Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 11;75(Pt 4):432–437. doi: 10.1107/S2056989019003190

Sodium dirubidium citrate, NaRb2C6H5O7, and sodium dirubidium citrate dihydrate, NaRb2C6H5O7(H2O)2

Andrew J Cigler a, James A Kaduk a,*
PMCID: PMC6509689  PMID: 31161051

The crystal structures of sodium dirubidium citrate and sodium dirubidium citrate dihydrate have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. Both structures contain Na chains and Rb layers, which link to form different three-dimensional frameworks.

Keywords: powder diffraction, density functional theory, citrate, sodium, rubidium, crystal structure

Abstract

The crystal structures of sodium dirubidium citrate {poly[μ-citrato-dirubi­dium(I)sodium(I)], [NaRb2(C6H5O7)]n} and sodium dirubidium citrate dihydrate {poly[di­aqua­(μ-citrato)dirubidium(I)sodium(I)], [NaRb2(C6H5O7)(H2O)2]n} have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. Both structures contain Na chains and Rb layers, which link to form different three-dimensional frameworks. In each structure, the citrate triply chelates to the Na+ cation. Each citrate also chelates to Rb+ cations. In the dihydrate structure, the water mol­ecules are bonded to the Rb+ cations; the Na+ cation is coordinated only to citrate O atoms. Both structures contain an intra­molecular O—H⋯O hydrogen bond between the hy­droxy group and one of the terminal carboxyl­ate groups. In the structure of the dihydrate, each hydrogen atom of the water mol­ecules participates in a hydrogen bond to an ionized carboxyl­ate group.

Chemical context  

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018). The study was extended to lithium metal hydrogen citrates in Cigler & Kaduk (2018), and to sodium metal hydrogen citrates in Cigler & Kaduk (2019). These two compounds (Figs. 1 and 2) are a further extension to sodium dirubidium citrates.graphic file with name e-75-00432-scheme1.jpg

Figure 1.

Figure 1

The asymmetric unit of NaRb2C6H5O7, with the atom numbering and 50% probability spheroids.

Figure 2.

Figure 2

The asymmetric unit of NaRb2HC6H5O7(H2O)2, with the atom numbering and 50% probability spheroids.

Structural commentary  

For NaRb2C6H5O7, the root-mean-square deviation of the non-hydrogen atoms in the refined and optimized structures is 0.095 Å (Fig. 3). The excellent agreement between the structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014). For NaRb2C6H5O7(H2O)2, the agreement of the refined and optimized structures is poorer (Fig. 4); the r.m.s. cartesian displacement is 0.45 Å. The largest differences are in the carboxyl group C5/O13/O14. Removing O13 and O14 from the displacement calculation yields a value of 0.222 Å, in the upper range of correct structures according to van de Streek & Neumann (2014). Apparently the refined structure is in error, perhaps because it was refined using laboratory X-ray powder data and the structure contains two heavy Rb atoms. This discussion uses the DFT-optimized structures.

Figure 3.

Figure 3

Comparison of the refined and optimized structures of sodium dirubidium citrate. The refined structure is in red, and the DFT-optimized structure is in blue.

Figure 4.

Figure 4

Comparison of the refined and optimized structures of sodium dirubidium citrate dihydrate. The refined structure is in red, and the DFT-optimized structure is in blue.

In both structures, all of the citrate bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008). The citrate anion in both structures occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate (Rammohan & Kaduk, 2018). The central carboxyl­ate group and the hy­droxy group exhibit small twists (O15—C6—C3—O17 torsion angles of −16.0 and −18.2°) from the normal planar arrangement.

In NaRb2C6H5O7, the citrate anion triply chelates to Na19 through the terminal carboxyl­ate O14, the central carboxyl­ate O15, and the hydroxyl group O17. The citrate also chelates to Rb21 through the terminal carboxyl­ate O11 and the central carboxyl­ate O15. Each citrate oxygen atom bridges multiple metal atoms. The Na+ cation is six-coordinate, with a bond-valence sum of 1.12. The two Rb+ cations are seven-coordinate, with bond-valence sums of 0.99 and 1.16.

In the dihydrate, the citrate anion similarly triply chelates to Na19 through the terminal carboxyl­ate O12, the central carboxyl­ate O15, and the hy­droxy group O17 (the numberings of the oxygen atoms are partially arbitrary). Each terminal carboxyl­ate group chelates to a different Rb21 cation. Most of the oxygen atoms bridge multiple metal atoms, but O13 and O14 bind only to Rb cations, and O17 binds only to the Na+ cation. The Na coordination sphere is composed only of citrate oxygen atoms. Rb20 is coordinated by four H2O, and Rb21 is bonded to two H2O mol­ecules. Each water mol­ecule is coordinated to two Rb20 and and one Rb21 cations. The Na+ cation is six-coordinate (distorted octa­hedral), with a bond-valence sum of 1.19. The Rb20 and Rb21 cations are eight- and nine-coordinate, respectively. The coordination polyhedra are irregular, and the bond-valence sums are 0.94 and 1.03. The Mulliken overlap populations in both structures indicate that the Rb—O bonds are ionic, but that the Na—O bonds have some covalent character.

Supra­molecular features  

In the crystal structure of NaRb2C6H5O7 (Fig. 5), the distorted octa­hedral NaO6 coordination polyhedra share edges to form zigzag double chains along the a-axis direction. The RbO7 polyhedra share edges to form layers parallel to the ac plane. These layers link the Na chains, forming a three-dimensional framework. The hydro­phobic methyl­ene groups of the citrate anions occupy cavities in this framework.

Figure 5.

Figure 5

Crystal structure of NaRb2C6H5O7, viewed down the a axis.

In the crystal structure of NaRb2C6H5O7(H2O)2 (Fig. 6), the NaO6 coordination polyhedra share corners to form double zigzag chains along the c-axis direction. The Rb polyhedra share edges to form layers parallel to the ac plane. These layers share corners with each other and share edges with the Na chains, forming a three-dimensional framework. The hydro­phobic methyl­ene groups of the citrate anions also occupy cavities in this framework.

Figure 6.

Figure 6

Crystal structure of NaRb2C6H5O7(H2O)2, viewed down the a axis.

In NaRb2C6H5O7, the only traditional hydrogen bond is an intra­molecular O17—H18⋯O11 one between the hydroxyl group and one of the terminal carboxyl­ate groups (Table 1). By the correlation of Rammohan & Kaduk (2018), this hydrogen bond contributes 14.0 kcal mol−1 to the crystal energy. A weak C—H⋯O hydrogen bond also contributes to the crystal energy.

Table 1. Hydrogen-bond geometry (Å, °, electrons, kcal mol−1) for [NaRb2(C6H5O7)].

D—H⋯A D—H H⋯A DA D—H⋯A Mulliken overlap H-bond energy
O17—H18⋯O11 0.996 1.662 2.585 152.3 0.072 14.7
C4—H10⋯O17i 1.088 2.451 3.515 165.5 0.017  

Symmetry code: (i) 1 + x, y, z.

In NaRb2C6H5O7(H2O)2, each water mol­ecule hydrogen atom acts as a donor in an O—H⋯O hydrogen bond to a carboxyl­ate oxygen (Table 2). By the correlation of Rammohan & Kaduk (2018), these hydrogen bonds range from 11.0–14.0 kcal mol−1 in energy. There is an intra­molecular O17—H18⋯O13 hydrogen bond between the hydroxyl group and one of the terminal carboxyl­ate groups, as well as a C—H⋯O hydrogen bond.

Table 2. Hydrogen-bond geometry (Å, °, electrons, kcal mol−1) for [NaRb2(C6H5O7)(H2O)2].

D—H⋯A D—H H⋯A DA D—H⋯A Mulliken overlap H-bond energy
O23—H27⋯O15 0.986 1.755 2.721 165.6 0.064 13.8
O23—H26⋯O14i 0.974 1.934 2.833 152.2 0.041 11.1
O22—H25⋯O14ii 0.979 1.762 2.708 161.4 0.055 12.8
O22—H24⋯O13 0.980 1.779 2.718 159.0 0.053 12.6
O17—H18⋯O13 0.987 1.705 2.613 151.0 0.066 14.0
C4—H9⋯O13ii 1.096 2.402 3.374 147.0 0.016  

Symmetry code: (i) −Inline graphic + x, Inline graphic − y, z; (ii) x, y, −1 + z; (iii) 1 − x, 1 − y, Inline graphic + z.

The two structures exhibit some similarities (Fig. 7), but a mechanism for inter­conversion of the structures is not obvious by visual inspection.

Figure 7.

Figure 7

Comparison of the crystal structures of sodium dirubidium citrate (left) and sodium dirbuidium citrate dihydrate (right).

Database survey  

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018). A reduced cell search for NaRb2HC6H5O7 in the Cambridge Structural Database (Groom et al., 2016) yielded no hits, while that for NaRb2C6H5O7(H2O)2 yielded 21 hits, but when including the chemistry of C, H, Na, O, and Rb only it yielded no hits.

Synthesis and crystallization  

NaRb2C6H5O7(H2O)2 was prepared by adding stoichiometric qu­anti­ties of Na2CO3 and Rb2CO3 to a solution of 10 mmol H3C6H5O7 in 10 ml of water. After the fizzing subsided, the clear solution was dried overnight at 348 K to yield a glass. This glass was heated at 450 K for 30 min to yield a pale-yellow solid. This solid was equilibrated in air at ambient conditions for 3 h. The anhydrous salt was prepared by heating the dihydrate at 450 K for 30 min.

Refinement  

Crystal data, data collection and structure refinement (Fig. 8) details are summarized in Table 3. The diffraction patterns of both compounds were indexed using N-TREOR (Altomare et al., 2013), and the cells were reduced using the tools in the PDF-4+ database (Fawcett et al., 2017). The systematic absences in the the pattern of NaRb2C6H5O7(H2O)2 suggested the space groups Pna21 and Pnam. The unit-cell volume indicates that Z = 4, so Pna21 was chosen, and confirmed by successful solution and refinement of the structure.

Figure 8.

Figure 8

Rietveld plot for NaRb2C6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 8 for 2θ > 44.0°. The row of black tick marks indicates the reflection positions for this phase.

Table 3. Experimental details.

  [NaRb2(C6H5O7)] [NaRb2(C6H5O7)(H2O)2]
Crystal data
M r 383.02 419.05
Crystal system, space group Triclinic, P Inline graphic Orthorhombic, P n a21
Temperature (K) 300 300
a, b, c (Å) 5.5917 (4), 7.8862 (5), 11.6133 (6) 12.1101 (3), 17.2422 (5), 5.73715 (18)
α, β, γ (°) 83.456 (4), 89.243 (5), 84.488 (4) 90, 90, 90
V3) 506.42 (8) 1197.94 (8)
Z 2 4
Radiation type Cu Kα1, Cu Kα2, λ = 1.540593, 1.544451 Å Kα1, Kα2, λ = 1.540593, 1.544451 Å
Specimen shape, size (mm) Flat sheet, 25 × 25 Flat sheet, 25 × 25
 
Data collection
Diffractometer Bruker D2 Phaser Bruker D2 Phaser
Specimen mounting Standard PMMA holder Standard PMMA holder
Data collection mode Reflection Reflection
Scan method Step Step
2θ values (°) min = 5.001 2θmax = 100.007 2θstep = 0.020 min = 5.001 2θmax = 100.007 2θstep = 0.020
 
Refinement
R factors and goodness of fit R p = 0.023, R wp = 0.029, R exp = 0.022, R(F 2) = 0.06119, χ2 = 1.742 R p = 0.035, R wp = 0.047, R exp = 0.023, R(F 2) = 0.21645, χ2 = 4.494
No. of parameters 75 67
No. of restraints 29 29
H-atom treatment Only H-atom displacement parameters refined Only H-atom displacement parameters refined

The same symmetry and lattice parameters were used for the DFT calculations as for each powder diffraction study. Computer programs: Diffrac.Measurement (Bruker, 2009), PowDLL (Kourkoumelis, 2013), EXPO2014 (Altomare et al.), 2013), GSAS (Larson & Von Dreele, 2004), Mercury (Macrae et al., 2008), DIAMOND (Crystal Impact, 2015) and publCIF (Westrip, 2010).

The structure of NaRb2HC6H5O7 was solved using Monte Carlo simulated annealing techniques as implemented in EXPO2014 (Altomare et al., 2013). A citrate anion, a Na cation, and two Rb cations were used as fragments. The position of the active hydrogen atom H18 was deduced from the potential intra­molecular hydrogen-bonding pattern. Pseudovoigt profile coefficients were as parameterized in Thompson et al. (1987) and the asymmetry correction of Finger et al. (1994) was applied and microstrain broadening by Stephens (1999). The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement. The U iso values of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3 times that of these carbon atoms. The U iso values of C1, C5, C6, and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3 times this value. The U iso values of Rb20 and Rb21 were constrained to be equal.

The structure of NaRb2C6H5O7(H2O)2 was solved using Monte Carlo simulated annealing techniques as implemented in EXPO2014 (Altomare et al., 2013). A citrate anion, a Na cation, two Rb cations, and three O atoms were used as fragments. In the best solution, one of the oxygen atoms was 1.30 Å from one of the Rb atoms, and was removed from the model. The positions of the active hydrogen atoms were deduced from potential hydrogen-bonding patterns. The same refinement strategy was used as for the anhydrous compound, and the U iso values of the two water mol­ecule oxygen atoms were constrained to be equal. Comparison of the initial refined model to that from the DFT calculation revealed that the orientations of the carboxyl group C5/O13/O14 differed, so the Rietveld refinement (Fig. 9) was re-started from the DFT model.

Figure 9.

Figure 9

Rietveld plot for NaRb2C6H5O7(H2O)2. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 10 for 2θ > 44.0°. The row of black tick marks indicates the reflection positions for this phase.

Density functional geometry optimizations (fixed experimental unit cells) were carried out using CRYSTAL14 (Dovesi et al., 2014). The basis sets for the H, C, and O atoms were those of Gatti et al. (1994), the basis sets for Na was that of Dovesi et al. (1991), and the basis set for Rb was that of Sophia et al. (2014). The calculations were run on eight 2.1 GHz Xeon cores (each with 6 GB RAM) of a 304-core Dell Linux cluster at Illinois Institute of Technology, using 8 k-points and the B3LYP functional, and took approximately 5 and 29 h.

Supplementary Material

Crystal structure: contains datablock(s) KADU1685_publ, kadu1685_DFT, KADU1681_publ, kadu1681_DFT. DOI: 10.1107/S2056989019003190/vn2141sup1.cif

e-75-00432-sup1.cif (619.9KB, cif)

Supporting information file. DOI: 10.1107/S2056989019003190/vn2141KADU1685_publsup2.cml

Supporting information file. DOI: 10.1107/S2056989019003190/vn2141KADU1681_publsup3.cml

CCDC references: 1901423, 1901422, 1901421, 1901420

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.

supplementary crystallographic information

Poly[µ-citrato-dirubidium(I)sodium(I)] (KADU1685_publ). Crystal data

[NaRb2(C6H5O7)] γ = 84.488 (4)°
Mr = 383.02 V = 506.42 (8) Å3
Triclinic, P1 Z = 2
Hall symbol: -P 1 Dx = 2.512 Mg m3
a = 5.5917 (4) Å CuKα1, CuKα2 radiation, λ = 1.540593, 1.544451 Å
b = 7.8862 (5) Å T = 300 K
c = 11.6133 (6) Å pale yellow
α = 83.456 (4)° flat_sheet, 25 × 25 mm
β = 89.243 (5)° Specimen preparation: Prepared at 450 K

Poly[µ-citrato-dirubidium(I)sodium(I)] (KADU1685_publ). Data collection

Bruker D2 Phaser diffractometer Data collection mode: reflection
Radiation source: sealed Xray tube Scan method: step
Ni filter monochromator min = 5.001°, 2θmax = 100.007°, 2θstep = 0.020°
Specimen mounting: standard PMMA holder

Poly[µ-citrato-dirubidium(I)sodium(I)] (KADU1685_publ). Refinement

Least-squares matrix: full Profile function: CW Profile function number 4 with 27 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 5.109 #4(GP) = 0.000 #5(LX) = 6.277 #6(ptec) = 0.00 #7(trns) = 1.30 #8(shft) = -2.9593 #9(sfec) = 0.00 #10(S/L) = 0.0005 #11(H/L) = 0.0097 #12(eta) = 0.9000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.023 75 parameters
Rwp = 0.029 29 restraints
Rexp = 0.022 Only H-atom displacement parameters refined
R(F2) = 0.06119 Weighting scheme based on measured s.u.'s
4701 data points (Δ/σ)max = 0.01
Excluded region(s): The region from 5-15 degrees was excluded to minimize the effects of beam spillover and surface roughness. Background function: GSAS Background function number 1 with 3 terms. Shifted Chebyshev function of 1st kind 1: 1719.95 2: -345.196 3: 91.9837

Poly[µ-citrato-dirubidium(I)sodium(I)] (KADU1685_publ). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.124 (2) −0.2349 (14) 0.1360 (11) 0.010 (3)*
C2 0.250 (3) −0.0724 (15) 0.1222 (10) 0.023 (7)*
C3 0.1816 (19) 0.0398 (11) 0.2201 (7) 0.023 (7)*
C4 0.319 (3) 0.2010 (14) 0.2001 (10) 0.023 (7)*
C5 0.286 (2) 0.3027 (17) 0.3028 (11) 0.010 (3)*
C6 0.251 (2) −0.0599 (17) 0.3397 (9) 0.010 (3)*
H7 0.20437 −0.00565 0.04596 0.030 (9)*
H8 0.42788 −0.10242 0.12401 0.030 (9)*
H9 0.25594 0.27385 0.12877 0.030 (9)*
H10 0.49370 0.16615 0.18985 0.030 (9)*
O11 −0.099 (2) −0.227 (2) 0.1578 (14) 0.010 (3)*
O12 0.225 (3) −0.3679 (14) 0.0961 (14) 0.010 (3)*
O13 0.465 (3) 0.366 (2) 0.3415 (15) 0.010 (3)*
O14 0.075 (3) 0.351 (2) 0.3358 (13) 0.010 (3)*
O15 0.088 (3) −0.118 (2) 0.4057 (11) 0.010 (3)*
O16 0.457 (3) −0.051 (2) 0.3819 (13) 0.010 (3)*
O17 −0.070 (2) 0.0903 (16) 0.2172 (12) 0.010 (3)*
H18 −0.12093 −0.00352 0.20357 0.013 (4)*
Na19 −0.247 (3) 0.1397 (17) 0.4081 (11) 0.010 (5)*
Rb20 0.7394 (9) 0.4509 (7) 0.1312 (3) 0.0224 (13)*
Rb21 −0.2414 (10) −0.3662 (5) 0.4096 (3) 0.0224 (13)*

Poly[µ-citrato-dirubidium(I)sodium(I)] (KADU1685_publ). Geometric parameters (Å, º)

C1—C2 1.5108 (13) O14—Rb21vi 3.130 (17)
C1—O11 1.269 (4) O15—C6 1.269 (4)
C1—O12 1.273 (4) O15—Na19 2.63 (2)
C2—C1 1.5108 (13) O15—Na19vi 2.33 (2)
C2—C3 1.5411 (13) O15—Rb21 2.810 (17)
C3—C2 1.5411 (13) O16—C6 1.270 (4)
C3—C4 1.5405 (13) O16—Na19iv 2.38 (2)
C3—C6 1.5507 (13) O16—Na19vi 2.74 (2)
C3—O17 1.423 (4) O16—Rb21iv 2.858 (16)
C4—C3 1.5405 (13) O17—C3 1.423 (4)
C4—C5 1.5100 (13) O17—Na19 2.473 (18)
C5—C4 1.5100 (13) O17—Rb20vii 3.003 (13)
C5—O13 1.270 (4) Na19—O13vii 2.35 (2)
C5—O14 1.269 (4) Na19—O14 2.637 (19)
C6—C3 1.5507 (13) Na19—O15 2.63 (2)
C6—O15 1.269 (4) Na19—O15vi 2.33 (2)
C6—O16 1.270 (4) Na19—O16vii 2.38 (2)
O11—C1 1.269 (4) Na19—O16vi 2.74 (2)
O11—Rb20i 2.823 (13) Na19—O17 2.473 (18)
O11—Rb21 3.124 (16) Rb20—O11v 2.823 (13)
O12—C1 1.273 (4) Rb20—O12viii 3.098 (16)
O12—Rb20i 3.187 (16) Rb20—O12v 3.187 (16)
O12—Rb20ii 3.098 (16) Rb20—O12iii 2.791 (15)
O12—Rb20iii 2.791 (15) Rb20—O13 2.914 (19)
O13—C5 1.270 (4) Rb20—O14iv 3.034 (19)
O13—Na19iv 2.35 (2) Rb20—O17iv 3.003 (13)
O13—Rb20 2.914 (19) Rb21—O11 3.124 (16)
O13—Rb21v 2.978 (12) Rb21—O13i 2.978 (12)
O13—Rb21vi 3.135 (19) Rb21—O13vi 3.135 (19)
O14—C5 1.269 (4) Rb21—O14ii 2.912 (14)
O14—Na19 2.637 (19) Rb21—O14vi 3.130 (17)
O14—Rb20vii 3.034 (19) Rb21—O15 2.810 (17)
O14—Rb21viii 2.912 (14) Rb21—O16vii 2.858 (16)
C2—C1—O11 119.8 (5) O13vii—Na19—O14 85.8 (5)
C2—C1—O12 119.0 (4) O13vii—Na19—O15 160.3 (8)
O11—C1—O12 118.7 (3) O13vii—Na19—O15vi 121.1 (8)
O11—C1—Rb20i 51.1 (6) O13vii—Na19—O16vii 87.2 (8)
O12—C1—Rb20i 67.9 (5) O13vii—Na19—O16vi 97.3 (8)
C1—C2—C3 111.6 (4) O13vii—Na19—O17 97.2 (7)
C2—C3—C4 108.2 (3) O14—Na19—O15 89.0 (8)
C2—C3—C6 110.4 (4) O14—Na19—O15vi 89.2 (7)
C2—C3—O17 109.9 (4) O14—Na19—O16vii 154.3 (7)
C4—C3—C6 109.6 (3) O14—Na19—O16vi 134.2 (7)
C4—C3—O17 109.1 (4) O14—Na19—O17 66.1 (6)
C6—C3—O17 109.7 (3) O15—Na19—O15vi 77.7 (8)
C3—C4—C5 110.2 (4) O15—Na19—O16vii 89.3 (6)
C4—C5—O13 119.4 (4) O15—Na19—O16vi 99.9 (6)
C4—C5—O14 119.7 (3) O15—Na19—O17 63.5 (5)
O13—C5—O14 119.6 (5) O15vi—Na19—O16vii 115.4 (7)
O13—C5—Rb20 56.5 (8) O15vi—Na19—O16vi 50.3 (3)
O13—C5—Rb21vi 65.7 (8) O15vi—Na19—O17 133.2 (9)
O14—C5—Rb20 140.2 (13) O16vii—Na19—O16vi 71.3 (7)
O14—C5—Rb21vi 65.4 (8) O16vii—Na19—O17 90.3 (7)
C1—O11—Rb20i 108.4 (7) O16vi—Na19—O17 155.9 (7)
C1—O11—Rb21 116.0 (11) O11v—Rb20—O12viii 88.4 (4)
Rb20i—O11—Rb21 76.6 (4) O11v—Rb20—O12v 42.1 (2)
C1—O12—Rb20i 90.4 (5) O11v—Rb20—O12iii 113.3 (4)
C1—O12—Rb20ii 130.7 (9) O11v—Rb20—O13 104.5 (4)
C1—O12—Rb20iii 130.3 (12) O11v—Rb20—O14iv 79.8 (5)
Rb20i—O12—Rb20ii 125.7 (4) O11v—Rb20—O17iv 132.4 (4)
Rb20i—O12—Rb20iii 90.3 (4) O12viii—Rb20—O12v 125.7 (4)
Rb20ii—O12—Rb20iii 86.5 (4) O12viii—Rb20—O12iii 93.5 (4)
C5—O13—Na19iv 108.6 (13) O12viii—Rb20—O13 72.1 (5)
C5—O13—Rb20 102.2 (10) O12viii—Rb20—O14iv 135.5 (4)
C5—O13—Rb21v 158.1 (13) O12viii—Rb20—O17iv 133.1 (4)
C5—O13—Rb21vi 92.7 (9) O12v—Rb20—O12iii 89.7 (4)
Na19iv—O13—Rb20 92.1 (7) O12v—Rb20—O13 130.1 (4)
Na19iv—O13—Rb21v 93.3 (5) O12v—Rb20—O14iv 68.4 (5)
Na19iv—O13—Rb21vi 90.8 (7) O12v—Rb20—O17iv 101.1 (4)
Rb20—O13—Rb21v 77.6 (4) O12iii—Rb20—O13 139.1 (4)
Rb20—O13—Rb21vi 163.0 (4) O12iii—Rb20—O14iv 130.6 (5)
Rb21v—O13—Rb21vi 85.5 (4) O12iii—Rb20—O17iv 89.5 (4)
C5—O14—Na19 123.9 (14) O13—Rb20—O14iv 69.8 (3)
C5—O14—Rb20vii 111.3 (9) O13—Rb20—O17iv 75.4 (5)
C5—O14—Rb21viii 145.9 (12) O14iv—Rb20—O17iv 55.0 (4)
C5—O14—Rb21vi 92.9 (8) O11—Rb21—O13i 96.0 (5)
Na19—O14—Rb20vii 84.2 (5) O11—Rb21—O13vi 158.9 (5)
Na19—O14—Rb21viii 89.2 (5) O11—Rb21—O14ii 77.0 (5)
Na19—O14—Rb21vi 91.2 (6) O11—Rb21—O14vi 138.7 (4)
Rb20vii—O14—Rb21viii 76.8 (4) O11—Rb21—O15 67.5 (3)
Rb20vii—O14—Rb21vi 153.5 (5) O11—Rb21—O16vii 80.2 (5)
Rb21viii—O14—Rb21vi 77.1 (3) O13i—Rb21—O13vi 94.5 (4)
C6—O15—Na19 105.0 (9) O13i—Rb21—O14ii 70.6 (3)
C6—O15—Na19vi 104.8 (10) O13i—Rb21—O14vi 123.3 (6)
C6—O15—Rb21 138.4 (12) O13i—Rb21—O15 162.7 (5)
Na19—O15—Na19vi 102.3 (8) O13i—Rb21—O16vii 106.4 (5)
Na19—O15—Rb21 94.2 (6) O13vi—Rb21—O14ii 123.9 (6)
Na19vi—O15—Rb21 106.6 (5) O13vi—Rb21—O14vi 41.01 (19)
C6—O16—Na19iv 143.9 (11) O13vi—Rb21—O15 102.7 (3)
C6—O16—Na19vi 85.3 (8) O13vi—Rb21—O16vii 79.4 (5)
C6—O16—Rb21iv 115.0 (12) O14ii—Rb21—O14vi 102.9 (3)
Na19iv—O16—Na19vi 108.7 (7) O14ii—Rb21—O15 99.4 (5)
Na19iv—O16—Rb21iv 98.5 (6) O14ii—Rb21—O16vii 156.4 (4)
Na19vi—O16—Rb21iv 89.6 (5) O14vi—Rb21—O15 71.9 (4)
C3—O17—Na19 114.2 (7) O14vi—Rb21—O16vii 98.0 (4)
C3—O17—Rb20vii 121.1 (6) O15—Rb21—O16vii 76.9 (3)
Na19—O17—Rb20vii 87.7 (5)

Symmetry codes: (i) x−1, y−1, z; (ii) x, y−1, z; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) −x, −y, −z+1; (vii) x−1, y, z; (viii) x, y+1, z.

(kadu1685_DFT). Crystal data

C6H5NaO7Rb2 α = 83.4560°
Mr = 383.02 β = 89.2430°
Triclinic, P1 γ = 84.4880°
a = 5.5917 Å V = 506.42 Å3
b = 7.8862 Å Z = 2
c = 11.6133 Å

(kadu1685_DFT). Data collection

h = → l = →
k = →

(kadu1685_DFT). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.12954 −0.24091 0.13258 0.01020*
C2 0.26324 −0.07916 0.13201 0.02320*
C3 0.17418 0.04028 0.22411 0.02320*
C4 0.29971 0.20638 0.20696 0.02320*
C5 0.27264 0.31378 0.31043 0.01020*
C6 0.24131 −0.05121 0.34701 0.01020*
H7 0.23583 −0.00707 0.04568 0.03000*
H8 0.45556 −0.11740 0.14158 0.03000*
H9 0.22830 0.28512 0.12888 0.03000*
H10 0.48942 0.17037 0.19211 0.03000*
O11 −0.09135 −0.22959 0.16288 0.01020*
O12 0.24168 −0.37299 0.09935 0.01020*
O13 0.46259 0.36227 0.34992 0.01020*
O14 0.06361 0.34542 0.35028 0.01020*
O15 0.07766 −0.11340 0.40960 0.01020*
O16 0.45856 −0.05647 0.37654 0.01020*
O17 −0.07963 0.08108 0.21210 0.01020*
H18 −0.13612 −0.03134 0.19953 0.01300*
Na19 −0.23798 0.12272 0.40262 0.01000*
Rb20 0.74402 0.44949 0.13375 0.02240*
Rb21 −0.24917 −0.36450 0.40909 0.02240*

(kadu1685_DFT). Bond lengths (Å)

C1—C2 1.539 O14—Na19 2.568
C1—O11 1.277 O14—Rb20vii 3.091
C1—O12 1.260 O14—Rb21v 3.018
C2—C3 1.551 O14—Rb21viii 2.884
C2—H7 1.100 O15—Na19v 2.359
C2—H8 1.092 O15—Rb21 2.821
C3—C4 1.537 O16—Na19iv 2.354
C3—C6 1.558 O16—Rb21iv 2.785
C3—O17 1.430 O17—H18 0.996
C4—C5 1.545 O17—Na19 2.418
C4—H9 1.096 O17—Rb20vii 3.019
C4—H10 1.088 Na19—O15v 2.359
C5—O13 1.271 Na19—O13vii 2.429
C5—O14 1.264 Na19—O16vii 2.354
C6—O15 1.262 Rb20—O12viii 3.026
C6—O16 1.262 Rb20—O14iv 3.091
O11—Rb20i 2.832 Rb20—O17iv 3.019
O11—Rb21 3.083 Rb20—O11vi 2.832
O12—Rb20ii 3.026 Rb20—O12vi 3.233
O12—Rb20i 3.233 Rb20—O12iii 2.838
O12—Rb20iii 2.838 Rb21—O16vii 2.785
O13—Na19iv 2.429 Rb21—O13v 3.029
O13—Rb20 2.994 Rb21—O14v 3.018
O13—Rb21v 3.029 Rb21—O13i 2.957
O13—Rb21vi 2.957 Rb21—O14ii 2.884

Symmetry codes: (i) x−1, y−1, z; (ii) x, y−1, z; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) −x, −y, −z+1; (vi) x+1, y+1, z; (vii) x−1, y, z; (viii) x, y+1, z.

(kadu1685_DFT). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O17—H18···O11 0.996 1.662 2.585 152.3
C4—H10···O17 1.088 2.451 3.515 165.5

Poly[diaqua(µ-citrato)dirubidium(I)sodium(I)] (KADU1681_publ). Crystal data

[NaRb2(C6H5O7)(H2O)2] V = 1197.94 (8) Å3
Mr = 419.05 Z = 4
Orthorhombic, Pna21 Dx = 2.342 Mg m3
Hall symbol: P 2c -2n 1, Kα2 radiation, λ = 1.540593, 1.544451 Å
a = 12.1101 (3) Å T = 300 K
b = 17.2422 (5) Å flat_sheet, 25 × 25 mm
c = 5.73715 (18) Å Specimen preparation: Prepared at 450 K

Poly[diaqua(µ-citrato)dirubidium(I)sodium(I)] (KADU1681_publ). Data collection

Bruker D2 Phaser diffractometer Data collection mode: reflection
Radiation source: sealed X-ray tube Scan method: step
Ni filter monochromator min = 5.001°, 2θmax = 100.007°, 2θstep = 0.020°
Specimen mounting: standard PMMA holder

Poly[diaqua(µ-citrato)dirubidium(I)sodium(I)] (KADU1681_publ). Refinement

Least-squares matrix: full 67 parameters
Rp = 0.035 29 restraints
Rwp = 0.047 Only H-atom displacement parameters refined
Rexp = 0.023 Weighting scheme based on measured s.u.'s
R(F2) = 0.21645 (Δ/σ)max = 0.04
4701 data points Background function: GSAS Background function number 1 with 3 terms. Shifted Chebyshev function of 1st kind 1: 1693.18 2: -250.425 3: 22.2802
Profile function: CW Profile function number 4 with 18 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 5.109 #4(GP) = 0.000 #5(LX) = 3.634 #6(ptec) = 0.00 #7(trns) = 1.30 #8(shft) = -4.0778 #9(sfec) = 0.00 #10(S/L) = 0.0295 #11(H/L) = 0.0097 #12(eta) = 0.9000 #13(S400 ) = 3.3E-04 #14(S040 ) = 2.5E-05 #15(S004 ) = 0.0E+00 #16(S220 ) = 6.5E-03 #17(S202 ) = 9.2E-04 #18(S022 ) = 3.0E-03 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0

Poly[diaqua(µ-citrato)dirubidium(I)sodium(I)] (KADU1681_publ). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1222 (10) 0.4396 (8) 0.41415 0.024 (4)*
C2 0.2395 (12) 0.4503 (9) 0.498 (5) 0.034 (12)*
C3 0.2929 (9) 0.5252 (5) 0.405 (5) 0.034 (12)*
C4 0.4049 (12) 0.5361 (8) 0.528 (6) 0.034 (12)*
C5 0.4633 (12) 0.6091 (6) 0.450 (6) 0.024 (4)*
C6 0.2178 (17) 0.5957 (9) 0.460 (6) 0.024 (4)*
H7 0.28466 0.40490 0.44629 0.045 (15)*
H8 0.24038 0.45278 0.67213 0.045 (15)*
H9 0.45297 0.49037 0.49350 0.045 (15)*
H10 0.39304 0.53952 0.70018 0.045 (15)*
O11 0.0717 (10) 0.3782 (9) 0.471 (7) 0.024 (4)*
O12 0.0665 (13) 0.4969 (9) 0.337 (6) 0.024 (4)*
O13 0.5481 (13) 0.6042 (9) 0.322 (7) 0.024 (4)*
O14 0.4444 (16) 0.6727 (8) 0.552 (7) 0.024 (4)*
O15 0.196 (2) 0.6441 (11) 0.301 (7) 0.024 (4)*
O16 0.195 (2) 0.6118 (13) 0.670 (6) 0.024 (4)*
O17 0.3087 (15) 0.5187 (14) 0.159 (5) 0.024 (4)*
H18 0.34428 0.55892 0.13326 0.031 (5)*
Na19 0.1149 (15) 0.5624 (9) −0.072 (8) 0.048 (8)*
Rb20 0.3036 (3) 0.7303 (2) 0.995 (6) 0.0662 (17)*
Rb21 0.0285 (3) 0.3392 (3) 0.968 (5) 0.0662 (17)*
O22 0.5625 (14) 0.7125 (12) −0.060 (9) 0.05*
O23 0.2385 (16) 0.7991 (12) 0.489 (12) 0.05*
H24 0.52628 0.68621 0.03931 0.065*
H25 0.54984 0.69167 −0.19160 0.065*
H26 0.17964 0.82566 0.50138 0.065*
H27 0.21772 0.75215 0.47697 0.065*

Poly[diaqua(µ-citrato)dirubidium(I)sodium(I)] (KADU1681_publ). Geometric parameters (Å, º)

C1—C2 1.511 (2) O16—C6 1.267 (6)
C1—O11 1.265 (6) O16—Na19vi 1.97 (4)
C1—O12 1.275 (6) O16—Rb20 3.06 (3)
C2—C1 1.511 (2) O16—Rb21iv 3.07 (3)
C2—C3 1.541 (2) O17—C3 1.426 (6)
C3—C2 1.541 (2) O17—Na19 2.80 (3)
C3—C4 1.541 (2) O17—Rb20iii 3.77 (2)
C3—C6 1.550 (2) Na19—O11iv 2.49 (2)
C3—O17 1.426 (6) Na19—O12 2.67 (4)
C4—C3 1.541 (2) Na19—O12iv 2.48 (2)
C4—C5 1.512 (2) Na19—O15 2.74 (4)
C5—C4 1.512 (2) Na19—O16iii 1.97 (4)
C5—O13 1.264 (6) Na19—O17 2.80 (3)
C5—O14 1.264 (6) Rb20—O11vii 2.967 (14)
C6—C3 1.550 (2) Rb20—O14 3.22 (2)
C6—O15 1.266 (6) Rb20—O14vi 3.76 (3)
C6—O16 1.267 (6) Rb20—O15vi 2.65 (3)
O11—C1 1.265 (6) Rb20—O16 3.06 (3)
O11—Na19i 2.49 (2) Rb20—O17vi 3.77 (2)
O11—Rb20ii 2.967 (14) Rb20—O22vi 3.165 (18)
O11—Rb21iii 3.01 (4) Rb20—O22viii 3.099 (18)
O11—Rb21 2.97 (4) Rb20—O23 3.24 (7)
O12—C1 1.275 (6) Rb20—O23vi 3.17 (7)
O12—Na19 2.67 (4) Rb21—O11 2.97 (4)
O12—Na19i 2.48 (2) Rb21—O11vi 3.01 (4)
O12—Rb21iii 3.48 (2) Rb21—O12vi 3.48 (2)
O12—Rb21iv 3.142 (17) Rb21—O12i 3.142 (17)
O13—C5 1.264 (6) Rb21—O14ix 2.929 (15)
O13—O14 2.171 (10) Rb21—O15i 2.89 (3)
O14—C5 1.264 (6) Rb21—O16i 3.07 (3)
O14—O13 2.171 (10) Rb21—O22x 3.65 (4)
O14—Rb20iii 3.76 (3) Rb21—O23ix 2.91 (2)
O14—Rb20 3.22 (2) O22—Rb20iii 3.165 (18)
O14—Rb21v 2.929 (15) O22—Rb20xi 3.099 (18)
O15—C6 1.266 (6) O22—Rb21xii 3.65 (4)
O15—Na19 2.74 (4) O23—Rb20iii 3.17 (7)
O15—Rb20iii 2.65 (3) O23—Rb20 3.24 (7)
O15—Rb21iv 2.89 (3) O23—Rb21v 2.91 (2)
C2—C1—O11 118.3 (6) O12iv—Na19—O15 133.7 (13)
C2—C1—O12 120.8 (6) O12iv—Na19—O16iii 117.4 (19)
O11—C1—O12 118.8 (6) O15—Na19—O16iii 100.9 (9)
C1—C2—C3 112.7 (5) O11vii—Rb20—O14 87.7 (7)
C2—C3—C4 108.2 (5) O11vii—Rb20—O15vi 140.0 (11)
C2—C3—C6 109.9 (5) O11vii—Rb20—O16 139.7 (11)
C2—C3—O17 109.6 (6) O11vii—Rb20—O22vi 64.8 (5)
C4—C3—C6 109.1 (5) O11vii—Rb20—O22viii 101.6 (4)
C4—C3—O17 110.1 (6) O11vii—Rb20—O23 76.5 (9)
C6—C3—O17 110.0 (5) O11vii—Rb20—O23vi 81.1 (8)
C3—C4—C5 112.2 (5) O14—Rb20—O15vi 127.8 (6)
C4—C5—O13 119.7 (6) O14—Rb20—O16 62.6 (6)
C4—C5—O14 120.0 (6) O14—Rb20—O22vi 50.7 (9)
O13—C5—O14 118.3 (5) O14—Rb20—O22viii 121.2 (11)
C3—C6—O15 119.7 (6) O14—Rb20—O23 62.2 (7)
C3—C6—O16 119.6 (6) O14—Rb20—O23vi 162.3 (6)
O15—C6—O16 119.6 (6) O15vi—Rb20—O22vi 120.1 (9)
C1—O11—Na19i 94.0 (9) O15vi—Rb20—O22viii 77.3 (8)
C1—O11—Rb20ii 119.0 (11) O15vi—Rb20—O23 132.9 (7)
C1—O11—Rb21iii 91.3 (19) O15vi—Rb20—O23vi 59.7 (7)
C1—O11—Rb21 122 (2) O16—Rb20—O22vi 107.4 (7)
Na19i—O11—Rb20ii 145.0 (7) O16—Rb20—O22viii 75.3 (8)
Na19i—O11—Rb21iii 80.7 (12) O16—Rb20—O23 66.0 (7)
Na19i—O11—Rb21 91.7 (12) O16—Rb20—O23vi 133.4 (6)
Rb20ii—O11—Rb21iii 86.6 (9) O22vi—Rb20—O22viii 162.5 (13)
Rb20ii—O11—Rb21 81.4 (7) O22vi—Rb20—O23 100.8 (11)
Rb21iii—O11—Rb21 146.9 (5) O22vi—Rb20—O23vi 111.8 (11)
C1—O12—Na19 121.0 (17) O22viii—Rb20—O23 64.0 (10)
C1—O12—Na19i 94.4 (9) O22viii—Rb20—O23vi 74.8 (10)
C1—O12—Rb21iv 144.0 (17) O23—Rb20—O23vi 127.2 (6)
Na19—O12—Na19i 123.6 (13) O11—Rb21—O11vi 146.9 (5)
Na19—O12—Rb21iv 84.8 (6) O11—Rb21—O12i 68.4 (5)
Na19i—O12—Rb21iv 89.8 (6) O11—Rb21—O14ix 111.2 (6)
C5—O14—Rb20 137.0 (10) O11—Rb21—O15i 79.9 (7)
C5—O14—Rb21v 138.7 (12) O11—Rb21—O16i 117.1 (6)
Rb20—O14—Rb21v 83.6 (4) O11—Rb21—O23ix 85.6 (14)
C6—O15—Na19 107.4 (16) O11vi—Rb21—O12i 95.2 (4)
C6—O15—Rb20iii 138 (2) O11vi—Rb21—O14ix 92.3 (6)
C6—O15—Rb21iv 91.6 (15) O11vi—Rb21—O15i 117.3 (6)
Na19—O15—Rb20iii 87.0 (10) O11vi—Rb21—O16i 74.3 (5)
Na19—O15—Rb21iv 88.6 (9) O11vi—Rb21—O23ix 81.1 (14)
Rb20iii—O15—Rb21iv 128.9 (5) O12i—Rb21—O14ix 164.1 (5)
C6—O16—Na19vi 137 (2) O12i—Rb21—O15i 59.2 (6)
C6—O16—Rb20 129 (2) O12i—Rb21—O16i 61.2 (5)
C6—O16—Rb21iv 83.8 (15) O12i—Rb21—O23ix 125.4 (6)
Na19vi—O16—Rb20 92.4 (12) O14ix—Rb21—O15i 104.9 (6)
Na19vi—O16—Rb21iv 88.1 (12) O14ix—Rb21—O16i 107.8 (6)
Rb20—O16—Rb21iv 115.2 (5) O14ix—Rb21—O23ix 69.6 (5)
O11iv—Na19—O12 83.5 (11) O15i—Rb21—O16i 43.0 (3)
O11iv—Na19—O12iv 52.2 (4) O15i—Rb21—O23ix 161.4 (14)
O11iv—Na19—O15 92.0 (12) O16i—Rb21—O23ix 155.2 (15)
O11iv—Na19—O16iii 110.2 (17) Rb20iii—O22—Rb20xi 153.1 (9)
O12—Na19—O12iv 79.4 (8) Rb20iii—O23—Rb20 127.2 (6)
O12—Na19—O15 67.0 (11) Rb20iii—O23—Rb21v 79.1 (12)
O12—Na19—O16iii 162.5 (17) Rb20—O23—Rb21v 83.6 (12)

Symmetry codes: (i) −x, −y+1, z+1/2; (ii) −x+1/2, y−1/2, z−1/2; (iii) x, y, z−1; (iv) −x, −y+1, z−1/2; (v) −x+1/2, y+1/2, z−1/2; (vi) x, y, z+1; (vii) −x+1/2, y+1/2, z+1/2; (viii) x−1/2, −y+3/2, z+1; (ix) −x+1/2, y−1/2, z+1/2; (x) −x+1/2, y−1/2, z+3/2; (xi) x+1/2, −y+3/2, z−1; (xii) −x+1/2, y+1/2, z−3/2.

(kadu1681_DFT). Crystal data

C6H9NaO9Rb2 b = 17.2422 Å
Mr = 419.05 c = 5.7371 Å
Orthorhombic, Pna21 V = 1197.94 Å3
a = 12.1101 Å Z = 4

(kadu1681_DFT). Data collection

h = → l = →
k = →

(kadu1681_DFT). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.11349 0.44294 0.51714 0.02400*
C2 0.23597 0.45666 0.57421 0.03400*
C3 0.28367 0.52794 0.45370 0.03400*
C4 0.40500 0.54379 0.52712 0.03400*
C5 0.45823 0.61018 0.38987 0.02400*
C6 0.21792 0.60115 0.52617 0.02400*
H7 0.28454 0.40572 0.52464 0.04500*
H8 0.24316 0.46248 0.76364 0.04500*
H9 0.45422 0.49133 0.49852 0.04500*
H10 0.40815 0.55714 0.71290 0.04500*
O11 0.07326 0.37761 0.57270 0.02400*
O12 0.05725 0.49630 0.42197 0.02400*
O13 0.44070 0.61196 0.17085 0.02400*
O14 0.51674 0.65996 0.49354 0.02400*
O15 0.19321 0.64945 0.36630 0.02400*
O16 0.19781 0.61091 0.73943 0.02400*
O17 0.27723 0.51384 0.20845 0.02400*
H18 0.33394 0.54823 0.14074 0.03100*
Na19 0.10971 0.56678 0.07196 0.04800*
Rb20 0.28861 0.74043 0.99974 0.06620*
Rb21 0.02821 0.33790 1.05852 0.06620*
O22 0.55613 0.71905 −0.07701 0.05000*
O23 0.24192 0.79591 0.51019 0.05000*
H24 0.52483 0.68516 0.04328 0.06500*
H25 0.54732 0.68753 −0.21777 0.06500*
H26 0.17541 0.82757 0.50229 0.06500*
H27 0.21390 0.74353 0.47482 0.06500*

(kadu1681_DFT). Bond lengths (Å)

C1—C2 1.537 C4—H10 1.091
C1—O11 1.268 C5—O13 1.275
C1—O12 1.268 C5—O14 1.262
C2—C3 1.524 C6—O15 1.275
C2—H7 1.095 C6—O16 1.259
C2—H8 1.095 O17—H18 0.987
C3—C4 1.553 O22—H24 0.980
C3—C6 1.549 O22—H25 0.979
C3—O17 1.430 O23—H26 0.974
C4—C5 1.532 O23—H27 0.986
C4—H9 1.096

(kadu1681_DFT). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O23—H27···O15 0.986 1.755 2.721 165.6
O23—H26···O14 0.974 1.934 2.833 152.2
O22—H25···O14 0.979 1.762 2.708 161.4
O22—H24···O13 0.980 1.779 2.718 159.0
O17—H18···O13 0.987 1.705 2.613 151.0
C4—H9···O13 1.096 2.402 3.374 147.0

References

  1. Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.
  2. Bruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison Wisconsin USA.
  3. Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170. [DOI] [PubMed]
  4. Cigler, A. J. & Kaduk, J. A. (2019). Acta Cryst. E75, 223–227. [DOI] [PMC free article] [PubMed]
  5. Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D’Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.
  7. Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.
  8. Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R. & Blanton, T. N. (2017). Powder Diffr. 32, 63–71.
  9. Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.
  10. Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Kourkoumelis, N. (2013). Powder Diffr. 28, 137–148.
  13. Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR 86–784 Los Alamos National Laboratory, New Mexico, USA.
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252. [DOI] [PubMed]
  16. Sophia, G., Baranek, P., Sarrazin, C., Rerat, M. & Dovesi, R. (2014). Unpublished. http://www.crystal.unito.it/index.php.
  17. Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.
  18. Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. [DOI] [PMC free article] [PubMed]
  19. Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) KADU1685_publ, kadu1685_DFT, KADU1681_publ, kadu1681_DFT. DOI: 10.1107/S2056989019003190/vn2141sup1.cif

e-75-00432-sup1.cif (619.9KB, cif)

Supporting information file. DOI: 10.1107/S2056989019003190/vn2141KADU1685_publsup2.cml

Supporting information file. DOI: 10.1107/S2056989019003190/vn2141KADU1681_publsup3.cml

CCDC references: 1901423, 1901422, 1901421, 1901420

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES