Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(2):267–285. doi: 10.1111/j.1582-4934.2005.tb00355.x

Matrix metalloproteinases and angiogenesis

Joyce E Rundhaug 1,
PMCID: PMC6740080  PMID: 15963249

Abstract

Matrix metalloproteinases (MMPs) are a family of enzymes that proteolytically degrade various components of the extracellular matrix (ECM). Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of the ECM in order to allow endothelial cells to migrate and invade into the surrounding tissue. MMPs participate in this remodeling of basement membranes and ECM. However, it has become clear that MMPs contribute more to angiogenesis than just degrading ECM components. Specific MMPs have been shown to enhance angiogenesis by helping to detach pericytes from vessels undergoing angiogenesis, by releasing ECM‐bound angiogenic growth factors, by exposing cryptic proangiogenic integrin binding sites in the ECM, by generating promigratory ECM component fragments, and by cleaving endothelial cell‐cell adhesions. MMPs can also contribute negatively to angiogenesis through the generation of endogenous angiogenesis inhibitors by proteolytic cleavage of certain collagen chains and plasminogen and by modulating cell receptor signaling by cleaving off their ligand‐binding domains. A number of inhibitors of MMPs that show antiangiogenic activity are already in early stages of clinical trials, primarily to treat cancer and cancer‐associated angiogenesis. However, because of the multiple effects of MMPs on angiogenesis, careful testing of these MMP inhibitors is necessary to show that these compounds do not actually enhance angiogenesis.

Keywords: matrix metalloproteinases (MMPs), angiogenesis, tumor angiogenesis, MMP inhibitors, extracellular matrix remodeling, tissue inhibitors of metalloproteinases (TIMPs), thrombospondins

References

  • 1. Liekens S, de Clercq E, Neyts J. Angiogenesis: Regulators and clinical applications. Biochem Pharmacol. 2001; 61: 253–70. [DOI] [PubMed] [Google Scholar]
  • 2. Stamenkovic I. Extracellular matrix remodelling: The role of matrix metalloproteinases.. J Pathol. 2003, 200: 448–64. [DOI] [PubMed] [Google Scholar]
  • 3. Stetler‐Stevenson WG. Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J Clin Invest. 1999; 103: 1237–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Risau W. Mechanisms of angiogenesis.. Nature 1997; 386: 671–4. [DOI] [PubMed] [Google Scholar]
  • 5. Li J, Zhang Y‐P, Kirsner RS. Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microscopy Res Technique. 2003; 60: 107–14. [DOI] [PubMed] [Google Scholar]
  • 6. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–64. [DOI] [PubMed] [Google Scholar]
  • 7. Weinstat‐Saslow D, Steeg PS. Angiogenesis and colonization in the tumor metastatic process: Basic and applied advances. FASEB J. 1994; 8: 401–7. [DOI] [PubMed] [Google Scholar]
  • 8. Kalluri R. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer 2003; 3: 422–33. [DOI] [PubMed] [Google Scholar]
  • 9. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nature Reviews Cancer 2002; 2: 727–39. [DOI] [PubMed] [Google Scholar]
  • 10. Moser TL, Stack MS, Asplin I, Enghild JJ, Højrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA. 1999; 96: 2811–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Troyanovsky B, Levchenko T, Månsson G, Matvijenko O, Holmgren L. Angiomotin: An angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 2001; 152: 1247–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Veikkola T, Karkkainen M, Claesson‐Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 2000; 60: 203–12. [PubMed] [Google Scholar]
  • 13. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin‐2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60. [DOI] [PubMed] [Google Scholar]
  • 14. Carpizo D, Iruela‐Arispe ML. Endogenous regulators of angiogenesis ‐ emphasis on proteins with thrombospondin ‐ type I motifs. Cancer Metastasis Rev. 2000; 19: 159–65. [DOI] [PubMed] [Google Scholar]
  • 15. Arbiser JL. Angiogenesis and the skin: A primer. J Am Acad Dermatol. 1996; 34: 486–97. [DOI] [PubMed] [Google Scholar]
  • 16. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovascular Res. 2001; 49: 507–21. [DOI] [PubMed] [Google Scholar]
  • 17. Folkman J, Shing Y. Angiogenesis.. J Biol Chem. 1992, 267: 10931–4. [PubMed] [Google Scholar]
  • 18. Elson DA, Ryan HE, Snow JW, Johnson R, Arbeit JM. Coordinate up‐regulation of hypoxia inducible factor (HIF)‐1α and HIF‐1 target genes during multi‐stage epidermal carcinogenesis and wound healing. Cancer Res. 2000; 60: 6189–95. [PubMed] [Google Scholar]
  • 19. Frank S, Hübner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem. 1995; 270: 12607–13. [DOI] [PubMed] [Google Scholar]
  • 20. Han Y‐P, Tuan T‐L, Hughes M, Wu H, Garner WL. Transforming growth factor‐β‐ and tumor necrosis factor‐α‐mediated induction and proteolytic activation of MMP‐9 in human skin. J Biol Chem. 2001; 276: 22341–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD. Angiopoietin‐1 protects the adult vasculature against plasma leakage. Nature Medicine 2000; 6: 460–3. [DOI] [PubMed] [Google Scholar]
  • 22. Kim I, Kim H., Moon S‐O, Chae SW, So J‐N, Koh KN, Ahn BC, Koh GY. Angiopoietin‐1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circulation Res. 2000; 86: 952–9. [DOI] [PubMed] [Google Scholar]
  • 23. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin‐1, a ligand for the TIE2 receptor, by secretion‐trap expression cloning. Cell 1996; 87: 1161–9. [DOI] [PubMed] [Google Scholar]
  • 24. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M. Angiogenesis promoted by vascular endothelial growth factor: Regulation through α1β1 and α2β1 integrins. Proc Natl Acad Sci USA. 1997; 94: 13612–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Beck L Jr, D'Amore PA. Vascular development: Cellular and molecular regulation. FASEB J. 1997; 11: 365–73. [PubMed] [Google Scholar]
  • 26. Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell‐binding domain of fibronectin. Am J Pathol. 2000; 156: 1345–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Kim S, Harris M, Varner JA. Regulation of integrin αvβ3‐mediated endothelial cell migration and angiogenesis by integrin α5β1 and protein kinase A. J Biol Chem. 2000; 275: 33920–8. [DOI] [PubMed] [Google Scholar]
  • 28. Roberts AB, Sporn MB. Regulation of endothelial cell growth, architecture, and matrix synthesis by TGF‐β. Am J Resp Dis. 1989; 140: 1126–8. [DOI] [PubMed] [Google Scholar]
  • 29. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–57. [DOI] [PubMed] [Google Scholar]
  • 30. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch, Nature Reviews Cancer 2003; 3: 401–10. [DOI] [PubMed] [Google Scholar]
  • 31. Rak J, Mitsuhashi Y, Sheehan C, Tamir A, Viloria‐Petit A., Filmus J, Mansour SJ, Ahn NG, Kerbel RS. Oncogenes and tumor angiogenesis: Different modes of vascular endothelial growth factor up‐regulation in rastransformed epithelial cells and fibroblasts. Cancer Res. 2000; 60: 490–8. [PubMed] [Google Scholar]
  • 32. Grunstein J, Roberts WG, Mathieu‐Costello O, Hanahan D, Johnson RS. Tumor‐derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res. 1999; 59: 1592–8. [PubMed] [Google Scholar]
  • 33. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A. Regulation of tumor angiogenesis by p53‐induced degradation of hypoxia‐inducible factor 1α. Genes & Development 2000; 14: 34–44. [PMC free article] [PubMed] [Google Scholar]
  • 34. Colombel M, Filleur S, Fournier P, Merle C, Guglielmi J, Courtin A, Degeorges A, Serre CM, Bouvier R, Clézardin P, Cabon F. Androgens repress the expression of the angiogenesis inhibitor thrombospondin‐1 in normal and neoplastic prostate. Cancer Res. 2005; 65: 300–8. [PubMed] [Google Scholar]
  • 35. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: Novel targets for anti‐angiogenesis therapy. Nature Reviews Cancer 2002; 2: 826–35. [DOI] [PubMed] [Google Scholar]
  • 36. Hendrix MJC, Seftor EA, Hess AR, Seftor REB. Vasculogenic mimicry and tumour‐cell plasticity: Lessons from melanoma.. Nature Reviews Cancer 2003; 3: 411–21. [DOI] [PubMed] [Google Scholar]
  • 37. Ruoslahti E. Specialization of tumor vasculature. Nature Reviews Cancer 2002; 2: 83–90. [DOI] [PubMed] [Google Scholar]
  • 38. Nagase H, Woessner JF Jr. Matrix metalloproteinases, J Biol Chem. 1999; 274: 21491–4. [DOI] [PubMed] [Google Scholar]
  • 39. McCawley LJ, Matrisian LM. Matrix metalloproteinases: They're not just for matrix anymore. Curr Opin Cell Biol. 2001; 13: 534–40. [DOI] [PubMed] [Google Scholar]
  • 40. Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor‐host cell communication. Differentiation 2002; 70: 561–73. [DOI] [PubMed] [Google Scholar]
  • 41. Lee M‐H, Murphy G. Matrix metalloproteinases at a glance. J Cell Science 2004; 117: 4015–6. [DOI] [PubMed] [Google Scholar]
  • 42. Vihinen P, Kähäri V‐M. Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets.. Int J Cancer 2002, 99: 157–66. [DOI] [PubMed] [Google Scholar]
  • 43. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD. Metalloelastase is required for macrophage‐mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA. 1996; 93: 3942–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Caterina JJ, Skobe Z, Shi J, Ding Y, Simmer JP, Birkedal‐Hansen H, Bartlett JD. Enamelysin (matrix metalloproteinase 20)‐deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem. 2002; 277: 49598–604. [DOI] [PubMed] [Google Scholar]
  • 45. Lauer‐Fields JL, Juska D, Fields GB. Matrix metallo‐proteinases and collagen catabolism. Biopolymers. 2002; 66: 19–32. [DOI] [PubMed] [Google Scholar]
  • 46. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. J Cell Science 2002; 115: 3719–27. [DOI] [PubMed] [Google Scholar]
  • 47. Suenaga N, Mori H, Itoh Y, Seiki M. CD44 binding through the hemopexin‐like domain is critical for its shedding by membrane‐type 1 matrix metalloproteinase. Oncogene 2005; 24: 859–68. [DOI] [PubMed] [Google Scholar]
  • 48. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration.. Nature Reviews Cancer 2002; 2: 91–100. [DOI] [PubMed] [Google Scholar]
  • 49. Stricker TP, Dumin JA, Dickeson SK, Chung L, Nagase H, Parks WC, Santoro SA. Structural analysis of the α2 integrin I domain/procollagenase‐1 (matrix metalloproteinase‐1) interaction. J Biol Chem. 2001; 276: 29375–81. [DOI] [PubMed] [Google Scholar]
  • 50. Opdenakker G, van Den Steen PE, van Damme J, Gelatinase B: A tuner and amplifier of immune functions. Trends Immunol. 2001; 22: 571–9. [DOI] [PubMed] [Google Scholar]
  • 51. Levi E, Fridman R, Miao H‐Q, Ma Y‐C, Yayon A, Vlodavsky I. Matrtix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA. 1996; 93: 7069–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. DeClerck YA, Laug WE. Cooperation between matrix metalloproteinases and the plasminogen activator‐plasmin system in tumor progression.. Enzyme and Protein 1996, 49: 72–84. [DOI] [PubMed] [Google Scholar]
  • 53. Ramos‐DeSimone N, Hahn‐Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase‐9 (MMP‐9) via a converging plasmin/stromelysin‐1 cascade enhances tumor cell invasion. J Biol Chem. 1999; 274: 13066–76. [DOI] [PubMed] [Google Scholar]
  • 54. Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R, Smith JW, Strongin AY. MT1‐MMP initiates activation of pro‐MMP‐2 and integrin αvβ3 promotes maturation of MMP‐2 in breast carcinoma cells. Exp Cell Res. 2001; 263: 209–23. [DOI] [PubMed] [Google Scholar]
  • 55. Knäuper V, Bailey L, Worley JR, Soloway P, Patterson ML, Murphy G. Cellular activation of proMMP‐13 by MT1‐MMP depends on the C‐terminal domain of MMP‐13. FEBS Letters 2002; 532: 127–30. [DOI] [PubMed] [Google Scholar]
  • 56. Fridman R, Toth M, Peña D, Mobashery S. Activation of progelatinase B (MMP‐9) by gelatinase A (MMP‐2), Cancer Res. 1995; 55: 2548–55. [PubMed] [Google Scholar]
  • 57. Knäuper V, Smith B, López‐Otin C, Murphy G. Activation of progelatinase B (proMMP‐9) by active collagenase‐3 (MMP‐13). Eur J Biochem. 1995; 248: 369–73. [DOI] [PubMed] [Google Scholar]
  • 58. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: Evolution, structureand function. Biochim Biophys Acta. 2000; 1477: 267–83. [DOI] [PubMed] [Google Scholar]
  • 59. Murphy AN, Unsworth EJ, Stetler‐Stevenson WG. Tissue inhibitor of metalloproteinases‐2 inhibits bFGFinduced human microvascular endothelial cell proliferation. J Cell Physiol. 1993; 157: 351–8. [DOI] [PubMed] [Google Scholar]
  • 60. Baker AH, Zaltsman AB, George SJ, Newby AC. Divergent effects of tissue inhibitor of metalloproteinase1, ‐2, or ‐3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP‐3 promotes apoptosis. J Clin Invest. 1998; 101: 1478–87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer. 2002; 2: 161–74. [DOI] [PubMed] [Google Scholar]
  • 62. Westermarck J, Kähäri V‐M. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999; 13: 781–92. [PubMed] [Google Scholar]
  • 63. Reunanen N, Li S‐P, Ahonen M, Foschi M, Han J, Kähäri V‐M. Activation of p38 ´ MAPK enhances collagenase‐1 (matrix metalloproteinase (MMP)‐1) and stromelysin‐1 (MMP‐3) expression by mRNA stabilization. J Biol Chem. 2002; 277: 32360–8. [DOI] [PubMed] [Google Scholar]
  • 64. Jiang Y, Muschel RJ. Regulation of matrix metalloproteinase‐9 (MMP‐9) by translational efficiency in murine prostate carcinoma cells. Cancer Res. 2002; 62: 1910–4. [PubMed] [Google Scholar]
  • 65. Yu Q, Cok SJ, Zeng C, Morrison AR. Translational repression of human matrix metalloproteinase‐13 by an alternatively spliced form of T‐cell‐restricted intracellular antigen‐related protein (TIAR). J Biol Chem. 2003; 278: 1579–84. [DOI] [PubMed] [Google Scholar]
  • 66. Masure S, Nys G, Fiten P, van Damme J, Opdenakker G. Mouse gelatinase B. cDNA cloning, regulation of expression and glycosylation in WEHI‐3 macrophages and gene organisation. Eur J Biochem. 1993; 218: 129–41. [DOI] [PubMed] [Google Scholar]
  • 67. Winberg J‐O, Kolset SO, Berg E, Uhlin‐Hansen L. Macrophages secrete matrix metalloproteinase 9 covalently linked to the core protein of chondroitin sulphate proteoglycans. J Molec Biol. 2000; 304: 669–80. [DOI] [PubMed] [Google Scholar]
  • 68. Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V. Shedding of the matrix metalloproteinases. [DOI] [PMC free article] [PubMed]
  • 69. MMP‐2, MMP‐9, and MT1‐MMP as membrane vesicle‐associated components by endothelial cells. Am J Pathol. 2002; 160: 673–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Barmina OY, Walling HW, Fiacco GJ, Freije JMP, López‐Otín C, Jeffrey JJ, Partridge NC. Collagenase‐3 binds to a specific receptor and requires the low density lipoprotein receptor‐related protein for internalization. J Biol Chem. 1999; 274: 30087–93. [DOI] [PubMed] [Google Scholar]
  • 70. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein‐related scavenger receptor and thrombospondin 2. J Biol Chem. 2001; 276: 8403–8. [DOI] [PubMed] [Google Scholar]
  • 71. Hahn–Dantona EA, Ruiz JF, Bornstein P, Strickland DK. The low density lipoprotein receptor‐related protein modulates levels of matrix metalloproteinase 9 (MMP‐9) by mediating its cellular metabolism. J Biol Chem. 2001; 276: 15498–503. [DOI] [PubMed] [Google Scholar]
  • 72. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane‐type matrix metalloproteinase I. Proc Natl Acad Sci USA. 2000; 97: 4052–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z. MMP‐9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93: 411–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Nguyen M, Arkell J, Jackson CJ. Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol. 2001; 33: 960–70. [DOI] [PubMed] [Google Scholar]
  • 75. Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell. 1998; 95: 365–77. [DOI] [PubMed] [Google Scholar]
  • 76. Huo N, Ichikawa Y, Kamiyama M, Ishikawa T, Hamaguchi Y, Hasegawa S, Nagashima Y, Miyazaki K, Shimada H. MMP‐7 (matrilysin) accelerated growth of human umbilical vein endothelial cells. Cancer Letters. 2002; 177: 95–100. [DOI] [PubMed] [Google Scholar]
  • 77. Nishizuka I, Ichikawa Y, Ishikawa T, Kamiyama M, Hasegawa S, Momiyama N, Miyazaki K, Shimada H. Matrilysin stimulates DNA synthesis of cultured vascular endothelial cells and induces angiogenesis in vivo. Cancer Letters. 2001; 173: 175–82. [DOI] [PubMed] [Google Scholar]
  • 78. Pozzi A, LeVine WF, Gardner HA. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene. 2002; 21: 272–81. [DOI] [PubMed] [Google Scholar]
  • 79. Herren B, Levkau B, Raines EW, Ross R. Cleavage of β‐catenin and plakoglobin and shedding of VE‐cadherin during endothelial apoptosis: Evidence for a role for caspases and metalloproteinases. Molec Biol Cell. 1998; 9: 1589–601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Deryugina EI, Ratnikov BI, Postnova TI, Rozanov DV, Strongin AY. Processing of integrin αv subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronection and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem. 2002; 277: 9749–56. [DOI] [PubMed] [Google Scholar]
  • 81. Xu J, Rodriguez D, Petitclerc E, Kim JJ, Hangai M, Moon YS, Davis GE, Brooks PC. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol. 2001. 154: 1069–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Silletti S, Kessler T, Goldberg J, Boger DL, Cheresh DA. Disruption of matrix metalloproteinase 2 binding to integrin αvβ3 by an organic molecule inhibits angiogenesis and tumor formation in vivo. Proc Natl Acad Sci USA. 2001; 98: 119–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998; 92: 391–400. [DOI] [PubMed] [Google Scholar]
  • 84. Nguyen M, Arkell J, Jackson CJ. Active and tissue inhibitor of matrix metalloproteinase‐free gelatinase B accumulates within human microvascular endothelial vesicles. J Biol Chem. 1998; 273: 5400–4. [DOI] [PubMed] [Google Scholar]
  • 85. Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ, Kasahara N, Raizman MB, Fini ME. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor‐2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem. 2000; 275: 10405–12. [DOI] [PubMed] [Google Scholar]
  • 86. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer 2000; 7: 165–97. [DOI] [PubMed] [Google Scholar]
  • 87. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Molec Medicine. 1999; 77: 527–43. [DOI] [PubMed] [Google Scholar]
  • 88. Haas TL, Davis SJ, Madri JA. Three‐dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1‐MMP and MMP‐2 in microvascular endothelial cells. J Biol Chem. 1998; 273: 3604–10. [DOI] [PubMed] [Google Scholar]
  • 89. Koike T, Vernon RB, Hamner MA, Sadoun E, Reed MJ. MT1‐MMP, but not secreted MMPs, influences the migration of human microvascular endothelial cells in 3‐dimensional collagen gels. J Cell Biochem. 2002; 86: 748–58. [DOI] [PubMed] [Google Scholar]
  • 90. Lafleur MA, Handsley MM, Knäuper V, Murphy G, Edwards DR. Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane‐type matrix metalloproteinases (MT‐MMPs). J Cell Science. 2002; 115: 3427–38. [DOI] [PubMed] [Google Scholar]
  • 91. Zaragoza C, Balbín M, López‐Otín C, Lamas S. Nitric oxide regulates matrix metalloproteinase‐13 expression and activity in endothelium. Kidney Int. 2002; 61: 804–8. [DOI] [PubMed] [Google Scholar]
  • 92. Gálvez BG, Matías‐Román S, Albar JP, Sánchez‐Madrid F, Arroyo AG. Membrane type 1‐matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem. 2001; 276: 37941–500. [DOI] [PubMed] [Google Scholar]
  • 93. Moon S‐K, Cho G‐O, Jung S‐Y, Gal S‐W, Kwon TK, Lee Y‐C, Madamanchi NR, Kim C‐H. Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: Role of ERK1/2, cell‐cycle regulation, and matrix metalloproteinase‐9. Biochem Biophys Res Commun. 2003; 301: 1069–78. [DOI] [PubMed] [Google Scholar]
  • 94. Zijlstra A, Aimes RT, Zhu D, Regazzoni K, Kupriyanova T, Seandel M, Deryugina EI, Quigley JP. Collagenolysis‐dependent angiogenesis mediated by matrix metalloproteinase‐13 (collagenase‐3). J Biol Chem. 2004; 279: 27633–45. [DOI] [PubMed] [Google Scholar]
  • 95. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA. The degradation of human endothelial cell‐derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem. 1996; 271: 10079–86. [DOI] [PubMed] [Google Scholar]
  • 96. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem. 2002; 277: 36288–95. [DOI] [PubMed] [Google Scholar]
  • 97. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y. Degradation of decorin by matrix metalloproteinases: Identification of the cleavage sites, kinetic analyses and transforming growth factor‐ β1 release. Biochem J. 1997; 322: 809–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Yu Q, Stamenkovic I, Cell surface‐localized matrix metalloproteinase‐9 proteolytically activates TGF‐β and promotes tumor invasion and angiogenesis. Genes & Development 2000; 14: 163–76. [PMC free article] [PubMed] [Google Scholar]
  • 99. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase‐9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology. 2000; 2: 737–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Mira E, Lacalle RA, Buesa J., González de Buitrago G, Jiménez‐Baranda S, Gómez‐Moutón C, Martínez AC, Mañes S. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Science. 2004; 117: 1847–56. [DOI] [PubMed] [Google Scholar]
  • 101. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA. Matrix metalloproteinase‐2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA. 2000; 97: 3884–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A‐deficient mice. Cancer Res. 1998; 58: 1048–51. [PubMed] [Google Scholar]
  • 103. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, DeClerck YA. Stromal matrix metalloproteinase‐9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. 2004; 64: 1675–86. [DOI] [PubMed] [Google Scholar]
  • 104. Mari BP, Anderson IC, Mari SE, Ning Y, Lutz Y, Kobzik L, Shipp MA. Stromelysin‐3 is induced in tumor/stroma cocultures and inactivated via a tumorspecific and basic fibroblast growth factor‐dependent mechanism. J Biol Chem. 1998; 273: 618–26. [DOI] [PubMed] [Google Scholar]
  • 105. Casanova ML, Larcher F, Casanova B, Murillas R, Fernández‐Aceñero MJ, Villanueva C, Martínez‐Palacio J, Ullrich A, Conti CJ, Jorcano JL. A critical role for ras‐mediated, epidermal growth factor‐dependent angiogenesis in mouse skin carcinogenesis. Cancer Res. 2002; 62: 3402–7. [PubMed] [Google Scholar]
  • 106. Taraboletti G, Sonzogni L, Vergani V, Hosseini G, Ceruti R, Ghilardi C, Bastone A, Toschi E, Borsotti P, Scanziani E, Giavazzi R, Pepper MS, Stetler‐Stevenson WG, Bani MR. Posttranscriptional stimulation of endothelial cell matrix metalloproteinases 2 and 1 by endothelioma cells. Exp Cell Res. 2000; 258: 384–94. [DOI] [PubMed] [Google Scholar]
  • 107. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, Giavazzi R. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: Implications for ascites formation. Cancer Res. 2003; 63: 5224–9. [PubMed] [Google Scholar]
  • 108. Hess AR, Seftor EA, Seftor REB, Hendrix MJC. Phosphoinositide 3‐kinase regulates membrane type 1‐matrix metalloproteinase (MMP) and MMP‐2 activity during melanoma cell vasculogenic mimicry. Cancer Res. 2003; 63: 4757–62. [PubMed] [Google Scholar]
  • 109. Koolwijk P, Sidenius N, Peters E, Sier CFM, Hanemaaijer R, Blasi F, van Hinsbergh VWM. Proteolysis of the urokinase‐type plasminogen activator receptor by metalloproteinase‐12: Implication for angiogenesis in fibrin matrices. Blood 2001; 97: 3123–31. [DOI] [PubMed] [Google Scholar]
  • 110. Patterson BC, Sang QA. Angiostatin‐converting enzyme activities of human matrilysin (MMP‐7) and gelatinase B/type IV collagenase (MMP‐9). J Biol Chem. 1997; 272: 28823–5. [DOI] [PubMed] [Google Scholar]
  • 111. O'Reilly MS, Wiederschain D, Stetler‐Stevenson WG, Folkman J, Moses MA. Regulation of angiostatin production by matrix metalloproteinase‐2 in a model of concomitant resistance. J Biol Chem. 1999; 274: 29568–71. [DOI] [PubMed] [Google Scholar]
  • 112. Dong Z, Kumar R, Yang X, Fidler IJ. Macrophagederived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997; 88: 801–10. [DOI] [PubMed] [Google Scholar]
  • 113. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA. Elevated matrix metalloproteinase and angiostatin levels in interin α1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci USA. 2000; 97: 2202–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaissé J‐M. Generation and degradation of human endostatin proteins by various proteinases. FEBS Letters 2000; 486: 247–51. [DOI] [PubMed] [Google Scholar]
  • 115. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by αvβ3 and α5β1 integrins. Proc Natl Acad Sci USA. 2003; 100: 4766–71. [DOI] [PMC free article] [PubMed] [Google Scholar] [Research Misconduct Found]
  • 116. Kim Y‐M, Jang J‐W, Lee O‐H, Yeon J, Choi E‐Y, Kim K‐W, Lee S‐T, Kwon Y‐G. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase 2. Cancer Res. 2000; 60: 5410–3. [PubMed] [Google Scholar]
  • 117. Nyberg P, Heikkilä P, Sorsa T, Luostarinen J, Heljasvaara R, Stenman U‐H, Pihlajaniemi T, Salo T. Endostatin inhibits human tongue carcinoma cell invasion and intravasation and blocks the activation of matrix metalloprotease‐2, ‐9, and ‐13. J Biol Chem. 2003; 278: 22404–11. [DOI] [PubMed] [Google Scholar]
  • 118. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R. Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP‐9 proteolysis and suppress angiogenesis viaαVβ3 integrin. Cancer Cell 2003; 3: 589–601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Ambesi A, Klein RM, Pumiglia KM, McKeown‐Longo PJ. Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal‐regulated kinase and causes G1 arrest in human microvessel endothelial cells. Cancer Res. 2005; 65: 148–56. [PubMed] [Google Scholar]
  • 120. Qian X, Wang TN, Rothman VL, Nicosia RF, Tuszynski GP. Thrombospondin‐1 modulates angiogenesis in vitro by up‐regulation of matrix metalloproteinase‐9 in endothelial cells. Exp Cell Res. 1997; 235: 403–12. [DOI] [PubMed] [Google Scholar]
  • 121. Rodriguez‐Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela‐Arispe ML. Thrombospondin‐1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase‐9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA. 2001; 98: 12485–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122. Yang Z, Kyriakides TR, Bornstein P. Matricellular proteins as modulators of cell‐matrix interactions: Adhesive defect in thrombospondin 2‐null fibroblasts is a consequence of increased levels of matrix metalloproteinase‐ 2. Molec Biol Cell. 2000; 11: 3353–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 2002; 21: 2245–52. [DOI] [PubMed] [Google Scholar]
  • 124. Oh J, Seo D‐W, Diaz T, Wei B, Ward Y, Ray JM, Morioka Y, Shi S, Kitayama H, Takahashi C, Noda M, Stetler‐Stevenson WG. Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res. 2004; 64: 9062–9. [DOI] [PubMed] [Google Scholar]
  • 125. Kostoulas G, Lang A, Nagase H, Baici A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Letters 1999; 455: 286–90. [DOI] [PubMed] [Google Scholar]
  • 126. Overall CM, López‐Otín C. Strategies for MMP inhibition in cancer: Innovations for the post‐trial era. Nature Reviews Cancer 2002; 2: 657–72. [DOI] [PubMed] [Google Scholar]
  • 127. Maekawa R, Maki H, Yoshida H, Hojo K, Tanaka H, Wada T, Uchida N, Takeda Y, Kasai H, Okamoto H, Tsuzuki H, Kambayashi Y, Watanabe F, Kawada K, Toda K‐I, Ohtani M, Sugita K, Yoshioka T. Correlation of antiangiogenic and antitumor efficacy of N‐biphenyl sulfonylphenylalanine hydroxiamic acid (BPHA), an orally‐active, selective matrix metalloproteinase inhibitor. Cancer Res. 1999; 59: 1231–5. [PubMed] [Google Scholar]
  • 128. Lozonschi L, Sunamura M, Kobari M, Egawa S, Ding L, Matsuno S. Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KBR7785, in two tumor models. Cancer Res. 1999; 59: 1252–8. [PubMed] [Google Scholar]
  • 129. Naglich JG, Jure‐Kunkel M, Gupta E, Fargnoli Henderson AJ, Lewin AC, Talbott R, Baxter A, Bird J, Savopoulos R, Wills R, Kramer RA, Trail PA. Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor. BMS‐275291. Cancer Res. 2001; 61: 8480–5. [PubMed] [Google Scholar]
  • 130. Lockhart AC, Braun RD, Yu D, Ross JR, Dewhirst MW, Humphrey JS, Thompson S, Williams KM, Klitzman B, Yuan F, Grichnik JM, Proia AD, Conway DA, Hurwitz HI. Reduction of wound angiogenesis in patients treated with BMS‐275291, a broad spectrum matrix metalloproteinase inhibitor. Clin Cancer Res. 2003; 9: 586–93. [PubMed] [Google Scholar]
  • 131. Pfeifer A, Kessler T, Silletti S, Cheresh DA, Verma IM. Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc Natl Acad Sci USA. 2000; 97: 12227–32. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES