Abstract
Fibromyalgia Syndrome (FMS) is a disorder of chronic, generalized muscular pain, accompanied by sleep disturbances, fatigue and cognitive dysfunction. There is no definitive pathogenesis except for altered central pain pathways. We previously reported increased serum levels of the neuropeptides substance P (SP) and its structural analogue hemokinin-1 (HK-1) together with the pro-inflammatory cytokines IL-6 and TNF in FMS patients as compared to sedentary controls. We hypothesize that thalamic mast cells contribute to inflammation and pain, by releasing neuro-sensitizing molecules that include histamine, IL-1β, IL-6 and TNF, as well as calcitonin-gene related peptide (CGRP), HK-1 and SP. These molecules could either stimulate thalamic nociceptive neurons directly, or via stimulation of microglia in the diencephalon. As a result, inhibiting mast cell stimulation could be used as a novel approach for reducing pain and the symptoms of FMS.
Keywords: mast cells, pain, neuroinflammation, fibromyalgia syndrome, proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6)
Introduction
Fibromyalgia Syndrome is a disorder of chronic generalized muscular pain, stiffness, generalized fatigue, sleep abnormalities, (Clauw et al., 2011; Schmidt-Wilcke and Clauw, 2011; Clauw, 2014) and cognitive problems (Theoharides et al., 2015b; Hauser et al., 2019) assessed by the FSQ (Ferrari and Russell, 2013), which has about 93% sensitivity and 92% specificity (Clauw, 2014). FMS affects about 5% of adults, primarily women 20–60 years of age (Branco et al., 2010) and belongs to a family of overlapping painful conditions (Table 1) known as CSS (Yunus, 2007; Theoharides, 2013). Central sensitization is recognized as the main mechanism involved (Woodman, 2013) and is characterized by allodynia, pain from an otherwise non-painful stimulus, (Russell and Larson, 2009) and hyperalgesia (Staud et al., 2001) due to an exaggerated response to a painful stimulus (Woolf, 2011). The pathogenesis of FMS remains unknown and with no objective diagnostic criteria (McBeth and Mulvey, 2012; Wolfe and Walitt, 2013). FMS patients have reduced tolerance to pain, especially extremes of heat and cold (Desmeules et al., 2003). There is considerable evidence of altered circuity of pain networks and (Jensen et al., 2012; Flodin et al., 2014) abnormal pain processing in FMS (Staud, 2011).
TABLE 1.
• Chronic inflammatory response syndrome (CIRS) • Functional dyspepsia • Gulf War Illness (GWI) • Interstitial cystitis/bladder pain syndrome (IC/BPS) • Irritable bowel syndrome (IBS) • Mast cell mediator disorder (MCMD) • Mastocytosis • Migraines • Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) • Myogenic temporomandibular disorder (TMD) • Myofacial pain syndrome • Post-traumatic stress disorder (PTSD) • Restless leg syndrome • Temporomandibular pain syndrome (TMS) • Tension headache |
The PubMed database was searched between 1960 and 2018 using the terms fatigue, fibromyalgia, hypothalamus, inflammation, mast cells, pain and stress. Only articles in English were included.
Here we discuss how brain mast cell release of neuro-sensitizing mediators in the thalamus leads to focal inflammation and contribute to the pathogenesis of FMS.
Neurohormonal Triggers of Mast Cells Contribute to Focal Inflammation in the Diencephalon
It was recently proposed that FMS may involve localized inflammation in the hypothalamus (Theoharides et al., 2015c). Elevations in pro-inflammatory chemokines/cytokines could negatively impact symptoms (Bazzichi et al., 2007; Carvalho et al., 2008; Nugraha et al., 2013) leading to sensitization of peripheral and central nociceptors (Uceyler et al., 2011; Behm et al., 2012; Hornig et al., 2015). Increased levels of the pro-inflammatory chemokine IL-8 (CXCL8) have been reported in the serum and CSF in patients with FMS (Ross et al., 2010; Kadetoff et al., 2012; Rodriguez-Pinto et al., 2014). Chemokines facilitate nociception by directly acting on chemokine receptors present along the pain pathway (Abbadie, 2005; Charo and Ransohoff, 2006).
The cytokines TNF and IL-17 greatly contribute to the inflammatory response (Romero-Sanchez et al., 2011; Griffin et al., 2012). Plasma levels of IL-17 were increased and correlated with levels of TNF in patients with FMS (Pernambuco et al., 2013). CSF and serum IL-17 also positively correlated with pain (Meng et al., 2013) and anxiety (Liu et al., 2012). Mast cells, themselves, can secrete IL-17; moreover, IL-6 and TGFβ from mast cells contribute to the development of Th-17 cells (Kenna and Brown, 2013).
Fibromyalgia syndrome worsen by stress, (Geenen et al., 2002) which augments pain responses (Bote et al., 2012, 2013). Plasma concentrations of cortisol are increased in the evening, suggesting disruption of the circadian rhythm (Crofford et al., 2004). Serum levels of CRH, which is secreted under stress, were increased in patients with FMS (Tsilioni et al., 2016). CRH was also increased in the CSF of such patients and correlated with severity of pain (McLean et al., 2006). Physiological stress was reported to be the most common trigger in patients with systemic mastocytosis (SM) (Jennings et al., 2014) who also commonly experience FMS (Theoharides et al., 2015d, 2019). We reported increased levels of CRH in the serum of one patient with indolent systemic mastocytosis (Theoharides et al., 2014). CRH can trigger human mast cells to release VEGF without histamine or tryptase (Cao et al., 2005). CRH also has synergistic action with NT stimulating VEGF release. As a result, there is increased vascular permeability in the skin and the blood-brain barrier (BBB) (Esposito et al., 2002; Donelan et al., 2006; Theoharides and Konstantinidou, 2007). Stress also disrupts the gut-blood barrier (Theoharides et al., 1999; Wallon et al., 2008) allowing for gut microbiome-associated molecules, such as propionate (Minerbi et al., 2019) to enter the brain and contribute to focal inflammation. These results have led to the conclusion that mast cells may serve as “immune gate to the brain” (Theoharides, 1990; Ribatti, 2015).
Levels of the neuropeptide SP (Russell, 1998) and NGF (Giovengo et al., 1999) are elevated in the CSF of FMS patients. NGF has been reported to increase nociception and hyperalgesia (Maren, 2017). The SP receptor NK-1 has been involved in the pathophysiology of pain (Greenwood-Van et al., 2014). We reported increased serum levels of SP, its structural analogue Hemokinin-1 (HK-1) and TNF in patients with FMS (Tsilioni et al., 2016). SP (Theoharides et al., 2010a,b) and NGF (Levi-Montalcini, 1987) can stimulate mast cells. Moreover, SP induced mast cell expression of CRHR-1 (Scholzen et al., 2001). Cerebrovascular mast cells were stimulated by CGRP, (Reynier-Rebuffel et al., 1994; Ottosson and Edvinsson, 1997) which is now well established to participate in the pathophysiology of headaches (Edvinsson, 2018). In addition to neuropeptides, sex hormones can also affect mast cell reactivity. For instance, estradiol augments immune (Kovats, 2015) and allergic (Hox et al., 2015) processes. In particular, we had reported expression of estrogen receptors on rodent mast cells (Pang et al., 1995). We also reported that 17β-estradiol further increased stimulation of mast cells by SP (Theoharides et al., 1993). Such findings may help explain why FMS is more common in women.
In addition to allergic reactions, mast cells contribute to innate immunity, (Galli et al., 2011) autoimmunity (Rottem and Mekori, 2005) and inflammation (Theoharides et al., 2010a).
Thalamic Mast Cells Secrete Neurosensitizing Mediators
Increasing evidence supports the involvement of mast cells in FMS (Lucas et al., 2006; Pollack, 2014) and comorbid disorders (Theoharides, 2013) as well as other inflammatory (Galli et al., 2008; Theoharides et al., 2010a) and painful conditions, (Heron and Dubayle, 2013; Chatterjea and Martinov, 2014) as well as neuroimmune interactions (Skaper et al., 2017) (Figure 1). Chronic urticaria, which involves stimulation of skin mast cells is more common in FMS (Torresani et al., 2009). Moreover, mast cells are significantly increased in the papillary dermis of FMS patients (Blanco et al., 2010). The chemokines monocyte chemoattractant protein-1 (MCP-1/CCL2) and eotaxin (CCL-11) are elevated in plasma of FMS patients (Zhang et al., 2008). MCP-1 is a strong mast cell chemoattractant (Conti et al., 1998) and also triggers mast cells in rodents (Conti and Theoharides, 1994). MCP-1 induced prolonged muscle hyperalgesia in rats via activation of its high-affinity receptor, CC Chemokine receptor 2 (CCR2), on the peripheral nerve terminals (Alvarez et al., 2014). Myoblasts treated with MCP-1 secreted significant amounts of the key pro-inflammatory cytokine IL-1β (Zhang et al., 2008). C-reactive protein (CRP) is now considered a marker of chronic inflammation. CRP may be useful in the diagnostic of FMS (and depression/anxiety that often accompany FMS), even though there is no direct correlation reported (De Berardis et al., 2006, 2017; Orsolini et al., 2018).
Mast cells derive from the bone marrow and mature in response to SCF, which acts via the cell surface tyrosine kinase KIT receptor (Galli et al., 2011). Mast cell progenitors then migrate in all tissues. As a result, mast cell mediators can affect all organs and lead to multiple symptoms. Mast cells are found adjacent to blood vessels and nerve endings; in the brain, mast cells are located in the thalamus, hypothalamus and median eminence (Edvinsson et al., 1976; Lambracht-Hall et al., 1990; Theoharides et al., 2015d).
Mast cells are known to be stimulated by IgE, via activation of its unique surface receptors (FcεRI) (Rivera et al., 2008). Mast cells can also be stimulated via TLRs, (Abraham and St John, 2010; Zhang et al., 2010). Stimulated mast cells secrete multiple vasoactive, pro-inflammatory and neuro-sensitizing molecules (Galli and Tsai, 2008; Theoharides et al., 2010a). Stimulation of mast cells can be augmented by the cytokine IL-33, (Fux et al., 2014) which synergizes with SP to induce release of impressive amounts of VEGF, (Theoharides et al., 2010b) TNF (Taracanova et al., 2017) or IL-1β (Taracanova et al., 2018). As a result, mast cells can serve as “sensors of cell danger” (Theoharides, 1996; Enoksson et al., 2011; Theoharides et al., 2015a).
Mast cell secretory granules store many preformed pro-inflammatory and neuro-sensitizing mediators including bradykinin, histamine, TNF and tryptase (Nakae et al., 2005; Olszewski et al., 2007). Mast cells also release de novo synthesized molecules: (a) lipid mediators (leukotrienes, prostaglandins, and PAF), (b) cytokines (IL-6, IL-13, IL-33, TNF) and (c) chemokines (CXCL8, CCL2, CCL5), (Theoharides et al., 2015d; Mukai et al., 2018). Mast cell could often release mediators selectively without histamine or tryptase (Theoharides et al., 2007). Mast cells also release IL-31, which is important in the sensation of itching and pain, in response to IgE and SP, IL-33 and specifically their combination (Petra et al., 2018). We reported that mast cells can release mtDNA, which is mistaken as a pathogen and stimulates inflammatory responses (Zhang B. et al., 2012).
Finally, mast cells can release extracellular vesicles (exosomes) (Skokos et al., 2002, 2003) that could deliver regulatory molecules, including mtDNA and microRNAs (Kawikova and Askenase, 2014). Such microvesicles have been implicated in brain disorders (Tsilioni et al., 2014; Kawikova and Askenase, 2014) and pain disorders (Rafiee et al., 2018; Silva-Freire et al., 2019). We recently reported that extracellular vesicles are increased in the serum of children with ASD, contained mtDNA and stimulated cultured human microglia to secrete the pro-inflammatory molecules IL-1β and CXCL8 (Tsilioni and Theoharides, 2018).
Mast Cell Interactions With Microglia
Mast cells communicate with microglia (Skaper et al., 2012, 2014b). Mediators secreted from mast cells, (Zhang et al., 2016) such as histamine (Dong et al., 2014) and tryptase, (Zhang S. et al., 2012) can activate microglia leading to secretion of the pro-inflammatory cytokines IL-1β, IL-6 and TNF. Microglia can also be activated by CRH secreted from mast cells (Wang et al., 2002; Kempuraj et al., 2004). Stimulation of brain mast cells in mice led to activation of microglia, which was decreased by administration of a mast cell inhibitor (Dong et al., 2017).
Microglia are involved in synapse plasticity, (Shemer et al., 2015; Wu et al., 2015; Reu et al., 2017) but are responsible for innate immunity of the brain (Ransohoff and Brown, 2012; Aguzzi et al., 2013). Microglia contribute to brain inflammation (Hagberg et al., 2012; Aguzzi et al., 2013; Nakagawa and Chiba, 2016) and the pathogenesis of different brain disorders, (Takeda et al., 2014; Reus et al., 2015; Faden et al., 2016; Garden and Campbell, 2016; Groh and Martini, 2017; Koutsouras et al., 2017; Pennisi et al., 2017; Jiang et al., 2018; Thonhoff et al., 2018) especially ASD (Vargas et al., 2005; Morgan et al., 2010; Suzuki et al., 2013; Edmonson et al., 2014; Gupta et al., 2014). Microglia in the thalamus have been discussed in the context of pain, especially maintaining the pain sensation even after the original painful stimulus is not present (Banati, 2002; Hansson, 2010; Saghaei et al., 2013; Blaszczyk et al., 2018).
Conclusion
Mast cells have been implicated in headaches (Theoharides, 1983; Theoharides et al., 2005) and pain (Xanthos et al., 2011; Aich et al., 2015; Gupta and Harvima, 2018). Activation of the mast cell-specific receptor, MRGPRX2, (McNeil et al., 2015) and its mouse analogue, Mrgprb2, mediated inflammatory mechanical and thermal hyperalgesia (Green et al., 2019). Hence, mast cells are key players of neuroendocrine (Theoharides, 2017) and painful disorders (Theoharides et al., 2019).
In this context, inhibitors of mast cells (Harvima et al., 2014) would be useful in the treatment of FMS. Natural molecules could include the flavonoids, luteolin (Kempuraj et al., 2008; Theoharides et al., 2015c; Ashaari et al., 2018) and tetramethoxyluteolin, (Theoharides et al., 2017; Theoharides and Tsilioni, 2018) alone or in combination with other substances selected to reduce stress (Theoharides and Kavalioti, 2018). Other natural molecules could include palmitoylethanolamide, (Schweiger et al., 2019) which apparently inhibits neuro-inflammation (Skaper et al., 2013, 2015) and reduces pain (Skaper et al., 2014a; Impellizzeri et al., 2016).
Future Directions
Research should focus on identifying in serum of patients with FMS novel molecules that are involved in pain transmission such as bradykinin, CGRP and IL-31. Extracellular vesicles should also be isolated from the serum and CSF of FMS patients, their content identified, and their effect investigated on cultured human mast cells and microglia. Such possible interactions would serve as useful in vitro assays for the screening of potential novel treatment agents. Recent reports have also stressed the possible use of the cytokine IL-37, (Mastrangelo et al., 2018) which is known to have anti-inflammatory actions (Cavalli and Dinarello, 2018). It would be important to explore the possible use of IL-37 isoforms in the treatment of FMS.
Author Contributions
TT, IT, and MB participated in searching the literature. TT and IT wrote or contributed to the writing of the manuscript. IT prepared the figure.
Conflict of Interest Statement
TT is the inventor of US patents No. 7,906,153 and No. 8,268,365 for the treatment of neuroinflammatory conditions. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Abbreviations
- ACR
American College of Rheumatology
- ASD
autism spectrum disorder
- CGRP
calcitonin-gene related peptide
- CIRS
chronic inflammatory response syndrome
- CRH
corticotropin-releasing hormone
- CSF
cerebrospinal fluid
- CSS
central sensitivity syndromes
- CXCL8
IL-8
- FcεRI
high affinity surface receptors
- FMS
fibromyalgia syndrome
- FSQ
fibromyalgia survey questionnaire
- IBS
irritable bowel syndrome
- IC/BPS
interstitial cystitis/bladder pain syndrome
- IgE
immunoglobulin E
- MCP-1/CCL2
monocyte chemoattractant protein-1
- ME/CFS
myalgic encephalomyelitis/chronic fatigue syndrome
- MRGPRX2
mas-related G-protein coupled receptor member X2
- (mt)DNA
mitochondrial
- NGF
nerve growth factor
- PAF
platelet activating factor
- PTSD
post-traumatic stress disorder
- SCF
stem cell factor
- SP
substance P
- TLRs
toll-like receptors
- TMD
myogenic temporomandibular disorder.
Footnotes
Funding. Some aspects of our work described were supported in part by the National Institutes of Health (NIH) (Grants NS38326 and AR47652), as well as the Michael and Katherine Johnson Family Fund to TT.
References
- Abbadie C. (2005). Chemokines, chemokine receptors and pain. Trends Immunol. 26 529–534. 10.1016/j.it.2005.08.001 [DOI] [PubMed] [Google Scholar]
- Abraham S. N., St John A. L. (2010). Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10 440–452. 10.1038/nri2782 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aguzzi A., Barres B. A., Bennett M. L. (2013). Microglia: scapegoat, saboteur, or something else? Science 339 156–161. 10.1126/science.1227901 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aich A., Afrin L. B., Gupta K. (2015). Mast cell-mediated mechanisms of nociception. Int. J. Mol. Sci. 16 29069–29092. 10.3390/ijms161226151 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alvarez P., Green P. G., Levine J. D. (2014). Role for monocyte chemoattractant protein-1 in the induction of chronic muscle pain in the rat. Pain 155 1161–1167. 10.1016/j.pain.2014.03.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashaari Z., Hadjzadeh M. A., Hassanzadeh G., Alizamir T., Yousefi B., Keshavarzi Z., et al. (2018). The flavone luteolin improves central nervous system disorders by different mechanisms: a review. J. Mol. Neurosci. 65 491–506. 10.1007/s12031-018-1094-2 [DOI] [PubMed] [Google Scholar]
- Banati R. B. (2002). Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J. Physiol. Paris 96 289–299. 10.1016/s0928-4257(02)00018-9 [DOI] [PubMed] [Google Scholar]
- Bazzichi L., Rossi A., Massimetti G., Giannaccini G., Giuliano T., De Feo F., et al. (2007). Cytokine patterns in fibromyalgia and their correlation with clinical manifestations. Clin. Exp. Rheumatol. 25 225–230. [PubMed] [Google Scholar]
- Behm F. G., Gavin I. M., Karpenko O., Lindgren V., Gaitonde S., Gashkoff P. A., et al. (2012). Unique immunologic patterns in fibromyalgia. BMC Clin. Pathol. 12:25. 10.1186/1472-6890-12-25 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco I., Beritze N., Arguelles M., Carcaba V., Fernandez F., Janciauskiene S., et al. (2010). Abnormal overexpression of mastocytes in skin biopsies of fibromyalgia patients. Clin. Rheumatol. 29 1403–1412. 10.1007/s10067-010-1474-7 [DOI] [PubMed] [Google Scholar]
- Blaszczyk L., Maitre M., Leste-Lasserre T., Clark S., Cota D., Oliet S. H. R., et al. (2018). Sequential alteration of microglia and astrocytes in the rat thalamus following spinal nerve ligation. J. Neuroinflammation 15:349. 10.1186/s12974-018-1378-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bote M. E., Garcia J. J., Hinchado M. D., Ortega E. (2012). Inflammatory/stress feedback dysregulation in women with fibromyalgia. Neuroimmunomodulation 19 343–351. 10.1159/000341664 [DOI] [PubMed] [Google Scholar]
- Bote M. E., Garcia J. J., Hinchado M. D., Ortega E. (2013). Fibromyalgia: anti-inflammatory and stress responses after acute moderate exercise. PLoS One 8:e74524. 10.1371/journal.pone.0074524 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branco J. C., Bannwarth B., Failde I., Abello C. J., Blotman F., Spaeth M., et al. (2010). Prevalence of fibromyalgia: a survey in five European countries. Semin. Arthritis Rheum. 39 448–453. 10.1016/j.semarthrit.2008.12.003 [DOI] [PubMed] [Google Scholar]
- Cao J., Papadopoulou N., Kempuraj D., Boucher W. S., Sugimoto K., Cetrulo C. L., et al. (2005). Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J. Immunol. 174 7665–7675. 10.4049/jimmunol.174.12.7665 [DOI] [PubMed] [Google Scholar]
- Carvalho L. S., Correa H., Silva G. C., Campos F. S., Baiao F. R., Ribeiro L. S., et al. (2008). May genetic factors in fibromyalgia help to identify patients with differentially altered frequencies of immune cells? Clin. Exp. Immunol. 154 346–352. 10.1111/j.1365-2249.2008.03787.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavalli G., Dinarello C. A. (2018). Suppression of inflammation and acquired immunity by IL-37. Immunol. Rev. 281 179–190. 10.1111/imr.12605 [DOI] [PubMed] [Google Scholar]
- Charo I. F., Ransohoff R. M. (2006). The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354 610–621. 10.1056/nejmra052723 [DOI] [PubMed] [Google Scholar]
- Chatterjea D., Martinov T. (2014). Mast cells: versatile gatekeepers of pain. Mol. Immunol. 63 38–44. 10.1016/j.molimm.2014.03.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clauw D. J. (2014). Fibromyalgia: a clinical review. JAMA 311 1547–1555. 10.1001/jama.2014.3266 [DOI] [PubMed] [Google Scholar]
- Clauw D. J., Arnold L. M., McCarberg B. H. (2011). The science of fibromyalgia. Mayo Clin. Proc. 86 907–911. 10.4065/mcp.2011.0206 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conti P., Reale M., Barbacane R. C., Letourneau R., Theoharides T. C. (1998). Intramuscular injection of hrRANTES causes mast cell recruitment and increased transcription of histidine decarboxylase: lack of effects in genetically mast cell-deficient W/Wv mice. FASEB J. 12 1693–1700. 10.1096/fasebj.12.15.1693 [DOI] [PubMed] [Google Scholar]
- Conti P., Theoharides T. C. (1994). Monocyte chemotactic Protein-1 (MCP-1) is active on mast cells and causes clump formation. Int. J. Immunopathol. Pharmacol. 7 149–151. 8550082 [Google Scholar]
- Crofford L. J., Young E. A., Engleberg N. C., Korszun A., Brucksch C. B., McClure L. A., et al. (2004). Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav. Immun. 18 314–325. 10.1016/s0889-1591(04)00021-2 [DOI] [PubMed] [Google Scholar]
- De Berardis D., Campanella D., Gambi F., La R. R., Carano A., Conti C. M., et al. (2006). The role of C-reactive protein in mood disorders. Int. J. Immunopathol. Pharmacol. 19 721–725. [DOI] [PubMed] [Google Scholar]
- De Berardis D., Serroni N., Campanella D., Marini S., Rapini G., Valchera A., et al. (2017). Alexithymia, suicide ideation, C-Reactive Protein, and serum lipid levels among outpatients with generalized anxiety disorder. Arch. Suicide Res. 21 100–112. 10.1080/13811118.2015.1004485 [DOI] [PubMed] [Google Scholar]
- Desmeules J. A., Cedraschi C., Rapiti E., Baumgartner E., Finckh A., Cohen P., et al. (2003). Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. Arthritis Rheum. 48 1420–1429. 10.1002/art.10893 [DOI] [PubMed] [Google Scholar]
- Donelan J., Boucher W., Papadopoulou N., Lytinas M., Papaliodis D., Theoharides T. C. (2006). Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc. Natl. Acad. Sci. U.S.A. 103 7759–7764. 10.1073/pnas.0602210103 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong H., Zhang W., Zeng X., Hu G., Zhang H., He S., et al. (2014). Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia1. Mol. Neurobiol. 49 1487–1500. 10.1007/s12035-014-8697-6 [DOI] [PubMed] [Google Scholar]
- Dong H., Zhang X., Wang Y., Zhou X., Qian Y., Zhang S. (2017). Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol. Neurobiol. 54 997–1007. 10.1007/s12035-016-9720-x [DOI] [PubMed] [Google Scholar]
- Edmonson C., Ziats M. N., Rennert O. M. (2014). Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol. Autism 5:3. 10.1186/2040-2392-5-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edvinsson L. (2018). The CGRP pathway in migraine as a viable target for therapies. Headache 58(Suppl. 1), 33–47. 10.1111/head.13305 [DOI] [PubMed] [Google Scholar]
- Edvinsson L., Owman C., Sjöberg N. O. (1976). Autonomic nerves, mast cells and amine receptors in human brain vessels. A histochemical and pharmacological study. Brain Res. 115 377–393. 10.1016/0006-8993(76)90356-5 [DOI] [PubMed] [Google Scholar]
- Enoksson M., Lyberg K., Moller-Westerberg C., Fallon P. G., Nilsson G., Lunderius-Andersson C. (2011). Mast cells as sensors of cell injury through IL-33 recognition. J. Immunol. 186 2523–2528. 10.4049/jimmunol.1003383 [DOI] [PubMed] [Google Scholar]
- Esposito P., Chandler N., Kandere-Grzybowska K., Basu S., Jacobson S., Connolly R., et al. (2002). Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J. Pharmacol. Exp. Ther. 303 1061–1066. 10.1124/jpet.102.038497 [DOI] [PubMed] [Google Scholar]
- Faden A. I., Wu J., Stoica B. A., Loane D. J. (2016). Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br. J. Pharmacol. 173 681–691. 10.1111/bph.13179 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrari R., Russell A. S. (2013). A questionnaire using the modified 2010 American College of rheumatology criteria for fibromyalgia: specificity and sensitivity in clinical practice. J. Rheumatol. 40 1590–1595. 10.3899/jrheum.130367 [DOI] [PubMed] [Google Scholar]
- Flodin P. D., Martinsen S., Lofgren M., Bileviciute-Ljungar I., Kosek E., Fransson P. (2014). Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. Brain Connect. 4 587–594. 10.1089/brain.2014.0274 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fux M., Pecaric-Petkovic T., Odermatt A., Hausmann O. V., Lorentz A., Bischoff S. C., et al. (2014). IL-33 is a mediator rather than a trigger of the acute allergic response in humans. Allergy 69 216–222. 10.1111/all.12309 [DOI] [PubMed] [Google Scholar]
- Galli S. J., Borregaard N., Wynn T. A. (2011). Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12 1035–1044. 10.1038/ni.2109 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galli S. J., Tsai M. (2008). Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J. Dermatol. Sci. 49 7–19. 10.1016/j.jdermsci.2007.09.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galli S. J., Tsai M., Piliponsky A. M. (2008). The development of allergic inflammation. Nature 454 445–454. 10.1038/nature07204 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garden G. A., Campbell B. M. (2016). Glial biomarkers in human central nervous system disease. Glia 64 1755–1771. 10.1002/glia.22998 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geenen R., Jacobs J. W., Bijlsma J. W. (2002). Evaluation and management of endocrine dysfunction in fibromyalgia. Rheum. Dis. Clin. North Am. 28 389–404. 10.1016/s0889-857x(01)00009-6 [DOI] [PubMed] [Google Scholar]
- Giovengo S. L., Russell I. J., Larson A. A. (1999). Increased concentrations of nerve growth factor in cerebrospinal fluid of patients with fibromyalgia. J. Rheumatol. 26 1564–1569. [PubMed] [Google Scholar]
- Green D. P., Limjunyawong N., Gour N., Pundir P., Dong X. (2019). A Mast-Cell-Specific receptor mediates neurogenic inflammation and pain. Neuron 101 412–420. 10.1016/j.neuron.2019.01.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenwood-Van M. B., Mohammadi E., Tyler K., Pietra C., Bee L. A., Dickenson A. (2014). Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain. J. Pharmacol. Exp. Ther. 351 146–152. 10.1124/jpet.114.216028 [DOI] [PubMed] [Google Scholar]
- Griffin G. K., Newton G., Tarrio M. L., Bu D. X., Maganto-Garcia E., Azcutia V., et al. (2012). IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J. Immunol. 188 6287–6299. 10.4049/jimmunol.1200385 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groh J., Martini R. (2017). Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: understanding pathogenesis and chances for treatment. Glia 65 1407–1422. 10.1002/glia.23162 [DOI] [PubMed] [Google Scholar]
- Gupta K., Harvima I. T. (2018). Mast cell-neural interactions contribute to pain and itch. Immunol. Rev. 282 168–187. 10.1111/imr.12622 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta S., Ellis S. E., Ashar F. N., Moes A., Bader J. S., Zhan J., et al. (2014). Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5:5748. 10.1038/ncomms6748 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagberg H., Gressens P., Mallard C. (2012). Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann. Neurol. 71 444–457. 10.1002/ana.22620 [DOI] [PubMed] [Google Scholar]
- Hansson E. (2010). Long-term pain, neuroinflammation and glial activation. Scand. J. Pain 1 67–72. 10.1016/j.sjpain.2010.01.002 [DOI] [PubMed] [Google Scholar]
- Harvima I. T., Levi-Schaffer F., Draber P., Friedman S., Polakovicova I., Gibbs B. F., et al. (2014). Molecular targets on mast cells and basophils for novel therapies. J. Allergy Clin. Immunol. 134 530–544. 10.1016/j.jaci.2014.03.007 [DOI] [PubMed] [Google Scholar]
- Hauser W., Sarzi-Puttini P., Fitzcharles M. A. (2019). Fibromyalgia syndrome: under-, over- and misdiagnosis. Clin. Exp. Rheumatol. 37(Suppl. 116), 90–97. [PubMed] [Google Scholar]
- Heron A., Dubayle D. (2013). A focus on mast cells and pain. J. Neuroimmunol. 264 1–7. 10.1016/j.jneuroim.2013.09.018 [DOI] [PubMed] [Google Scholar]
- Hornig M., Montoya J. G., Klimas N. G., Levine S., Felsenstein D., Bateman L., et al. (2015). Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci. Adv. 1:e1400121. 10.1126/sciadv.1400121 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hox V., Desai A., Bandara G., Gilfillan A. M., Metcalfe D. D., Olivera A. (2015). Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J. Allergy Clin. Immunol. 135 729–736. 10.1016/j.jaci.2014.11.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Impellizzeri D., Di P. R., Cordaro M., Gugliandolo E., Casili G., Morittu V. M., et al. (2016). Adelmidrol, a palmitoylethanolamide analogue, as a new pharmacological treatment for the management of acute and chronic inflammation. Biochem. Pharmacol. 119 27–41. 10.1016/j.bcp.2016.09.001 [DOI] [PubMed] [Google Scholar]
- Jennings S., Russell N., Jennings B., Slee V., Sterling L., Castells M., et al. (2014). The mastocytosis society survey on mast cell disorders: patient experiences and perceptions. J. Allergy Clin. Immunol. Pract. 2 70–76. 10.1016/j.jaip.2013.09.004 [DOI] [PubMed] [Google Scholar]
- Jensen K. B., Loitoile R., Kosek E., Petzke F., Carville S., Fransson P., et al. (2012). Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol. Pain 8:32. 10.1186/1744-8069-8-32 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang N. M., Cowan M., Moonah S. N., Petri W. A., Jr. (2018). The impact of systemic inflammation on neurodevelopment. Trends Mol. Med. 24 794–804. 10.1016/j.molmed.2018.06.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadetoff D., Lampa J., Westman M., Andersson M., Kosek E. (2012). Evidence of central inflammation in fibromyalgia-increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 242 33–38. 10.1016/j.jneuroim.2011.10.013 [DOI] [PubMed] [Google Scholar]
- Kawikova I., Askenase P. W. (2014). Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res. 1617 63–71. 10.1016/j.brainres.2014.09.070 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kempuraj D., Papadopoulou N. G., Lytinas M., Huang M., Kandere-Grzybowska K., Madhappan B., et al. (2004). Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology 145 43–48. 10.1210/en.2003-0805 [DOI] [PubMed] [Google Scholar]
- Kempuraj D., Tagen M., Iliopoulou B. P., Clemons A., Vasiadi M., Boucher W., et al. (2008). Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell dependent stimulation of Jurkat T cells. Br. J. Pharmacol. 155 1076–1084. 10.1038/bjp.2008.356 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenna T. J., Brown M. A. (2013). The role of IL-17-secreting mast cells in inflammatory joint disease. Nat. Rev. Rheumatol. 9 375–379. 10.1038/nrrheum.2012.205 [DOI] [PubMed] [Google Scholar]
- Koutsouras G. W., Ramos R. L., Martinez L. R. (2017). Role of microglia in fungal infections of the central nervous system. Virulence 8 705–718. 10.1080/21505594.2016.1261789 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovats S. (2015). Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 294 63–69. 10.1016/j.cellimm.2015.01.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambracht-Hall M., Dimitriadou V., Theoharides T. C. (1990). Migration of mast cells in the developing rat brain. Dev. Brain Res. 56 151–159. 10.1016/0165-3806(90)90077-c [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R. (1987). The nerve growth factor 35 years later. Science 237 1154–1162. 10.1126/science.3306916 [DOI] [PubMed] [Google Scholar]
- Liu Y., Ho R. C., Mak A. (2012). The role of interleukin (IL)-17 in anxiety and depression of patients with rheumatoid arthritis. Int. J. Rheum. Dis. 15 183–187. 10.1111/j.1756-185X.2011.01673.x [DOI] [PubMed] [Google Scholar]
- Lucas H. J., Brauch C. M., Settas L., Theoharides T. C. (2006). Fibromyalgia–new concepts of pathogenesis and treatment. Int. J. Immunopathol. Pharmacol. 19 5–10. [PubMed] [Google Scholar]
- Maren S. (2017). Synapse-Specific encoding of fear memory in the amygdala. Neuron 95 988–990. 10.1016/j.neuron.2017.08.020 [DOI] [PubMed] [Google Scholar]
- Mastrangelo F., Frydas I., Ronconi G., Kritas S. K., Tettamanti L., Caraffa A., et al. (2018). Low-grade chronic inflammation mediated by mast cells in fibromyalgia: role of IL-37. J. Biol. Regul. Homeost Agents 32 195–198. [PubMed] [Google Scholar]
- McBeth J., Mulvey M. R. (2012). Fibromyalgia: mechanisms and potential impact of the ACR 2010 classification criteria. Nat. Rev. Rheumatol. 8 108–116. 10.1038/nrrheum.2011.216 [DOI] [PubMed] [Google Scholar]
- McLean S. A., Williams D. A., Stein P. K., Harris R. E., Lyden A. K., Whalen G., et al. (2006). Cerebrospinal fluid corticotropin-releasing factor concentration is associated with pain but not fatigue symptoms in patients with fibromyalgia. Neuropsychopharmacology 31 2776–2782. 10.1038/sj.npp.1301200 [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeil B. D., Pundir P., Meeker S., Han L., Undem B. J., Kulka M., et al. (2015). Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519 237–241. 10.1038/nature14022 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meng X., Zhang Y., Lao L., Saito R., Li A., Backman C. M., et al. (2013). Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain 154 294–305. 10.1016/j.pain.2012.10.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minerbi A., Gonzalez E., Brereton N. J. B., Anjarkouchian A., Dewar K., Fitzcharles M. A., et al. (2019). Altered microbiome composition in individuals with fibromyalgia. Pain 10.1097/j.pain.0000000000001640 [Epub ahead of print]. [DOI] [PubMed] [Google Scholar]
- Morgan J. T., Chana G., Pardo C. A., Achim C., Semendeferi K., Buckwalter J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 68 368–376. 10.1016/j.biopsych.2010.05.024 [DOI] [PubMed] [Google Scholar]
- Mukai K., Tsai M., Saito H., Galli S. J. (2018). Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 282 121–150. 10.1111/imr.12634 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakae S., Suto H., Kakurai M., Sedgwick J. D., Tsai M., Galli S. J. (2005). Mast cells enhance T cell activation: importance of mast cell-derived TNF. Proc. Natl. Acad. Sci. U.S.A. 102 6467–6472. 10.1073/pnas.0501912102 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa Y., Chiba K. (2016). Involvement of neuroinflammation during brain development in social cognitive deficits in autism spectrum disorder and schizophrenia. J. Pharmacol. Exp. Ther. 358 504–515. 10.1124/jpet.116.234476 [DOI] [PubMed] [Google Scholar]
- Nugraha B., Korallus C., Kielstein H., Gutenbrunner C. (2013). CD3+CD56+natural killer T cells in fibromyalgia syndrome patients: association with the intensity of depression. Clin. Exp. Rheumatol. 31 S9–S15. [PubMed] [Google Scholar]
- Olszewski M. B., Groot A. J., Dastych J., Knol E. F. (2007). TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. J. Immunol. 178 5701–5709. 10.4049/jimmunol.178.9.5701 [DOI] [PubMed] [Google Scholar]
- Orsolini L., Sarchione F., Vellante F., Fornaro M., Matarazzo I., Martinotti G., et al. (2018). Protein-C reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr. Neuropharmacol. 16 583–606. 10.2174/1570159X16666180119144538 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ottosson A., Edvinsson L. (1997). Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17 166–174. 10.1046/j.1468-2982.1997.1703166.x [DOI] [PubMed] [Google Scholar]
- Pang X., Cotreau-Bibbo M. M., Sant G. R., Theoharides T. C. (1995). Bladder mast cell expression of high affinity estrogen receptors in patients with interstitial cystitis. Br. J. Urol. 75 154–161. 10.1111/j.1464-410x.1995.tb07303.x [DOI] [PubMed] [Google Scholar]
- Pennisi M., Crupi R., Di P. R., Ontario M. L., Bella R., Calabrese E. J., et al. (2017). Inflammasomes, hormesis, and antioxidants in neuroinflammation: role of NRLP3 in Alzheimer disease. J. Neurosci. Res. 95 1360–1372. 10.1002/jnr.23986 [DOI] [PubMed] [Google Scholar]
- Pernambuco A. P., Schetino L. P., Alvim C. C., Murad C. M., Viana R. S., Carvalho L. S., et al. (2013). Increased levels of IL-17A in patients with fibromyalgia. Clin. Exp. Rheumatol. 31 S60–S63. [PubMed] [Google Scholar]
- Petra A. I., Tsilioni I., Taracanova A., Katsarou-Katsari A., Theoharides T. C. (2018). Interleukin 33 and interleukin 4 regulate interleukin 31 gene expression and secretion from human laboratory of allergic diseases 2 mast cells stimulated by substance P and/or immunoglobulin E. Allergy Asthma Proc. 39 153–160. 10.2500/aap.2018.38.4105 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollack S. (2014). Mast cells in fibromyalgia. Clin. Exp. Rheumatol. 33(1 Suppl. 88):S140. [PubMed] [Google Scholar]
- Rafiee Z. A., Falahatian M., Alsahebfosoul F. (2018). Serum levels of histamine and diamine oxidase in multiple sclerosis. Am. J. Clin. Exp. Immunol. 7 100–105. [PMC free article] [PubMed] [Google Scholar]
- Ransohoff R. M., Brown M. A. (2012). Innate immunity in the central nervous system. J. Clin. Invest. 122 1164–1171. 10.1172/JCI58644 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reu P., Khosravi A., Bernard S., Mold J. E., Salehpour M., Alkass K., et al. (2017). The lifespan and turnover of microglia in the human brain. Cell Rep. 20 779–784. 10.1016/j.celrep.2017.07.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reus G. Z., Fries G. R., Stertz L., Badawy M., Passos I. C., Barichello T., et al. (2015). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300 141–154. 10.1016/j.neuroscience.2015.05.018 [DOI] [PubMed] [Google Scholar]
- Reynier-Rebuffel A.-M., Mathiau P., Callebert J., Dimitriadou V., Farjaudon N., Kacem K., et al. (1994). Substance P, calcitonin gene-related peptide, and capsaicin release serotonin from cerebrovascular mast cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 267 R1421–R1429. [DOI] [PubMed] [Google Scholar]
- Ribatti D. (2015). The crucial role of mast cells in blood-brain barrier alterations. Exp. Cell Res. 338 119–125. 10.1016/j.yexcr.2015.05.013 [DOI] [PubMed] [Google Scholar]
- Rivera J., Fierro N. A., Olivera A., Suzuki R. (2008). New insights on mast cell activation via the high affinity receptor for IgE. Adv. Immunol. 98 85–120. 10.1016/S0065-2776(08)00403-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez-Pinto I., Agmon-Levin N., Howard A., Shoenfeld Y. (2014). Fibromyalgia and cytokines. Immunol. Lett. 161 200–203. 10.1016/j.imlet.2014.01.009 [DOI] [PubMed] [Google Scholar]
- Romero-Sanchez C., Jaimes D. A., Londono J., De Avila J., Castellanos J. E., Bello J. M., et al. (2011). Association between Th-17 cytokine profile and clinical features in patients with spondyloarthritis. Clin. Exp. Rheumatol. 29 828–834. [PubMed] [Google Scholar]
- Ross R. L., Jones K. D., Bennett R. M., Ward R. L., Druker B. J., Wood L. J. (2010). Preliminary evidence of increased pain and elevated cytokines in fibromyalgia patients with defective growth hormone response to exercise. Open Immunol. J. 3 9–18. 10.2174/1874226201003010009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottem M., Mekori Y. A. (2005). Mast cells and autoimmunity. Autoimmun. Rev. 4 21–27. 10.1016/j.autrev.2004.05.001 [DOI] [PubMed] [Google Scholar]
- Russell I. J. (1998). Advances in fibromyalgia: possible role for central neurochemicals. Am. J. Med. Sci. 315 377–384. 10.1016/s0002-9629(15)40355-6 [DOI] [PubMed] [Google Scholar]
- Russell I. J., Larson A. A. (2009). Neurophysiopathogenesis of fibromyalgia syndrome: a unified hypothesis. Rheum. Dis. Clin. North Am. 35 421–435. 10.1016/j.rdc.2009.06.005 [DOI] [PubMed] [Google Scholar]
- Saghaei E., Abbaszadeh F., Naseri K., Ghorbanpoor S., Afhami M., Haeri A., et al. (2013). Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats. Neurosci. Res. 75 316–323. 10.1016/j.neures.2013.01.010 [DOI] [PubMed] [Google Scholar]
- Schmidt-Wilcke T., Clauw D. J. (2011). Fibromyalgia: from pathophysiology to therapy. Nat. Rev. Rheumatol. 7 518–527. 10.1038/nrrheum.2011.98 [DOI] [PubMed] [Google Scholar]
- Scholzen T. E., Steinhoff M., Bonaccorsi P., Klein R., Amadesi S., Geppetti P., et al. (2001). Neutral endopeptidase terminates substance P-induced inflammation in allergic contact dermatitis. J. Immunol. 166 1285–1291. 10.4049/jimmunol.166.2.1285 [DOI] [PubMed] [Google Scholar]
- Schweiger V., Martini A., Bellamoli P., Donadello K., Schievano C., Del B. G., et al. (2019). Ultramicronized palmitoylethanolamide (um-PEA) as add-on treatment in fibromyalgia syndrome (FMS): retrospective observational study on 407 patients. CNS Neurol. Disord. Drug Targets 10.2174/1871527318666190227205359 [Epub ahead of print]. [DOI] [PubMed] [Google Scholar]
- Shemer A., Erny D., Jung S., Prinz M. (2015). Microglia plasticity during health and disease: an immunological perspective. Trends Immunol. 36 614–624. 10.1016/j.it.2015.08.003 [DOI] [PubMed] [Google Scholar]
- Silva-Freire N., Mayado A., Teodosio C., Jara-Acevedo M., Varez-Twose I., Matito A., et al. (2019). Bone marrow mast cell antibody-targetable cell surface protein expression profiles in systemic mastocytosis. Int. J. Mol. Sci. 20:E552. 10.3390/ijms20030552 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skaper S. D., Facci L., Barbierato M., Zusso M., Bruschetta G., Impellizzeri D., et al. (2015). N-Palmitoylethanolamine and neuroinflammation: a novel therapeutic strategy of resolution. Mol. Neurobiol. 52 1034–1042. 10.1007/s12035-015-9253-8 [DOI] [PubMed] [Google Scholar]
- Skaper S. D., Facci L., Fusco M., la Valle M. F., Zusso M., Costa B., et al. (2014a). Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology 22 79–94. 10.1007/s10787-013-0191-7 [DOI] [PubMed] [Google Scholar]
- Skaper S. D., Facci L., Giusti P. (2014b). Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol. Disord. Drug Targets 13 1654–1666. 10.2174/1871527313666141130224206 [DOI] [PubMed] [Google Scholar]
- Skaper S. D., Facci L., Giusti P. (2013). Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. Mol. Neurobiol. 48 340–352. 10.1007/s12035-013-8487-6 [DOI] [PubMed] [Google Scholar]
- Skaper S. D., Facci L., Zusso M., Giusti P. (2017). Neuroinflammation, mast cells, and glia: dangerous liaisons. Neuroscientist 23 478–498. 10.1177/1073858416687249 [DOI] [PubMed] [Google Scholar]
- Skaper S. D., Giusti P., Facci L. (2012). Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J. 26 3103–3117. 10.1096/fj.11-197194 [DOI] [PubMed] [Google Scholar]
- Skokos D., Botros H. G., Demeure C., Morin J., Peronet R., Birkenmeier G., et al. (2003). Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol. 170 3037–3045. 10.4049/jimmunol.170.6.3037 [DOI] [PubMed] [Google Scholar]
- Skokos D., Goubran-Botros H., Roa M., Mecheri S. (2002). Immunoregulatory properties of mast cell-derived exosomes. Mol. Immunol. 38 1359–1362. 10.1016/s0161-5890(02)00088-3 [DOI] [PubMed] [Google Scholar]
- Staud R. (2011). Brain imaging in fibromyalgia syndrome. Clin. Exp. Rheumatol. 29 S109–S117. [PubMed] [Google Scholar]
- Staud R., Vierck C. J., Cannon R. L., Mauderli A. P., Price D. D. (2001). Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain 91 165–175. 10.1016/s0304-3959(00)00432-2 [DOI] [PubMed] [Google Scholar]
- Suzuki K., Sugihara G., Ouchi Y., Nakamura K., Futatsubashi M., Takebayashi K., et al. (2013). Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 70 49–58. [DOI] [PubMed] [Google Scholar]
- Takeda S., Sato N., Morishita R. (2014). Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front. Aging Neurosci. 6:171. 10.3389/fnagi.2014.00171 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taracanova A., Alevizos M., Karagkouni A., Weng Z., Norwitz E., Conti P., et al. (2017). SP and IL-33 together markedly enhance TNF synthesis and secretion from human mast cells mediated by the interaction of their receptors. Proc. Natl. Acad. Sci. U.S.A. 114 E4002–E4009. 10.1073/pnas.1524845114 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taracanova A., Tsilioni I., Conti P., Norwitz E. R., Leeman S. E., Theoharides T. C. (2018). Substance P and IL-33 administered together stimulate a marked secretion of IL-1beta from human mast cells, inhibited by methoxyluteolin. Proc. Natl. Acad. Sci. U.S.A 115 E9381–E9390. 10.1073/pnas.1810133115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theoharides T. C. (1983). Mast cells and migraines. Perspect. Biol. Med. 26 672–675. 10.1353/pbm.1983.0028 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C. (1990). Mast cells: the immune gate to the brain. Life Sci. 46 607–617. 10.1016/0024-3205(90)90129-f [DOI] [PubMed] [Google Scholar]
- Theoharides T. C. (1996). Mast cell: a neuroimmunoendocrine master player. Int. J. Tissue React. 18 1–21. [PubMed] [Google Scholar]
- Theoharides T. C. (2013). Atopic conditions in search of pathogenesis and therapy. Clin. Ther. 35 544–547. 10.1016/j.clinthera.2013.04.002 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C. (2017). Neuroendocrinology of mast cells: challenges and controversies. Exp. Dermatol. 26 751–759. 10.1111/exd.13288 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Alysandratos K. D., Angelidou A., Delivanis D. A., Sismanopoulos N., Zhang B., et al. (2010a). Mast cells and inflammation. Biochim. Biophys. Acta 1822 21–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theoharides T. C., Zhang B., Kempuraj D., Tagen M., Vasiadi M., Angelidou A., et al. (2010b). IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc. Natl. Acad. Sci. U.S.A. 107 4448–4453. 10.1073/pnas.1000803107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theoharides T. C., Dimitriadou V., Letourneau R. J., Rozniecki J. J., Vliagoftis H., Boucher W. S. (1993). Synergistic action of estradiol and myelin basic protein on mast cell secretion and brain demyelination: changes resembling early stages of demyelination. Neuroscience 57 861–871. 10.1016/0306-4522(93)90030-j [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Donelan J., Kandere-Grzybowska K., Konstantinidou A. (2005). The role of mast cells in migraine pathophysiology. Brain Res. Brain Res. Rev. 49 65–76. 10.1016/j.brainresrev.2004.11.006 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Kavalioti M. (2018). Stress, inflammation and natural treatments. J. Biol. Regul. Homeost Agents 32 1345–1347. [PubMed] [Google Scholar]
- Theoharides T. C., Kempuraj D., Tagen M., Conti P., Kalogeromitros D. (2007). Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 217 65–78. 10.1111/j.1600-065x.2007.00519.x [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Konstantinidou A. (2007). Corticotropin-releasing hormone and the blood-brain-barrier. Front. Biosci. 12:1615–1628. 10.2741/2174 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Letourneau R., Patra P., Hesse L., Pang X., Boucher W., et al. (1999). Stress-induced rat intestinal mast cell intragranular activation and inhibitory effect of sulfated proteoglycans. Dig. Dis. Sci. 44 87S–93S. [PubMed] [Google Scholar]
- Theoharides T. C., Petra A. I., Stewart J. M., Tsilioni I., Panagiotidou S., Akin C. (2014). High serum corticotropin-releasing hormone (CRH) and bone marrow mast cell CRH receptor expression in a mastocytosis patient. J. Allergy Clin. Immunol. 134 1197–1199. 10.1016/j.jaci.2014.05.023 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Petra A. I., Taracanova A., Panagiotidou S., Conti P. (2015a). Targeting IL-33 in autoimmunity and inflammation. J. Pharmacol. Exp. Ther. 354 24–31. 10.1124/jpet.114.222505 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Stewart J. M., Hatziagelaki E., Kolaitis G. (2015b). Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front. Neurosci. 9:225. 10.3389/fnins.2015.00225 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theoharides T. C., Tsilioni I., Arbetman L., Panagiotidou S., Stewart J. M., Gleason R. M., et al. (2015c). Fibromyalgia, a syndrome in search of pathogenesis and therapy. J. Pharmacol. Exp. Ther. 355 255–263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theoharides T. C., Valent P., Akin C. (2015d). Mast cells, mastocytosis, and related disorders. N. Engl. J. Med. 373 163–172. 10.1056/nejmra1409760 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Stewart J. M., Tsilioni I. (2017). Tolerability and benefit of a tetramethoxyluteolin-containing skin lotion. Int. J. Immunopathol. Pharmacol. 30 146–151. 10.1177/0394632017707610 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theoharides T. C., Tsilioni I. (2018). Tetramethoxyluteolin for the treatment of neurodegenerative diseases. Curr. Top. Med. Chem. 18 1872–1882. 10.2174/1568026617666181119154247 [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Tsilioni I., Ren H. (2019). Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert. Rev. Clin. Immunol. 15 639–656. 10.1080/1744666X.2019.1596800 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thonhoff J. R., Simpson E. P., Appel S. H. (2018). Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis. Curr. Opin. Neurol. 31 635–639. 10.1097/WCO.0000000000000599 [DOI] [PubMed] [Google Scholar]
- Torresani C., Bellafiore S., De Panfilis G. (2009). Chronic urticaria is usually associated with fibromyalgia syndrome. Acta Derm. Venereol. 89 389–392. 10.2340/00015555-0653 [DOI] [PubMed] [Google Scholar]
- Tsilioni I., Panagiotidou S., Theoharides T. C. (2014). Exosomes in neurologic and psychiatric disorders. Clin. Ther. 36 882–888. 10.1016/j.clinthera.2014.05.005 [DOI] [PubMed] [Google Scholar]
- Tsilioni I., Russell I. J., Stewart J. M., Gleason R. M., Theoharides T. C. (2016). Neuropeptides CRH, SP, HK-1, and inflammatory cytokines IL-6 and TNF are increased in serum of patients with fibromyalgia syndrome, implicating mast cells. J. Pharmacol. Exp. Ther. 356 664–672. 10.1124/jpet.115.230060 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsilioni I., Theoharides T. C. (2018). Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1beta. J. Neuroinflammation 15:239. 10.1186/s12974-018-1275-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uceyler N., Hauser W., Sommer C. (2011). Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. BMC Musculoskelet Disord. 12:245. 10.1186/1471-2474-12-245 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vargas D. L., Nascimbene C., Krishnan C., Zimmerman A. W., Pardo C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57 67–81. 10.1002/ana.20315 [DOI] [PubMed] [Google Scholar]
- Wallon C., Yang P., Keita A. V., Ericson A. C., McKay D. M., Sherman P. M., et al. (2008). Corticotropin releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57 50–58. 10.1136/gut.2006.117549 [DOI] [PubMed] [Google Scholar]
- Wang W., Ji P., Riopelle R. J., Dow K. E. (2002). Functional expression of corticotropin-releasing hormone (CRH) receptor 1 in cultured rat microglia. J. Neurochem. 80 287–294. 10.1046/j.0022-3042.2001.00687.x [DOI] [PubMed] [Google Scholar]
- Wolfe F., Walitt B. (2013). Culture, science and the changing nature of fibromyalgia. Nat. Rev. Rheumatol. 9 751–755. 10.1038/nrrheum.2013.96 [DOI] [PubMed] [Google Scholar]
- Woodman I. (2013). Fibromyalgia: fibromyalgia-all in the brain? Nat. Rev. Rheumatol. 9:565. 10.1038/nrrheum.2013.137 [DOI] [PubMed] [Google Scholar]
- Woolf C. J. (2011). Central sensitization: implications for the diagnosis and treatment of pain. Pain 152 S2–S15. 10.1016/j.pain.2010.09.030 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Y., Dissing-Olesen L., MacVicar B. A., Stevens B. (2015). Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36 605–613. 10.1016/j.it.2015.08.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xanthos D. N., Gaderer S., Drdla R., Nuro E., Abramova A., Ellmeier W., et al. (2011). Central nervous system mast cells in peripheral inflammatory nociception. Mol. Pain 7:42. 10.1186/1744-8069-7-42 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yunus M. B. (2007). Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Semin. Arthritis Rheum. 36 339–356. 10.1016/j.semarthrit.2006.12.009 [DOI] [PubMed] [Google Scholar]
- Zhang B., Asadi S., Weng Z., Sismanopoulos N., Theoharides T. C. (2012). Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PLoS One 7:e49767. 10.1371/journal.pone.0049767 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang S., Zeng X., Yang H., Hu G., He S. (2012). Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol. Biochem. 29 931–940. 10.1159/000171029 [DOI] [PubMed] [Google Scholar]
- Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464 104–107. 10.1038/nature08780 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X., Wang Y., Dong H., Xu Y., Zhang S. (2016). Induction of microglial activation by mediators released from mast cells. Cell Physiol. Biochem. 38 1520–1531. 10.1159/000443093 [DOI] [PubMed] [Google Scholar]
- Zhang Z., Cherryholmes G., Mao A., Marek C., Longmate J., Kalos M., et al. (2008). High plasma levels of MCP-1 and eotaxin provide evidence for an immunological basis of fibromyalgia. Exp. Biol. Med. 233 1171–1180. 10.3181/0712-RM-328 [DOI] [PubMed] [Google Scholar]