Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 18;75(Pt 5):646–649. doi: 10.1107/S2056989019005103

Crystal structure of 4-(2-hy­droxy-3-meth­oxy­benzyl­amino)­benzoic acid di­methyl­formamide monosolvate monohydrate

Md Serajul Haque Faizi a,*, Saima Kamaal b, Arif Ali b, Musheer Ahmad b, Irina A Golenya c,*
PMCID: PMC6505596  PMID: 31110804

The title compound, C15H15NO4·C3H7NO·H2O, crystallizes with one mol­ecule of water and one mol­ecule of di­methyl­formamide (DMF) as solvate mol­ecules. The mol­ecule is non-planar, with a Car­yl—CH2—NH—Car­yl torsion angle of −66.3 (3)°.

Keywords: crystal structure, 2-hy­droxy-3-meth­oxy-benzaldehyde, 4-amino­benzoic acid (PABA), secondary amine, hydrogen bonding, vanillin derivative, di­methyl­formamide solvate

Abstract

The title compound, C15H15NO4·C3H7NO·H2O, a secondary amine mol­ecule, is accompanied by one equivalent of water and one equivalent of di­methyl­formamide (DMF) as solvents. The mol­ecule is non-planar, with a Car­yl—CH2—NH—Car­yl torsion angle of −66.3 (3)°. In the crystal, O—H⋯O and N—H⋯O hydrogen-bonding inter­actions between the amine mol­ecules and the two types of solvent mol­ecule result in the formation of a layered structure extending parallel to (010).

Chemical context  

Vanillin and vanillin derivatives are used in food and non-food applications, in fragrances and as flavouring agents for pharmaceutical products (Hocking, 1997; Walton et al., 2003). Synthetic vanillin is used as an inter­mediate in the chemical and pharmaceutical industries for the production of herbicides, anti­foaming agents and drugs, such as papaverine, l-dopa and l-methyl­dopa, as well as anti­microbial agents such as trimethoprim (Fitzgerald et al., 2005), and as a bacterial co-factor involved in the synthesis of folic acid (Robinson, 1966). Another example is benzocaine, the ethyl ester of p-amino­benzoic acid, which is a local anaesthetic. The mechanism includes inhibiting voltage-dependent sodium channels on the nerve membrane, which results in stopping the signal propagation (Neumcke et al., 1981). The title compound (1) was synthesized by reduction of reported (E)-4-(2-hy­droxy-3-meth­oxy­benzyl­idene­amino)­benzoic acid with sodium borohydride and crystallizes as a water and di­methyl­formamide solvate. The latter Schiff base is formed by condensation of 4-amino­benzoic acid with o-vanilline.graphic file with name e-75-00646-scheme1.jpg

In this context and as part of an ongoing structural study of Schiff bases and secondary amines for their utilization in the synthesis of new organic compounds and the application of excited-state proton transfer and fluorescent chemosensors (Faizi et al., 2016a ,b , 2018a ,b ; Kumar et al., 2018; Mukherjee et al., 2018), we report here the mol­ecular and crystal structure of (1), C15H15NO4·C3H7NO·H2O.

Structural commentary  

Compound (1) crystallizes in space group Pbca with one mol­ecule of 4-(2-hy­droxy-3-meth­oxy­benzyl­amino)­benzoic acid and one mol­ecule each of DMF and water in the asymmetric unit (Fig. 1). The secondary amine has two substituted aromatic rings at either end of the —CH2—NH— linkage. As a result of the Car­yl—CH2—NH— Car­yl torsion angle of −66.3 (3)°, the mol­ecular shape of the title compound is bent around the central C8—N1 bond. The secondary amine N atom (N1) has a practically trigonal-planar configuration deviating by 0.02 (1) Å from the mean plane of the adjacent atoms, and N1—C5 is apparently less conjugated with the C2–C7 benzenecarboxylic acid ring. For comparison, the reported C—N distance in the crystal structure of the ethyl 4-[(E)-(4-hy­droxy-3-meth­oxy­benzyl­idene)amino]­benzoate Schiff base is 1.274 (2) Å (Ling et al., 2016), and in the zwitterionic form it is 1.312 Å (Kamaal et al., 2018). The benzene rings C2–C7 and C9–C14 are roughly perpendicular to each another, with a dihedral angle of 88.15 (10)° between them.

Figure 1.

Figure 1

The structures of the mol­ecular entities in the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Inter­molecular O—Hwater⋯Oamide and C—Hmeth­yl⋯Namine hydrogen bonds involving the water and di­methyl­formamide solvent mol­ecules are shown as dashed lines (see Table 1 for numerical details).

The C16=O5 bond length in the dimethlyformamide solvent is 1.246 (2) Å, which is slightly longer than reported [1.2309 (17) Å (Fernandes et al., 2007) or 1.2373 (18) Å (Elgemeie et al., 2015)] for other di­methyl­formamide solvates. In (1), the C13—O4 bond length to the meth­oxy group is 1.366 (2) Å.

Supra­molecular features  

The water and di­methyl­formamide solvent mol­ecules stabilize the packing within the crystal structure through hydrogen bonding. The molecules of di­methyl­formamide, 4-(2-hy­droxy-3-meth­oxy­benzyl­amino)­benzoic acid and water are linked through hy­droxyO3—H3⋯O6water, amineN1—H1⋯O6water, waterO6—H6B⋯O5amide, waterO6—H6B⋯O1carb­oxy­ate and O2—H2⋯O5amide hydrogen bonds (Table 1, Fig. 2) into a layered structure extending parallel to (010) (Fig. 3). Further C—H⋯O inter­actions (Table 1) between the methyl group of the meth­oxy functionality and the carboxyl­ate group consolidate the packing.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O1i 0.96 2.50 3.329 (3) 145
N1—H1⋯O6iii 0.89 (2) 2.05 (2) 2.936 (2) 175 (2)
O2—H2⋯O5iv 0.90 (3) 1.70 (3) 2.591 (2) 171 (3)
O3—H3⋯O6v 0.88 (3) 1.90 (3) 2.739 (2) 158 (3)
O6—H6A⋯O1vi 0.85 (3) 1.94 (3) 2.776 (2) 172 (3)
O6—H6B⋯O5 0.88 (3) 1.91 (3) 2.785 (2) 178 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

A view of hydrogen-bonding inter­actions around the water mol­ecule in the title structure.

Figure 3.

Figure 3

A partial view of the title structure projected along the a axis to emphasize the crystal packing. Dashed lines indicate hydrogen bonds (see Table 1 for numerical details).

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave eleven hits for reduced Schiff bases containing a Car­yl—CH2—NH— Car­yl moiety. In direct comparison with the title compound, there are two examples of very similar compounds reported in the literature: ethyl 4-{[(2-hy­droxy­phen­yl)meth­yl]amino}­benzoate, (I) (WEFQEG; Salman et al., 2017), and ethyl 4-[(3,5-di-tert-butyl-2-hy­droxy­benz­yl) amino]­benzoate, (II) (VABTAV; Shakir et al., 2010). There is also a related compound, viz. ethyl 4-[(2-hy­droxy­benz­yl)amino]­benzoate, in which the 3-meth­oxy group in the title compound is replaced by a hydrogen atom and the carb­oxy­lic acid is replaced by an ester. Other related structures based on a benzyl­idene–phen­yl–amine moiety are n-propyl 4-[2-(4,6-di­meth­oxy­pyrimidin-2-yl­oxy)benzyl­amino]­benzoate, (III) (ILAGIL; Wu et al., 2003), and [4-(2-hy­droxy­benzyl­amino)­benzoato-κO]tri­phenyl­tin(IV), (IV) (WENXAP; Jiang et al., 2006). The torsion angle Car­yl—CH2—NH—Car­yl in the title compound [−66.3 (3)°] compares well to those in I (73.68°), II (77.38°) and IV (−87.28°), despite the difference in substituent groups.

Synthesis and crystallization  

To a hot stirred solution of 4-amino­benzoic acid (PABA) (1.00 g, 7.2 mmol) in methanol (15 ml) was added vanillin (1.11 g, 7.2 mmol). The resultant mixture was then heated under reflux. After an hour, a precipitate was formed. The reaction mixture was heated for about a further 30 minutes for completion of the reaction, which was monitored through TLC. The reaction mixture was then cooled to room temperature, filtered and washed with hot methanol. It was then dried in vacuo to give (E)-4-(2-hy­droxy-3-meth­oxy­benzyl­idene­amino) benzoic acid in 78% yield. The latter (1.00 g, 3.7 mmol) was dissolved in 25 ml of methanol and reduced by addition of excess sodium borohydride (0.28 g, 7.4 mmol). The solution was stirred until the yellow colour disappeared. Then the solution was diluted with 8–10 times the volume of water and the pH was adjusted to 6 by addition of 12%wt HCl. The white precipitate was collected and dried in air. Colourless single crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of a di­methyl­formamide solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N—H and O—H hydrogen atoms were located in difference-Fourier maps and were freely refined, while the C-bound H atoms were included in calculated positions and treated as riding, with fixed C—H = 0.93 Å, and U iso(H) = 1.2U eq(C,N).

Table 2. Experimental details.

Crystal data
Chemical formula C15H15NO4·C3H7NO·H2O
M r 364.39
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 100
a, b, c (Å) 11.5504 (7), 13.8047 (7), 22.3899 (12)
V3) 3570.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.39 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 40928, 3165, 2321
R int 0.106
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.113, 1.05
No. of reflections 3165
No. of parameters 258
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.25

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXT2015 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019005103/wm5490sup1.cif

e-75-00646-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019005103/wm5490Isup2.hkl

e-75-00646-Isup2.hkl (253.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019005103/wm5490Isup3.cml

CCDC reference: 1909944

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Department of Applied Chemistry, Aligarh Muslim University, Aligarh and the Department of Chemistry, L. S. College, B. R. A. Bihar University, are acknowledged for providing laboratory facilities.

supplementary crystallographic information

Crystal data

C15H15NO4·C3H7NO·H2O Dx = 1.356 Mg m3
Mr = 364.39 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 6409 reflections
a = 11.5504 (7) Å θ = 2.3–28.2°
b = 13.8047 (7) Å µ = 0.10 mm1
c = 22.3899 (12) Å T = 100 K
V = 3570.1 (3) Å3 Block, colorless
Z = 8 0.39 × 0.24 × 0.17 mm
F(000) = 1552

Data collection

Bruker APEXII CCD diffractometer Rint = 0.106
φ and ω scans θmax = 25.1°, θmin = 2.9°
40928 measured reflections h = −13→13
3165 independent reflections k = −16→16
2321 reflections with I > 2σ(I) l = −26→26

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0393P)2 + 2.7178P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3165 reflections Δρmax = 0.25 e Å3
258 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.97909 (13) 0.64576 (11) 0.53644 (7) 0.0253 (4)
O2 1.07571 (14) 0.62871 (12) 0.45097 (7) 0.0283 (4)
O3 0.71716 (14) 0.70129 (10) 0.18430 (7) 0.0252 (4)
O4 0.76784 (13) 0.88000 (10) 0.14629 (6) 0.0225 (4)
N1 0.56965 (16) 0.64392 (13) 0.34340 (8) 0.0202 (4)
C1 0.97938 (19) 0.63895 (15) 0.48187 (10) 0.0203 (5)
C2 0.87414 (18) 0.64213 (15) 0.44484 (9) 0.0191 (5)
C3 0.76483 (19) 0.64465 (15) 0.47181 (10) 0.0205 (5)
H3A 0.759163 0.644607 0.513245 0.025*
C4 0.66632 (18) 0.64718 (15) 0.43802 (9) 0.0195 (5)
H4 0.594711 0.649520 0.456958 0.023*
C5 0.67081 (18) 0.64633 (14) 0.37540 (9) 0.0182 (5)
C6 0.78028 (18) 0.64468 (15) 0.34804 (9) 0.0209 (5)
H6 0.786010 0.645126 0.306608 0.025*
C7 0.87952 (18) 0.64238 (15) 0.38257 (10) 0.0204 (5)
H7 0.951416 0.640972 0.363889 0.024*
C8 0.56478 (18) 0.66082 (15) 0.27954 (9) 0.0198 (5)
H8A 0.487059 0.646580 0.265676 0.024*
H8B 0.617048 0.615927 0.259956 0.024*
C9 0.59608 (18) 0.76308 (15) 0.26052 (9) 0.0183 (5)
C10 0.54893 (18) 0.84270 (15) 0.29065 (9) 0.0204 (5)
H10 0.499734 0.832750 0.322951 0.024*
C11 0.57492 (18) 0.93582 (15) 0.27275 (9) 0.0216 (5)
H11 0.543392 0.988120 0.293264 0.026*
C12 0.64763 (18) 0.95228 (15) 0.22444 (9) 0.0204 (5)
H12 0.664327 1.015250 0.212442 0.024*
C13 0.69509 (18) 0.87437 (15) 0.19427 (9) 0.0184 (5)
C14 0.66910 (18) 0.77913 (15) 0.21267 (9) 0.0185 (5)
C15 0.8038 (2) 0.97495 (15) 0.12804 (10) 0.0246 (5)
H15A 0.838277 1.007996 0.161321 0.037*
H15B 0.737862 1.010846 0.114248 0.037*
H15C 0.859436 0.969537 0.096352 0.037*
O5 0.73401 (13) 0.39240 (11) 0.48915 (6) 0.0232 (4)
N2 0.63766 (15) 0.39534 (12) 0.40067 (8) 0.0197 (4)
C16 0.73235 (19) 0.38897 (15) 0.43356 (10) 0.0207 (5)
H16 0.802632 0.381408 0.413834 0.025*
C17 0.64116 (19) 0.39045 (16) 0.33595 (9) 0.0233 (5)
H17A 0.718785 0.376788 0.323146 0.035*
H17B 0.616637 0.451334 0.319537 0.035*
H17C 0.590384 0.340011 0.322353 0.035*
C18 0.52415 (19) 0.40815 (18) 0.42793 (10) 0.0287 (6)
H18A 0.533133 0.419569 0.469968 0.043*
H18B 0.478642 0.350798 0.421860 0.043*
H18C 0.485877 0.462530 0.409914 0.043*
O6 0.63671 (14) 0.30090 (13) 0.58799 (7) 0.0227 (4)
H1 0.506 (2) 0.6567 (16) 0.3644 (10) 0.025 (6)*
H2 1.138 (3) 0.623 (2) 0.4752 (13) 0.060 (10)*
H3 0.759 (2) 0.7170 (19) 0.1528 (12) 0.045 (8)*
H6A 0.607 (2) 0.250 (2) 0.5735 (12) 0.044 (9)*
H6B 0.667 (2) 0.329 (2) 0.5565 (13) 0.047 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0240 (9) 0.0326 (9) 0.0193 (9) 0.0028 (7) −0.0005 (7) 0.0003 (7)
O2 0.0179 (9) 0.0423 (10) 0.0247 (9) 0.0061 (7) 0.0004 (7) −0.0053 (7)
O3 0.0359 (10) 0.0164 (8) 0.0234 (9) 0.0002 (7) 0.0095 (7) −0.0016 (7)
O4 0.0277 (9) 0.0182 (8) 0.0217 (8) −0.0013 (6) 0.0070 (7) 0.0019 (6)
N1 0.0190 (10) 0.0251 (10) 0.0165 (10) 0.0002 (8) 0.0014 (8) 0.0014 (8)
C1 0.0243 (12) 0.0164 (11) 0.0202 (13) 0.0024 (9) 0.0011 (9) −0.0017 (9)
C2 0.0218 (12) 0.0156 (11) 0.0199 (12) 0.0009 (9) −0.0004 (9) −0.0008 (9)
C3 0.0255 (12) 0.0185 (12) 0.0175 (11) −0.0009 (9) 0.0026 (9) 0.0010 (9)
C4 0.0178 (11) 0.0206 (12) 0.0199 (12) −0.0018 (9) 0.0038 (9) 0.0000 (9)
C5 0.0212 (12) 0.0117 (10) 0.0216 (12) −0.0006 (9) 0.0001 (9) 0.0005 (8)
C6 0.0254 (12) 0.0204 (12) 0.0169 (11) 0.0017 (9) 0.0019 (9) −0.0016 (9)
C7 0.0189 (11) 0.0182 (11) 0.0240 (12) 0.0013 (9) 0.0042 (9) −0.0020 (9)
C8 0.0195 (11) 0.0225 (12) 0.0173 (11) −0.0023 (9) 0.0003 (9) −0.0003 (9)
C9 0.0171 (11) 0.0192 (11) 0.0185 (11) −0.0019 (9) −0.0053 (9) 0.0009 (9)
C10 0.0182 (11) 0.0233 (12) 0.0196 (12) 0.0014 (9) 0.0003 (9) 0.0006 (9)
C11 0.0215 (12) 0.0192 (12) 0.0242 (12) 0.0054 (9) −0.0002 (9) −0.0029 (9)
C12 0.0208 (11) 0.0157 (11) 0.0246 (12) 0.0013 (9) −0.0031 (9) 0.0011 (9)
C13 0.0175 (11) 0.0223 (12) 0.0156 (11) 0.0003 (9) −0.0020 (9) 0.0001 (9)
C14 0.0200 (11) 0.0184 (11) 0.0170 (11) 0.0013 (9) −0.0009 (9) −0.0029 (9)
C15 0.0290 (13) 0.0181 (12) 0.0265 (13) −0.0025 (10) 0.0044 (10) 0.0042 (9)
O5 0.0247 (8) 0.0262 (9) 0.0188 (8) 0.0007 (7) −0.0020 (6) 0.0019 (7)
N2 0.0198 (10) 0.0194 (10) 0.0198 (10) 0.0007 (7) 0.0014 (8) 0.0010 (7)
C16 0.0211 (12) 0.0169 (11) 0.0241 (13) 0.0006 (9) 0.0018 (9) 0.0011 (9)
C17 0.0246 (12) 0.0266 (13) 0.0186 (12) 0.0026 (10) −0.0003 (9) 0.0006 (9)
C18 0.0207 (12) 0.0386 (14) 0.0267 (13) 0.0027 (10) 0.0038 (10) 0.0013 (11)
O6 0.0226 (8) 0.0265 (9) 0.0190 (9) −0.0021 (7) 0.0003 (7) 0.0005 (7)

Geometric parameters (Å, º)

O1—C1 1.225 (2) C9—C10 1.400 (3)
O2—C1 1.318 (3) C10—C11 1.380 (3)
O2—H2 0.90 (3) C10—H10 0.9300
O3—C14 1.366 (2) C11—C12 1.388 (3)
O3—H3 0.88 (3) C11—H11 0.9300
O4—C13 1.366 (2) C12—C13 1.383 (3)
O4—C15 1.434 (2) C12—H12 0.9300
N1—C5 1.371 (3) C13—C14 1.410 (3)
N1—C8 1.450 (3) C15—H15A 0.9600
N1—H1 0.89 (2) C15—H15B 0.9600
C1—C2 1.472 (3) C15—H15C 0.9600
C2—C7 1.396 (3) O5—C16 1.246 (2)
C2—C3 1.400 (3) N2—C16 1.321 (3)
C3—C4 1.367 (3) N2—C17 1.451 (3)
C3—H3A 0.9300 N2—C18 1.457 (3)
C4—C5 1.403 (3) C16—H16 0.9300
C4—H4 0.9300 C17—H17A 0.9600
C5—C6 1.405 (3) C17—H17B 0.9600
C6—C7 1.383 (3) C17—H17C 0.9600
C6—H6 0.9300 C18—H18A 0.9600
C7—H7 0.9300 C18—H18B 0.9600
C8—C9 1.518 (3) C18—H18C 0.9600
C8—H8A 0.9700 O6—H6A 0.85 (3)
C8—H8B 0.9700 O6—H6B 0.88 (3)
C9—C14 1.382 (3)
C1—O2—H2 111.3 (19) C9—C10—H10 119.8
C14—O3—H3 113.6 (18) C10—C11—C12 120.70 (19)
C13—O4—C15 117.01 (16) C10—C11—H11 119.6
C5—N1—C8 122.99 (18) C12—C11—H11 119.6
C5—N1—H1 115.1 (15) C13—C12—C11 119.53 (19)
C8—N1—H1 117.1 (15) C13—C12—H12 120.2
O1—C1—O2 122.3 (2) C11—C12—H12 120.2
O1—C1—C2 123.9 (2) O4—C13—C12 125.70 (19)
O2—C1—C2 113.87 (18) O4—C13—C14 114.44 (17)
C7—C2—C3 118.1 (2) C12—C13—C14 119.87 (19)
C7—C2—C1 121.73 (19) O3—C14—C9 118.85 (18)
C3—C2—C1 120.17 (19) O3—C14—C13 120.74 (18)
C4—C3—C2 120.8 (2) C9—C14—C13 120.40 (19)
C4—C3—H3A 119.6 O4—C15—H15A 109.5
C2—C3—H3A 119.6 O4—C15—H15B 109.5
C3—C4—C5 121.5 (2) H15A—C15—H15B 109.5
C3—C4—H4 119.3 O4—C15—H15C 109.5
C5—C4—H4 119.3 H15A—C15—H15C 109.5
N1—C5—C4 119.40 (19) H15B—C15—H15C 109.5
N1—C5—C6 122.59 (19) C16—N2—C17 122.02 (18)
C4—C5—C6 118.0 (2) C16—N2—C18 121.30 (18)
C7—C6—C5 120.2 (2) C17—N2—C18 116.68 (18)
C7—C6—H6 119.9 O5—C16—N2 124.5 (2)
C5—C6—H6 119.9 O5—C16—H16 117.7
C6—C7—C2 121.4 (2) N2—C16—H16 117.7
C6—C7—H7 119.3 N2—C17—H17A 109.5
C2—C7—H7 119.3 N2—C17—H17B 109.5
N1—C8—C9 114.65 (17) H17A—C17—H17B 109.5
N1—C8—H8A 108.6 N2—C17—H17C 109.5
C9—C8—H8A 108.6 H17A—C17—H17C 109.5
N1—C8—H8B 108.6 H17B—C17—H17C 109.5
C9—C8—H8B 108.6 N2—C18—H18A 109.5
H8A—C8—H8B 107.6 N2—C18—H18B 109.5
C14—C9—C10 119.03 (19) H18A—C18—H18B 109.5
C14—C9—C8 120.80 (19) N2—C18—H18C 109.5
C10—C9—C8 120.15 (19) H18A—C18—H18C 109.5
C11—C10—C9 120.5 (2) H18B—C18—H18C 109.5
C11—C10—H10 119.8 H6A—O6—H6B 103 (2)
O1—C1—C2—C7 174.4 (2) C14—C9—C10—C11 0.1 (3)
O2—C1—C2—C7 −5.1 (3) C8—C9—C10—C11 −178.52 (19)
O1—C1—C2—C3 −5.8 (3) C9—C10—C11—C12 0.4 (3)
O2—C1—C2—C3 174.68 (19) C10—C11—C12—C13 −0.5 (3)
C7—C2—C3—C4 0.1 (3) C15—O4—C13—C12 4.2 (3)
C1—C2—C3—C4 −179.70 (19) C15—O4—C13—C14 −175.82 (18)
C2—C3—C4—C5 0.7 (3) C11—C12—C13—O4 −179.86 (19)
C8—N1—C5—C4 168.25 (18) C11—C12—C13—C14 0.1 (3)
C8—N1—C5—C6 −14.0 (3) C10—C9—C14—O3 178.43 (18)
C3—C4—C5—N1 176.67 (19) C8—C9—C14—O3 −3.0 (3)
C3—C4—C5—C6 −1.2 (3) C10—C9—C14—C13 −0.4 (3)
N1—C5—C6—C7 −176.78 (19) C8—C9—C14—C13 178.20 (19)
C4—C5—C6—C7 1.0 (3) O4—C13—C14—O3 1.5 (3)
C5—C6—C7—C2 −0.3 (3) C12—C13—C14—O3 −178.52 (19)
C3—C2—C7—C6 −0.2 (3) O4—C13—C14—C9 −179.71 (18)
C1—C2—C7—C6 179.53 (19) C12—C13—C14—C9 0.3 (3)
C5—N1—C8—C9 −66.3 (3) C17—N2—C16—O5 −179.74 (19)
N1—C8—C9—C14 135.2 (2) C18—N2—C16—O5 0.6 (3)
N1—C8—C9—C10 −46.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15C···O1i 0.96 2.50 3.329 (3) 145
C15—H15C···O2ii 0.96 2.55 3.094 (3) 116
N1—H1···O6iii 0.89 (2) 2.05 (2) 2.936 (2) 175 (2)
O2—H2···O5iv 0.90 (3) 1.70 (3) 2.591 (2) 171 (3)
O3—H3···O6v 0.88 (3) 1.90 (3) 2.739 (2) 158 (3)
O6—H6A···O1vi 0.85 (3) 1.94 (3) 2.776 (2) 172 (3)
O6—H6B···O5 0.88 (3) 1.91 (3) 2.785 (2) 178 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x+3/2, −y+1, z−1/2; (vi) −x+3/2, y−1/2, z.

Funding Statement

This work was funded by UGC grant .

References

  1. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324. [DOI] [PMC free article] [PubMed]
  3. Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018a). J. Mol. Struct. 1156, 457–464.
  4. Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369. [DOI] [PMC free article] [PubMed]
  5. Faizi, M. S. H., Dege, N. & Iskenderov, T. S. (2018b). Acta Cryst. E74, 410–413. [DOI] [PMC free article] [PubMed]
  6. Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Fernandes, P., Florence, A. J., Fabbiani, F., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4861. [DOI] [PMC free article] [PubMed]
  9. Fitzgerald, D. J., Stratford, M., Gasson, M. J. & Narbad, A. (2005). J. Agric. Food Chem. 53, 1769–1775. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hocking, M. B. (1997). J. Chem. Educ. 74, 1055–1059.
  12. Jiang, H., Ma, J.-F. & Zhang, W.-L. (2006). Acta Cryst. E62, m2745–m2746.
  13. Kamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M. & Iskenderov, T. (2018). Acta Cryst. E74, 1847–1850. [DOI] [PMC free article] [PubMed]
  14. Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
  15. Ling, J., Kavuru, P., Wojtas, L. & Chadwick, K. (2016). Acta Cryst. E72, 951–954. [DOI] [PMC free article] [PubMed]
  16. Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.
  17. Neumcke, B., Schwarz, W. & Stampfli, R. (1981). Pflugers Arch. 390, 230–236. [DOI] [PubMed]
  18. Robinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541–662 London: Pergamon.
  19. Salman, M., Abu-Yamin, A. A., Sarairah, I., Ibrahim, A. & Aldamen, M. A. (2017). Z. Kristallogr. 232, 631–632.
  20. Shakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2916. [DOI] [PMC free article] [PubMed]
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Walton, N. J., Mayer, M. J. & Narbad, A. (2003). Phytochemistry, 63, 505–515. [DOI] [PubMed]
  24. Wu, J., Zhang, P.-Z., Lu, L., Yu, Q.-S., Hu, X.-R. & Gu, J.-M. (2003). Chin. J. Struct. Chem. 22, 613–616.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019005103/wm5490sup1.cif

e-75-00646-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019005103/wm5490Isup2.hkl

e-75-00646-Isup2.hkl (253.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019005103/wm5490Isup3.cml

CCDC reference: 1909944

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES