Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 1;11(3):338–347. doi: 10.2478/s11658-006-0028-0

Studies on genetic changes in rye samples (Secale cereale L.) maintained in a seed bank

Katarzyna J Chwedorzewska 1,, Piotr T Bednarek 1,, Renata Lewandowska 1, Paweł Krajewski 2, Jerzy Puchalski 1
PMCID: PMC6472841  PMID: 16847558

Abstract

The aim of this study was to identify genetic changes in rye seeds induced by natural ageing during long-term storage and consecutive regeneration cycles under gene bank conditions. Genomic DNA from four rye samples varying in their initial viability after one and three cycles of reproduction was analyzed by AFLP (amplified fragment length polymorphism) fingerprinting. Seven EcoRI/MseI primer combinations defined 663 fragments, and seven PstI/MseI primer combinations defined 551 fragments. The variation in the frequency of the seventy-four EcoRI/MseI bands was statistically significant between samples. These changes could be attributed to genetic changes occurring during storage and regeneration. However, the PstI/MseI fragments appeared to be uninfluenced by seed ageing, regeneration and propagation. A combined Principle Coordinate Analysis revealed differences between samples with different initial viability. We showed that materials with low initial viability differ in their response from highly viable ones, and that the changes exhibited in the former case are preserved through regeneration cycles.

Key words: Rye, Secale cereale L, Seed storage and propagation, AFLP

Full Text

The Full Text of this article is available as a PDF (506.7 KB).

Abbreviations used

AFLP

amplified fragment length polymorphism

DZ

Dańkowskie Złote

PCA

principal component analysis

RAPD

random amplified polymorphic DNA

STS

sequence-tagged sites

References

  • 1.Shoen D.J., Jacques L.D., Bataillon T.M. Deleterious mutation accumulation and regeneration of genetic resources. Proc. Natl. Acad. Sci. USA. 1998;95:394–399. doi: 10.1073/pnas.95.1.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Roos E.E. Genetic shifts in mixed bean populations. I. Storage effects. Crop Sci. 1984;24:240–244. doi: 10.2135/cropsci1984.0011183X002400020008x. [DOI] [Google Scholar]
  • 3.Roos E.E. Genetic shifts in mixed bean populations. II. Effects of regeneration. Crop Sci. 1984;24:711–715. doi: 10.2135/cropsci1984.0011183X002400040020x. [DOI] [Google Scholar]
  • 4.Roos E.E., Rincker C.M. Genetic stability in ‘Pennlate’ orchardgrass seed following artificial ageing. Crop Sci. 1988;22:611–613. doi: 10.2135/cropsci1982.0011183X002200030043x. [DOI] [Google Scholar]
  • 5.Stoyanova S.D. Genetic shift and variations of gliadins induced by seed ageing. Seed Sci. Technol. 1991;19:363–371. [Google Scholar]
  • 6.Stoyanova S.D. Effects of seed ageing and regeneration on the genetic composition of wheat. Seed Sci. Technol. 1992;20:489–496. [Google Scholar]
  • 7.Stoyanova S.D. Variation of gliadins in wheat cultivars associated with seed survival and multiplication. Seed Sci. Technol. 1996;24:115–126. [Google Scholar]
  • 8.Bednarek P.T., Chwedorzewska K.J., Puchalski J. Preliminary molecular studies on genetic changes in rye seeds due to long-term storage and regeneration. In: Gass T., Podyma W., Puchalski J., Eberhart S.A., editors. Challenges in Rye Germplasm Conservation. Rome: International Plant Genetic Resources Institute; 1998. pp. 54–61. [Google Scholar]
  • 9.Shatters R.G., Jr., Schweder M.E., West S.H., Abdelghany A., Smith R.L. Environmentally induced polymorphisms detected by RAPD analysis of soybean seed DNA. Seed Science Research Seed Sci. Technol. 1995;5:106–116. [Google Scholar]
  • 10.Chwedorzewska K.J., Bednarek P.T., Puchalski J., Krajewski P. AFLP profiling of long-term stored and regenerated rye genebank samples. Cell. Mol. Biol. Lett. 2002;7A:457–463. [PubMed] [Google Scholar]
  • 11.Chwedorzewska K.J., Bednarek P.T., Puchalski J. Studies on specific rye genome regions due to seed ageing and regeneration. Cell. Mol. Biol. Lett. 2002;7A:569–576. [PubMed] [Google Scholar]
  • 12.Chebotar S., Röder M.S., Korzun V., Börner A. Genetic integrity of ex situ genebank collections. Cell. Mol. Biol. Lett. 2002;7A:437–444. [PubMed] [Google Scholar]
  • 13.Börner A., Chebotar S., Korzun V. Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor. Appl. Genet. 2000;100:494–497. doi: 10.1007/s001220050064. [DOI] [Google Scholar]
  • 14.Castiglioni P., Ajmone-Marsan P., van Wijk R., Motto M. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group ditstribution. Theor. Appl. Genet. 1999;99:425–431. doi: 10.1007/s001220051253. [DOI] [PubMed] [Google Scholar]
  • 15.Young W.P., Schupp J.M., Keim P. DNA methylation and AFLP marker distribution in the soybean genome. Theor. Appl. Genet. 1999;99:785–790. doi: 10.1007/s001220051297. [DOI] [Google Scholar]
  • 16.Vos P., Hogers R., Bleeker M., van de Lee T., Hormes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;21:4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Bednarek P.T., Kubicka H., Zawada M. Morphological, cytological and BSA-based testing on limited segregation population AFLPs. Cell. Mol. Biol. Lett. 2002;7B:635–648. [PubMed] [Google Scholar]
  • 18.Bednarek P.T., Lewandowska R., Kubicka H., Masojć P. Linkage groups and the indirect chromosome location of cms-P-linked AFLPs. Cell. Mol. Biol. Lett. 2002;7B:721–736. [PubMed] [Google Scholar]
  • 19.Mardia K.V., Kent J.T., Bibby J.M. Multivariate analysis. London: Academic Press; 1979. [Google Scholar]
  • 20.Bednarek P.T., Lewandowska R., Gołas T., Paśnik M. The chromosomal location of rye AFLP bands. Cell. Mol. Biol. Lett. 2003;8:955–962. [PubMed] [Google Scholar]
  • 21.Vuylsteke M., Mank R., Antonise R., Bastiaans R., Senior M.L., Stuber C.W., Melchinger A.E., Lubberstedt T., Xia X.C., Stam P., Zabeau M., Kuiper M. Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor. Appl. Genet. 1999;99:921–935. doi: 10.1007/s001220051399. [DOI] [Google Scholar]
  • 22.Li Y.-CH., Korol A.B., Fahima T., Beiles A., Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 2002;11:2453–2465. doi: 10.1046/j.1365-294X.2002.01643.x. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES