Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;5(1):60–73. doi: 10.1111/j.1582-4934.2001.tb00138.x

Tri‐dimensional prostate cell cultures in simulated microgravity and induced changes in lipid second messengers and signal transduction

Sanda Clejan 1,, Kim O'Connor 2, Nitsa Rosensweig 3
PMCID: PMC6737775  PMID: 12067451

Abstract

The high aspect rotating‐wall vessel (HARV) was designed to cultivate cells in an environment that simulate microgravity. We studied previously the effects of HARV cultivation on DU‐145 human prostate carcinoma cells. We determined that HARV cultivation produced a less aggressive, slower growing, less proliferative, more differentiated and less pliant cell than other cell cultivation methods. The result was a 3‐dimensional (3D) growth model of prostate cancer which mimics in vivo tissue growth. This work examines the signal transduction‐second messenger pathways existing temporarily in these HARV cells and correlates these features with the special properties in growth and 3D spheroid formation. We found an initial very active ceramide, a diacylglycerol increase together with increases in PI‐PLC and PLA2 a central defect in PLD (no phosphatic acid or phosphatidylethanol at any time during 15 days of HARV cultivation). There is a cross‐talk between ceramide and PI3K pathways with activation of PI3K, after 6 days of HARV growth concomitant with down‐regulation of ceramide. At this time, there is also an increase of cAMP (seen by increases in arachidonic acid). Taken together these results can explain the 3D organoidlike growth. We therefore developed a model for growth in HARV prostate cancer cells which involve temporal “switches” between second messengers, activation and cross‐talk between multiplicity of signaling pathways and a central defect in PLD pathways. Essential to the late slow growth, and 3D organotypic formation are the apoptotic, anti‐survival, anti‐proliferation and differentiation pathways in the first days of HARV, with growth of “new” different types of prostate cancer cells which set‐up for later “switch” in ceramide‐PI3K to survival and proliferation.

References

  • 1. O'Connor K. C., Three‐dimensional cultures of prostatic cells: tissue models for the development of novel anti‐cancer therapies, Pharm. Res., 16: 486–493, 1999. [DOI] [PubMed] [Google Scholar]
  • 2. Clejan S., O'Connor K. C., Cowger N. L., Cheles M. K., Haque S., Primavera A. C., Effects of simulated microgravity on DU‐145 human prostate carcinoma cells, Biotech. Bioeng., 50: 587–597, 1996. [DOI] [PubMed] [Google Scholar]
  • 3. O'Connor K. C., Enmon R., Primavera A., Dotson R. Clejan S., Characterization of extracellular matrix in three‐dimensional cultures of DU‐145 human prostate carcinoma cells In: Carrondo MJT, Griffiths JB, MacDonald C, eds., Animal Cell Technology, Vaccines to Genetic Medicine, Kluwer Academic Publishers, Dordrecht , 1996, pp. 571–575. [Google Scholar]
  • 4. O'Connor K. C., Enmon R. M., Dotson R. S., Primavera A. C., Clejan S., Characterization of autocrine growth factors, their receptors and extracellular matrix present in three‐dimensional cultures of DU‐145 human prostate carcinoma cells grown in simulated microgravity, Tissue Eng., 3: 2, 161–171, 1997. [Google Scholar]
  • 5. Clejan S., Dotson R. S., Ide C. F., Beckman B. S., Coordinated effects of electromagnetic field exposure on erythropoietin‐induced activities of phosphadylinositol‐phospholipase C and phosphatidylinositol 3‐kinase, Cell. Biochem. Biophys., 27: 203–225, 1997. [DOI] [PubMed] [Google Scholar]
  • 6. Burrow M. E., Weldon C. B., Collins‐Burrow B. M., Ramsey N., McKee A., Klippel A., McLachlan J. A., Clejan S., Beckman B. S., Cross‐talk between phosphatidylinositol 3 ‐kinase and sphingomyelinase pathways as a mechanism for cell survival/death decisions., J. Biol. Chem., 275: 13;9628–9635, 2000. [DOI] [PubMed] [Google Scholar]
  • 7. Clejan S., Analytical methods and steps to sample preparation for determination of molecular species of fatty acids In: Bird I.M. and Clejan S, eds., Molecular Biology, Phospholipid Signaling Protocols, Humana Press, vol. 105, New Jersey , 1998, pp. 243–254. [DOI] [PubMed] [Google Scholar]
  • 8. Burow M. E., Weldon C. B., Tang Y., Navar G. L., Krajewski S., Reed J. C., Hammond T. G., Clejan S., Beckman B. S., Differences in susceptibility to tumor necrosis factor α‐induced apoptosis among MCF‐7 breast cancer cell variants, Cancer Res., 58: 1, 4940–4946, 1998. [PubMed] [Google Scholar]
  • 9. Garzotto M., White‐Jones M., Jiang Y., Ehleiter D., Liao W. C., Haimovitz‐Friedman A., Fuks Z., and Kolesnick R., 12‐O‐tetradecanoylphorbol‐13‐acetateinduced apoptosis in LNCaP cells is mediated through ceramide synthase, Cancer Res., 58: 2260–2264, 1998. [PubMed] [Google Scholar]
  • 10. Clejan S., Ide C., Walker C., Wolf E., Corb M., and Beckman B., Electromagnetic field induced changes in lipid second messengers, J. Lipid Med. Cell. Sig., 13: 301–324, 1996. [DOI] [PubMed] [Google Scholar]
  • 11. Clejan S., Mallia C., Vinson D., Dotson, R , and Beckman B. S., Erythropoietin stimulates G‐proteincoupled phospholipase D in haematopoietic target cells, Biochem. J., 314: 853–860, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Clejan S., HPLC analytical methods for the separation of molecular species of fatty acids in diacylglycerol and cellular phospholipids In: Bird I. M. and Clejan S, eds, Methods in Molecular Biology, Phospholipid Signaling Protocols, Vol. 105, Humana Press, New Jersey , 1998, pp. 255–274. [DOI] [PubMed] [Google Scholar]
  • 13. Clejan S., Analysis of molecular species of cellular sphingomyelins and ceramides In: Bird I. M. and Clejan S, eds, Methods in Molecular Biology, Phospholipid Signaling Protocols, Vol. 105, Humana Press, New Jersey , 1998, pp. 275–285. [DOI] [PubMed] [Google Scholar]
  • 14. Beckman B. S., Mallia C., Clejan S., Molecular species of phospholipids in a murine stem cell line responsive to erythropoietin, Biochem. J., 314: 861–867, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Susa M., Keeler M., Varticovski L., Platelet ‐derived growth factor activates membrane‐associated phosphatidylinositol 3‐kinase and mediates its translocation from the cytosol, J. Biol. Chem., 267: 22, 951–956, 1992. [PubMed] [Google Scholar]
  • 16. Clejan S., Wolf E., Corb M., Dotson R., Ide C., Morphological differentiation of N1E‐115 neuroblastoma cells by dimethyl sulfoxide and activation of lipid second messengers, Exp. Cell. Res., 224: 16–27, 1996. [DOI] [PubMed] [Google Scholar]
  • 17. Coffer P. J., Jin J., Woodgett J. R., Protein kinase B (c‐Akt): a multifunctional mediator of phosphatidylinositol 3‐kinase activation, Biochem. J., 335: 1–13, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Downward J., Mechanisms and consequences of activation of protein kinase B/Akt, Curr. Opin. Cell. Biol., 10: 262–267, 1998. [DOI] [PubMed] [Google Scholar]
  • 19. Kulik G., Weber M. J., Akt‐dependent and ‐independent survival signaling pathways utilized by insulin‐like growth factor 1, Mol. Cell. Biol., 18: 6711–6718, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., Segal R. A., Kaplan D. R., Greenberg M. E., Regulation of neuronal survival by the serine‐threonine protein kinase Akt, Science, 275: 661–665, 1997. [DOI] [PubMed] [Google Scholar]
  • 21. Chen R.‐H., Su Y.‐H., Chuang R. L. C., Chang T.‐Y., Suppression of transforming growth factor‐betainduced apoptosis through a phosphatidylinositol 3‐kinase/Akt‐dependent pathway, Oncogene, 17: 15, 1959–1968, 1998. [DOI] [PubMed] [Google Scholar]
  • 22. Eves E. M., Xiong W., Bellacosa A., Kennedy S. G., Tsichlis P. N., Rosner M. R., Hay N., Akt, a target of phosphatidylinositol 3‐kinase, inhibits apoptosis in a differentiating neuronal cell line, Mol. Cell. Biol., 18: 4,2143–3252, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Cuvillier O., Rosenthal D. S., Smulson M. E., Spiegel S., Sphingosine 1‐phosphate inhibits activation of caspases that cleave poly (ADP‐ribose) polymerase and lamins during Fas‐ and ceramide‐ mediated apoptosis in Jurkat T lymphocytes, J. Biol. Chem., 273: 5,2910–2916, 1998. [DOI] [PubMed] [Google Scholar]
  • 24. Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M. E., Akt phosphorylation of BAD couples survival signals to the cell‐ intrinsic death machinery, Cell, 91: 2,231–241, 1997. [DOI] [PubMed] [Google Scholar]
  • 25. Scheid M. P., and Duronio V., Dissociation of cytokine‐induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation, Proc. Natl. Acad. Sci. USA, 95: 13,7439–7444, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Zundel W., Giaccia A., Inhibition of the anti‐apoptotic PI(3)K/Akt/Bad pathway by stress, Genes Dev, 12: 13,1941–1946, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Summers S. A., Garza L. A., Zhou H., Birnbaum M. J., Regulation of insulin‐stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide, Mol. Cell. Biol., 18: 9,5457–5464, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Zhou H., Summers S. A., Birnbaum M. J., Pittman R. N., Inhibition of Akt kinase by cell‐permeable ceramide and its implications for ceramide‐induced apoptosis, J. Biol. Chem., 273: 26,16568–16575, 1998. [DOI] [PubMed] [Google Scholar]
  • 29. Dufourny B., Alblas J., van Teeffelen H. A., van Schaik F. M., van der Burg B., Steenbergh P. H., Sussenbach J. S., Mitogenic signaling of insulin‐like growth factor I in MCF‐7 human breast cancer cells requires phosphatidylinositol 3‐kinase and is independent of mitogen‐activated protein kinase, J. Biol. Chem., 272: 49,31163–31171. [DOI] [PubMed] [Google Scholar]
  • 30. Dethlefsen S. M., Shepro D., D'Amore P. A., Arachidonic acid metabolites in bFGF‐, PDGF‐, and serum‐stimulated vascular cell growth, Exp. Cell. Res., 212: 262–273, 1994. [DOI] [PubMed] [Google Scholar]
  • 31. Bang Y‐J., Pirnia F., Fang W‐G., Kang W. K., Sartor O., Whitesell L, Ha M. J., Tsokos M., Sheahan M. D., Nguyen P., Niklinski W. T., Myers C. E., Trepel J. B., Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP, Proc. Natl. Acad. Sci. USA, 91: 5330–5334, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Shah G. V., Rayford W., Noble M. J., Austenfeld M., Weigel J., Vamos S., Mebust W. K., Calcitonin stimulates growth of human prostate cancer cells through receptor‐mediated increase in cyclic adenosine 3′, 5′ ‐monophosphates and cytoplasmic Ca2+ transients. Endocrinol., 134: 2, 596–602, 1994. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES