Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(4):388–400. doi: 10.1111/j.1582-4934.2003.tb00241.x

Peroxisome biogenesis and the role of protein import

Laura‐Anne Brown 1, Alison Baker 1,
PMCID: PMC6740093  PMID: 14754507

Abstract

Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in β‐oxidation of fatty acids, hydrogen peroxide‐based respiration and defence against oxidative stress. The steps of their biogenesis involves “peroxins”, proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1) import of peroxisomal membrane proteins; (2) import of peroxisomal matrix proteins and (3) peroxisome proliferation. Of these three areas, peroxisomal matrix‐protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to‐date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.

Keywords: peroxisome biogenesis, peroxin, protein import, proliferation

References

  • 1. Gorgas K., Peroxisomes in sebaceous glands. V. Complex peroxisomes in the mouse preputial gland: Serial sectioning and 3‐dimensional reconstruction studies, Anat. Embryol., 169: 261–270, 1984. [DOI] [PubMed] [Google Scholar]
  • 2. Schrader M., King S.J., Stroh T.A., Schroer T.A., Real time imaging reveals a peroxisomal reticulum in living cells, J. Cell Sci., 113: 3663–3671, 2000. [DOI] [PubMed] [Google Scholar]
  • 3. Zolman B.K., Yoder A., Bartel B., Genetic analysis of indole‐3‐butyric acid responses in Arabidopsis thaliana reveals four mutant classes, Genetics, 156: 1323–1337, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Stintzi A., Browse J., The Arabidopsis male‐sterile mutant, opr3, lacks the 12‐ oxophytodienoic acid reductase required for jasmonate synthesis, Proc. Natl. Acad. Sci. U. S. A., 97: 10625–10630, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Corpas F.J., Barroso J.B., del Rio L.A., Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells, Trends Plant Sci., 6: 145–150, 2001. [DOI] [PubMed] [Google Scholar]
  • 6. Baes M., Huyghe S., Carmeliet P., Declercq P.E., Collen D., Mannaerts G.P., Van Veldhoven P.P., Inactivation of the peroxisomal multifunctional protein‐2 in mice impedes the degradation of not only 2‐methyl‐branched fatty acids and bile acid intermediates but also of very long chain fatty acids, J. Biol. Chem., 275: 16329–16336, 2000. [DOI] [PubMed] [Google Scholar]
  • 7. Hodge V.J., Gould S.J., Subramani S., Moser H.W., Krisans S.K., Normal cholesterol‐synthesis in humancells requires functional peroxisomes, Biochem. Biophys. Res. Commun., 181: 537–541, 1991. [DOI] [PubMed] [Google Scholar]
  • 8. Aboushadi N., Engfelt W.H., Paton V.G., Krisans S.K., Role of peroxisomes in isoprenoid biosynthesis, J. Histochem. Cytochem., 47: 1127–1132, 1999. [DOI] [PubMed] [Google Scholar]
  • 9. Hogenboom S., Romeijn G.J., Houten S.M., Baes M., Wanders R.J.A., Waterham H.R., Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis, J. Lipid Res., 43: 90–98, 2002. [PubMed] [Google Scholar]
  • 10. Lazarow P.B., Fujiki Y., Biogenesis of peroxisomes, Annu. Rev. Cell Biol., 1: 489–530, 1985. [DOI] [PubMed] [Google Scholar]
  • 11. Lametschwandtner G., Brocard C., Fransen M., Van Veldhoven P., Berger J., Hartig A., The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it, J. Biol. Chem., 273: 33635–33643, 1998. [DOI] [PubMed] [Google Scholar]
  • 12. Gatto G.J., Geisbrecht B.V., Gould S.J., Berg J.M., Peroxisomal targeting signal‐1 recognition by the TPR domains of human PEX5, Nat. Struct. Biol., 7: 1091–1095, 2000. [DOI] [PubMed] [Google Scholar]
  • 13. Klein A.T.J., Barnett P., Bottger G., Konings D., Tabak H.F., Distel B., Recognition of peroxisomal targeting signal type 1 by the import receptor Pex5p, J. Biol. Chem., 276: 15034–15041, 2001. [DOI] [PubMed] [Google Scholar]
  • 14. Otera H., Setoguchi K., Hamasaki M., Kumashiro T., Shimizu N., Fujiki Y., Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: Conserved Pex5p WXXYF/Y motifs are critical for matrix protein import, Mol. Cell. Biol., 22: 1639–1655, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Saidowsky J., Dodt G., Kirchberg K., Wegner A., Nastainczyk W., Kunau W.H., Schliebs W., The di‐aromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14, J. Biol. Chem., 276: 34524–34529, 2001. [DOI] [PubMed] [Google Scholar]
  • 16. Klein A.T.J., van den Berg M., Bottger G., Tabak H.F., Distel B., Saccharomyces cerevisiae acyl‐CoA oxidase follows a novel, non‐ PTS1, import pathway into peroxisomes that is dependent on Pex5p, J. Biol. Chem., 277: 25011–25019, 2002. [DOI] [PubMed] [Google Scholar]
  • 17. Legakis J.E., Terlecky S.R., PTS2 protein import into mammalian peroxisomes, Traffic, 2: 252–260, 2001. [DOI] [PubMed] [Google Scholar]
  • 18. Ghys K., Fransen M., Mannaerts G.P., Van Velhoven P.P., Functional studies on human Pex7p: subcellular localization and interaction with proteins containing a peroxisome‐targeting signal type 2 and other peroxins, Biochem. J., 365: 41–50, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Marzioch M., Erdmann R., Veenhuis M., Kunau W.H., PAS7 encodes a novel yeast member of the WD‐40 protein family essential for import of 3‐oxoacyl‐CoA thiolase, a PTS2‐containing protein, into peroxisomes, EMBO J., 13: 4908–4918, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Nito K., Hayashi M., Nishimura M., Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana, Plant Cell Physiol., 43: 355–366, 2002. [DOI] [PubMed] [Google Scholar]
  • 21. Purdue P.E., Zhang J.W., Skoneczny M., Lazarow P.B., Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor, Nature Genet., 15: 381–384, 1997. [DOI] [PubMed] [Google Scholar]
  • 22. Elgersma Y., Elgersma‐Hooisma M., Wenzel T., McCaffery J.M., Farquhar M.G., Subramani S., A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris, J. Cell Biol., 140: 807–820, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Motley A.M., Hettema E.H., Ketting R., Plasterk R., Tabak H.F., Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes, EMBO Rep., 1: 40–46, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Stein K., Schell‐Steven A., Erdmann R., Rottensteiner H., Interactions of Pex7p and Pex18p/Pex21p with the peroxisomal docking machinery: Implications for the first steps in PTS2 protein import, Mol. Cell. Biol., 22: 6056–6069, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Purdue P.E., Lazarow P.B., Pexl8p is constitutively degraded during peroxisome biogenesis, J. Biol. Chem., 276: 47684–47689, 2001. [DOI] [PubMed] [Google Scholar]
  • 26. Otera H., Harano T., Honsho M., Ghaedi K., Mukai S., Tanaka A., Kawai A., Shimizu N., Fujiki Y., The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p‐PTS2 protein complex into peroxisomes via its initial docking site, Pex14p, J. Biol. Chem., 275: 21703–21714, 2000. [DOI] [PubMed] [Google Scholar]
  • 27. Matsumura T., Otera H., Fujiki Y., Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 ‐ Study with a novel PEX5‐impaired Chinese hamster ovary cell mutant, J. Biol. Chem., 275: 21715–21721, 2000. [DOI] [PubMed] [Google Scholar]
  • 28. Einwachter H., Sowinski S., Kunau W.H., Schliebs W., Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway, EMBO Rep., 2: 1035–1039, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Sichting M., Schell‐Steven A., Prokisch H., Erdmann R., Rottensteiner H., Pex7p and Pex20p of Neurospora crassa function together in PTS2‐dependent protein import into peroxisomes, Mol. Biol. Cell, 14: 810–821, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Agne B., Meindl N.M., Niederhoff K., Einwachter H., Rehling P., Sickmann A., Meyer H.E., Girzalsky W., Kunau W.H., Pex8p: An intraperioxisomal organizer of the peroxisomal import machinery, Mol. Cell, 11: 635–646, 2003. [DOI] [PubMed] [Google Scholar]
  • 31. Huhse B., Rehling P., Albertini M., Blank L., Meller K., Kunau W.H., Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery, J. Cell Biol., 140: 49–60, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Harper C.C., South S.T., McCaffery J.M., Gould S.J., Peroxisomal membrane protein import does not require Pex17p, J. Biol. Chem., 277: 16498–16504, 2002. [DOI] [PubMed] [Google Scholar]
  • 33. Pires J.R., Hong X.J., Brockmann C., Volkmer‐Engert R., Schneider‐Mergener J., Oschkinat H., Erdmann R., The ScPex13p SH3 domain exposes two distinct binding sites for Pex5p and Pex14p, J. Mol. Biol., 326: 1427–1435, 2003. [DOI] [PubMed] [Google Scholar]
  • 34. Albertini M., Rehling P., Erdmann R., Girzalsky W., Kiel J., Veenhuis M., Kunau W.H., Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS‐dependent import pathways, Cell, 89: 83–92, 1997. [DOI] [PubMed] [Google Scholar]
  • 35. Collins C.S., Kalish J.E., Morrell J.C., McCaffery J.M., Gould S.J., The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import, Mol. Cell. Biol., 20: 7516–7526, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Okumoto K., Abe I., Fujiki Y., Molecular anatomy of the peroxin Pex12p ‐ Ring finger domain is essential for Pex12p function and interacts with the peroxisome‐targeting signal type 1‐receptor Pex5p and a ring peroxin, Pex10p, J. Biol. Chem., 275: 25700–25710, 2000. [DOI] [PubMed] [Google Scholar]
  • 37. Albertini M., Girzalsky W., Veenhuis M., Kunau W.H., Pex12p of Saccharomyces cerevisiae is a component of a multi‐ protein complex essential for peroxisomal matrix protein import, Eur. J. Cell Biol., 80: 257–270, 2001. [DOI] [PubMed] [Google Scholar]
  • 38. Chang C.C., Warren D.S., Sacksteder K.A., Gould S.J., PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import, J. Cell Biol., 147: 761–773, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Sparkes I.A., Baker A., Peroxisome biogenesis and protein import in plants, animals and yeasts: enigma and variations? (review), Mol. Membr. Biol., 19: 171–185, 2002. [DOI] [PubMed] [Google Scholar]
  • 40. Hazra P.P., Suriapranata I., Snyder W.B., Subramani S., Peroxisome remnants in pex3‐delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes, Traffic, 3: 560–574, 2002. [DOI] [PubMed] [Google Scholar]
  • 41. Smith M.D., Schnell D.J., Peroxisomal protein import: The paradigm shifts, Cell, 105: 293–296, 2001. [DOI] [PubMed] [Google Scholar]
  • 42. Rachubinski R.A., Subramani S., How proteins penetrate peroxisomes, Cell, 83: 525–528, 1995. [DOI] [PubMed] [Google Scholar]
  • 43. Kunau W.H., Peroxisomes: The extended shuttle to the peroxisome matrix. Curr. Biol., 11: R659–R662, 2001. [DOI] [PubMed] [Google Scholar]
  • 44. Gould S.J., Collins C.S., Peroxisomal‐protein import: is it really that complex?, Nat. Rev. Mol. Cell Biol., 3: 382–389, 2002. [DOI] [PubMed] [Google Scholar]
  • 45. Gouveia A.M., Guimaraes C.P., Oliveira M.E., Sa‐Miranda C., Azevedo J.E., Insertion of Pex5p into the peroxisomal membrane is cargo protein‐dependent, J. Biol. Chem., 278: 4389–4392, 2003. [DOI] [PubMed] [Google Scholar]
  • 46. Dammai V., Subramani S., The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol, Cell, 105: 187–196, 2001. [DOI] [PubMed] [Google Scholar]
  • 47. Rehling P., Skaletz‐Rorowski A., Girzalsky W., Voorn‐Brouwer T., Franse M.M., Distel B., Veenhuis M., Kunau W.H., Erdmann R., Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor Pex5p, J. Biol. Chem., 275: 3593–3602, 2000. [DOI] [PubMed] [Google Scholar]
  • 48. Koller A., Snyder W.B., Faber K.N., Wenzel T.J., Rangell L., Keller G.A., Subramani S., Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin‐conjugating enzyme, Pex4p, on the peroxisomal membrane, J. Cell Biol., 146: 99–112, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. van der Klei I.J., Hilbrands R.E., Kiel J., Rasmussen S.W., Cregg J.M., Veenhuis M., The ubiquitin‐conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery, EMBO J., 17: 3608–3618, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Eckert J.H., Johnsson N., Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome, J. Cell Sci., 116: 3623–3634, 2003. [DOI] [PubMed] [Google Scholar]
  • 51. Oliveira M.E., Gouveia A.M., Pinto R.A., Sa‐Miranda C., Azevedo J.E., The energetics of Pex5p‐mediated peroxisomal protein import, J. Biol. Chem., 278: 39483–39488, 2003. [DOI] [PubMed] [Google Scholar]
  • 52. Bellion E., Goodman J.M., Proton ionophores prevent assembly of a peroxisomal protein, Cell, 48: 165–173, 1987. [DOI] [PubMed] [Google Scholar]
  • 53. Imanaka T., Shinina Y., Takano Y., Hashimoto T., Osumi T., Insertion of the 70kDa peroxisomal membrane protein into peroxisomal membrane in vivo and in vitro J. Biol. Chem., 271: 3706–3713, 1996. [DOI] [PubMed] [Google Scholar]
  • 54. Diestelkotter P., Just W.W., In vitro insertion of the 22kDa peroxisomal membrane protein into isolated rat liver peroxisomes., J. Biol. Chem., 123: 1717–1725, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Pool M.R., Lopez‐Huertas E., Baker A., Characterization of intermediates in the process of plant peroxisomal protein import, EMBO J., 17: 6854–6862, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Purdue P.E., Lazarow P.B., Peroxisome biogenesis, Annu. Rev. Cell Dev. Biol., 17: 701–752, 2001. [DOI] [PubMed] [Google Scholar]
  • 57. Baerends R.J.S., Faber K.N., Kram A.M., Kiel J., van der Klei I.J., Veenhuis M., A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane, J. Biol. Chem., 275: 9986–9995, 2000. [DOI] [PubMed] [Google Scholar]
  • 58. Dyer J.M., McNew J.A., Goodman J.M., The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop, J. Cell Biol., 133: 269–280, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Wang X.D., Unruh M.J., Goodman J.M., Discrete targeting signals direct Pmp47 to oleate‐induced peroxisomes in Saccharomyces cerevisiae J. Biol. Chem., 276: 10897–10905, 2001. [DOI] [PubMed] [Google Scholar]
  • 60. Honsho M., Fujiki Y., Topogenesis of peroxisomal membrane protein requires a short, positively charged intervening‐loop sequence and flanking hydrophobic segments ‐ Study using human membrane protein PMP34, J. Biol. Chem., 276: 9375–9382, 2001. [DOI] [PubMed] [Google Scholar]
  • 61. Jones J.M., Morrell J.C., Gould S.J., Multiple distinct targeting signals in integral peroxisomal membrane proteins, J. Cell Biol., 153: 1141–1149, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Mullen R.T., Trelease R.N., The sorting signals for peroxisomal membrane‐bound ascorbate peroxidase are within its C‐terminal tail, J. Biol. Chem., 275: 16337–16344, 2000. [DOI] [PubMed] [Google Scholar]
  • 63. Wagner G., Stettmaier K., Bors W., Sies H., Wagner E.M., Reuter A., Weiher H., Enhanced gamma‐glutamyl transpeptidase expression and superoxide production in Mpv17‐/‐ glomerulosclerosis mice, Biol. Chem., 382: 1019–1025, 2001. [DOI] [PubMed] [Google Scholar]
  • 64. Iida R., Yasuda T., Tsubota E., Takatsuka H., Masuyama M., Matsuki T., Kishi K., M‐LP, Mpv17‐like protein, has a peroxisomal membrane targeting signal comprising a transmembrane domain and a positively charged loop and up‐regulates expression of the manganese superoxide dismutase gene, J. Biol. Chem., 278: 6301–6306, 2003. [DOI] [PubMed] [Google Scholar]
  • 65. Pause B., Saffrich R., Hunziker A., Ansorge W., Just W.W., Targeting of the 22 kDa integral peroxisomal membrane protein, FEBS Lett., 471: 23–28, 2000. [DOI] [PubMed] [Google Scholar]
  • 66. Murphy M.A., Phillipson B.A., Baker A., Mullen R.T., Characterization of the targeting signal of the Arabidopsis 22‐ kD integral peroxisomal membrane protein, Plant Physiol., 133: 813–828, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Lambkin G.R., Rachubinski R.A., Yarrowia lipolytica cells mutant for the peroxisomal peroxin Pex19p contain structures resembling wild‐type peroxisomes, Mol. Biol. Cell, 12: 3353–3364, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Snyder W.B., Faber K.N., Wenzel T.J., Koller A., Luers G.H., Rangell L., Keller G.A., Subramani S., Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris Mol. Biol. Cell, 10: 1745–1761, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Sacksteder K.A., Jones J.M., South S.T., Li X.L., Liu Y.F., Gould S.J., PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis, J. Cell Biol., 148: 931–944, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Snyder W.B., Koller A., Choy A.J., Subramani S., The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane, J. Cell Biol., 149: 1171–1177, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Hettema E.H., Girzalsky W., van den Berg M., Erdmann R., Distel B., Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins, EMBO J., 19: 223–233, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Fransen M., Wylin T., Brees C., Mannaerts G.P., Van Veldhoven P.P., Human Pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences, Mol. Cell. Biol., 21: 4413–4424, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Honsho M., Hiroshige T., Fujiki Y., The membrane biogenesis peroxin Pex16p ‐ Topogenesis and functional roles in peroxisomal membrane assembly, J. Biol. Chem., 277: 44513–44524, 2002. [DOI] [PubMed] [Google Scholar]
  • 74. Eckert J.H., Erdmann R., Peroxisome biogenesis, Rev. Physiol. Biochem. Pharmacol., 147: 75–121, 2003. [DOI] [PubMed] [Google Scholar]
  • 75. Titorenko V.I., Rachubinski R.A., The life cycle of the peroxisome, Nat. Rev. Mol. Cell Biol., 2: 357–368, 2001. [DOI] [PubMed] [Google Scholar]
  • 76. Lazarow P.B., Peroxisome biogenesis: advances and conundrums, Curr. Opin. Cell Biol., 15: 489–497, 2003. [DOI] [PubMed] [Google Scholar]
  • 77. Marshall P.A., Krimkevich Y.I., Lark R.H., Dyer J.M., Veenhuis M., Goodman J.M., Pmp27 Promotes Peroxisomal Proliferation, J. Cell Biol., 129: 345–355, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Erdmann R., Blobel G., Giant peroxisomes in oleic acidinduced Saccharomyces cerevisiae lacking the peroxisomal membrane‐protein Pmp27p, J. Cell Biol., 128: 509–523, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Sakai Y., Marshall P.A., Saiganji A., Takabe K., Saiki H., Kato N., Goodman J.M., The Candida boidinii peroxisomal membrane‐protein Pmp30 has a role in peroxisomal proliferation and is functionally homologous to Pmp27 from Saccharomyces cerevisiae J. Bacteriol., 177: 6773–6781, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Abe I., Fujiki Y., cDNA cloning and characterization of a constitutively expressed isoform of the human peroxin Pex11p, Biochem. Biophys. Res. Commun., 252: 529–533, 1998. [DOI] [PubMed] [Google Scholar]
  • 81. Passreiter M., Anton M., Lay D., Frank R., Harter C., Wieland F.T., Gorgas K., Just W.W., Peroxisome biogenesis: Involvement of ARF and coatomer, J. Cell Biol., 141: 373–383, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Li X.L., Baumgart E., Dong G.X., Morrell J.C., Jimenez‐Sanchez G., Valle D., Smith K.D., Gould S.J., PEX11‐alpha is required for peroxisome proliferation in response to 4‐phenylbutyrate but is dispensable for peroxisome proliferator‐activated receptor alpha‐mediated peroxisome proliferation, Mol. Cell. Biol., 22: 8226–8240, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Schrader M., Reuber B.E., Morrell J.C., Jimenez‐Sanchez G., Obie C., Stroh T.A., Valle D., Schroer T.A., Gould S.J., Expression of PEX11‐beta mediates peroxisome proliferation in the absence of extracellular stimuli, J. Biol. Chem., 273: 29607–29614, 1998. [DOI] [PubMed] [Google Scholar]
  • 84. Koch A., Thiemann M., Grabenbauer M., Yoon Y., McNiven M.A., Schrader M., Dynamin‐like protein 1 is involved in peroxisomal fission, J. Biol. Chem., 278: 8597–8605, 2003. [DOI] [PubMed] [Google Scholar]
  • 85. Hoepfner D., van den Berg M., Philippsen P., Tabak H.F., Hettema E.H., A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae J. Cell Biol., 155: 979–990, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Guo T., Kit Y.Y., Nicaud J.M., Le Dall M.T., Sears S.K., Vali H., Chan H., Rachubinski R.A., Titorenko V.I., Peroxisome division in the yeast Yarrowia lipolytica is regulated by a signal from inside the peroxisome, J. Cell Biol., 162: 1255–1266, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Chang C.C., South S., Warren D., Jones J., Moser A.B., Moser H.W., Gould S.J., Metabolic control of peroxisome abundance, J. Cell Sci., 112: 1579–1590, 1999. [DOI] [PubMed] [Google Scholar]
  • 88. Germain V., Rylott E.L., Larson T.R., Sherson S.M., Bechtold N., Carde J.P., Bryce J.H., Graham I.A., Smith S.M., Requirement for 3‐ketoacyl‐CoA thiolase‐2 in peroxisome development, fatty acid beta‐oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings, Plant J., 28: 1–12, 2001. [DOI] [PubMed] [Google Scholar]
  • 89. Hayashi Y., Hayashi M., Hayashi H., Hara‐Nishimura I., Nishimura M., Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant, Protoplasma, 218: 83–94, 2001. [DOI] [PubMed] [Google Scholar]
  • 90. Smith J.J., Brown T.W., Eitzen G.A., Rachubinski R.A., Regulation of peroxisome size and number by fatty acid beta‐ oxidation in the yeast Yarrowia lipolytica J. Biol. Chem., 275: 20168–20178, 2000. [DOI] [PubMed] [Google Scholar]
  • 91. van Roermund C.W.T., Tabak H.F., van den Berg M., Wanders R.J.A., Hettema E.H., Pex11p plays a primary role in medium‐chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae J. Cell Biol., 150: 489–497, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Smith J.J., Marelli M., Christmas R.H., Vizeacoumar F.J., Dilworth D.J., Ideker T., Galitski T., Dimitrov K., Rachubinski R.A., Aitchison J.D., Transcriptome profiling to identify genes involved in peroxisome assembly and function, J. Cell Biol., 158: 259–271, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Rottensteiner H., Stein K., Sonnenhol E., Erdmann R., Conserved function of Pex11p and the novel Pex25p and Pex27p in peroxisome biogenesis, Mol. Biol. Cell, 14: 4316–4328, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Tam Y.Y.C., Torres‐Guzman J.C., Vizeacoumar F.J., Smith J.J., Marelli M., Aitchison J.D., Rachubinski R.A., Pex11‐related proteins in peroxisome dynamics: A role for the novel peroxin Pex27p in controlling peroxisome size and number in Saccharomyces cerevisiae Mol. Biol. Cell, 14: 4089–4102, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Birschmann I., Stroobants A.K., van den Berg M., Schafer A., Rosenkranz K., Kunau W.H., Tabak H.F., Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes, Mol. Biol. Cell, 14: 2226–2236, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Matsumoto N., Tamura S., Fujiki Y., The pathogenic peroxin Pex26p recruits the Pex1p‐Pex6p AAA ATPase complexes to peroxisomes, Nat. Cell Biol., 5: 454–460, 2003. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES