Skip to main content
Clinical Cardiology logoLink to Clinical Cardiology
. 2006 Dec 5;27(5):258–264. doi: 10.1002/clc.4960270503

Lipoprotein(a): New insights into mechanisms of atherogenesis and thrombosis

Arjun Deb 1, Noel M Caplice 1,
PMCID: PMC6654090  PMID: 15188938

Abstract

Lipoprotein(a) (Lp[a]) continues to be a controversial molecule regarding its role in human vascular disease. Although the physiologic role of this molecule is still unclear, novel discoveries within the last few years have suggested numerous mechanisms whereby Lp(a) may contribute to atherosclerosis and its complications in human subjects. These effects may differentially occur in vascular tissue and circulating blood compartments. A complex interplay between tissue‐specific effects is probably more relevant to the pathogenicity of this molecule than one single effect alone. This review briefly describes the structure of Lp(a) in relation to its biochemical function, summarizing the current literature on various patho‐physiologic mechanisms of Lp(a)‐induced vascular disease and the role of cell and tissue‐specific effects in promoting atherogenesis and thrombosis.

Keywords: lipoprotein(a), tissue factor pathway inhibitor, atherogenesis

Full Text

The Full Text of this article is available as a PDF (135.2 KB).

References

  • 1. Scanu AM: Atherothrombogenicity of lipoprotein(a): The debate. Am J Cardiol 1998; 82: 26Q–33Q [DOI] [PubMed] [Google Scholar]
  • 2. Albers JJ, Adolphson JL, Hazzard WR: Radioimmunoassay of human plasma Lp(a) lipoprotein. J Lipid Res 1977; 18: 331–338 [PubMed] [Google Scholar]
  • 3. Dahlen G, Berg K, Gillnas T, Ericson C: Lp(a) lipoprotein/pre‐beta1‐lipo‐protein in Swedish middle‐aged males and in patients with coronary heart disease. Clin Genet 1975; 7: 334–341 [DOI] [PubMed] [Google Scholar]
  • 4. Dahlen G, Ericson C, Furberg C, Lundkvist L, Svardsudd K: Studies on an extra pre‐beta lipoprotein fraction. Acta Med Scand 1972; 531 (suppl): 1–29 [PubMed] [Google Scholar]
  • 5. Ridker PM, Hennekens CH, Stampfer MJ: A prospective study of lipoprotein(a) and the risk of myocardial infarction (see comments). J Am Med Assoc 1993; 270: 2195–2199 [PubMed] [Google Scholar]
  • 6. Jauhiainen M, Koskinen P, Ehnholm C, Frick MH, Manttari M, Manninen V, Huttunen JK: Lipoprotein (a) and coronary heart disease risk: A nested case‐control study of the Helsinki Heart Study participants (see comments). Atherosclerosis 1991; 89: 59–67 [DOI] [PubMed] [Google Scholar]
  • 7. Coleman MP, Key TJ, Wang DY, Hermon C, Fentiman IS, Allen DS, Jarvis M, Pike MC, Sanders TA: A prospective study of obesity, lipids, apolipoproteins and ischaemic heart disease in women. Atherosclerosis 1992; 92: 177–185 [DOI] [PubMed] [Google Scholar]
  • 8. Bostom AG, Cupples LA, Jenner JL, Ordovas JM, Seman LJ, Wilson PW, Schaefer EJ, Castelli WP: Elevated plasma lipoprotein(a) and coronary heart disease in men aged 55 years and younger. A prospective study (see comments). J Am Med Assoc 1996; 276: 544–548 [DOI] [PubMed] [Google Scholar]
  • 9. Bostom AG, Gagnon DR, Cupples LA, Wilson PW, Jenner JL, Ordovas JM, Schaefer EJ, Castelli WP: A prospective investigation of elevated lipoprotein (a) detected by electrophoresis and cardiovascular disease in women. The Framingham Heart Study. Circulation 1994; 90: 1688–1695 [DOI] [PubMed] [Google Scholar]
  • 10. Cremer P, Nagel D, Labrot B, Mann H, Muche R, Elster H, Seidel D: Lipoprotein Lp(a) as predictor of myocardial infarction in comparison to fibrinogen, LDL cholesterol and other risk factors: Results from the prospective Gottingen Risk Incidence and Prevalence Study (GRIPS). Eur J Clin Invest 1994; 24: 444–453 [DOI] [PubMed] [Google Scholar]
  • 11. Rosengren A, Wilhelmsen L, Eriksson E, Risberg B, Wedel H: Lipoprotein (a) and coronary heart disease: Aprospective case‐control study in a general population sample of middle aged men. Br Med J 1990; 301: 1248–1251 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Schaefer EJ, Lamon‐Fava S, Jenner JL, McNamara JR, Ordovas JM, Davis CE, Abolafia JM, Lippel K, Levy RI: Lipoprotein(a) levels and risk of coronary heart disease in men. The Lipid Research Clinics Coronary Primary Prevention Trial. J Am Med Assoc 1994; 271: 999–1003 [DOI] [PubMed] [Google Scholar]
  • 13. Sigurdsson G, Baldursdottir A, Sigvaldason H, Agnarsson U, Thorgeirsson G, Sigfusson N: Predictive value of apolipoproteins in a prospective survey of coronary artery disease in men. Am J Cardiol 1992; 69: 1251–1254 [DOI] [PubMed] [Google Scholar]
  • 14. Wald NJ, Law M, Watt HC, Wu T, Bailey A, Johnson AM, Craig WY, Ledue TB, Haddow JE: Apolipoproteins and ischaemic heart disease: Implications for screening. Lancet 1994; 343: 75–79 [DOI] [PubMed] [Google Scholar]
  • 15. Stein JH, Rosenson RS: Lipoprotein Lp(a) excess and coronary heart disease. Arch Intern Med 1997; 157: 1170–1176 [PubMed] [Google Scholar]
  • 16. Hobbs HH, White AL: Lipoprotein(a): Intrigues and insights. Curr Opin Lipidol 1999; 10: 225–236 [DOI] [PubMed] [Google Scholar]
  • 17. Kronenberg F, Steinmetz A, Kostner GM, Dieplinger H: Lipoprotein(a) in health and disease. Crit Rev Clin Lab Sci 1996; 33: 495–543 [DOI] [PubMed] [Google Scholar]
  • 18. Djurovic S, Berg K: Epidemiology of Lp(a) lipoprotein: Its role in atherosclerotic/thrombotic disease. Clin Genet 1997; 52: 281–292 [DOI] [PubMed] [Google Scholar]
  • 19. Scanu AM: Lipoprotein(a). Baillieres Clin Endocrinol Metab 1990; 4: 939–946 [DOI] [PubMed] [Google Scholar]
  • 20. Eaton DL, Fless GM, Kohr WJ, McLean JW, Xu QT, Miller CG, Lawn RM, Scanu AM: Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen. Proc Natl Acad Sci USA 1987; 84: 3224–3228 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, Scanu AM, Lawn RM: cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 1987; 330: 132–137 [DOI] [PubMed] [Google Scholar]
  • 22. Frank SL, Klisak I, Sparkes RS, Mohandas T, Tomlinson JE, McLean JW, Lawn RM, Lusis AJ: The apolipoprotein(a) gene resides on human chromosome 6q26‐27, in close proximity to the homologous gene for plasminogen. Hum Genet 1988; 79: 352–356 [DOI] [PubMed] [Google Scholar]
  • 23. Weitkamp LR, Guttormsen SA, Schultz JS: Linkage between the loci for the Lp(a) lipoprotein (LP) and plasminogen (PLG). Hum Genet 1988; 79: 80–82 [DOI] [PubMed] [Google Scholar]
  • 24. van der Hoek YY, Wittekoek ME, Beisiegel U, Kastelein JJ, Koschinsky ML: The apolipoprotein(a) kringle IV repeats which differ from the major repeat kringle are present in variably‐sized isoforms. Hum Mol Genet 1993; 2: 361–366 [DOI] [PubMed] [Google Scholar]
  • 25. Lackner C, Cohen JC, Hobbs HH: Molecular definition of the extreme size polymorphism in apolipoprotein(a). Hum Mol Genet 1993; 2: 933–940 [DOI] [PubMed] [Google Scholar]
  • 26. Scanu AM: Structural basis for the presumptive atherothrombogenic action of lipoprotein(a). Facts and speculations. Biochem Pharmacol 1993; 46: 1675–1680 [DOI] [PubMed] [Google Scholar]
  • 27. Scanu AM, Atzeni MM, Edelstein C, Tonolo G, Maioli M, Klezovitch O: Lipoprotein(a): Identification of subjects with a superbinding capacity for fibrinogen. Clin Genet 1997; 52: 367–370 [DOI] [PubMed] [Google Scholar]
  • 28. Edelstein C, Italia JA, Klezovitch O, Scanu AM: Functional and metabolic differences between elastase‐generated fragments of human lipoprotein[a] and apolipoprotein[a]. J Lipid Res 1996; 37: 1786–801 [PubMed] [Google Scholar]
  • 29. Edelstein C, Italia JA, Scanu AM: Polymorphonuclear cells isolated from human peripheral blood cleave lipoprotein(a) and apolipoprotein(a) at multiple interkringle sites via the enzyme elastase. Generation of mini‐Lp(a) particles and apo(a) fragments. J Biol Chem 1997; 272: 11079–11087 [DOI] [PubMed] [Google Scholar]
  • 30. Scanu AM, Edelstein C: Learning about the structure and biology of human lipoprotein [a] through dissection by enzymes of the elastase family: Facts and speculations. J Lipid Res 1997; 38: 2193–2206 [PubMed] [Google Scholar]
  • 31. Edelstein C, Shapiro SD, Klezovitch O, Scanu AM: Macrophage metalloelastase, MMP‐12, cleaves human apolipoprotein(a) in the linker region between kringles IV‐4 and IV‐5. Potential relevance to lipoprotein(a) biology. J Biol Chem 1999; 274: 10019–10023 [DOI] [PubMed] [Google Scholar]
  • 32. Allen S, Khan S, Tam S, Koschinsky M, Taylor P, Yacoub M: Expression of adhesion molecules by 1p(a): A potential novel mechanism for its atherogenicity. FASEB J 1998; 12: 1765–1776 [DOI] [PubMed] [Google Scholar]
  • 33. Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, Rollins BJ, Charo IF: MCP‐1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 1999; 103: 773–778 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Ross R: Atherosclerosis–an inflammatory disease. N Engl J Med 1999; 340: 115–126 [DOI] [PubMed] [Google Scholar]
  • 35. Faggiotto A, Ross R: Studies of hypercholesterolemia in thenonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 1984; 4: 341–356 [DOI] [PubMed] [Google Scholar]
  • 36. Lusis AJ: Atherosclerosis. Nature 2000; 407: 233–241 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Hynes RO, Wagner DD: Genetic manipulation of vascular adhesion molecules in mice. J Clin Invest 1996; 98: 2193–2195 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Hackman A, Abe Y, Insull W Jr, Pownall H, Smith L, Dunn K, Gotto AM Jr, Ballantyne CM: Levels of soluble cell adhesion molecules in patients with dyslipidemia. Circulation 1996; 93: 1334–1338 [DOI] [PubMed] [Google Scholar]
  • 39. Takami S, Yamashita S, Kihara S, Ishigami M, Takemura K, Kume N, Kita T, Matsuzawa Y: Lipoprotein(a) enhances the expression of intercellular adhesion molecule‐1 in cultured human umbilical vein endothelial cells. Circulation 1998; 97: 721–728 [DOI] [PubMed] [Google Scholar]
  • 40. Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC: Activation of transforming growth factor‐beta is inhibited in transgenic apolipoprotein(a) Mice. Nature 1994; 370: 460–462 [DOI] [PubMed] [Google Scholar]
  • 41. Grainger DJ, Kirschenlohr HL, Metcalfe JC, Weissberg PL, Wade DP, Lawn RM: Proliferation of human smooth muscle cells promoted by lipoprotein(a). Science 1993; 260: 1655–1658 [DOI] [PubMed] [Google Scholar]
  • 42. Grainger DJ, Kemp PR, Witchell CM, Weissberg PL, Metcalfe JC: Transforming growth factor beta decreases the rate of proliferation of rat vascular smooth musclecellsby extending the G2 phase of the cell cycle and delays the rise in cyclic AMP before entry into Mphase. Biochem J 1994; 299: 227–235 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Pillarisetti S, Paka L, Obunike JC, Berglund L, Goldberg IJ: Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix. J Clin Invest 1997; 100: 867–874 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Hughes SD, Lou XJ, Ighani S, Verstuyft J, Grainger DJ, Lawn RM, Rubin EM: Lipoprotein(a) vascular accumulation in mice. In vivo analysis of the role of lysine binding sites using recombinant adenovirus. J Clin Invest 1997; 100: 1493–1500 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Boonmark NW, Lou XJ, Yang ZJ, Schwartz K, Zhang JL, Rubin EM, Lawn RM: Modification of apolipoprotein(a) lysine binding site reduces atherosclerosis in transgenic mice. J Clin Invest 1997; 100: 558–564 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Klezovitch O, Edelstein C, Zhu L, Scanu AM: Apolipoprotein(a) binds via its C‐terminal domain to the protein core of the proteoglycan decorin. Implications for the retention of lipoprotein(a) in atherosclerotic lesions. J Biol Chem 1998; 273: 23856–23865 [DOI] [PubMed] [Google Scholar]
  • 47. Asundi VK, Dreher KL: Molecular characterization of vascular smooth muscle decorin: Deduced core protein structure and regulation of gene expression. Eur J Cell Biol 1992; 59: 314–321 [PubMed] [Google Scholar]
  • 48. Jarvelainen HT, Iruela‐Arispe ML, Kinsella MG, Sandell LJ, Sage EH, Wight TN: Expression of decorin by sprouting bovine aortic endothelial cells exhibiting angiogenesis in vitro. Exp Cell Res 1992; 203: 395–401 [DOI] [PubMed] [Google Scholar]
  • 49. Jarvelainen HT, Kinsella MG, Wight TN, Sandell LJ: Differential expression of small chondroitin/dermatan sulfate proteoglycans, PG‐I/biglycan and PG‐II/decorin, by vascular smooth muscle and endothelial cells in culture. J Biol Chem 1991; 266: 23274–23281 [PubMed] [Google Scholar]
  • 50. Riessen R, Isner JM, Blessing E, Loushin C, Nikol S, Wight TN: Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol 1994; 144: 962–974 [PMC free article] [PubMed] [Google Scholar]
  • 51. Haberland ME, Fless GM, Scanu AM, Fogelman AM: Malondialdehyde modification of lipoprotein(a) produces avid uptake by human monocyte‐macrophages. J Biol Chem 1992; 267: 4143–4151 [PubMed] [Google Scholar]
  • 52. Bottalico LA, Keesler GA, Fless GM, Tabas I: Cholesterol loading of macrophages leads to marked enhancement of native lipoprotein(a) and apoprotein(a) internalization and degradation. J Biol Chem 1993; 268: 8569–8573 [PubMed] [Google Scholar]
  • 53. Tabas I, Li Y, Brocia RW, Xu SW, Swenson TL, Williams KJ: Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. J Biol Chem 1993; 268: 20419–20432 [PubMed] [Google Scholar]
  • 54. Klezovitch O, Edelstein C, Scanu AM: Stimulation of interleukin‐8 production in human THP‐1 macrophages by apolipoprotein(a). Evidence for a critical involvement of elements in its C‐terminal domain. J Biol Chem 2001; 276: 46864–46869 [DOI] [PubMed] [Google Scholar]
  • 55. Apostolopoulos J, Davenport P, Tipping PG: Interleukin‐8 production by macrophages from atheromatous plaques. Arterioscler Thromb Vasc Biol 1996; 16: 1007–1012 [DOI] [PubMed] [Google Scholar]
  • 56. Baggiolini M, Walz A, Kunkel SL: Neutrophil‐activating peptide‐1/inter‐leukin 8, a novel cytokine that activates neutrophils. J Clin Invest 1989; 84: 1045–1049 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K: The neutrophil‐activating protein (NAP‐1) is also chemotactic for T lymphocytes. Science 1989; 243: 1464–1466 [DOI] [PubMed] [Google Scholar]
  • 58. Gerszten RE, Garcia‐Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinskas FW, Rosenzweig A: MCP‐1 and IL‐8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999; 398: 718–723 [DOI] [PubMed] [Google Scholar]
  • 59. Yue TL, McKenna PJ, Gu JL, Feuerstein GZ: Interleukin‐8 is chemotactic for vascular smooth muscle cells. Eur J Pharmacol 1993; 240: 81–84 [DOI] [PubMed] [Google Scholar]
  • 60. Yue TL, Wang X, Sung CP, Olson B, McKenna PJ, Gu JL, Feuerstein GZ: Interleukin‐8. A mitogen and chemoattractant for vascular smooth muscle cells. Circ Res 1994; 75: 1–7 [DOI] [PubMed] [Google Scholar]
  • 61. Moreau M, Brocheriou I, Petit L, Ninio E, Chapman MJ, Rouis M: Interleukin‐8 mediates downregulation of tissue inhibitor of metalloproteinase‐1 expression in cholesterol‐loaded human macrophages: Relevance to stability of atherosclerotic plaque. Circulation 1999; 99: 420–426 [DOI] [PubMed] [Google Scholar]
  • 62. Ganne F, Vasse M, Beaudeux JL, Peynet J, Francois A, Paysant J, Lenormand B, Collet JP, Vannier JP, Soria J, Soria C: Increased expression of u‐PA and u‐PAR on monocytes by LDL and Lp(a) lipoproteins–consequences for plasmin generation and monocyte adhesion. Thromb Haemost 1999; 81: 594–600 [PubMed] [Google Scholar]
  • 63. Plow EF, Ploplis VA, Busuttil S, Carmeliet P, Collen D: A role of plasminogen in atherosclerosis and restenosis models in mice. Thromb Haemost 1999; 82 (suppl 1): 4–7 [PubMed] [Google Scholar]
  • 64. Sato Y, Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor‐beta 1‐like molecule by plasmin during co‐culture. J Cell Biol 1989; 109: 309–315 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Lyons RM, Gentry LE, Purchio AF, Moses HL: Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 1990; 110: 1361–1367 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Garg UC, Hassid A: Inhibition of rat mesangial cell mitogenesis by nitric oxide‐generating vasodilators. Am J Physiol 1989; 257: F60–66 [DOI] [PubMed] [Google Scholar]
  • 67. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gim‐brone MA Jr, Shin WS, Liao JK: Nitric oxide decreases cytokine‐induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60–68 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Zeiher AM, Fisslthaler B, Schray‐Utz B, Busse R: Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 1995; 76: 980–986 [DOI] [PubMed] [Google Scholar]
  • 69. Schafer AI, Alexander RW, Handin RI: Inhibition of platelet function by organic nitrate vasodilators. Blood 1980; 55: 649–654 [PubMed] [Google Scholar]
  • 70. Suttorp N, Hippenstiel S, Fuhrmann M, Krull M, Podzuweit T: Role of nitric oxide and phosphodiesterase isoenzyme II for reduction of endothelial hyperpermeability. Am J Physiol 1996; 270: C778–C785 [DOI] [PubMed] [Google Scholar]
  • 71. Naruse K, Shimizu K, Muramatsu M, Toki Y, Miyazaki Y, Okumura K, Hashimoto H, Ito T: Long‐term inhibition of NO synthesis promotes atherosclerosis in the hypercholesterolemic rabbit thoracic aorta. PGH2 does not contribute to impaired endothelium‐dependent relaxation. Arterioscler Thromb 1994; 14: 746–752 [DOI] [PubMed] [Google Scholar]
  • 72. Cayatte AJ, Palacino JJ, Horten K, Cohen RA: Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb 1994; 14: 753–759 [DOI] [PubMed] [Google Scholar]
  • 73. Moeslinger T, Friedl R, Volf I, Brunner M, Koller E, Spieckermann PG: Inhibition of inducible nitric oxide synthesis by oxidized lipoprotein(a) in a murine macrophage cell line. FEBS Lett 2000; 478: 95–99 [DOI] [PubMed] [Google Scholar]
  • 74. Tsurumi Y, Nagashima H, Ichikawa K, Sumiyoshi T, Hosoda S: Influence of plasma lipoprotein (a) levels on coronary vasomotor response to acetyl‐choline. J Am Coll Cardiol 1995; 26: 1242–1250 [DOI] [PubMed] [Google Scholar]
  • 75. Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE: Impairment of endothelium‐dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Invest 1994; 93: 50–55 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Schlaich MP, John S, Langenfeld MR, Lackner KJ, Schmitz G, Schmieder RE: Does lipoprotein(a) impair endothelial function? J Am Coll Cardiol 1998; 31: 359–365 [DOI] [PubMed] [Google Scholar]
  • 77. Hajjar KA, Gavish D, Breslow JL, Nachman RL: Lipoprotein(a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature 1989; 339: 303–305 [DOI] [PubMed] [Google Scholar]
  • 78. Gonzalez‐Gronow M, Edelberg JM, Pizzo SV: Further characterization of the cellular plasminogen binding site: Evidence that plasminogen 2 and lipoprotein a compete for the same site. Biochemistry 1989; 28: 2374–2377 [DOI] [PubMed] [Google Scholar]
  • 79. Miles LA, Fless GM, Levin EG, Scanu AM, Plow EF: A potential basis for the thrombotic risks associated with lipoprotein(a). Nature 1989; 339: 301–303 [DOI] [PubMed] [Google Scholar]
  • 80. Ezratty A, Simon DI, Loscalzo J: Lipoprotein(a) binds to human platelets and attenuates plasminogen binding and activation. Biochemistry 1993; 32: 4628–4633 [DOI] [PubMed] [Google Scholar]
  • 81. Hajjar KA, Jacovina AT, Chacko J: An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem 1994; 269: 21191–21197 [PubMed] [Google Scholar]
  • 82. Chung CY, Erickson HP: Cell surface annexin II is a high affinity receptor for the alternatively spliced segment of tenascin‐C. J Cell Biol 1994; 126: 539–548 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Hajjar RJ, Bonventre JV: Oscillations of intracellular calcium induced by vasopressin in individual fura‐2‐loaded mesangial cells. Frequency dependence on basal calcium concentration, agonist concentration, and temperature. J Biol Chem 1991; 266: 21589–21594 [PubMed] [Google Scholar]
  • 84. Hajjar KA, Hamel NM: Identification and characterization of human endothelial cell membrane binding sites for tissue plasminogen activator and urokinase. J Biol Chem 1990; 265: 2908–2916 [PubMed] [Google Scholar]
  • 85. Hajjar KA, Nachman RL: Endothelial cell‐mediated conversion of Glu‐plasminogen to Lys‐plasminogen. Further evidence for assembly of the fibrinolytic system on the endothelial cell surface. J Clin Invest 1988; 82: 1769–1778 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Hajjar KA, Harpel PC, Jaffe EA, Nachman RL: Binding of plasminogen to cultured human endothelial cells. J Biol Chem 1986; 261: 11656–11662 [PubMed] [Google Scholar]
  • 87. Cesarman GM, Guevara CA, Hajjar KA: An endothelial cell receptor for plasminogen/tissue plasminogen activator (t‐PA). II. Annexin II‐mediated enhancement of t‐PA‐dependent plasminogen activation. J Biol Chem 1994; 269: 21198–21203 [PubMed] [Google Scholar]
  • 88. Hajjar KA, Hamel NM, Harpel PC, Nachman RL: Binding of tissue plasminogen activator to cultured human endothelial cells. J Clin Invest 1987; 80: 1712–1719 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Edelberg JM, Gonzalez‐Gronow M, Pizzo SV: Lipoprotein a inhibits streptokinase‐mediated activation of human plasminogen. Biochemistry 1989; 28: 2370–2374 [DOI] [PubMed] [Google Scholar]
  • 90. Karadi I, Kostner GM, Gries A, Nimpf J, Romics L, Malle E: Lipoprotein (a) and plasminogen are immunochemically related. Biochim Biophys Acta 1988; 960: 91–97 [DOI] [PubMed] [Google Scholar]
  • 91. Simon DI, Fless GM, Scanu AM, Loscalzo J: Tissue‐type plasminogen activator binds to and is inhibited by surface‐bound lipoprotein(a) and low‐density lipoprotein. Biochemistry 1991; 30: 6671–6677 [DOI] [PubMed] [Google Scholar]
  • 92. Palabrica TM, Liu AC, Aronovitz MJ, Furie B, Lawn RM, Furie BC: Anti‐fibrinolytic activity of apolipoprotein(a) in vivo: Human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator‐mediated thrombolysis. Nat Med 1995; 1: 256–259 [DOI] [PubMed] [Google Scholar]
  • 93. Harpel PC, Gordon BR, Parker TS: Plasmin catalyzes binding of lipoprotein (a) to immobilized fibrinogen and fibrin. Proc Natl Acad Sci USA 1989; 86: 3847–3851 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Hervio L, Durlach V, Girard‐Globa A, Angles‐Cano E: Multiple binding with identical linkage: A mechanism that explains the effect of lipoprotein(a) on fibrinolysis. Biochemistry 1995; 34: 13353–13358 [DOI] [PubMed] [Google Scholar]
  • 95. Fless GM, ZumMallen ME, Scanu AM: Physicochemical properties of apolipoprotein(a) and lipoprotein(a‐) derived from the dissociation of human plasma lipoprotein (a). J Biol Chem 1986; 261: 8712–8718 [PubMed] [Google Scholar]
  • 96. Hervio L, Chapman MJ, Thillet J, Loyau S, Angles‐Cano E: Does apolipoprotein(a) heterogeneity influence lipoprotein(a) effects on fibrinolysis? Blood 1993; 82: 392–397 [PubMed] [Google Scholar]
  • 97. Angles‐Cano E, de la Pena Diaz A, Loyau S: Inhibition of fibrinolysis by lipoprotein(a). Ann NY Acad Sci 2001; 936: 261–275 [DOI] [PubMed] [Google Scholar]
  • 98. Etingin OR, Hajjar DP, Hajjar KA, Harpel PC, Nachman RL: Lipoprotein (a) regulates plasminogen activator inhibitor‐1 expression in endothelial cells. A potential mechanism in thrombogenesis. J Biol Chem 1991; 266: 2459–2465 [PubMed] [Google Scholar]
  • 99. Buechler C, Ullrich H, Ritter M, Porsch‐Oezcueruemez M, Lackner KJ, Barlage S, Friedrich SO, Kostner GM, Schmitz G: Lipoprotein (a) up‐regulates the expression of the plasminogen activator inhibitor 2 in human blood monocytes. Blood 2001; 97: 981–986 [DOI] [PubMed] [Google Scholar]
  • 100. Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP: The lipoprotein‐associated coagulation inhibitor that inhibits the factor VII‐tissue factor complex also inhibits factor Xa: Insight into its possible mechanism of action. Blood 1988; 71: 335–343 [PubMed] [Google Scholar]
  • 101. Bajaj MS, Kuppuswamy MN, Saito H, Spitzer SG, Bajaj SP: Cultured normal human hepatocytes do not synthesize lipoprotein‐associated coagulation inhibitor: Evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci USA 1990; 87: 8869–8873 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Lindhout T, Blezer R, Schoen P, Nordfang O, Reutelingsperger C, Hemker HC: Activation of factor X and its regulation by tissue factor pathway inhibitor in small‐diameter capillaries lined with human endothelial cells. Blood 1992; 79: 2909–2916 [PubMed] [Google Scholar]
  • 103. Werling RW, Zacharski LR, Kisiel W, Bajaj SP, Memoli VA, Rousseau SM: Distribution of tissue factor pathway inhibitor in normal and malignant human tissues. Thromb Haemost 1993; 69: 366–369 [PubMed] [Google Scholar]
  • 104. van der Logt CP, Dirven RJ, Reitsma PH, Bertina RM: Expression of tissue factor and tissue factor pathway inhibitor in monocytes in response to bacterial lipopolysaccharide and phorbolester. Blood Coagul Fibrinolysis 1994; 5: 211–220 [DOI] [PubMed] [Google Scholar]
  • 105. Marmur JD, Thiruvikraman SV, Fyfe BS, Guha A, Sharma SK, Ambrose JA, Fallon JT, Nemerson Y, Taubman MB: Identification of active tissue factor in human coronary atheroma. Circulation 1996; 94: 1226–1232 [DOI] [PubMed] [Google Scholar]
  • 106. Caplice NM, Mueske CS, Kleppe LS, Simari RD: Presence of tissue factor pathway inhibitor in human atherosclerotic plaques is associated with reduced tissue factor activity. Circulation 1998; 98: 1051–1057 [DOI] [PubMed] [Google Scholar]
  • 107. Caplice NM, Panetta C, Peterson TE, Kleppe LS, Mueske CS, Kostner GM, Broze GJ Jr, Simari RD: Lipoprotein (a) binds and inactivates tissue factor pathway inhibitor: A novel link between lipoproteins and thrombosis. Blood 2001; 98: 2980–2987 [DOI] [PubMed] [Google Scholar]

Articles from Clinical Cardiology are provided here courtesy of Wiley

RESOURCES