite LL, Zhang W, Ziegler A, Absher D, Altshuler D, Balmforth AJ, Barroso I, Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do R, Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, Melander O, Mihailov E, Maouche S, Morris AD, Müller-Nurasyid M, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP, Schäfer A, Sivananthan M, Song C, Stewart AF, Tan ST, Thorgeirsson G, van der Schoot CE, Wagner PJ, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, Diemert P, Epstein SE, Evans A, Ferrario MM, Ferrières J, Gauguier D, Go AS, Goodall AH, Gudnason V, Hazen SL, Holm H, Iribarren C, Jang Y, Kähönen M, Kee F, Kim HS, Klopp N, Koenig W, Kratzer W, Kuulasmaa K, Laakso M, Laaksonen R, Lee JY, Lind L, Ouwehand WH, Parish S, Park JE, Pedersen NL, Peters A, Quertermous T, Rader DJ, Salomaa V, Schadt E, Shah SH, Sinisalo J, Stark K, Stefansson K, Trégouët DA, Virtamo J, Wallentin L, Wareham N, Zimmermann ME, Nieminen MS, Hengstenberg C, Sandhu MS, Pastinen T, Syvänen AC, Hovingh GK, Dedoussis G, Franks PW, Lehtimäki T, Metspalu A, Zalloua PA, Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, Perola M, Clarke R, Boehm BO, O’Donnell C, Reilly MP, März W, Collins R, Kathiresan S, Hamsten A, Kooner JS, Thorsteinsdottir U, Danesh J, Palmer CN, Roberts R, Watkins H, Schunkert H, Samani NJ CARDIoGRAMplusC4D Consortium; DIAGRAM Consortium; CARDIOGENICS Consortium; MuTHER Consortium; Wellcome Trust Case Control Consortium . Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, Buysschaert I, Carlquist JF, Chen L, Cichon S, Codd V, Davies RW, Dedoussis G, Dehghan A, Demissie S, Devaney JM, Diemert P, Do R, Doering A, Eifert S, Mokhtari NE, Ellis SG, Elosua R, Engert JC, Epstein SE, de Faire U, Fischer M, Folsom AR, Freyer J, Gigante B, Girelli D, Gretarsdottir S, Gudnason V, Gulcher JR, Halperin E, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, Iribarren C, Jones GT, Jukema JW, Kaiser MA, Kaplan LM, Kastelein JJ, Khaw KT, Knowles JW, Kolovou G, Kong A, Laaksonen R, Lambrechts D, Leander K, Lettre G, Li M, Lieb W, Loley C, Lotery AJ, Mannucci PM, Maouche S, Martinelli N, McKeown PP, Meisinger C, Meitinger T, Melander O, Merlini PA, Mooser V, Morgan T, Mühleisen TW, Muhlestein JB, Münzel T, Musunuru K, Nahrstaedt J, Nelson CP, Nöthen MM, Olivieri O, Patel RS, Patterson CC, Peters A, Peyvandi F, Qu L, Quyyumi AA, Rader DJ, Rallidis LS, Rice C, Rosendaal FR, Rubin D, Salomaa V, Sampietro ML, Sandhu MS, Schadt E, Schäfer A, Schillert A, Schreiber S, Schrezenmeir J, Schwartz SM, Siscovick DS, Sivananthan M, Sivapalaratnam S, Smith A, Smith TB, Snoep JD, Soranzo N, Spertus JA, Stark K, Stirrups K, Stoll M, Tang WH, Tennstedt S, Thorgeirsson G, Thorleifsson G, Tomaszewski M, Uitterlinden AG, van Rij AM, Voight BF, Wareham NJ, Wells GA, Wichmann HE, Wild PS, Willenborg C, Witteman JC, Wright BJ, Ye S, Zeller T, Ziegler A, Cambien F, Goodall AH, Cupples LA, Quertermous T, März W, Hengstenberg C, Blankenberg S, Ouwehand WH, Hall AS, Deloukas P, Thompson JR, Stefansson K, Roberts R, Thorsteinsdottir U, O’Donnell CJ, McPherson R, Erdmann J, Samani NJ; CardiogenicsCARDIoGRAM Consortium . Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, Natarajan P, Lander ES, Lubitz SA, Ellinor PT, Kathiresan S. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Hunter DJ. Gene-environment interactions in human diseases. Nat Rev Genet. 2005;6(4):287–298. [DOI] [PubMed] [Google Scholar]
  • 18. Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, Willett WC, Hu FB. Determinants and consequences of obesity. Am J Public Health. 2016;106(9):1656–1662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Veiga-Lopez A, Pu Y, Gingrich J, Padmanabhan V. Obesogenic endocrine disrupting chemicals: identifying knowledge gaps. Trends Endocrinol Metab. 2018;29(9):607–625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Foulds CE, Treviño LS, York B, Walker CL. Endocrine-disrupting chemicals and fatty liver disease. Nat Rev Endocrinol. 2017;13(8):445–457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Treviño LS, Katz TA. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease. Endocrinology. 2018;159(1):20–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Walter S, Mejía-Guevara I, Estrada K, Liu SY, Glymour MM. Association of a genetic risk score with body mass index across different birth cohorts. JAMA. 2016;316(1):63–69. [DOI] [PubMed] [Google Scholar]
  • 23. Justice AE, Winkler TW, Feitosa MF, Graff M, Fisher VA, Young K, Barata L, Deng X, Czajkowski J, Hadley D, Ngwa JS, Ahluwalia TS, Chu AY, Heard-Costa NL, Lim E, Perez J, Eicher JD, Kutalik Z, Xue L, Mahajan A, Renström F, Wu J, Qi Q, Ahmad S, Alfred T, Amin N, Bielak LF, Bonnefond A, Bragg J, Cadby G, Chittani M, Coggeshall S, Corre T, Direk N, Eriksson J, Fischer K, Gorski M, Neergaard Harder M, Horikoshi M, Huang T, Huffman JE, Jackson AU, Justesen JM, Kanoni S, Kinnunen L, Kleber ME, Komulainen P, Kumari M, Lim U, Luan J, Lyytikäinen LP, Mangino M, Manichaikul A, Marten J, Middelberg RPS, Müller-Nurasyid M, Navarro P, Pérusse L, Pervjakova N, Sarti C, Smith AV, Smith JA, Stančáková A, Strawbridge RJ, Stringham HM, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van der Most PJ, Van Vliet-Ostaptchouk JV, Vedantam SL, Verweij N, Vink JM, Vitart V, Wu Y, Yengo L, Zhang W, Hua Zhao J, Zimmermann ME, Zubair N, Abecasis GR, Adair LS, Afaq S, Afzal U, Bakker SJL, Bartz TM, Beilby J, Bergman RN, Bergmann S, Biffar R, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Braga D, Buckley BM, Buyske S, Campbell H, Chambers JC, Collins FS, Curran JE, de Borst GJ, de Craen AJM, de Geus EJC, Dedoussis G, Delgado GE, den Ruijter HM, Eiriksdottir G, Eriksson AL, Esko T, Faul JD, Ford I, Forrester T, Gertow K, Gigante B, Glorioso N, Gong J, Grallert H, Grammer TB, Grarup N, Haitjema S, Hallmans G, Hamsten A, Hansen T, Harris TB, Hartman CA, Hassinen M, Hastie ND, Heath AC, Hernandez D, Hindorff L, Hocking LJ, Hollensted M, Holmen OL, Homuth G, Jan Hottenga J, Huang J, Hung J, Hutri-Kähönen N, Ingelsson E, James AL, Jansson JO, Jarvelin MR, Jhun MA, Jørgensen ME, Juonala M, Kähönen M, Karlsson M, Koistinen HA, Kolcic I, Kolovou G, Kooperberg C, Krämer BK, Kuusisto J, Kvaløy K, Lakka TA, Langenberg C, Launer LJ, Leander K, Lee NR, Lind L, Lindgren CM, Linneberg A, Lobbens S, Loh M, Lorentzon M, Luben R, Lubke G, Ludolph-Donislawski A, Lupoli S, Madden PAF, Männikkö R, Marques-Vidal P, Martin NG, McKenzie CA, McKnight B, Mellström D, Menni C, Montgomery GW, Musk AB, Narisu N, Nauck M, Nolte IM, Oldehinkel AJ, Olden M, Ong KK, Padmanabhan S, Peyser PA, Pisinger C, Porteous DJ, Raitakari OT, Rankinen T, Rao DC, Rasmussen-Torvik LJ, Rawal R, Rice T, Ridker PM, Rose LM, Bien SA, Rudan I, Sanna S, Sarzynski MA, Sattar N, Savonen K, Schlessinger D, Scholtens S, Schurmann C, Scott RA, Sennblad B, Siemelink MA, Silbernagel G, Slagboom PE, Snieder H, Staessen JA, Stott DJ, Swertz MA, Swift AJ, Taylor KD, Tayo BO, Thorand B, Thuillier D, Tuomilehto J, Uitterlinden AG, Vandenput L, Vohl MC, Völzke H, Vonk JM, Waeber G, Waldenberger M, Westendorp RGJ, Wild S, Willemsen G, Wolffenbuttel BHR, Wong A, Wright AF, Zhao W, Zillikens MC, Baldassarre D, Balkau B, Bandinelli S, Böger CA, Boomsma DI, Bouchard C, Bruinenberg M, Chasman DI, Chen YD, Chines PS, Cooper RS, Cucca F, Cusi D, Faire U, Ferrucci L, Franks PW, Froguel P, Gordon-Larsen P, Grabe HJ, Gudnason V, Haiman CA, Hayward C, Hveem K, Johnson AD, Wouter Jukema J, Kardia SLR, Kivimaki M, Kooner JS, Kuh D, Laakso M, Lehtimäki T, Marchand LL, März W, McCarthy MI, Metspalu A, Morris AP, Ohlsson C, Palmer LJ, Pasterkamp G, Pedersen O, Peters A, Peters U, Polasek O, Psaty BM, Qi L, Rauramaa R, Smith BH, Sørensen TIA, Strauch K, Tiemeier H, Tremoli E, van der Harst P, Vestergaard H, Vollenweider P, Wareham NJ, Weir DR, Whitfield JB, Wilson JF, Tyrrell J, Frayling TM, Barroso I, Boehnke M, Deloukas P, Fox CS, Hirschhorn JN, Hunter DJ, Spector TD, Strachan DP, van Duijn CM, Heid IM, Mohlke KL, Marchini J, Loos RJF, Kilpeläinen TO, Liu CT, Borecki IB, North KE, Cupples LA. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat Commun. 2017;8:14977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D, Xue L, Workalemahu T, Heard-Costa NL, den Hoed M, Ahluwalia TS, Qi Q, Ngwa JS, Renström F, Quaye L, Eicher JD, Hayes JE, Cornelis M, Kutalik Z, Lim E, Luan J, Huffman JE, Zhang W, Zhao W, Griffin PJ, Haller T, Ahmad S, Marques-Vidal PM, Bien S, Yengo L, Teumer A, Smith AV, Kumari M, Harder MN, Justesen JM, Kleber ME, Hollensted M, Lohman K, Rivera NV, Whitfield JB, Zhao JH, Stringham HM, Lyytikäinen LP, Huppertz C, Willemsen G, Peyrot WJ, Wu Y, Kristiansson K, Demirkan A, Fornage M, Hassinen M, Bielak LF, Cadby G, Tanaka T, Mägi R, van der Most PJ, Jackson AU, Bragg-Gresham JL, Vitart V, Marten J, Navarro P, Bellis C, Pasko D, Johansson Å, Snitker S, Cheng YC, Eriksson J, Lim U, Aadahl M, Adair LS, Amin N, Balkau B, Auvinen J, Beilby J, Bergman RN, Bergmann S, Bertoni AG, Blangero J, Bonnefond A, Bonnycastle LL, Borja JB, Brage S, Busonero F, Buyske S, Campbell H, Chines PS, Collins FS, Corre T, Smith GD, Delgado GE, Dueker N, Dörr M, Ebeling T, Eiriksdottir G, Esko T, Faul JD, Fu M, Færch K, Gieger C, Gläser S, Gong J, Gordon-Larsen P, Grallert H, Grammer TB, Grarup N, van Grootheest G, Harald K, Hastie ND, Havulinna AS, Hernandez D, Hindorff L, Hocking LJ, Holmens OL, Holzapfel C, Hottenga JJ, Huang J, Huang T, Hui J, Huth C, Hutri-Kähönen N, James AL, Jansson JO, Jhun MA, Juonala M, Kinnunen L, Koistinen HA, Kolcic I, Komulainen P, Kuusisto J, Kvaløy K, Kähönen M, Lakka TA, Launer LJ, Lehne B, Lindgren CM, Lorentzon M, Luben R, Marre M, Milaneschi Y, Monda KL, Montgomery GW, De Moor MHM, Mulas A, Müller-Nurasyid M, Musk AW, Männikkö R, Männistö S, Narisu N, Nauck M, Nettleton JA, Nolte IM, Oldehinkel AJ, Olden M, Ong KK, Padmanabhan S, Paternoster L, Perez J, Perola M, Peters A, Peters U, Peyser PA, Prokopenko I, Puolijoki H, Raitakari OT, Rankinen T, Rasmussen-Torvik LJ, Rawal R, Ridker PM, Rose LM, Rudan I, Sarti C, Sarzynski MA, Savonen K, Scott WR, Sanna S, Shuldiner AR, Sidney S, Silbernagel G, Smith BH, Smith JA, Snieder H, Stančáková A, Sternfeld B, Swift AJ, Tammelin T, Tan ST, Thorand B, Thuillier D, Vandenput L, Vestergaard H, van Vliet-Ostaptchouk JV, Vohl MC, Völker U, Waeber G, Walker M, Wild S, Wong A, Wright AF, Zillikens MC, Zubair N, Haiman CA, Lemarchand L, Gyllensten U, Ohlsson C, Hofman A, Rivadeneira F, Uitterlinden AG, Pérusse L, Wilson JF, Hayward C, Polasek O, Cucca F, Hveem K, Hartman CA, Tönjes A, Bandinelli S, Palmer LJ, Kardia SLR, Rauramaa R, Sørensen TIA, Tuomilehto J, Salomaa V, Penninx BWJH, de Geus EJC, Boomsma DI, Lehtimäki T, Mangino M, Laakso M, Bouchard C, Martin NG, Kuh D, Liu Y, Linneberg A, März W, Strauch K, Kivimäki M, Harris TB, Gudnason V, Völzke H, Qi L, Järvelin MR, Chambers JC, Kooner JS, Froguel P, Kooperberg C, Vollenweider P, Hallmans G, Hansen T, Pedersen O, Metspalu A, Wareham NJ, Langenberg C, Weir DR, Porteous DJ, Boerwinkle E, Chasman DI, Abecasis GR, Barroso I, McCarthy MI, Frayling TM, O’Connell JR, van Duijn CM, Boehnke M, Heid IM, Mohlke KL, Strachan DP, Fox CS, Liu CT, Hirschhorn JN, Klein RJ, Johnson AD, Borecki IB, Franks PW, North KE, Cupples LA, Loos RJF, Kilpeläinen TO; CHARGE Consortium; EPIC-InterAct Consortium; PAGE Consortium . Genome-wide physical activity interactions in adiposity - a meta-analysis of 200,452 adults [published correction appears in PLoS Genet. 2017;13(8):e1006972] PLoS Genet. 2017;13(4):e1006528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Mägi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Zhao JH, Zhao W, Chen J, Fehrmann R, Hedman ÅK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Leach IM, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stančáková A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Isaacs A, Albrecht E, Ärnlöv J, Arscott GM, Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Blüher M, Böhringer S, Bonnycastle LL, Böttcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Chen YI, Clarke R, Daw EW, de Craen AJM, Delgado G, Dimitriou M, Doney ASF, Eklund N, Estrada K, Eury E, Folkersen L, Fraser RM, Garcia ME, Geller F, Giedraitis V, Gigante B, Go AS, Golay A, Goodall AH, Gordon SD, Gorski M, Grabe HJ, Grallert H, Grammer TB, Gräßler J, Grönberg H, Groves CJ, Gusto G, Haessler J, Hall P, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hengstenberg C, Holmen O, Hottenga JJ, James AL, Jeff JM, Johansson Å, Jolley J, Juliusdottir T, Kinnunen L, Koenig W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Lo KS, Lobbens S, Lorbeer R, Lu Y, Mach F, Magnusson PKE, Mahajan A, McArdle WL, McLachlan S, Menni C, Merger S, Mihailov E, Milani L, Moayyeri A, Monda KL, Morken MA, Mulas A, Müller G, Müller-Nurasyid M, Musk AW, Nagaraja R, Nöthen MM, Nolte IM, Pilz S, Rayner NW, Renstrom F, Rettig R, Ried JS, Ripke S, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Scott WR, Seufferlein T, Shi J, Smith AV, Smolonska J, Stanton AV, Steinthorsdottir V, Stirrups K, Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen AC, Tan ST, Tayo BO, Thorand B, Thorleifsson G, Tyrer JP, Uh HW, Vandenput L, Verhulst FC, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Warren HR, Waterworth D, Weedon MN, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, Brennan EP, Choi M, Dastani Z, Drong AW, Eriksson P, Franco-Cereceda A, Gådin JR, Gharavi AG, Goddard ME, Handsaker RE, Huang J, Karpe F, Kathiresan S, Keildson S, Kiryluk K, Kubo M, Lee JY, Liang L, Lifton RP, Ma B, McCarroll SA, McKnight AJ, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Okada Y, Perry JRB, Dorajoo R, Reinmaa E, Salem RM, Sandholm N, Scott RA, Stolk L, Takahashi A, Tanaka T, van ’t Hooft FM, Vinkhuyzen AAE, Westra HJ, Zheng W, Zondervan KT, Heath AC, Arveiler D, Bakker SJL, Beilby J, Bergman RN, Blangero J, Bovet P, Campbell H, Caulfield MJ, Cesana G, Chakravarti A, Chasman DI, Chines PS, Collins FS, Crawford DC, Cupples LA, Cusi D, Danesh J, de Faire U, den Ruijter HM, Dominiczak AF, Erbel R, Erdmann J, Eriksson JG, Farrall M, Felix SB, Ferrannini E, Ferrières J, Ford I, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gejman PV, Gieger C, Gottesman O, Gudnason V, Gyllensten U, Hall AS, Harris TB, Hattersley AT, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Homuth G, Hovingh GK, Humphries SE, Hunt SC, Hyppönen E, Illig T, Jacobs KB, Jarvelin MR, Jöckel KH, Johansen B, Jousilahti P, Jukema JW, Jula AM, Kaprio J, Kastelein JJP, Keinanen-Kiukaanniemi SM, Kiemeney LA, Knekt P, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Marchand LL, Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Moll FL, Morris AD, Morris AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Madden PAF, Pasterkamp G, Peden JF, Peters A, Postma DS, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Rioux JD, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schunkert H, Schwarz PEH, Sever P, Shuldiner AR, Sinisalo J, Stolk RP, Strauch K, Tönjes A, Trégouët DA, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Völker U, Waeber G, Willemsen G, Witteman JC, Zillikens MC, Adair LS, Amouyel P, Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bornstein SR, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de Bakker PIW, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hui J, Hunter DJ, Hveem K, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, März W, Melbye M, Metspalu A, Moebus S, Munroe PB, Njølstad I, Oostra BA, Palmer CNA, Pedersen NL, Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sattar N, Schadt EE, Schlessinger D, Slagboom PE, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Weir DR, Wichmann HE, Wilson JF, Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O’Connell JR, Strachan DP, Stefansson K, van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy MI, Visscher PM, Scherag A, Willer CJ, Boehnke M, Mohlke KL, Lindgren CM, Beckmann JS, Barroso I, North KE, Ingelsson E, Hirschhorn JN, Loos RJF, Speliotes EK; LifeLines Cohort Study; ADIPOGen Consortium; AGEN-BMI Working Group; CARDIOGRAMplusC4D Consortium; CKDGen Consortium; GLGC; ICBP; MAGIC Investigators; MuTHER Consortium; MIGen Consortium; PAGE Consortium; ReproGen Consortium; GENIE Consortium; International Endogene Consortium . Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, Iwata N, Ikegawa S, Hirata M, Matsuda K, Iwasaki M, Yamaji T, Sawada N, Hachiya T, Tanno K, Shimizu A, Hozawa A, Minegishi N, Tsugane S, Yamamoto M, Kubo M, Kamatani Y. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet. 2017;49(10):1458–1467. [DOI] [PubMed] [Google Scholar]
  • 27. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, Strawbridge RJ, Pers TH, Fischer K, Justice AE, Workalemahu T, Wu JMW, Buchkovich ML, Heard-Costa NL, Roman TS, Drong AW, Song C, Gustafsson S, Day FR, Esko T, Fall T, Kutalik Z, Luan J, Randall JC, Scherag A, Vedantam S, Wood AR, Chen J, Fehrmann R, Karjalainen J, Kahali B, Liu CT, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bragg-Gresham JL, Buyske S, Demirkan A, Ehret GB, Feitosa MF, Goel A, Jackson AU, Johnson T, Kleber ME, Kristiansson K, Mangino M, Leach IM, Medina-Gomez C, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Stančáková A, Sung YJ, Tanaka T, Teumer A, Van Vliet-Ostaptchouk JV, Yengo L, Zhang W, Albrecht E, Ärnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Böhringer S, Bonnet F, Böttcher Y, Bruinenberg M, Carba DB, Caspersen IH, Clarke R, Daw EW, Deelen J, Deelman E, Delgado G, Doney AS, Eklund N, Erdos MR, Estrada K, Eury E, Friedrich N, Garcia ME, Giedraitis V, Gigante B, Go AS, Golay A, Grallert H, Grammer TB, Gräßler J, Grewal J, Groves CJ, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heikkilä K, Herzig KH, Helmer Q, Hillege HL, Holmen O, Hunt SC, Isaacs A, Ittermann T, James AL, Johansson I, Juliusdottir T, Kalafati IP, Kinnunen L, Koenig W, Kooner IK, Kratzer W, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Lobbens S, Lorentzon M, Mach F, Magnusson PK, Mahajan A, McArdle WL, Menni C, Merger S, Mihailov E, Milani L, Mills R, Moayyeri A, Monda KL, Mooijaart SP, Mühleisen TW, Mulas A, Müller G, Müller-Nurasyid M, Nagaraja R, Nalls MA, Narisu N, Glorioso N, Nolte IM, Olden M, Rayner NW, Renstrom F, Ried JS, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Sennblad B, Seufferlein T, Sitlani CM, Smith AV, Stirrups K, Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen AC, Tayo BO, Thorand B, Thorleifsson G, Tomaschitz A, Troffa C, van Oort FV, Verweij N, Vonk JM, Waite LL, Wennauer R, Wilsgaard T, Wojczynski MK, Wong A, Zhang Q, Zhao JH, Brennan EP, Choi M, Eriksson P, Folkersen L, Franco-Cereceda A, Gharavi AG, Hedman ÅK, Hivert MF, Huang J, Kanoni S, Karpe F, Keildson S, Kiryluk K, Liang L, Lifton RP, Ma B, McKnight AJ, McPherson R, Metspalu A, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Olsson C, Perry JR, Reinmaa E, Salem RM, Sandholm N, Schadt EE, Scott RA, Stolk L, Vallejo EE, Westra HJ, Zondervan KT, Amouyel P, Arveiler D, Bakker SJ, Beilby J, Bergman RN, Blangero J, Brown MJ, Burnier M, Campbell H, Chakravarti A, Chines PS, Claudi-Boehm S, Collins FS, Crawford DC, Danesh J, de Faire U, de Geus EJ, Dörr M, Erbel R, Eriksson JG, Farrall M, Ferrannini E, Ferrières J, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gieger C, Gudnason V, Haiman CA, Harris TB, Hattersley AT, Heliövaara M, Hicks AA, Hingorani AD, Hoffmann W, Hofman A, Homuth G, Humphries SE, Hyppönen E, Illig T, Jarvelin MR, Johansen B, Jousilahti P, Jula AM, Kaprio J, Kee F, Keinanen-Kiukaanniemi SM, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuulasmaa K, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Musk AW, Möhlenkamp S, Morris AD, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Palmer LJ, Penninx BW, Peters A, Pramstaller PP, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PE, Shuldiner AR, Staessen JA, Steinthorsdottir V, Stolk RP, Strauch K, Tönjes A, Tremblay A, Tremoli E, Vohl MC, Völker U, Vollenweider P, Wilson JF, Witteman JC, Adair LS, Bochud M, Boehm BO, Bornstein SR, Bouchard C, Cauchi S, Caulfield MJ, Chambers JC, Chasman DI, Cooper RS, Dedoussis G, Ferrucci L, Froguel P, Grabe HJ, Hamsten A, Hui J, Hveem K, Jöckel KH, Kivimaki M, Kuh D, Laakso M, Liu Y, März W, Munroe PB, Njølstad I, Oostra BA, Palmer CN, Pedersen NL, Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sinisalo J, Slagboom PE, Snieder H, Spector TD, Stefansson K, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Veronesi G, Walker M, Wareham NJ, Watkins H, Wichmann HE, Abecasis GR, Assimes TL, Berndt SI, Boehnke M, Borecki IB, Deloukas P, Franke L, Frayling TM, Groop LC, Hunter DJ, Kaplan RC, O’Connell JR, Qi L, Schlessinger D, Strachan DP, Thorsteinsdottir U, van Duijn CM, Willer CJ, Visscher PM, Yang J, Hirschhorn JN, Zillikens MC, McCarthy MI, Speliotes EK, North KE, Fox CS, Barroso I, Franks PW, Ingelsson E, Heid IM, Loos RJ, Cupples LA, Morris AP, Lindgren CM, Mohlke KL; ADIPOGen Consortium; CARDIOGRAMplusC4D Consortium; CKDGen Consortium; GEFOS Consortium; GENIE Consortium; GLGC; ICBP; International Endogene Consortium; LifeLines Cohort Study; MAGIC Investigators; MuTHER Consortium; PAGE ConsortiumReproGen Consortium . New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187–196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Lu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, Cousminer DL, Dastani Z, Drong AW, Esko T, Evans DM, Falchi M, Feitosa MF, Ferreira T, Hedman AK, Haring R, Hysi PG, Iles MM, Justice AE, Kanoni S, Lagou V, Li R, Li X, Locke A, Lu C, Mägi R, Perry JR, Pers TH, Qi Q, Sanna M, Schmidt EM, Scott WR, Shungin D, Teumer A, Vinkhuyzen AA, Walker RW, Westra HJ, Zhang M, Zhang W, Zhao JH, Zhu Z, Afzal U, Ahluwalia TS, Bakker SJ, Bellis C, Bonnefond A, Borodulin K, Buchman AS, Cederholm T, Choh AC, Choi HJ, Curran JE, de Groot LC, De Jager PL, Dhonukshe-Rutten RA, Enneman AW, Eury E, Evans DS, Forsen T, Friedrich N, Fumeron F, Garcia ME, Gärtner S, Han BG, Havulinna AS, Hayward C, Hernandez D, Hillege H, Ittermann T, Kent JW, Kolcic I, Laatikainen T, Lahti J, Mateo Leach I, Lee CG, Lee JY, Liu T, Liu Y, Lobbens S, Loh M, Lyytikäinen LP, Medina-Gomez C, Michaëlsson K, Nalls MA, Nielson CM, Oozageer L, Pascoe L, Paternoster L, Polašek O, Ripatti S, Sarzynski MA, Shin CS, Narančić NS, Spira D, Srikanth P, Steinhagen-Thiessen E, Sung YJ, Swart KM, Taittonen L, Tanaka T, Tikkanen E, van der Velde N, van Schoor NM, Verweij N, Wright AF, Yu L, Zmuda JM, Eklund N, Forrester T, Grarup N, Jackson AU, Kristiansson K, Kuulasmaa T, Kuusisto J, Lichtner P, Luan J, Mahajan A, Männistö S, Palmer CD, Ried JS, Scott RA, Stancáková A, Wagner PJ, Demirkan A, Döring A, Gudnason V, Kiel DP, Kühnel B, Mangino M, Mcknight B, Menni C, O’Connell JR, Oostra BA, Shuldiner AR, Song K, Vandenput L, van Duijn CM, Vollenweider P, White CC, Boehnke M, Boettcher Y, Cooper RS, Forouhi NG, Gieger C, Grallert H, Hingorani A, Jørgensen T, Jousilahti P, Kivimaki M, Kumari M, Laakso M, Langenberg C, Linneberg A, Luke A, Mckenzie CA, Palotie A, Pedersen O, Peters A, Strauch K, Tayo BO, Wareham NJ, Bennett DA, Bertram L, Blangero J, Blüher M, Bouchard C, Campbell H, Cho NH, Cummings SR, Czerwinski SA, Demuth I, Eckardt R, Eriksson JG, Ferrucci L, Franco OH, Froguel P, Gansevoort RT, Hansen T, Harris TB, Hastie N, Heliövaara M, Hofman A, Jordan JM, Jula A, Kähönen M, Kajantie E, Knekt PB, Koskinen S, Kovacs P, Lehtimäki T, Lind L, Liu Y, Orwoll ES, Osmond C, Perola M, Pérusse L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Rivadeneira F, Rudan I, Salomaa V, Sørensen TI, Stumvoll M, Tönjes A, Towne B, Tranah GJ, Tremblay A, Uitterlinden AG, van der Harst P, Vartiainen E, Viikari JS, Vitart V, Vohl MC, Völzke H, Walker M, Wallaschofski H, Wild S, Wilson JF, Yengo L, Bishop DT, Borecki IB, Chambers JC, Cupples LA, Dehghan A, Deloukas P, Fatemifar G, Fox C, Furey TS, Franke L, Han J, Hunter DJ, Karjalainen J, Karpe F, Kaplan RC, Kooner JS, McCarthy MI, Murabito JM, Morris AP, Bishop JA, North KE, Ohlsson C, Ong KK, Prokopenko I, Richards JB, Schadt EE, Spector TD, Widén E, Willer CJ, Yang J, Ingelsson E, Mohlke KL, Hirschhorn JN, Pospisilik JA, Zillikens MC, Lindgren C, Kilpeläinen TO, Loos RJ. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 2016;7(1):10495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Song M, Zheng Y, Qi L, Hu FB, Chan AT, Giovannucci EL. Longitudinal analysis of genetic susceptibility and BMI throughout adult life. Diabetes. 2018;67(2):248–255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, Kathiresan S. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317(6):626–634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Huang T, Qi Q, Zheng Y, Ley SH, Manson JE, Hu FB, Qi L. Genetic predisposition to central obesity and risk of type 2 diabetes: two independent cohort studies. Diabetes Care. 2015;38(7):1306–1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, Czajkowski J, Esko T, Fall T, Kilpeläinen TO, Lu Y, Mägi R, Mihailov E, Pers TH, Rüeger S, Teumer A, Ehret GB, Ferreira T, Heard-Costa NL, Karjalainen J, Lagou V, Mahajan A, Neinast MD, Prokopenko I, Simino J, Teslovich TM, Jansen R, Westra HJ, White CC, Absher D, Ahluwalia TS, Ahmad S, Albrecht E, Alves AC, Bragg-Gresham JL, de Craen AJ, Bis JC, Bonnefond A, Boucher G, Cadby G, Cheng YC, Chiang CW, Delgado G, Demirkan A, Dueker N, Eklund N, Eiriksdottir G, Eriksson J, Feenstra B, Fischer K, Frau F, Galesloot TE, Geller F, Goel A, Gorski M, Grammer TB, Gustafsson S, Haitjema S, Hottenga JJ, Huffman JE, Jackson AU, Jacobs KB, Johansson Å, Kaakinen M, Kleber ME, Lahti J, Mateo Leach I, Lehne B, Liu Y, Lo KS, Lorentzon M, Luan J, Madden PA, Mangino M, McKnight B, Medina-Gomez C, Monda KL, Montasser ME, Müller G, Müller-Nurasyid M, Nolte IM, Panoutsopoulou K, Pascoe L, Paternoster L, Rayner NW, Renström F, Rizzi F, Rose LM, Ryan KA, Salo P, Sanna S, Scharnagl H, Shi J, Smith AV, Southam L, Stančáková A, Steinthorsdottir V, Strawbridge RJ, Sung YJ, Tachmazidou I, Tanaka T, Thorleifsson G, Trompet S, Pervjakova N, Tyrer JP, Vandenput L, van der Laan SW, van der Velde N, van Setten J, van Vliet-Ostaptchouk JV, Verweij N, Vlachopoulou E, Waite LL, Wang SR, Wang Z, Wild SH, Willenborg C, Wilson JF, Wong A, Yang J, Yengo L, Yerges-Armstrong LM, Yu L, Zhang W, Zhao JH, Andersson EA, Bakker SJ, Baldassarre D, Banasik K, Barcella M, Barlassina C, Bellis C, Benaglio P, Blangero J, Blüher M, Bonnet F, Bonnycastle LL, Boyd HA, Bruinenberg M, Buchman AS, Campbell H, Chen YD, Chines PS, Claudi-Boehm S, Cole J, Collins FS, de Geus EJ, de Groot LC, Dimitriou M, Duan J, Enroth S, Eury E, Farmaki AE, Forouhi NG, Friedrich N, Gejman PV, Gigante B, Glorioso N, Go AS, Gottesman O, Gräßler J, Grallert H, Grarup N, Gu YM, Broer L, Ham AC, Hansen T, Harris TB, Hartman CA, Hassinen M, Hastie N, Hattersley AT, Heath AC, Henders AK, Hernandez D, Hillege H, Holmen O, Hovingh KG, Hui J, Husemoen LL, Hutri-Kähönen N, Hysi PG, Illig T, De Jager PL, Jalilzadeh S, Jørgensen T, Jukema JW, Juonala M, Kanoni S, Karaleftheri M, Khaw KT, Kinnunen L, Kittner SJ, Koenig W, Kolcic I, Kovacs P, Krarup NT, Kratzer W, Krüger J, Kuh D, Kumari M, Kyriakou T, Langenberg C, Lannfelt L, Lanzani C, Lotay V, Launer LJ, Leander K, Lindström J, Linneberg A, Liu YP, Lobbens S, Luben R, Lyssenko V, Männistö S, Magnusson PK, McArdle WL, Menni C, Merger S, Milani L, Montgomery GW, Morris AP, Narisu N, Nelis M, Ong KK, Palotie A, Pérusse L, Pichler I, Pilia MG, Pouta A, Rheinberger M, Ribel-Madsen R, Richards M, Rice KM, Rice TK, Rivolta C, Salomaa V, Sanders AR, Sarzynski MA, Scholtens S, Scott RA, Scott WR, Sebert S, Sengupta S, Sennblad B, Seufferlein T, Silveira A, Slagboom PE, Smit JH, Sparsø TH, Stirrups K, Stolk RP, Stringham HM, Swertz MA, Swift AJ, Syvänen AC, Tan ST, Thorand B, Tönjes A, Tremblay A, Tsafantakis E, van der Most PJ, Völker U, Vohl MC, Vonk JM, Waldenberger M, Walker RW, Wennauer R, Widén E, Willemsen G, Wilsgaard T, Wright AF, Zillikens MC, van Dijk SC, van Schoor NM, Asselbergs FW, de Bakker PI, Beckmann JS, Beilby J, Bennett DA, Bergman RN, Bergmann S, Böger CA, Boehm BO, Boerwinkle E, Boomsma DI, Bornstein SR, Bottinger EP, Bouchard C, Chambers JC, Chanock SJ, Chasman DI, Cucca F, Cusi D, Dedoussis G, Erdmann J, Eriksson JG, Evans DA, de Faire U, Farrall M, Ferrucci L, Ford I, Franke L, Franks PW, Froguel P, Gansevoort RT, Gieger C, Grönberg H, Gudnason V, Gyllensten U, Hall P, Hamsten A, van der Harst P, Hayward C, Heliövaara M, Hengstenberg C, Hicks AA, Hingorani A, Hofman A, Hu F, Huikuri HV, Hveem K, James AL, Jordan JM, Jula A, Kähönen M, Kajantie E, Kathiresan S, Kiemeney LA, Kivimaki M, Knekt PB, Koistinen HA, Kooner JS, Koskinen S, Kuusisto J, Maerz W, Martin NG, Laakso M, Lakka TA, Lehtimäki T, Lettre G, Levinson DF, Lind L, Lokki ML, Mäntyselkä P, Melbye M, Metspalu A, Mitchell BD, Moll FL, Murray JC, Musk AW, Nieminen MS, Njølstad I, Ohlsson C, Oldehinkel AJ, Oostra BA, Palmer LJ, Pankow JS, Pasterkamp G, Pedersen NL, Pedersen O, Penninx BW, Perola M, Peters A, Polašek O, Pramstaller PP, Psaty BM, Qi L, Quertermous T, Raitakari OT, Rankinen T, Rauramaa R, Ridker PM, Rioux JD, Rivadeneira F, Rotter JI, Rudan I, den Ruijter HM, Saltevo J, Sattar N, Schunkert H, Schwarz PE, Shuldiner AR, Sinisalo J, Snieder H, Sørensen TI, Spector TD, Staessen JA, Stefania B, Thorsteinsdottir U, Stumvoll M, Tardif JC, Tremoli E, Tuomilehto J, Uitterlinden AG, Uusitupa M, Verbeek AL, Vermeulen SH, Viikari JS, Vitart V, Völzke H, Vollenweider P, Waeber G, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Zeggini E, Chakravarti A, Clegg DJ, Cupples LA, Gordon-Larsen P, Jaquish CE, Rao DC, Abecasis GR, Assimes TL, Barroso I, Berndt SI, Boehnke M, Deloukas P, Fox CS, Groop LC, Hunter DJ, Ingelsson E, Kaplan RC, McCarthy MI, Mohlke KL, O’Connell JR, Schlessinger D, Strachan DP, Stefansson K, van Duijn CM, Hirschhorn JN, Lindgren CM, Heid IM, North KE, Borecki IB, Kutalik Z, Loos RJ; CHARGE Consortium; DIAGRAM Consortium; GLGC Consortium; Global-BPGen Consortium; ICBP Consortium; MAGIC Consortium . The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study [published correction appears in PLoS Genet. 2016;12(6):e1006166] PLoS Genet. 2015;11(10):e1005378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H, Erdmann J, Reilly MP, Rader DJ, Morgan T, Spertus JA, Stoll M, Girelli D, McKeown PP, Patterson CC, Siscovick DS, O’Donnell CJ, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Melander O, Altshuler D, Ardissino D, Merlini PA, Berzuini C, Bernardinelli L, Peyvandi F, Tubaro M, Celli P, Ferrario M, Fetiveau R, Marziliano N, Casari G, Galli M, Ribichini F, Rossi M, Bernardi F, Zonzin P, Piazza A, Mannucci PM, Schwartz SM, Siscovick DS, Yee J, Friedlander Y, Elosua R, Marrugat J, Lucas G, Subirana I, Sala J, Ramos R, Kathiresan S, Meigs JB, Williams G, Nathan DM, MacRae CA, O’Donnell CJ, Salomaa V, Havulinna AS, Peltonen L, Melander O, Berglund G, Voight BF, Kathiresan S, Hirschhorn JN, Asselta R, Duga S, Spreafico M, Musunuru K, Daly MJ, Purcell S, Voight BF, Purcell S, Nemesh J, Korn JM, McCarroll SA, Schwartz SM, Yee J, Kathiresan S, Lucas G, Subirana I, Elosua R, Surti A, Guiducci C, Gianniny L, Mirel D, Parkin M, Burtt N, Gabriel SB, Samani NJ, Thompson JR, Braund PS, Wright BJ, Balmforth AJ, Ball SG, Hall A, Schunkert H, Erdmann J, Linsel-Nitschke P, Lieb W, Ziegler A, König I, Hengstenberg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann HE, Schreiber S, Schunkert H, Samani NJ, Erdmann J, Ouwehand W, Hengstenberg C, Deloukas P, Scholz M, Cambien F, Reilly MP, Li M, Chen Z, Wilensky R, Matthai W, Qasim A, Hakonarson HH, Devaney J, Burnett MS, Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Knouff CW, Waterworth DM, Walker MC, Mooser V, Epstein SE, Rader DJ, Scheffold T, Berger K, Stoll M, Huge A, Girelli D, Martinelli N, Olivieri O, Corrocher R, Morgan T, Spertus JA, McKeown P, Patterson CC, Schunkert H, Erdmann E, Linsel-Nitschke P, Lieb W, Ziegler A, König IR, Hengstenberg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann HE, Schreiber S, Hólm H, Thorleifsson G, Thorsteinsdottir U, Stefansson K, Engert JC, Do R, Xie C, Anand S, Kathiresan S, Ardissino D, Mannucci PM, Siscovick D, O’Donnell CJ, Samani NJ, Melander O, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Altshuler D; Myocardial Infarction Genetics Consortium; Wellcome Trust Case Control Consortium . Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants [published correction appears in Nat Genet. 2009;41(6):762] Nat Genet. 2009;41(3):334–341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Coronary Artery Disease (C4D) Genetics Consortium A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet. 2011;43(4):339–344. [DOI] [PubMed] [Google Scholar]
  • 35. Nomura A, Won HH, Khera AV, Takeuchi F, Ito K, McCarthy S, Emdin CA, Klarin D, Natarajan P, Zekavat SM, Gupta N, Peloso GM, Borecki IB, Teslovich TM, Asselta R, Duga S, Merlini PA, Correa A, Kessler T, Wilson JG, Bown MJ, Hall AS, Braund PS, Carey DJ, Murray MF, Kirchner HL, Leader JB, Lavage DR, Manus JN, Hartze DN, Samani NJ, Schunkert H, Marrugat J, Elosua R, McPherson R, Farrall M, Watkins H, Juang JJ, Hsiung CA, Lin SY, Wang JS, Tada H, Kawashiri MA, Inazu A, Yamagishi M, Katsuya T, Nakashima E, Nakatochi M, Yamamoto K, Yokota M, Momozawa Y, Rotter JI, Lander ES, Rader DJ, Danesh J, Ardissino D, Gabriel S, Willer CJ, Abecasis GR, Saleheen D, Kubo M, Kato N, Ida Chen YD, Dewey FE, Kathiresan S. Protein-truncating variants at the cholesteryl ester transfer protein gene and risk for coronary heart disease. Circ Res. 2017;121(1):81–88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, Bennett D, Silveira A, Malarstig A, Green FR, Lathrop M, Gigante B, Leander K, de Faire U, Seedorf U, Hamsten A, Collins R, Watkins H, Farrall M; PROCARDIS Consortium . Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–2528. [DOI] [PubMed] [Google Scholar]
  • 37. Emdin CA, Khera AV, Klarin D, Natarajan P, Zekavat SM, Nomura A, Haas M, Aragam K, Ardissino D, Wilson JG, Schunkert H, McPherson R, Watkins H, Elosua R, Bown MJ, Samani NJ, Baber U, Erdmann J, Gormley P, Palotie A, Stitziel NO, Gupta N, Danesh J, Saleheen D, Gabriel S, Kathiresan S. Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation. 2018;137(3):222–232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Stitziel NO, Khera AV, Wang X, Bierhals AJ, Vourakis AC, Sperry AE, Natarajan P, Klarin D, Emdin CA, Zekavat SM, Nomura A, Erdmann J, Schunkert H, Samani NJ, Kraus WE, Shah SH, Yu B, Boerwinkle E, Rader DJ, Gupta N, Frossard PM, Rasheed A, Danesh J, Lander ES, Gabriel S, Saleheen D, Musunuru K, Kathiresan S; PROMIS and Myocardial Infarction Genetics Consortium Investigators . ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69(16):2054–2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331–344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Helgadottir A, Thorleifsson G, Gretarsdottir S, Stefansson OA, Tragante V, Thorolfsdottir RB, Jonsdottir I, Bjornsson T, Steinthorsdottir V, Verweij N, Nielsen JB, Zhou W, Folkersen L, Martinsson A, Heydarpour M, Prakash S, Oskarsson G, Gudbjartsson T, Geirsson A, Olafsson I, Sigurdsson EL, Almgren P, Melander O, Franco-Cereceda A, Hamsten A, Fritsche L, Lin M, Yang B, Hornsby W, Guo D, Brummett CM, Abecasis G, Mathis M, Milewicz D, Body SC, Eriksson P, Willer CJ, Hveem K, Newton-Cheh C, Smith JG, Danielsen R, Thorgeirsson G, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefansson K. Genome-wide analysis yields new loci associating with aortic valve stenosis. Nat Commun. 2018;9(1):987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, Rutten-Jacobs L, Giese AK, van der Laan SW, Gretarsdottir S, Anderson CD, Chong M, Adams HHH, Ago T, Almgren P, Amouyel P, Ay H, Bartz TM, Benavente OR, Bevan S, Boncoraglio GB, Brown RD Jr, Butterworth AS, Carrera C, Carty CL, Chasman DI, Chen WM, Cole JW, Correa A, Cotlarciuc I, Cruchaga C, Danesh J, de Bakker PIW, DeStefano AL, den Hoed M, Duan Q, Engelter ST, Falcone GJ, Gottesman RF, Grewal RP, Gudnason V, Gustafsson S, Haessler J, Harris TB, Hassan A, Havulinna AS, Heckbert SR, Holliday EG, Howard G, Hsu FC, Hyacinth HI, Ikram MA, Ingelsson E, Irvin MR, Jian X, Jiménez-Conde J, Johnson JA, Jukema JW, Kanai M, Keene KL, Kissela BM, Kleindorfer DO, Kooperberg C, Kubo M, Lange LA, Langefeld CD, Langenberg C, Launer LJ, Lee JM, Lemmens R, Leys D, Lewis CM, Lin WY, Lindgren AG, Lorentzen E, Magnusson PK, Maguire J, Manichaikul A, McArdle PF, Meschia JF, Mitchell BD, Mosley TH, Nalls MA, Ninomiya T, O’Donnell MJ, Psaty BM, Pulit SL, Rannikmäe K, Reiner AP, Rexrode KM, Rice K, Rich SS, Ridker PM, Rost NS, Rothwell PM, Rotter JI, Rundek T, Sacco RL, Sakaue S, Sale MM, Salomaa V, Sapkota BR, Schmidt R, Schmidt CO, Schminke U, Sharma P, Slowik A, Sudlow CLM, Tanislav C, Tatlisumak T, Taylor KD, Thijs VNS, Thorleifsson G, Thorsteinsdottir U, Tiedt S, Trompet S, Tzourio C, van Duijn CM, Walters M, Wareham NJ, Wassertheil-Smoller S, Wilson JG, Wiggins KL, Yang Q, Yusuf S, Bis JC, Pastinen T, Ruusalepp A, Schadt EE, Koplev S, Björkegren JLM, Codoni V, Civelek M, Smith NL, Trégouët DA, Christophersen IE, Roselli C, Lubitz SA, Ellinor PT, Tai ES, Kooner JS, Kato N, He J, van der Harst P, Elliott P, Chambers JC, Takeuchi F, Johnson AD, Sanghera DK, Melander O, Jern C, Strbian D, Fernandez-Cadenas I, Longstreth WT Jr, Rolfs A, Hata J, Woo D, Rosand J, Pare G, Hopewell JC, Saleheen D, Stefansson K, Worrall BB, Kittner SJ, Seshadri S, Fornage M, Markus HS, Howson JMM, Kamatani Y, Debette S, Dichgans M, Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, Rutten-Jacobs L, Giese AK, van der Laan SW, Gretarsdottir S, Anderson CD, Chong M, Adams HHH, Ago T, Almgren P, Amouyel P, Ay H, Bartz TM, Benavente OR, Bevan S, Boncoraglio GB, Brown RD Jr, Butterworth AS, Carrera C, Carty CL, Chasman DI, Chen WM, Cole JW, Correa A, Cotlarciuc I, Cruchaga C, Danesh J, de Bakker PIW, DeStefano AL, Hoed MD, Duan Q, Engelter ST, Falcone GJ, Gottesman RF, Grewal RP, Gudnason V, Gustafsson S, Haessler J, Harris TB, Hassan A, Havulinna AS, Heckbert SR, Holliday EG, Howard G, Hsu FC, Hyacinth HI, Ikram MA, Ingelsson E, Irvin MR, Jian X, Jiménez-Conde J, Johnson JA, Jukema JW, Kanai M, Keene KL, Kissela BM, Kleindorfer DO, Kooperberg C, Kubo M, Lange LA, Langefeld CD, Langenberg C, Launer LJ, Lee JM, Lemmens R, Leys D, Lewis CM, Lin WY, Lindgren AG, Lorentzen E, Magnusson PK, Maguire J, Manichaikul A, McArdle PF, Meschia JF, Mitchell BD, Mosley TH, Nalls MA, Ninomiya T, O’Donnell MJ, Psaty BM, Pulit SL, Rannikmäe K, Reiner AP, Rexrode KM, Rice K, Rich SS, Ridker PM, Rost NS, Rothwell PM, Rotter JI, Rundek T, Sacco RL, Sakaue S, Sale MM, Salomaa V, Sapkota BR, Schmidt R, Schmidt CO, Schminke U, Sharma P, Slowik A, Sudlow CLM, Tanislav C, Tatlisumak T, Taylor KD, Thijs VNS, Thorleifsson G, Thorsteinsdottir U, Tiedt S, Trompet S, Tzourio C, van Duijn CM, Walters M, Wareham NJ, Wassertheil-Smoller S, Wilson JG, Wiggins KL, Yang Q, Yusuf S, Amin N, Aparicio HS, Arnett DK, Attia J, Beiser AS, Berr C, Buring JE, Bustamante M, Caso V, Cheng YC, Choi SH, Chowhan A, Cullell N, Dartigues JF, Delavaran H, Delgado P, Dörr M, Engström G, Ford I, Gurpreet WS, Hamsten A, Heitsch L, Hozawa A, Ibanez L, Ilinca A, Ingelsson M, Iwasaki M, Jackson RD, Jood K, Jousilahti P, Kaffashian S, Kalra L, Kamouchi M, Kitazono T, Kjartansson O, Kloss M, Koudstaal PJ, Krupinski J, Labovitz DL, Laurie CC, Levi CR, Li L, Lind L, Lindgren CM, Lioutas V, Liu YM, Lopez OL, Makoto H, Martinez-Majander N, Matsuda K, Minegishi N, Montaner J, Morris AP, Muiño E, Müller-Nurasyid M, Norrving B, Ogishima S, Parati EA, Peddareddygari LR, Pedersen NL, Pera J, Perola M, Pezzini A, Pileggi S, Rabionet R, Riba-Llena I, Ribasés M, Romero JR, Roquer J, Rudd AG, Sarin AP, Sarju R, Sarnowski C, Sasaki M, Satizabal CL, Satoh M, Sattar N, Sawada N, Sibolt G, Sigurdsson Á, Smith A, Sobue K, Soriano-Tárraga C, Stanne T, Stine OC, Stott DJ, Strauch K, Takai T, Tanaka H, Tanno K, Teumer A, Tomppo L, Torres-Aguila NP, Touze E, Tsugane S, Uitterlinden AG, Valdimarsson EM, van der Lee SJ, Völzke H, Wakai K, Weir D, Williams SR, Wolfe CDA, Wong Q, Xu H, Yamaji T, Sanghera DK, Melander O, Jern C, Strbian D, Fernandez-Cadenas I, Longstreth WT Jr, Rolfs A, Hata J, Woo D, Rosand J, Pare G, Hopewell JC, Saleheen D, Stefansson K, Worrall BB, Kittner SJ, Seshadri S, Fornage M, Markus HS, Howson JMM, Kamatani Y, Debette S, Dichgans M; AFGen Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium; International Genomics of Blood Pressure (iGEN-BP) Consortium; INVENT Consortium; STARNETBioBank Japan Cooperative Hospital Group; COMPASS Consortium; EPIC-CVD Consortium; EPIC-InterAct Consortium; International Stroke Genetics Consortium (ISGC); METASTROKE ConsortiumNeurology Working Group of the CHARGE Consortium; NINDS Stroke Genetics Network (SiGN); UK Young Lacunar DNA Study; MEGASTROKE Consortium; MEGASTROKE Consortium . Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50(4):524–537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Knowles JW, Ashley EA. Cardiovascular disease: the rise of the genetic risk score. PLoS Med. 2018;15(3):e1002546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, Sartori S, Fuster V, Reilly DF, Butterworth A, Rader DJ, Ford I, Sattar N, Kathiresan S. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation. 2017;135(22):2091–2101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB, Qi L. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012;367(15):1387–1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Olsen NJ, Ängquist L, Larsen SC, Linneberg A, Skaaby T, Husemoen LL, Toft U, Tjønneland A, Halkjær J, Hansen T, Pedersen O, Overvad K, Ahluwalia TS, Sørensen TI, Heitmann BL. Interactions between genetic variants associated with adiposity traits and soft drinks in relation to longitudinal changes in body weight and waist circumference. Am J Clin Nutr. 2016;104(3):816–826. [DOI] [PubMed] [Google Scholar]
  • 46. Brunkwall L, Chen Y, Hindy G, Rukh G, Ericson U, Barroso I, Johansson I, Franks PW, Orho-Melander M, Renström F. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts. Am J Clin Nutr. 2016;104(3):809–815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Livingstone KM, Celis-Morales C, Navas-Carretero S, San-Cristobal R, Forster H, O’Donovan CB, Woolhead C, Marsaux CF, Macready AL, Fallaize R, Kolossa S, Tsirigoti L, Lambrinou CP, Moschonis G, Godlewska M, Surwiłło A, Drevon CA, Manios Y, Traczyk I, Gibney ER, Brennan L, Walsh MC, Lovegrove JA, Martinez JA, Saris WH, Daniel H, Gibney M, Mathers JC; Food4Me study . Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: the Food4Me study. Br J Nutr. 2016;115(3):440–448. [DOI] [PubMed] [Google Scholar]
  • 48. Zheng Y, Li Y, Huang T, Cheng HL, Campos H, Qi L. Sugar-sweetened beverage intake, chromosome 9p21 variants, and risk of myocardial infarction in Hispanics. Am J Clin Nutr. 2016;103(4):1179–1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, Liang L, Curhan GC, Pasquale LR, Wiggs JL, De Vivo I, Chan AT, Choi HK, Tamimi RM, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB, Qi L. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ. 2014;348:g1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Casas-Agustench P, Arnett DK, Smith CE, Lai CQ, Parnell LD, Borecki IB, Frazier-Wood AC, Allison M, Chen YD, Taylor KD, Rich SS, Rotter JI, Lee YC, Ordovás JM. Saturated fat intake modulates the association between an obesity genetic risk score and body mass index in two US populations. J Acad Nutr Diet. 2014;114(12):1954–1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Hindy G, Ericson U, Hamrefors V, Drake I, Wirfält E, Melander O, Orho-Melander M. The chromosome 9p21 variant interacts with vegetable and wine intake to influence the risk of cardiovascular disease: a population based cohort study. BMC Med Genet. 2014;15(1):1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Do R, Xie C, Zhang X, Männistö S, Harald K, Islam S, Bailey SD, Rangarajan S, McQueen MJ, Diaz R, Lisheng L, Wang X, Silander K, Peltonen L, Yusuf S, Salomaa V, Engert JC, Anand SS; INTERHEART investigators . The effect of chromosome 9p21 variants on cardiovascular disease may be modified by dietary intake: evidence from a case/control and a prospective study. PLoS Med. 2011;8(10):e1001106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Nettleton JA, Follis JL, Ngwa JS, Smith CE, Ahmad S, Tanaka T, Wojczynski MK, Voortman T, Lemaitre RN, Kristiansson K, Nuotio ML, Houston DK, Perälä MM, Qi Q, Sonestedt E, Manichaikul A, Kanoni S, Ganna A, Mikkilä V, North KE, Siscovick DS, Harald K, Mckeown NM, Johansson I, Rissanen H, Liu Y, Lahti J, Hu FB, Bandinelli S, Rukh G, Rich S, Booij L, Dmitriou M, Ax E, Raitakari O, Mukamal K, Männistö S, Hallmans G, Jula A, Ericson U, Jacobs DR Jr, Van Rooij FJ, Deloukas P, Sjögren P, Kähönen M, Djousse L, Perola M, Barroso I, Hofman A, Stirrups K, Viikari J, Uitterlinden AG, Kalafati IP, Franco OH, Mozaffarian D, Salomaa V, Borecki IB, Knekt P, Kritchevsky SB, Eriksson JG, Dedoussis GV, Qi L, Ferrucci L, Orho-Melander M, Zillikens MC, Ingelsson E, Lehtimäki T, Renström F, Cupples LA, Loos RJ, Franks PW. Gene × dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry. Hum Mol Genet. 2015;24(16):4728–4738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Wang T, Heianza Y, Sun D, Huang T, Ma W, Rimm EB, Manson JE, Hu FB, Willett WC, Qi L. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies [published correction appears in BMJ. 2018;360:k693] BMJ. 2018;360:j5644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Qi Q, Li Y, Chomistek AK, Kang JH, Curhan GC, Pasquale LR, Willett WC, Rimm EB, Hu FB, Qi L. Television watching, leisure time physical activity, and the genetic predisposition in relation to body mass index in women and men. Circulation. 2012;126(15):1821–1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Ahmad S, Rukh G, Varga TV, Ali A, Kurbasic A, Shungin D, Ericson U, Koivula RW, Chu AY, Rose LM, Ganna A, Qi Q, Stančáková A, Sandholt CH, Elks CE, Curhan G, Jensen MK, Tamimi RM, Allin KH, Jørgensen T, Brage S, Langenberg C, Aadahl M, Grarup N, Linneberg A, Paré G, Magnusson PK, Pedersen NL, Boehnke M, Hamsten A, Mohlke KL, Pasquale LT, Pedersen O, Scott RA, Ridker PM, Ingelsson E, Laakso M, Hansen T, Qi L, Wareham NJ, Chasman DI, Hallmans G, Hu FB, Renström F, Orho-Melander M, Franks PW; InterAct Consortium; DIRECT Consortium . Gene × physical activity interactions in obesity: combined analysis of 111,421 individuals of European ancestry. PLoS Genet. 2013;9(7):e1003607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN, Jones SE, Tuke MA, Ruth KS, Freathy RM, Davey Smith G, Joost S, Guessous I, Murray A, Strachan DP, Kutalik Z, Weedon MN, Frayling TM. Gene-obesogenic environment interactions in the UK Biobank study. Int J Epidemiol. 2017;46(2):559–575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genet. 2017;13(9):e1006977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Tikkanen E, Gustafsson S, Ingelsson E. Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: longitudinal analyses in the UK Biobank Study. Circulation. 2018;137(24):2583–2591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Wang T, Huang T, Heianza Y, Sun D, Zheng Y, Ma W, Jensen MK, Kang JH, Wiggs JL, Pasquale LR, Rimm EB, Manson JE, Hu FB, Willett WC, Qi L. Genetic susceptibility, change in physical activity, and long-term weight gain. Diabetes. 2017;66(10):2704–2712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, Chasman DI, Baber U, Mehran R, Rader DJ, Fuster V, Boerwinkle E, Melander O, Orho-Melander M, Ridker PM, Kathiresan S. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Heianza Y, Qi L. Gene-diet interaction and precision nutrition in obesity. Int J Mol Sci. 2017;18(4):E787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Qi L. Gene-diet interaction and weight loss. Curr Opin Lipidol. 2014;25(1):27–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Qi L. Gene-diet interactions in complex disease: current findings and relevance for public health. Curr Nutr Rep. 2012;1(4):222–227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Qi L, Cho YA. Gene-environment interaction and obesity. Nutr Rev. 2008;66(12):684–694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Wang DD, Leung CW, Li Y, Ding EL, Chiuve SE, Hu FB, Willett WC. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern Med. 2014;174(10):1587–1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Office of Disease Prevention and Health Promotion. Dietary Guidelines for Americans 2015–2020. 8th ed. Available at: health.gov/dietaryguidelines/2015/guidelines/. Accessed 25 November 2018.
  • 68. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr. 2012;142(6):1009–1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, Willett WC, Rimm EB, Hu FB. Association of changes in diet quality with total and cause-specific mortality. N Engl J Med. 2017;377(2):143–153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, Willett WC, Rimm EB, Hu FB. Changes in diet quality scores and risk of cardiovascular disease among US men and women. Circulation. 2015;132(23):2212–2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Ley SH, Pan A, Li Y, Manson JE, Willett WC, Sun Q, Hu FB. Changes in overall diet quality and subsequent type 2 diabetes risk: three U.S. prospective cohorts. Diabetes Care. 2016;39(11):2011–2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Samieri C, Sun Q, Townsend MK, Chiuve SE, Okereke OI, Willett WC, Stampfer M, Grodstein F. The association between dietary patterns at midlife and health in aging: an observational study. Ann Intern Med. 2013;159(9):584–591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J Acad Nutr Diet. 2013;113(12):1610–1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Satija A, Bhupathiraju SN, Spiegelman D, Chiuve SE, Manson JE, Willett W, Rexrode KM, Rimm EB, Hu FB. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in U.S. adults. J Am Coll Cardiol. 2017;70(4):411–422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–3649. [DOI] [PubMed] [Google Scholar]
  • 76. Yokoyama Y, Nishimura K, Barnard ND, Takegami M, Watanabe M, Sekikawa A, Okamura T, Miyamoto Y. Vegetarian diets and blood pressure: a meta-analysis. JAMA Intern Med. 2014;174(4):577–587. [DOI] [PubMed] [Google Scholar]
  • 77. Wang F, Zheng J, Yang B, Jiang J, Fu Y, Li D. Effects of vegetarian diets on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(10):e002408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, Willett WC, Manson JE, Sun Q, Hu FB. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 2016;13(6):e1002039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Hosseini-Esfahani F, Koochakpoor G, Daneshpour MS, Sedaghati-Khayat B, Mirmiran P, Azizi F. Mediterranean dietary pattern adherence modify the association between FTO genetic variations and obesity phenotypes. Nutrients. 2017;9(10):E1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Lubrano-Berthelier C, Durand E, Dubern B, Shapiro A, Dazin P, Weill J, Ferron C, Froguel P, Vaisse C. Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum Mol Genet. 2003;12(2):145–153. [DOI] [PubMed] [Google Scholar]
  • 81. Qi L, Kraft P, Hunter DJ, Hu FB. The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum Mol Genet. 2008;17(22):3502–3508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Tanaka T, Ngwa JS, van Rooij FJ, Zillikens MC, Wojczynski MK, Frazier-Wood AC, Houston DK, Kanoni S, Lemaitre RN, Luan J, Mikkilä V, Renstrom F, Sonestedt E, Zhao JH, Chu AY, Qi L, Chasman DI, de Oliveira Otto MC, Dhurandhar EJ, Feitosa MF, Johansson I, Khaw KT, Lohman KK, Manichaikul A, McKeown NM, Mozaffarian D, Singleton A, Stirrups K, Viikari J, Ye Z, Bandinelli S, Barroso I, Deloukas P, Forouhi NG, Hofman A, Liu Y, Lyytikäinen LP, North KE, Dimitriou M, Hallmans G, Kähönen M, Langenberg C, Ordovas JM, Uitterlinden AG, Hu FB, Kalafati IP, Raitakari O, Franco OH, Johnson A, Emilsson V, Schrack JA, Semba RD, Siscovick DS, Arnett DK, Borecki IB, Franks PW, Kritchevsky SB, Lehtimäki T, Loos RJ, Orho-Melander M, Rotter JI, Wareham NJ, Witteman JC, Ferrucci L, Dedoussis G, Cupples LA, Nettleton JA. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am J Clin Nutr. 2013;97(6):1395–1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Chu AY, Workalemahu T, Paynter NP, Rose LM, Giulianini F, Tanaka T, Ngwa JS, Qi Q, Curhan GC, Rimm EB, Hunter DJ, Pasquale LR, Ridker PM, Hu FB, Chasman DI, Qi L; CHARGE Nutrition Working Group; DietGen Consortium . Novel locus including FGF21 is associated with dietary macronutrient intake. Hum Mol Genet. 2013;22(9):1895–1902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Huang T, Qi Q, Li Y, Hu FB, Bray GA, Sacks FM, Williamson DA, Qi L. FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial. Am J Clin Nutr. 2014;99(5):1126–1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Huang T, Zheng Y, Hruby A, Williamson DA, Bray GA, Shen Y, Sacks FM, Qi L. Dietary protein modifies the effect of the MC4R genotype on 2-year changes in appetite and food craving: the POUNDS Lost Trial. J Nutr. 2017;147(3):439–444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Sánchez J, Palou A, Picó C. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology. 2009;150(12):5341–5350. [DOI] [PubMed] [Google Scholar]
  • 87. Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol Metab. 2014;4(1):51–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Adams AC, Gimeno RE. The sweetest thing: regulation of macronutrient preference by FGF21. Cell Metab. 2016;23(2):227–228. [DOI] [PubMed] [Google Scholar]
  • 89. Talukdar S, Owen BM, Song P, Hernandez G, Zhang Y, Zhou Y, Scott WT, Paratala B, Turner T, Smith A, Bernardo B, Müller CP, Tang H, Mangelsdorf DJ, Goodwin B, Kliewer SA. FGF21 regulates sweet and alcohol preference. Cell Metab. 2016;23(2):344–349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. von Holstein-Rathlou S, BonDurant LD, Peltekian L, Naber MC, Yin TC, Claflin KE, Urizar AI, Madsen AN, Ratner C, Holst B, Karstoft K, Vandenbeuch A, Anderson CB, Cassell MD, Thompson AP, Solomon TP, Rahmouni K, Kinnamon SC, Pieper AA, Gillum MP, Potthoff MJ. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 2016;23(2):335–343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Lakhani I, Gong M, Wong WT, Bazoukis G, Lampropoulos K, Wong SH, Wu WKK, Wong MCS, Ong KL, Liu T, Tse G; International Health Informatics Study (IHIS) Network . Fibroblast growth factor 21 in cardio-metabolic disorders: a systematic review and meta-analysis. Metabolism. 2018;83:11–17. [DOI] [PubMed] [Google Scholar]
  • 92. Staiger H, Keuper M, Berti L, Hrabe de Angelis M, Häring HU. Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev. 2017;38(5):468–488. [DOI] [PubMed] [Google Scholar]
  • 93. Heianza Y, Ma W, Huang T, Wang T, Zheng Y, Smith SR, Bray GA, Sacks FM, Qi L. Macronutrient intake-associated FGF21 genotype modifies effects of weight-loss diets on 2-year changes of central adiposity and body composition: the POUNDS Lost Trial. Diabetes Care. 2016;39(11):1909–1914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Solon-Biet SM, Cogger VC, Pulpitel T, Heblinski M, Wahl D, McMahon AC, Warren A, Durrant-Whyte J, Walters KA, Krycer JR, Ponton F, Gokarn R, Wali JA, Ruohonen K, Conigrave AD, James DE, Raubenheimer D, Morrison CD, Le Couteur DG, Simpson SJ. Defining the nutritional and metabolic context of FGF21 using the Geometric Framework. Cell Metab. 2016;24(4):555–565. [DOI] [PubMed] [Google Scholar]
  • 95. Simpson SJ, Le Couteur DG, James DE, George J, Gunton JE, Solon-Biet SM, Raubenheimer D. The geometric framework for nutrition as a tool in precision medicine. Nutr Healthy Aging. 2017;4(3):217–226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Gosby AK, Conigrave AD, Raubenheimer D, Simpson SJ. Protein leverage and energy intake. Obes Rev. 2014;15(3):183–191. [DOI] [PubMed] [Google Scholar]
  • 97. Raubenheimer D, Machovsky-Capuska GE, Gosby AK, Simpson S. Nutritional ecology of obesity: from humans to companion animals. Br J Nutr. 2015;113(Suppl):S26–S39. [DOI] [PubMed] [Google Scholar]
  • 98. Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hyppönen E, Cauchi S, He M, Kutalik Z, Kumari M, Stančáková A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, van Vliet-Ostaptchouk JV, Onland-Moret NC, Zimmermann E, Rivera NV, Tanaka T, Stringham HM, Silbernagel G, Kanoni S, Feitosa MF, Snitker S, Ruiz JR, Metter J, Larrad MT, Atalay M, Hakanen M, Amin N, Cavalcanti-Proença C, Grøntved A, Hallmans G, Jansson JO, Kuusisto J, Kähönen M, Lutsey PL, Nolan JJ, Palla L, Pedersen O, Pérusse L, Renström F, Scott RA, Shungin D, Sovio U, Tammelin TH, Rönnemaa T, Lakka TA, Uusitupa M, Rios MS, Ferrucci L, Bouchard C, Meirhaeghe A, Fu M, Walker M, Borecki IB, Dedoussis GV, Fritsche A, Ohlsson C, Boehnke M, Bandinelli S, van Duijn CM, Ebrahim S, Lawlor DA, Gudnason V, Harris TB, Sørensen TI, Mohlke KL, Hofman A, Uitterlinden AG, Tuomilehto J, Lehtimäki T, Raitakari O, Isomaa B, Njølstad PR, Florez JC, Liu S, Ness A, Spector TD, Tai ES, Froguel P, Boeing H, Laakso M, Marmot M, Bergmann S, Power C, Khaw KT, Chasman D, Ridker P, Hansen T, Monda KL, Illig T, Järvelin MR, Wareham NJ, Hu FB, Groop LC, Orho-Melander M, Ekelund U, Franks PW, Loos RJ. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8(11):e1001116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Young AI, Wauthier F, Donnelly P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat Commun. 2016;7(1):12724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Moon JY, Wang T, Sofer T, North KE, Isasi CR, Cai J, Gellman MD, Moncrieft AE, Sotres-Alvarez D, Argos M, Kaplan RC, Qi Q. Objectively measured physical activity, sedentary behavior, and genetic predisposition to obesity in U.S. Hispanics/Latinos: results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes. 2017;66(12):3001–3012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Chomistek AK, Chiuve SE, Eliassen AH, Mukamal KJ, Willett WC, Rimm EB. Healthy lifestyle in the primordial prevention of cardiovascular disease among young women. J Am Coll Cardiol. 2015;65(1):43–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Lv J, Yu C, Guo Y, Bian Z, Yang L, Chen Y, Tang X, Zhang W, Qian Y, Huang Y, Wang X, Chen J, Chen Z, Qi L, Li L; China Kadoorie Biobank Collaborative Group . Adherence to healthy lifestyle and cardiovascular diseases in the Chinese population. J Am Coll Cardiol. 2017;69(9):1116–1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Said MA, Verweij N, van der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank Study. JAMA Cardiol. 2018;3(8):693–702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Pazoki R, Dehghan A, Evangelou E, Warren H, Gao H, Caulfield M, Elliott P, Tzoulaki I. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation. 2018;137(7):653–661. [DOI] [PubMed] [Google Scholar]
  • 105. Look AHEAD Research Group Prospective association of a genetic risk score and lifestyle intervention with cardiovascular morbidity and mortality among individuals with type 2 diabetes: the Look AHEAD randomised controlled trial. Diabetologia. 2015;58(8):1803–1813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Meems LM, van der Harst P, van Gilst WH, de Boer RA. Vitamin D biology in heart failure: molecular mechanisms and systematic review. Curr Drug Targets. 2011;12(1):29–41. [DOI] [PubMed] [Google Scholar]
  • 107. Saneei P, Salehi-Abargouei A, Esmaillzadeh A. Serum 25-hydroxy vitamin D levels in relation to body mass index: a systematic review and meta-analysis. Obes Rev. 2013;14(5):393–404. [DOI] [PubMed] [Google Scholar]
  • 108. Qi L, Ma W, Heianza Y, Zheng Y, Wang T, Sun D, Rimm EB, Hu FB, Giovannucci E, Albert CM, Rexrode KM, Manson JE. Independent and synergistic associations of biomarkers of vitamin D status with risk of coronary heart disease. Arterioscler Thromb Vasc Biol. 2017;37(11):2204–2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, Peltonen L, Cooper JD, O’Reilly PF, Houston DK, Glazer NL, Vandenput L, Peacock M, Shi J, Rivadeneira F, McCarthy MI, Anneli P, de Boer IH, Mangino M, Kato B, Smyth DJ, Booth SL, Jacques PF, Burke GL, Goodarzi M, Cheung CL, Wolf M, Rice K, Goltzman D, Hidiroglou N, Ladouceur M, Wareham NJ, Hocking LJ, Hart D, Arden NK, Cooper C, Malik S, Fraser WD, Hartikainen AL, Zhai G, Macdonald HM, Forouhi NG, Loos RJ, Reid DM, Hakim A, Dennison E, Liu Y, Power C, Stevens HE, Jaana L, Vasan RS, Soranzo N, Bojunga J, Psaty BM, Lorentzon M, Foroud T, Harris TB, Hofman A, Jansson JO, Cauley JA, Uitterlinden AG, Gibson Q, Järvelin MR, Karasik D, Siscovick DS, Econs MJ, Kritchevsky SB, Florez JC, Todd JA, Dupuis J, Hyppönen E, Spector TD. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB, Li Q, Weinstein SJ, Purdue M, Virtamo J, Horst R, Wheeler W, Chanock S, Hunter DJ, Hayes RB, Kraft P, Albanes D. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19(13):2739–2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Jiang X, O’Reilly PF, Aschard H, Hsu YH, Richards JB, Dupuis J, Ingelsson E, Karasik D, Pilz S, Berry D, Kestenbaum B, Zheng J, Luan J, Sofianopoulou E, Streeten EA, Albanes D, Lutsey PL, Yao L, Tang W, Econs MJ, Wallaschofski H, Völzke H, Zhou A, Power C, McCarthy MI, Michos ED, Boerwinkle E, Weinstein SJ, Freedman ND, Huang WY, Van Schoor NM, van der Velde N, Groot LCPGM, Enneman A, Cupples LA, Booth SL, Vasan RS, Liu CT, Zhou Y, Ripatti S, Ohlsson C, Vandenput L, Lorentzon M, Eriksson JG, Shea MK, Houston DK, Kritchevsky SB, Liu Y, Lohman KK, Ferrucci L, Peacock M, Gieger C, Beekman M, Slagboom E, Deelen J, Heemst DV, Kleber ME, März W, de Boer IH, Wood AC, Rotter JI, Rich SS, Robinson-Cohen C, den Heijer M, Jarvelin MR, Cavadino A, Joshi PK, Wilson JF, Hayward C, Lind L, Michaëlsson K, Trompet S, Zillikens MC, Uitterlinden AG, Rivadeneira F, Broer L, Zgaga L, Campbell H, Theodoratou E, Farrington SM, Timofeeva M, Dunlop MG, Valdes AM, Tikkanen E, Lehtimäki T, Lyytikäinen LP, Kähönen M, Raitakari OT, Mikkilä V, Ikram MA, Sattar N, Jukema JW, Wareham NJ, Langenberg C, Forouhi NG, Gundersen TE, Khaw KT, Butterworth AS, Danesh J, Spector T, Wang TJ, Hyppönen E, Kraft P, Kiel DP. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun. 2018;9(1):260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Ye Z, Sharp SJ, Burgess S, Scott RA, Imamura F, Langenberg C, Wareham NJ, Forouhi NG; InterAct Consortium . Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 2015;3(1):35–42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113. Lu L, Bennett DA, Millwood IY, Parish S, McCarthy MI, Mahajan A, Lin X, Bragg F, Guo Y, Holmes MV, Afzal S, Nordestgaard BG, Bian Z, Hill M, Walters RG, Li L, Chen Z, Clarke R. Association of vitamin D with risk of type 2 diabetes: a Mendelian randomisation study in European and Chinese adults. PLoS Med. 2018;15(5):e1002566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Pilz S, Verheyen N, Grübler MR, Tomaschitz A, März W. Vitamin D and cardiovascular disease prevention. Nat Rev Cardiol. 2016;13(7):404–417. [DOI] [PubMed] [Google Scholar]
  • 115. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham JL, Chang HY, Demirkan A, Den Hertog HM, Do R, Donnelly LA, Ehret GB, Esko T, Feitosa MF, Ferreira T, Fischer K, Fontanillas P, Fraser RM, Freitag DF, Gurdasani D, Heikkilä K, Hyppönen E, Isaacs A, Jackson AU, Johansson Å, Johnson T, Kaakinen M, Kettunen J, Kleber ME, Li X, Luan J, Lyytikäinen LP, Magnusson PKE, Mangino M, Mihailov E, Montasser ME, Müller-Nurasyid M, Nolte IM, O’Connell JR, Palmer CD, Perola M, Petersen AK, Sanna S, Saxena R, Service SK, Shah S, Shungin D, Sidore C, Song C, Strawbridge RJ, Surakka I, Tanaka T, Teslovich TM, Thorleifsson G, Van den Herik EG, Voight BF, Volcik KA, Waite LL, Wong A, Wu Y, Zhang W, Absher D, Asiki G, Barroso I, Been LF, Bolton JL, Bonnycastle LL, Brambilla P, Burnett MS, Cesana G, Dimitriou M, Doney ASF, Döring A, Elliott P, Epstein SE, Ingi Eyjolfsson G, Gigante B, Goodarzi MO, Grallert H, Gravito ML, Groves CJ, Hallmans G, Hartikainen AL, Hayward C, Hernandez D, Hicks AA, Holm H, Hung YJ, Illig T, Jones MR, Kaleebu P, Kastelein JJP, Khaw KT, Kim E, Klopp N, Komulainen P, Kumari M, Langenberg C, Lehtimäki T, Lin SY, Lindström J, Loos RJF, Mach F, McArdle WL, Meisinger C, Mitchell BD, Müller G, Nagaraja R, Narisu N, Nieminen TVM, Nsubuga RN, Olafsson I, Ong KK, Palotie A, Papamarkou T, Pomilla C, Pouta A, Rader DJ, Reilly MP, Ridker PM, Rivadeneira F, Rudan I, Ruokonen A, Samani N, Scharnagl H, Seeley J, Silander K, Stančáková A, Stirrups K, Swift AJ, Tiret L, Uitterlinden AG, van Pelt LJ, Vedantam S, Wainwright N, Wijmenga C, Wild SH, Willemsen G, Wilsgaard T, Wilson JF, Young EH, Zhao JH, Adair LS, Arveiler D, Assimes TL, Bandinelli S, Bennett F, Bochud M, Boehm BO, Boomsma DI, Borecki IB, Bornstein SR, Bovet P, Burnier M, Campbell H, Chakravarti A, Chambers JC, Chen YI, Collins FS, Cooper RS, Danesh J, Dedoussis G, de Faire U, Feranil AB, Ferrières J, Ferrucci L, Freimer NB, Gieger C, Groop LC, Gudnason V, Gyllensten U, Hamsten A, Harris TB, Hingorani A, Hirschhorn JN, Hofman A, Hovingh GK, Hsiung CA, Humphries SE, Hunt SC, Hveem K, Iribarren C, Järvelin MR, Jula A, Kähönen M, Kaprio J, Kesäniemi A, Kivimaki M, Kooner JS, Koudstaal PJ, Krauss RM, Kuh D, Kuusisto J, Kyvik KO, Laakso M, Lakka TA, Lind L, Lindgren CM, Martin NG, März W, McCarthy MI, McKenzie CA, Meneton P, Metspalu A, Moilanen L, Morris AD, Munroe PB, Njølstad I, Pedersen NL, Power C, Pramstaller PP, Price JF, Psaty BM, Quertermous T, Rauramaa R, Saleheen D, Salomaa V, Sanghera DK, Saramies J, Schwarz PEH, Sheu WH, Shuldiner AR, Siegbahn A, Spector TD, Stefansson K, Strachan DP, Tayo BO, Tremoli E, Tuomilehto J, Uusitupa M, van Duijn CM, Vollenweider P, Wallentin L, Wareham NJ, Whitfield JB, Wolffenbuttel BHR, Ordovas JM, Boerwinkle E, Palmer CNA, Thorsteinsdottir U, Chasman DI, Rotter JI, Franks PW, Ripatti S, Cupples LA, Sandhu MS, Rich SS, Boehnke M, Deloukas P, Kathiresan S, Mohlke KL, Ingelsson E, Abecasis GR; Global Lipids Genetics Consortium . Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, Emdin C, Alam D, Alves AC, Amouyel P, Di Angelantonio E, Arveiler D, Assimes TL, Auer PL, Baber U, Ballantyne CM, Bang LE, Benn M, Bis JC, Boehnke M, Boerwinkle E, Bork-Jensen J, Bottinger EP, Brandslund I, Brown M, Busonero F, Caulfield MJ, Chambers JC, Chasman DI, Chen YE, Chen YI, Chowdhury R, Christensen C, Chu AY, Connell JM, Cucca F, Cupples LA, Damrauer SM, Davies G, Deary IJ, Dedoussis G, Denny JC, Dominiczak A, Dubé MP, Ebeling T, Eiriksdottir G, Esko T, Farmaki AE, Feitosa MF, Ferrario M, Ferrieres J, Ford I, Fornage M, Franks PW, Frayling TM, Frikke-Schmidt R, Fritsche LG, Frossard P, Fuster V, Ganesh SK, Gao W, Garcia ME, Gieger C, Giulianini F, Goodarzi MO, Grallert H, Grarup N, Groop L, Grove ML, Gudnason V, Hansen T, Harris TB, Hayward C, Hirschhorn JN, Holmen OL, Huffman J, Huo Y, Hveem K, Jabeen S, Jackson AU, Jakobsdottir J, Jarvelin MR, Jensen GB, Jørgensen ME, Jukema JW, Justesen JM, Kamstrup PR, Kanoni S, Karpe F, Kee F, Khera AV, Klarin D, Koistinen HA, Kooner JS, Kooperberg C, Kuulasmaa K, Kuusisto J, Laakso M, Lakka T, Langenberg C, Langsted A, Launer LJ, Lauritzen T, Liewald DCM, Lin LA, Linneberg A, Loos RJF, Lu Y, Lu X, Mägi R, Malarstig A, Manichaikul A, Manning AK, Mäntyselkä P, Marouli E, Masca NGD, Maschio A, Meigs JB, Melander O, Metspalu A, Morris AP, Morrison AC, Mulas A, Müller-Nurasyid M, Munroe PB, Neville MJ, Nielsen JB, Nielsen SF, Nordestgaard BG, Ordovas JM, Mehran R, O’Donnell CJ, Orho-Melander M, Molony CM, Muntendam P, Padmanabhan S, Palmer CNA, Pasko D, Patel AP, Pedersen O, Perola M, Peters A, Pisinger C, Pistis G, Polasek O, Poulter N, Psaty BM, Rader DJ, Rasheed A, Rauramaa R, Reilly DF, Reiner AP, Renström F, Rich SS, Ridker PM, Rioux JD, Robertson NR, Roden DM, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sanna S, Sattar N, Schmidt EM, Scott RA, Sever P, Sevilla RS, Shaffer CM, Sim X, Sivapalaratnam S, Small KS, Smith AV, Smith BH, Somayajula S, Southam L, Spector TD, Speliotes EK, Starr JM, Stirrups KE, Stitziel N, Strauch K, Stringham HM, Surendran P, Tada H, Tall AR, Tang H, Tardif JC, Taylor KD, Trompet S, Tsao PS, Tuomilehto J, Tybjaerg-Hansen A, van Zuydam NR, Varbo A, Varga TV, Virtamo J, Waldenberger M, Wang N, Wareham NJ, Warren HR, Weeke PE, Weinstock J, Wessel J, Wilson JG, Wilson PWF, Xu M, Yaghootkar H, Young R, Zeggini E, Zhang H, Zheng NS, Zhang W, Zhang Y, Zhou W, Zhou Y, Zoledziewska M, Howson JMM, Danesh J, McCarthy MI, Cowan CA, Abecasis G, Deloukas P, Musunuru K, Willer CJ, Kathiresan S; Charge Diabetes Working Group; EPIC-InterAct Consortium; EPIC-CVD Consortium; GOLD Consortium; VA Million Veteran Program . Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet. 2017;49(12):1758–1766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Varga TV, Kurbasic A, Aine M, Eriksson P, Ali A, Hindy G, Gustafsson S, Luan J, Shungin D, Chen Y, Schulz CA, Nilsson PM, Hallmans G, Barroso I, Deloukas P, Langenberg C, Scott RA, Wareham NJ, Lind L, Ingelsson E, Melander O, Orho-Melander M, Renström F, Franks PW. Novel genetic loci associated with long-term deterioration in blood lipid concentrations and coronary artery disease in European adults. Int J Epidemiol. 2017;46(4):1211–1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Hindy G, Engström G, Larsson SC, Traylor M, Markus HS, Melander O, Orho-Melander M; Stroke Genetics Network (SiGN) . Role of blood lipids in the development of ischemic stroke and its subtypes: a Mendelian randomization study. Stroke. 2018;49(4):820–827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Joshi PK, Pirastu N, Kentistou KA, Fischer K, Hofer E, Schraut KE, Clark DW, Nutile T, Barnes CLK, Timmers PRHJ, Shen X, Gandin I, McDaid AF, Hansen TF, Gordon SD, Giulianini F, Boutin TS, Abdellaoui A, Zhao W, Medina-Gomez C, Bartz TM, Trompet S, Lange LA, Raffield L, van der Spek A, Galesloot TE, Proitsi P, Yanek LR, Bielak LF, Payton A, Murgia F, Concas MP, Biino G, Tajuddin SM, Seppälä I, Amin N, Boerwinkle E, Børglum AD, Campbell A, Demerath EW, Demuth I, Faul JD, Ford I, Gialluisi A, Gögele M, Graff M, Hingorani A, Hottenga JJ, Hougaard DM, Hurme MA, Ikram MA, Jylhä M, Kuh D, Ligthart L, Lill CM, Lindenberger U, Lumley T, Mägi R, Marques-Vidal P, Medland SE, Milani L, Nagy R, Ollier WER, Peyser PA, Pramstaller PP, Ridker PM, Rivadeneira F, Ruggiero D, Saba Y, Schmidt R, Schmidt H, Slagboom PE, Smith BH, Smith JA, Sotoodehnia N, Steinhagen-Thiessen E, van Rooij FJA, Verbeek AL, Vermeulen SH, Vollenweider P, Wang Y, Werge T, Whitfield JB, Zonderman AB, Lehtimäki T, Evans MK, Pirastu M, Fuchsberger C, Bertram L, Pendleton N, Kardia SLR, Ciullo M, Becker DM, Wong A, Psaty BM, van Duijn CM, Wilson JG, Jukema JW, Kiemeney L, Uitterlinden AG, Franceschini N, North KE, Weir DR, Metspalu A, Boomsma DI, Hayward C, Chasman D, Martin NG, Sattar N, Campbell H, Esko T, Kutalik Z, Wilson JF. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. Nat Commun. 2017;8(1):910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS, Zhang W, Yang Y, Tan S, Fiorito G, Franke L, Guarrera S, Kasela S, Kriebel J, Richmond RC, Adamo M, Afzal U, Ala-Korpela M, Albetti B, Ammerpohl O, Apperley JF, Beekman M, Bertazzi PA, Black SL, Blancher C, Bonder MJ, Brosch M, Carstensen-Kirberg M, de Craen AJ, de Lusignan S, Dehghan A, Elkalaawy M, Fischer K, Franco OH, Gaunt TR, Hampe J, Hashemi M, Isaacs A, Jenkinson A, Jha S, Kato N, Krogh V, Laffan M, Meisinger C, Meitinger T, Mok ZY, Motta V, Ng HK, Nikolakopoulou Z, Nteliopoulos G, Panico S, Pervjakova N, Prokisch H, Rathmann W, Roden M, Rota F, Rozario MA, Sandling JK, Schafmayer C, Schramm K, Siebert R, Slagboom PE, Soininen P, Stolk L, Strauch K, Tai ES, Tarantini L, Thorand B, Tigchelaar EF, Tumino R, Uitterlinden AG, van Duijn C, van Meurs JB, Vineis P, Wickremasinghe AR, Wijmenga C, Yang TP, Yuan W, Zhernakova A, Batterham RL, Smith GD, Deloukas P, Heijmans BT, Herder C, Hofman A, Lindgren CM, Milani L, van der Harst P, Peters A, Illig T, Relton CL, Waldenberger M, Järvelin MR, Bollati V, Soong R, Spector TD, Scott J, McCarthy MI, Elliott P, Bell JT, Matullo G, Gieger C, Kooner JS, Grallert H, Chambers JC. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H, Waldenberger M, Peters A, Erdmann J, Hengstenberg C, Cambien F, Goodall AH, Ouwehand WH, Schunkert H, Thompson JR, Spector TD, Gieger C, Trégouët DA, Deloukas P, Samani NJ. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990–1998. [DOI] [PubMed] [Google Scholar]
  • 122. Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, Sha J, Pankow JS, Liu C, Irvin MR, Fornage M, Hidalgo B, Lin LA, Thibeault KS, Bressler J, Tsai MY, Grove ML, Hopkins PN, Boerwinkle E, Borecki IB, Ordovas JM, Levy D, Tiwari HK, Absher DM, Arnett DK. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring). 2015;23(7):1493–1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, Hedman AK, Sandling JK, Li LA, Irvin MR, Zhi D, Deloukas P, Liang L, Liu C, Bressler J, Spector TD, North K, Li Y, Absher DM, Levy D, Arnett DK, Fornage M, Pankow JS, Boerwinkle E. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet. 2015;24(15):4464–4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124. Mendelson MM, Marioni RE, Joehanes R, Liu C, Hedman AK, Aslibekyan S, Demerath EW, Guan W, Zhi D, Yao C, Huan T, Willinger C, Chen B, Courchesne P, Multhaup M, Irvin MR, Cohain A, Schadt EE, Grove ML, Bressler J, North K, Sundström J, Gustafsson S, Shah S, McRae AF, Harris SE, Gibson J, Redmond P, Corley J, Murphy L, Starr JM, Kleinbrink E, Lipovich L, Visscher PM, Wray NR, Krauss RM, Fallin D, Feinberg A, Absher DM, Fornage M, Pankow JS, Lind L, Fox C, Ingelsson E, Arnett DK, Boerwinkle E, Liang L, Levy D, Deary IJ. Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a Mendelian randomization approach. PLoS Med. 2017;14(1):e1002215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, Kang JH, Wiggs J, Pasquale LR, Chan AT, Rimm EB, Hunter DJ, Manson JE, Willett WC, Hu FB, Qi L. DNA methylation variants at HIF3A locus, B-vitamin intake, and long-term weight change: gene-diet interactions in two U.S. cohorts. Diabetes. 2015;64(9):3146–3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Huang T, Wang T, Heianza Y, Sun D, Ivey K, Durst R, Schwarzfuchs D, Stampfer MJ, Bray GA, Sacks FM, Shai I, Qi L. HNF1A variant, energy-reduced diets and insulin resistance improvement during weight loss: the POUNDS Lost trial and DIRECT. Diabetes Obes Metab. 2018;20(6):1445–1452. [DOI] [PubMed] [Google Scholar]
  • 127. Li X, Wang T, Zhao M, Huang T, Sun D, Han L, Nisa H, Shang X, Heianza Y, Qi L. DNA methylation variant, B-vitamins intake and longitudinal change in body mass index [published online ahead of print 17 May 2018] Int J Obes. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Sun D, Heianza Y, Li X, Shang X, Smith SR, Bray GA, Sacks FM, Qi L. Genetic, epigenetic and transcriptional variations at NFATC2IP locus with weight loss in response to diet interventions: the POUNDS Lost Trial. Diabetes Obes Metab. 2018;20(9):2298–2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129. Orozco LD, Farrell C, Hale C, Rubbi L, Rinaldi A, Civelek M, Pan C, Lam L, Montoya D, Edillor C, Seldin M, Boehnke M, Mohlke KL, Jacobsen S, Kuusisto J, Laakso M, Lusis AJ, Pellegrini M. Epigenome-wide association in adipose tissue from the METSIM cohort. Hum Mol Genet. 2018;27(10):1830–1846. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Endocrinology are provided here courtesy of The Endocrine Society

RESOURCES