Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;5(1):1–17. doi: 10.1111/j.1582-4934.2001.tb00134.x

Cell death mechanisms in neurodegeneration

K A Jellinger 1,
PMCID: PMC6737760  PMID: 12067447

Abstract

Progressive cell loss in specific neuronal populations often associated with typical cytoskeletal protein aggregations is a pathological hallmark of neurodegenerative disorders, but the nature, time course and molecular causes of cell death and their relation to cytoskeletal pathologies are still unresolved. Apoptosis or alternative pathways of cell death have been discussed in Alzheimer's disease and other neurodegenerative disorders. Apoptotic DNA fragmentation in human brain as a sign of neuronal injury is found too frequent as to account for continous neuron loss in these slowly progressive processes. Morphological studies revealed extremely rare apoptotic neuronal death in Alzheimer's disease but yielded mixed results for Parkinson's disease and other neurodegenerative disorders. Based on recent data in human brain, as well as in animal and cell culture models, a picture is beginning to emerge suggesting that, in addition to apoptosis, other forms of programmed cell death may participate in neurodegeneration. Better understanding of the molecular players will further elucidate the mechanisms of cell death in these disorders and their relations to cytoskeletal abnormalities. Susceptible cell populations in a proapoptotic environment show increased vulnerability towards multiple noxious factors discussed in the pathogenesis of neurodegeneration. In conclusion, although many in vivo and in vitro data are in favor of apoptosis involvement in neurodegenerative processes, there is considerable evidence that very complex events may contribute to neuronal death with possible repair mechanisms, the elucidation of which may prove useful for future prevention and therapy of neurodegenerative disorders.

Keywords: programmed cell death, apoptosis, necrosis, neurodegeneration, Alzheimer's disease, Parkinson's disease, caspases, cytoskeletal pathology

References

  • 1. Jellinger K.A., Bancher C., Neuropathology of Alzheimer's disease; a critical update. J. Neural. Transm. (suppl.), 54: 77–95, 1998. [DOI] [PubMed] [Google Scholar]
  • 2. Jellinger K.A., Neuropathology of movement disorders. Neurosurg. Clin. North. Am., 9: 237–262, 1998. [PubMed] [Google Scholar]
  • 3. McKeith I.G., Galasko D., Kosaka K., Perry E.K., Dickson D.W., Hansen L.A., Salmon D.P., Lowe J., Mirra S.S., Byrne E.J., Quinn N.P., Edwardson J.A., Ince P.G., Bergeron C., Burns A., Miller B.L., Loverstone S., Collerton D., Jansen E.N.H., de Vos R.A.I., Wilcock G.K., Jellinger K.A., Perry R.H., Consensus guidelines for the clinical and pathological diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB International Workshop. Neurology, 47: 1113–1124, 1996. [DOI] [PubMed] [Google Scholar]
  • 4. Buée L., Delacourte A., Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTD‐17 and Pick's disease. Brain Pathol., 9: 681–693, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Dickson D.W., Lin W.‐I., Liu W.‐K., Yen S.‐H., Multiple system atrophy: A sporadic synucleinopathy. Brain Pathol., 9, 721–732, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Petersen Å., Mani K., Brundin P., Recent advances on the pathogenesis of Huntington's disease. Exp. Neurol., 157: 1–18, 1999. [DOI] [PubMed] [Google Scholar]
  • 7. Julien J.‐P., Beaulieu J.‐M., Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects J. Neurol. Sci., 180: 7–14, 2000. [DOI] [PubMed] [Google Scholar]
  • 7a. Nicotera P., Leist M., Fava E., Berliocchi L., Vollbrecht C., Energy requirement for caspase activation and neuronal cell death. Brain Pathol., 10: 276–282, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Wyllie A.H., Kerr J.F.R., Currie A.R., Cell death: the significance of apoptosis. Int. Rev. Cytol., 68: 251–305, 1980. [DOI] [PubMed] [Google Scholar]
  • 9. Majno G., Joris I., Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol., 146: 3–15, 1995. [PMC free article] [PubMed] [Google Scholar]
  • 10. Levin S., Bucci T.J., Cohen S.M., Fix A.S., Hardisty J.F., LeGrand E.K., Maronpot R.R., Trump B.F., The nomenclature of cell death: recommendations of an ad hoc committee of the Society of Toxicologic Pathologists. Toxic. Pathol., 27: 484–490, 1999. [DOI] [PubMed] [Google Scholar]
  • 11. Clarke P.G.H., Apoptosis versus necrosis In: Koliatsosue M., Ratan R.R., eds., Cell death and disease of the nervous system, Totowa NY , Humana Press, 1999, pp. 3–28. [Google Scholar]
  • 12. Yuan J.Y., Yankner B.A., Apoptosis in the nervous system. Nature, 407: 802–809, 2000. [DOI] [PubMed] [Google Scholar]
  • 13. Reed J.C., Mechanisms of apoptosis. Am. J. Pathol., 157: 1415–1430, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Stadelmann C., Lassmann H., Detection of apoptosis in tissue sections. Cell Tissue Res., 301: 19–31, 2000. [DOI] [PubMed] [Google Scholar]
  • 15. Wang K.K.W., Calpain and caspase; can you tell the difference Trends Neurol. Sci., 23: 20–26, 2000. [DOI] [PubMed] [Google Scholar]
  • 16. Behl C., Apoptosis and Alzheimer's disease. J. Neural. Transm., 107: 1325–1344, 2000. [DOI] [PubMed] [Google Scholar]
  • 17. Roth K.A., Kuan C.‐Y., Haydar T.F., D'Sa‐Eipper C., Shindler K.S., Zheng T.S., Kuida K., Flavell R.A., Rakic P., Epistatic and independent functions of caspase‐3 and Bcl‐XL in developmental programmed cell death. Proc. Natl. Acad. Sci. USA, 97: 466–471, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Wolozin B., Behl C., Mechanisms of neurodegenerative disorders. Part I. Protein aggregates. Arch. Neurol., 57: 793–796, 2000. [DOI] [PubMed] [Google Scholar]
  • 19. Willingham M.C., Cytochemical methods for the detection of apoptosis. J. Histochem. Cytochem., 47: 1101–1110, 1999. [DOI] [PubMed] [Google Scholar]
  • 20. Anderson A., Stoltzner S., Lai F., Su J., Nixon R.A., Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effects of postmortem tissue archival on TUNEL. Neurobiol. Aging, 21: 511–524, 2000. [DOI] [PubMed] [Google Scholar]
  • 21. Kingsbury A.E., Marsden C.D., Foster O.J.F., DNA fragmentation in human substantia nigra: apoptosis or perimortem effect Mov. Disord., 13: 877–884, 1998. [DOI] [PubMed] [Google Scholar]
  • 22. Cotman C.W., Qian H.Y., Anderson A.J., Cellular signaling pathways in neuronal apoptosis. Role in neurodegeneration and Alzheimer's disease In: Reith M.E.A., ed., Cerebral Signal Transduction. From first to fourth messengers, Totowa NY. , Humana Press, 2000, pp. 175–206. [Google Scholar]
  • 23. Hartmann A., Hunot S., Michel P.P., Muriel M.P., Vyas S., et al., Caspase‐3. A vulnerability factor and final effector in apoptotitc death of dopaminergic neurons in Parkinson's disease. Proc. Nat. Acad. Sci. USA, 97: 2875–2880, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Jellinger K.A., Cell death mechanisms in Parkinson's disease. J. Neural. Transm., 107: 1–29, 2000. [DOI] [PubMed] [Google Scholar]
  • 25. Jellinger K.A., Stadelmann C., The enigma of cell death in neurodegenerative disorders. J. Neural. Transm. (suppl.), 60: 365–380, 2000. [DOI] [PubMed] [Google Scholar]
  • 26. Kitamura Y., Shimohama S., Kamoshima W., Ota T., Matsuoka Y., Nomura Y., Smith M.A., Perry G., Whitehouse P.J., Taniguchi T., Alteration of proteins regulating apoptosis, Bcl‐2, Bcl‐x, Bax, Bak, Bad, ICH‐1 and CPP32, in Alzheimer's disease. Brain Res., 780: 260–269, 1998. [DOI] [PubMed] [Google Scholar]
  • 27. Lassman H., Bancher C., Breitschopf H., Wegiel J., Bobinski M., Jellinger K., Wisniewski H.M., Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol., 89: 35–41, 1995. [DOI] [PubMed] [Google Scholar]
  • 28. MacGibbon G.A., Lawlor P.A., Walton M., Sirimanne E., Faull R.L.M., Synek B., Mee E., Connor B., Dragunow M., Expression of Fos, Jun, and Krox family proteins in Alzheimer's disease. Exp. Neurol., 147: 316–332, 1997. [DOI] [PubMed] [Google Scholar]
  • 29. Ferrer I., Blanco R., Cutillas B., Ambrosio S., Fas and Fas‐L expression in Huntington's disease and Parkinson's disease. Neuropathol. Appl. Neurobiol., 26: 424–433, 2000. [DOI] [PubMed] [Google Scholar]
  • 30. Mogi M., Togari A., Kondo T., Mizuno Y., et al., Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from Parkinsonian brains. J. Neural. Transm., 107: 335–341, 2000. [DOI] [PubMed] [Google Scholar]
  • 31. Simic G., Seso‐Simic D., Lucassen P.L., Islam Arsnik Z., Cviko A., Jelasic D., Barisic N., Winblad B., Kostovic I., Kruslin B., Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig‐Hoffmann Disease. J. Neuropathol. Exp. Neurol., 59: 398–407, 2000. [DOI] [PubMed] [Google Scholar]
  • 32. Stadelmann C., Brück W., Bancher C., Jellinger K., Lassmann H., Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability but not apoptosis. J. Neuropathol. Exp. Neurol., 57: 456–464, 1998. [DOI] [PubMed] [Google Scholar]
  • 33. Stadelmann C., Deckwerth T.L., Srinivasan A., Bancher C., Brück W., Jellinger K., Lassmann H., Activation of caspase‐3 in single apopototic neurons and granules of granulovacuolar degeneration in Alzheimer disease and Down's syndrome: a role for autophagy as antiapoptotic counterregulatory mechanism Am. J. Pathol., 155: 1459–1466, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Su J.H., Nichol K.E., Sitch T., Sheu P., et al., DNA damage and activated caspase‐3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia. Exp. Neurol., 163: 9–19, 2000. [DOI] [PubMed] [Google Scholar]
  • 35. Tatton N.A., Increased caspase‐3 and BAX immunoreactivity accompanying nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp. Neurol., 166: 29–43, 2000. [DOI] [PubMed] [Google Scholar]
  • 36. Torp R., Su J.H., Deng G., Cotman C.W., GADD45 is induced in Alzheimer's disease, and protects against apoptosis in vitro. Neurobiol, Dis., 5: 245–252, 1998. [DOI] [PubMed] [Google Scholar]
  • 37. Banati R.B., Daniel S.E., Path M.R.C., Blunt S.B., Glial pathology but absence of apoptotic nigral neurons in long‐standing Parkinson's disease. Mov. Disord., 13: 221–227, 1998. [DOI] [PubMed] [Google Scholar]
  • 38. Graeber M.B., Grasbon‐Frodl E., Abell‐Aleff P., Kösel S., Nigral neurons are likely to die of a mechanism other than classical apoptosis in Parkinson's disease. Parkinsonism. Relat. Disord., 5: 187–192, 1999. [DOI] [PubMed] [Google Scholar]
  • 39. Probst‐Cousin S., Rickert C.H., Schmid K.W., Gullotta F., Cell mechanisms in multiple system atrophy. J. Neuropathol. Exp. Neurol., 57: 814–821, 1998. [DOI] [PubMed] [Google Scholar]
  • 40. Wüllner U., Kornhuber J., Weller M., Schulz J.B., Löschmann P.A., Riederer P., Cell death and apoptosis regulating proteins in Parkinson's disease ‐ a cautionary note. Acta Neuropathol., 97: 408–412, 1999. [DOI] [PubMed] [Google Scholar]
  • 41. Kösel S., Egensperger R., V. Eitzen U., Mehraein P., Graeber M., On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol., 93: 105–108, 1997. [DOI] [PubMed] [Google Scholar]
  • 42. He B.P., Strong M.J., Motor neuronal death in sporadic amyotrophic lateral sclerosis (ALS) is not apoptotic. A comparative study of ALS and chronic aluminium chloride neurotoxicity in New Zealand white rabbits. Neuropathol. Appl. Neurobiol., 26: 150–160, 2000. [DOI] [PubMed] [Google Scholar]
  • 43. Selznick L.A., Holtzman D.M., Han B.H., Gokder M., Srinivasan A.N., Johnson M.J., Roth K.A., In situ immunodetection of neuronal caspase‐3 activation in Alzheimer disease. J. Neuropathol. Exp. Neurol., 58: 1020–1026, 1999. [DOI] [PubMed] [Google Scholar]
  • 44. Ghoshal N., Smiley J.F., DeMaggio A.J., Hoekstra M.F., Cochran E.J., Binder L.I., Kuret J., A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer's disease. Am. J. Pathol., 155: 1163–1172, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Lucassen P.J., Presenilins and cellular damage: a link through amyloid J. Alzheimer's Dis., 2: 61–67, 2000. [DOI] [PubMed] [Google Scholar]
  • 46. Marshall K.A., Daniel S.E., Cairns N., Jenner P., Halliwell B., Upregulation of the anti‐apoptotic protein Bcl‐2 may be early event in neurodegeneration: studies on Parkinson's incidental Lewy body disease. Biochem. Biophys. Res. Commun., 240: 84–87, 1997. [DOI] [PubMed] [Google Scholar]
  • 47. Langston J.W., Forno L.S., Tetrud J., Reeves A.G., Kaplan J.A., Karluk D., Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine exposure. Ann. Neurol., 46: 598–605, 1999. [DOI] [PubMed] [Google Scholar]
  • 48. Tompkins M.M., Basgall E.J., Zamrini E., Hill WD., Apoptosis‐like changes in Lewy‐bodyassociated disorders and normal aging in substantia nigral neurons. Am. J. Pathol., 150: 119–131, 1997. [PMC free article] [PubMed] [Google Scholar]
  • 49. Wellington C.L., Leavitt B.R., Hayden M.R., Huntington's disease: new insights on the role of huntingtin cleavage. J. Neurol. Transm. (suppl.), 58: 1–17, 2000. [DOI] [PubMed] [Google Scholar]
  • 50. Gleckman A.M., Jiang Z., Liu Y., Smith T.W., DNA fragmentation in neurons and glial cells indicates cellular injury but not apoptosis in Pick's disease. Acta Neuropathol., 98: 55–61, 1999. [DOI] [PubMed] [Google Scholar]
  • 51. Martin L.J., Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol., 58, 459–471, 1999. [DOI] [PubMed] [Google Scholar]
  • 52. Perry G., Numomura A., Lucassen P.J., Lassmann H., Smith M.A., Apoptosis and Alzheimer's disease. Science, 282: 1265, 1998. [DOI] [PubMed] [Google Scholar]
  • 53. Guo Q., Sebastian L., Sopher B.L., Miller M.W., Ware C.B., Martin G.M., Mattson M.P., Increased vulnerability of hippocampal neurons from presenilin‐1 mutant knock‐in mice to amyloid β‐peptide toxicity: central roles of superoxide production and caspase activation. J. Neurochem., 72: 1019–1029, 1999. [DOI] [PubMed] [Google Scholar]
  • 54. Kwok J.B.J., Li Q.‐X., Hallupp M., Whyte S., et al., Novel Leu723Pro amyloid precursor protein mutation increases amyloid β42(43) peptide levels and induces apoptosis. Ann. Neurol., 47: 249–253, 2000. [DOI] [PubMed] [Google Scholar]
  • 55. Ohyagi Y., Yamada T., Nishioka K., Clarke N.J., et al., Selective increase in cellular Aβ 42 is related to apoptosis but not necrosis. Neuroreport, 11: 167–171, 2000. [DOI] [PubMed] [Google Scholar]
  • 56. Kaltschmidt B., Uherek M., Wellmann H., Volk B., Kaltschmidt C., Inhibition of NF‐k B potentiates amyloid β‐mediated neuronal apoptosis. Proc. Nat. Acad. Sci. USA, 96: 9409–9414, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Gervais F.G., Xu D.G., Robertson G.S., Vaillancourt J.P., Zhu Y.X., Huang J.Q., LeBlanc A., Smith D., Rigby M., Shearman M.S., Clarke F.E., Zheng H., Van Der Ploeg L.H.T., Ruffolo S.C., Thornberry N.A., Xanthoudakis S., Zamboni R.J., Roy S., Nicholson D.W., Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid β precursor protein and amyloidogenic Aβ peptide formation. Cell, 97: 395–406, 1999. [DOI] [PubMed] [Google Scholar]
  • 58. Saez‐Valero J., Angeretti N., Forloni G., Caspase‐3 activation by β‐amyloid and prion protein peptides is independent from their neurotoxic effect. Neurosci. Lett., 293: 207–210, 2000. [DOI] [PubMed] [Google Scholar]
  • 59. Selznick L.A., Zheng T.S., Flavell R.A., Rakic P., Roth K.A., Amyloid β‐induced neuronal death is Bax‐dependent but caspase‐independent. J. Neuropathol. Exp. Neurol., 59: 271–279, 2000. [DOI] [PubMed] [Google Scholar]
  • 60. Marcon G., Atzori C., Srinivasan A.N., Okazawa H. Ghetti B., Migheli A., Caspase‐3 is activated in Alzheimer disease but not in frontotemporal dementia (abstr.). Neurobiol. Aging, 21: 81, 2000. 10794852 [Google Scholar]
  • 61. Saporito M.S., Thomas B.A., Scott R.W., MPTP activates c‐Jun NH2‐terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo . J. Neurochem., 75: 1200–1208, 2000. [DOI] [PubMed] [Google Scholar]
  • 62. Tatton W.G., Olanow C.W., Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochem. Biophys. Acta, 1410: 195–214, 1999. [DOI] [PubMed] [Google Scholar]
  • 63. Jha N., Jurma O.P., Lalli G., Liu Y., Pettus E.H., Greenamyre J.T., Liu R.M., Forman H.J., Andersen J.K., Gluthathione depletion in PC12 results in selective inhibitation of mitochondrial complex I activity: implications for Parkinson's disease. J. Biol. Chem., 275: 26096–26101, 2000. [DOI] [PubMed] [Google Scholar]
  • 64. He Y., Lee T., Leong S.K., 6‐hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra. Brain Res., 858: 163–166, 2000. [DOI] [PubMed] [Google Scholar]
  • 65. Choi W.S., Yoon S.Y., Oh T.H., Choi E.J., O'Malley K.L., Oh Y.J., Two distinct mechanisms are involved in 6‐hydroxydopamine‐ and MPP+‐ induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J. Neurosci. Res., 57: 86–94, 1999. [DOI] [PubMed] [Google Scholar]
  • 66. Duan W., Zhang Z., Gash D.M., Mattson M.P., Participation of prostate apoptosis response‐4 in degeneration of dopaminergic neurons in models of Parkinson's disease. Ann. Neurol., 46: 587–597, 1999. [PubMed] [Google Scholar]
  • 67. Oh J.H., Choi W.S., Kim J.E., See J.W., O'Malley K.L., Oh Y.J., Overexpression of HA‐BAX but not Bcl‐2 or Bcl‐xL attenuates 6‐hydroxydopamine induced neuronal apoptosis. Exp. Neurol., 154: 193–198, 1998. [DOI] [PubMed] [Google Scholar]
  • 68. Duan W., Guo Z., Mattson M.P., Participation of Par‐4 in the degeneration of striatal neurons induced by metabolic compromise with 3‐nitropropionic acid. Exp. Neurol., 165: 1–11, 2000. [DOI] [PubMed] [Google Scholar]
  • 69. Turmaine M., Raza A., Mahal A., Mangiarini L.. Bates G.P., Davies S.W., Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA, 97: 8093–8097, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Smith M.A., Raina A.K., Nunomura A., Hochman A., Takeda A., Perry G., Apoptosis in Alzheimer disease: fact or fiction. Brain Pathol., 10: 797, 2000. [Google Scholar]
  • 71. Duda J.E., Lee V.M.Y., Trojanowski J.Q., Neuropathology of synuclein aggregates. New insights into mechanism of neurodegenerative diseases. J Neurosci Res 61, 121–127, 2000. [DOI] [PubMed] [Google Scholar]
  • 72. Kholodilov N.G., Oo T.F., Burke R.E., Synuclein expression is decreased in rat substantia nigra following induction of apoptosis by intrastriatal 6‐ hydroxydopamine. Neurosci. Lett., 275: 105–108, 1999. [DOI] [PubMed] [Google Scholar]
  • 73. Saha A.R., Ninkina N.N., Hanger D.P., Anderton B.H., Davies A.M., Buchman V.L., Induction of neuronal death by a‐synuclein. Eur. J. Neursoci., 12: 3073–3077, 2000. [DOI] [PubMed] [Google Scholar]
  • 74. Hsu L.J., Sagara Y., Arroyo A., Rockenstein E., Sisk A., Mallory M., Wong J., Takenoucnik T., Hashimoto M., Masliah E., α‐Synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol., 157: 401–440, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Morsch R., Simon W., Coleman P.D., Neurons may live for decades with neurofibrillary tangles. J. Neuropathol. Appl. Neurol., 58: 188–197, 1999. [DOI] [PubMed] [Google Scholar]
  • 76. Arendt T., Holzer M., Fruth R., Brückner M.K., Gürtner U., Phosphorylation of tau, Aβ‐formation, and apoptosis after in vivo inhibition of PP‐1 and PP‐ 2A. Neurobiol. Aging, 19: 3–13, 1998. [DOI] [PubMed] [Google Scholar]
  • 77. Overmyer M., Kraszpulki M., Seppo H., Hilkka S., Alafuzzoff I., DNA‐fragmentation, gliosis and histological hallmarks of Alzheimer's disease. Acta uropathol., 100: 681–687, 2001. [DOI] [PubMed] [Google Scholar]
  • 78. Broe M., Shephard C.E., Milward E.A., Halliday G.M., Relationship between DNA‐fragmentation, morphological changes and neuronal loss in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol., 101: in press, 2001. [DOI] [PubMed] [Google Scholar]
  • 79. Vickers J.C., Dickson T.C., Adlard P.A., Saunders H.L., King C.E., McCormack G., The cause of neuronal degeneration in Alzheimer's disease. Prog. Neurobiol., 60: 1–27, 1999. [DOI] [PubMed] [Google Scholar]
  • 80. Anderson A.J., Ruehl W.W., Fleischmann L.K., Stenstrom K., Entriken T.L., Cummings B.J., DNAdamage and apoptosis in the aged canine brain: relationship to Aβ deposition in the absence of neuritic pathology. Prog. Neuro- Psychopharmacol. & Biol. Psychiat., 24: 787–799, 2000. [DOI] [PubMed] [Google Scholar]
  • 80a. Rohn T.T., Head E., Su J.H.. Anderson A.J., Bahr B.A., Cotman C.W., Cribbs D.H., Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer's disease. Amer. J. Pathol., 158: 189–198, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Anglade P., Vyas S., Javoy‐Agid F., Herrero M.T., Michel P.P., Marquez J., Mouatt‐Prient A., Ruberg M., Agid Y., Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol., 12: 25–31, 1997. [PubMed] [Google Scholar]
  • 82. Miller F.D., Pozniak C.D., Wals G.S., Neuronal life and death: an essential role for the p53 family. Cell Death. Diff., 7: 880–888, 2000. [DOI] [PubMed] [Google Scholar]
  • 83. Mattson M.P., Apoptosis in neurodegenerative disorders. Nature Rev. Molecul. Cell Biol., 2: 120–129, 2000. [DOI] [PubMed] [Google Scholar]
  • 84. Dragunow M., Faull R., Lawlor P., Beilharz EJ., Singleton K., Walker E.B., Mee E., In situ evidence for DNA fragmentation in Huntington's disease striatum and Alzheimer's disease temporal lobes. Neuroreport, 6: 1053–1057, 1995. [DOI] [PubMed] [Google Scholar]
  • 85. Mochizuki H., Mori H., Mizuno Y., Apoptosis in neurodegenerative disorders. J. Neural. Transm. (Suppl.), 50: 125–140, 1997. [DOI] [PubMed] [Google Scholar]
  • 86. Olanow C.W., Jenner P., Tatton N., Tatton W.G., Neurodegeneration in Parkinson's disease In: Jankovic J., Tolosa E., eds., Parkinson's disease and movement disorders, 3rd ed., Baltimore , Williams & Wilkins, pp. 67–103, 1998. [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES