Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(2):331–344. doi: 10.1111/j.1582-4934.2005.tb00359.x

Identification and expansion of pancreatic stem/progenitor cells

You‐Qing Zhang 1, Marcie Kritzik 1, Nora Sarvetnick 1,
PMCID: PMC6740110  PMID: 15963253

Abstract

Pancreatic islet transplantation represents an attrative approach for the treatment of diabetes. However, the limited availability of donor islets has largely hampered this approach. In this respect, the use of alternative sources of islets such as the ex vivo expansion and differentiation of functional endocrine cells for treating diabetes has become the major focus of diabetes research. Adult pancreatic stem cells/progenitor cells have yet to be recognized because limited markers exist for their identification. While the pancreas has the capacity to regenerate under certain circumstance, questions where adult pancreatic stem/progenitor cells are localized, how they are regulated, and even if the pancreas harbors a stem cell population need to be resolved. In this article, we review the recent achievements both in the identification as well as in the expansion of pancreatic stem/progenitor cells.

Keywords: stem/progenitor cell, islet, proliferation, transdifferentiation, heart failure, growth factor

References

  • 1. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. 2000; Science 287: 1442–6. [DOI] [PubMed] [Google Scholar]
  • 2. Potten CS, Morris RJ. Epithelial stem cells in vivo. J Cell Sci Suppl. 1988; 10: 45–62. [DOI] [PubMed] [Google Scholar]
  • 3. Galli R, Gritti A, Bonfanti L, Vescovi AL. Neural stem cells: an overview. Circ Res. 2003; 92: 598–608. [DOI] [PubMed] [Google Scholar]
  • 4. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al‐Awqati Q: The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004; 114: 795–804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Pictet RL, Clark WR, Williams RH, Rutter WJ. An ultrastructural analysis of the developping embryonic pancreas. Dev Biol. 1972; 29: 436–67. [DOI] [PubMed] [Google Scholar]
  • 6. Wessells NK. Differentiation of epidermis and epidermal derivatives. N Engl J Med. 1967; 277: 21–33. [DOI] [PubMed] [Google Scholar]
  • 7. Bach JF, Chatenoud L, Herbelin A, Gombert JM, Carnaud C, Autoimmune diabetes: how many steps for one disease Res Immunol. 1997; 148: 332–8. [DOI] [PubMed] [Google Scholar]
  • 8. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid‐free immunosuppressive regimen.. N Engl J Med. 2000; 343: 230–8. [DOI] [PubMed] [Google Scholar]
  • 9. Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res. 1985; 4: 110–25. [DOI] [PubMed] [Google Scholar]
  • 10. Gepts W, Lecompte PM. The pancreatic islets in diabetes. Am J Med. 1981; 70: 105–15. [DOI] [PubMed] [Google Scholar]
  • 11. Kahn SaP, D Jr : The Physiology of type 2 diabetes mellitus: implication for treatment. New York : Elsevier; 1990. [Google Scholar]
  • 12. Rosenberg L, Brown RA, Duguid WP. A new approach to the induction of duct epithelial hyperplasia and nesidioblastosis by cellophane wrapping of the hamster pancreas. J Surg Res 1983; 35: 63–72. [DOI] [PubMed] [Google Scholar]
  • 13. Rosenberg L, Vinik AI. Induction of endocrine cell differentiation: a new approach to management of diabetes. J Lab Clin Med. 1989; 114: 75–83. [PubMed] [Google Scholar]
  • 14. Wang RN, Kloppel G, Bouwens L. Duct‐to islet‐cell differentiation and islet growth in the pancreas of duct‐ligated adult rats.. Diabetologia 1995; 38: 1405–1411. [DOI] [PubMed] [Google Scholar]
  • 15. Bonner‐Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development.. Diabetes 1993; 42: 1715–20. [DOI] [PubMed] [Google Scholar]
  • 16. Plachot C, Movassat J, Portha B. Impaired beta‐cell regeneration after partial pancreatectomy in the adult Goto‐Kakizaki rat, a spontaneous model of type II diabetes.. Histochem Cell Biol. 2001; 116: 131–9. [DOI] [PubMed] [Google Scholar]
  • 17. Zysset T, Sommer L. Diabetes alters drug metabolism–in vivo studies in a streptozotozin‐diabetic rat model.. Experientia 1986; 42: 560–2. [DOI] [PubMed] [Google Scholar]
  • 18. Fernandes A, King LC, Guz Y, Stein R, Wright CV, Teitelman G. Deifferentiation of new insulin‐producing cells is induced by injury in adult pancreatic islets.. Endocrinology 1997; 138: 1750–62. [DOI] [PubMed] [Google Scholar]
  • 19. Sarvetnick N, Liggitt D, Pitts SL, Hansen SE, Stewart TA. Insulin‐dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon‐gamma. Cell 1988; 52: 773–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Gu D, Sarvetnick N. A transgenic model for studying islet development. Recent Prog Horm Res. 1994; 49: 161–5. [DOI] [PubMed] [Google Scholar]
  • 21. Kritzik MR, Krahl T, Good A, Krakowski M, St‐Onge L, Gruss P, Wright C, Sarvetnick N. Transcription factor expression during pancreatic islet regeneration. Mol Cell Endocrinol. 2000; 164: 99–107. [DOI] [PubMed] [Google Scholar]
  • 22. Slack JM. Developmental biology of the pancreas. Development 1995; 121: 1569–80. [DOI] [PubMed] [Google Scholar]
  • 23. Madsen OD, Jensen J, Blume N, Petersen HV, Lund K, Karlsen C, Andersen FG, Jensen PB, Larsson LI, Serup P. Pancreatic development and maturation of the islet B cell. Studies of pluripotent islet cultures. Eur J Biochem. 1996; 242: 435–45. [DOI] [PubMed] [Google Scholar]
  • 24. Bonner‐Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O'Neil JJ. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 2000; 97: 7999–8004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T: Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 2003; 52: 2007–15. [DOI] [PubMed] [Google Scholar]
  • 26. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin‐dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med. 2000; 6: 278–82. [DOI] [PubMed] [Google Scholar]
  • 27. Ogata T, Park KY, Seno M, Kojima I. Reversal of streptozotocin‐induced hyperglycemia by transplantation of pseudoislets consisting of β cells derived from ductal cells. Endocr J. 2004; 51: 381–6. [DOI] [PubMed] [Google Scholar]
  • 28. Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic beta cells from intra‐islet precursor cells in an experimental model of diabetes. Endocrinology 2001; 142: 4956–68. [DOI] [PubMed] [Google Scholar]
  • 29. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF. Multipotential nestin‐positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001; 50: 521–33. [DOI] [PubMed] [Google Scholar]
  • 30. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon‐like peptide‐1 differentiation of human pancreatic islet‐derived progenitor cells into insulin‐producing cells. Endocrinology 2002; 143: 3152–61. [DOI] [PubMed] [Google Scholar]
  • 31. Petropavlovskaia M, Rosenberg L, Identification and characterization of small cells in the adult pancreas: potential progenitor cells Cell Tissue Res. 2002; 310: 51–8. [DOI] [PubMed] [Google Scholar]
  • 32. Suzuki A, Nakauchi H, Taniguchi H. Prospective isolation of multipotent pancreatic progenitors using flowcytometric cell sorting. Diabetes 2004; 53: 2143–52. [DOI] [PubMed] [Google Scholar]
  • 33. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004; 116: 639–48. [DOI] [PubMed] [Google Scholar]
  • 34. Ferrari G, Cusella‐De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow‐derived myogenic progenitors. Science 1998; 279: 1528–30. [DOI] [PubMed] [Google Scholar]
  • 35. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo . Science 1999; 283: 534–7. [DOI] [PubMed] [Google Scholar]
  • 36. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann NY Acad Sci. 2001; 938: 221–9; discussion 229–30. [DOI] [PubMed] [Google Scholar]
  • 37. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP. Bone marrow as a potential source of hepatic oval cells.. Science 1999; 284: 1168–70. [DOI] [PubMed] [Google Scholar]
  • 38. Mashima H, Ohnishi H, Wakabayashi K, Mine T, Miyagawa J, Hanafusa T, Seno M, Yamada H, Kojima I. Betacellulin and activin A coordinately convert amylase‐secreting pancreatic AR42J cells into insulin‐secreting cells. J Clin Invest. 1996; 97: 1647–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Bouwens L, Pipeleers DG. Extra‐insular β cells associated with ductules are frequent in adult human pancreas. Diabetologia 1998; 41: 629–33. [DOI] [PubMed] [Google Scholar]
  • 40. Gmyr V, Kerr‐Conte J, Belaich S, Vandewalle B, Leteurtre E, Vantyghem MC, Lecomte‐Houcke M, Proye C, Lefebvre J, Pattou F. Adult human cytokeratin 19‐positive cells reexpress insulin promoter factor 1 in vitro: further evidence for pluripotent pancreatic stem cells in humans. Diabetes 2000; 49: 1671–80. [DOI] [PubMed] [Google Scholar]
  • 41. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB. In vitro trans‐differentiation of adult hepatic stem cells into pancreatic endocrine hormone producing cells. Proc Natl Acad Sci USA. 2002; 99: 8078–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Horb ME, Shen CN, Tosh D, Slack JM. Experimental conversion of liver to pancreas. Curr Biol. 2003; 13: 105–15. [DOI] [PubMed] [Google Scholar]
  • 43. Tuch BE, Szymanska B, Yao M, Tabiin MT, Gross DJ, Holman S, Swan MA, Humphrey RK, Marshall GM, Simpson AM. Function of a genetically modified human liver cell line that stores, processes and secretes insulin. Gene Ther. 2003; 10: 490–503. [DOI] [PubMed] [Google Scholar]
  • 44. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L. NeuroD‐betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med. 2003; 9: 596–603. [DOI] [PubMed] [Google Scholar]
  • 45. Yoshida S, Kajimoto Y, Yasuda T, Watada H, Fujitani Y, Kosaka H, Gotow T, Miyatsuka T, Umayahara Y, Yamasaki Y, Hori M. PDX‐1 induces differentiation of intestinal epithelioid IEC‐6 into insulin‐producing cells. Diabetes 2002; 51: 2505–13. [DOI] [PubMed] [Google Scholar]
  • 46. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin‐induced hyperglycemia. Nat Med. 2000; 6: 568–72. [DOI] [PubMed] [Google Scholar]
  • 47. Mashima H, Shibata H, Mine T, Kojima I. Formation of insulin‐producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 1996; 137: 3969–76. [DOI] [PubMed] [Google Scholar]
  • 48. Shen CN, Slack JM, Tosh D. Molecular basis of transdifferentiation of pancreas to liver.. Nat Cell Biol. 2000; 2: 879–87. [DOI] [PubMed] [Google Scholar]
  • 49. Lardon J, de Breuck S, Rooman I, van Lommel L, Kruhoffer M, Orntoft T, Schuit F, Bouwens L. Plasticity in the adult rat pancreas: transdifferentiation of exocrine to hepatocyte‐like cells in primary culture.. Hepatology 2004; 39: 1499–1507. [DOI] [PubMed] [Google Scholar]
  • 50. Baeyens L, de Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L. In vitro generation of insulin‐producing β cells from adult exocrine pancreatic cells. Diabetologia 2005; 48: 49–57. [DOI] [PubMed] [Google Scholar]
  • 51. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose‐competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003; 111: 843–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Kodama S, Kuhtreiber W, Fujimura S, Dale EA. Faustman DL: Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 2003; 302: 1223–7. [DOI] [PubMed] [Google Scholar]
  • 53. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–45. [DOI] [PubMed] [Google Scholar]
  • 54. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency spontaneous fusion. Nature 2004; 416: 545–8. [DOI] [PubMed] [Google Scholar]
  • 55. Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, Peister A, Wang MY, Prockop DJ. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA. 2003; 100: 2397–2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al‐Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M. Cell fusion is the principal source of bone‐marrow‐derived hepatocytes. Nature 2003; 422: 897–901. [DOI] [PubMed] [Google Scholar]
  • 57. Vassilopoulos G, Russell DW. Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev. 2003; 13: 480–5. [DOI] [PubMed] [Google Scholar]
  • 58. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE. Adult bone marrow‐derived cells trans‐differentiating into insulin‐producing cells for the treatment of type I diabetes. Lab Invest 2004; 84: 607–17. [DOI] [PubMed] [Google Scholar]
  • 59. Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA. Recruitment of bone marrow‐derived endothelial cells to sites of pancreatic β‐cell injury. Diabetes 2004; 53: 91–8. [DOI] [PubMed] [Google Scholar]
  • 60. Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz‐Eldor J. Differentiation of human embryonic stem cells into insulin‐producing clusters. Stem Cells 2004; 22: 265–74. [DOI] [PubMed] [Google Scholar]
  • 61. Blyszczuk P, Asbrand C, Rozzo A, Kania G, St‐Onge L, Rupnik M, Wobus AM. Embryonic stem cells differentiate into insulin‐producing cells without selection of nestinexpressing cells. Int J Dev Biol. 2004; 48: 1095–1104. [DOI] [PubMed] [Google Scholar]
  • 62. Ku HT, Zhang N, Kubo A, O'Connor R, Mao M, Keller G, Bromberg JS. Committing embryonic stem cells to early endocrine pancreas in vitro . Stem Cells 2004; 22: 1205–17. [DOI] [PubMed] [Google Scholar]
  • 63. Leon‐Quinto T, Jones J, Skoudy A, Burcin M, Soria B. In vitro directed differentiation of mouse embryonic stem cells into insulin‐producing cells.. Diabetologia 2004; 47: 1442–51. [DOI] [PubMed] [Google Scholar]
  • 64. Milne HM, Burns CJ, Kitsou‐Mylona I, Luther MJ, Minger SL, Persaud SJ, Jones PM. Generation of insulin‐expressing cells from mouse embryonic stem cells. Biochem Biophys Res Commun. 2005; 328: 399–403. [DOI] [PubMed] [Google Scholar]
  • 65. Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA. Insulin staining of ES cell progeny from insulin uptake. Science 2003; 299: 363. [DOI] [PubMed] [Google Scholar]
  • 66. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta‐cells are formed by self‐duplication rather than stem‐cell differentiation. Nature 2004; 429: 41–6. [DOI] [PubMed] [Google Scholar]
  • 67. Zaret K. Regenerative medicine: self‐help for insulin cells. Nature 2004; 429: 30–1. [DOI] [PubMed] [Google Scholar]
  • 68. Edlund H. Transcribing pancreas. Diabetes 1998; 47: 1817–23. [DOI] [PubMed] [Google Scholar]
  • 69. Soria B. In‐vitro differentiation of pancreatic β‐cells. Differentiation 2001; 68: 205–19. [DOI] [PubMed] [Google Scholar]
  • 70. Drucker DJ. Glucagon‐like peptides.. Diabetes 1998; 47: 159–169. [DOI] [PubMed] [Google Scholar]
  • 71. Buteau J, Roduit R, Susini S, Prentki M. Glucagon‐like peptide‐1 promotes DNA synthesis, activates phosphatidylinositol 3‐kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX‐1) DNA binding activity in β (INS‐1)‐cells.. Diabetologia 1999; 42: 856–64. [DOI] [PubMed] [Google Scholar]
  • 72. Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B: Persistent improvement of type 2 diabetes in the Goto‐Kakizaki rat model by expansion of the β‐cell mass during the prediabetic period with glucagonlike peptide‐1 or exendin‐4. Diabetes 2002; 51: 1443–52. [DOI] [PubMed] [Google Scholar]
  • 73. Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner‐Weir S, Habener JF, Egan JM. Insulinotropic glucagon‐like peptide 1 agonists stimulate expression of homeodomain protein IDX‐1 and increase islet size in mouse pancreas. Diabetes 2000; 49: 741–8. [DOI] [PubMed] [Google Scholar]
  • 74. Xu G, Stoffers DA, Habener JF, Bonner‐Weir S. Exendin‐4 stimulates both β‐cell replication and neogenesis, resulting in increased β‐cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270–6. [DOI] [PubMed] [Google Scholar]
  • 75. Hui H, Wright C, Perfetti R. Glucagon‐like peptide 1 induces differentiation of islet duodenal homeobox‐1‐positive pancreatic ductal cells into insulin‐secreting cells. Diabetes 2001; 50: 785–96. [DOI] [PubMed] [Google Scholar]
  • 76. Zhou J, Wang X, Pineyro MA, Egan JM. Glucagon‐like peptide 1 and exendin‐4 convert pancreatic AR42J cells into glucagon‐ and insulin‐producing cells. Diabetes 1999; 48: 2358–66. [DOI] [PubMed] [Google Scholar]
  • 77. Elghazi L, Cras‐Meneur C, Czernichow P, Scharfmann R. Role for FGFR2IIIb‐mediated signals in controlling pancreatic endocrine progenitor cell proliferation. Proc Natl Acad Sci USA. 2002; 99: 3884–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, Scharfmann R. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 2001; 128: 5109–17. [DOI] [PubMed] [Google Scholar]
  • 79. Hart AW, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF signalling in mouse β‐cells leads to diabetes. Nature 2000; 408: 864–8. [DOI] [PubMed] [Google Scholar]
  • 80. Norgaard GA, Jensen JN, Jensen J. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol 2003; 264: 323–38. [DOI] [PubMed] [Google Scholar]
  • 81. Yi ES, Yin S, Harclerode DL, Bedoya A, Bikhazi NB, Housley RM, Aukerman SL, Morris CF, Pierce GF, Ulich TR. Keratinocyte growth factor induces pancreatic ductal epithelial proliferation. Am J Pathol 1994; 145: 80–5. [PMC free article] [PubMed] [Google Scholar]
  • 82. Krakowski ML, Kritzik MR, Jones EM, Krahl T, Lee J, Arnush M, Gu D, Mroczkowski B, Sarvetnick N. Transgenic expression of epidermal growth factor and keratinocyte growth factor in β‐cells results in substantial morphological changes. J Endocrinol. 1999; 162: 167–75. [DOI] [PubMed] [Google Scholar]
  • 83. Movassat J, Beattie GM, Lopez AD, Portha B, Hayek A. Keratinocyte growth factor and β‐cell differentiation in human fetal pancreatic endocrine precursor cells. Diabetologia 2003; 46: 822–9. [DOI] [PubMed] [Google Scholar]
  • 84. Banerjee M, Bhonde RR. Islet generation from intra islet precursor cells of diabetic pancreas: in vitro studies depicting in vivo differentiation.. Jop. 2003; 4: 137–45. [PubMed] [Google Scholar]
  • 85. Arnush M, Gu D, Baugh C, Sawyer SP, Mroczkowski B, Krahl T, Sarvetnick N. Growth factors in the regenerating pancreas of gamma‐interferon transgenic mice. Lab Invest. 1996; 74: 985–90. [PubMed] [Google Scholar]
  • 86. Zhang M, Schleicher RL, Fink AS, Gunter‐Smith P, Savard C, Nguyen T, Lee SP. Growth and function of isolated canine pancreatic ductal cells. Pancreas 2000; 20: 67–76. [DOI] [PubMed] [Google Scholar]
  • 87. Cras‐Meneur C, Elghazi L, Czernichow P, Scharfmann R. Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes 2001; 50: 1571–9. [DOI] [PubMed] [Google Scholar]
  • 88. Brand SJ, Tagerud S, Lambert P, Magil SG, Tatarkiewicz K, Doiron K, Yan Y. Pharmacological treatment of chronic diabetes by stimulating pancreatic beta‐cell regeneration with systemic co‐administration of EGF and gastrin. Pharmacol Toxicol 2002; 91: 414–20. [DOI] [PubMed] [Google Scholar]
  • 89. Shing Y, Christofori G, Hanahan D, Ono Y, Sasada R, Igarashi K, Folkman J. Betacellulin: a mitogen from pancreatic beta cell tumors. Science 1993; 259: 1604–7. [DOI] [PubMed] [Google Scholar]
  • 90. Miyagawa J, Hanafusa O, Sasada R, Yamamoto K, Igarashi K, Yamamori K, Seno M, Tada H, Nammo T, Li M, Yamagata K, Nakajima H, Namba M, Kuwajima M, Matsuzawa Y. Immunohistochemical localization of betacellulin, a new member of the EGF family, in normal human pancreas and islet tumor cells. Endocr J. 1999; 46: 755–64. [DOI] [PubMed] [Google Scholar]
  • 91. Yamamoto K, Miyagawa J, Waguri M, Sasada R, Igarashi K, Li M, Nammo T, Moriwaki M, Imagawa A, Yamagata K, Nakajima H, Namba M, Tochino Y, Hanafusa T, Matsuzawa Y. Recombinant human betacellulin promotes the neogenesis of β‐cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes 2000; 49: 2021–7. [DOI] [PubMed] [Google Scholar]
  • 92. Li L, Seno M, Yamada H, Kojima I. Betacellulin improves glucose metabolism by promoting conversion of intraislet precursor cells to β‐cells in streptozotocin‐treated mice. Am J Physiol Endocrinol Metab. 2003; 285: E577–83. [DOI] [PubMed] [Google Scholar]
  • 93. Otonkoski T, Beattie GM, Rubin JS, Lopez AD, Baird A, Hayek A. Hepatocyte growth factor/scatter factor has insulinotropic activity in human fetal pancreatic cells. Diabetes 1994; 43: 947–53. [DOI] [PubMed] [Google Scholar]
  • 94. Otonkoski T, Cirulli V, Beattie M, Mally MI, Soto G, Rubin JS, Hayek A. A role for hepatocyte growth factor/scatter factor in fetal mesenchyme‐induced pancreatic beta‐cell growth. Endocrinology 1996; 137: 3131–9. [DOI] [PubMed] [Google Scholar]
  • 95. Hayek A, Beattie GM, Cirulli V, Lopez AD, Ricordi C, Rubin JS. Growth factor/matrix‐induced proliferation of human adult β‐cells. Diabetes 1995; 44: 1458–60. [DOI] [PubMed] [Google Scholar]
  • 96. Garcia‐Ocana A, Vasavada RC, Cebrian A, Reddy V, Takane KK, Lopez‐Talavera JC, Stewart AF. Transgenic overexpression of hepatocyte growth factor in the β‐cell markedly improves islet function and islet transplant outcomes in mice. Diabetes 2001; 50: 2752–62. [DOI] [PubMed] [Google Scholar]
  • 97. Beattie GM, Montgomery AM, Lopez AD, Hao E, Perez B, Just ML, Lakey JR, Hart ME, Hayek A. A novel approach to increase human islet cell mass while preserving β‐cell function. Diabetes 2002; 51: 3435–9. [DOI] [PubMed] [Google Scholar]
  • 98. Wang R, Yashpal N, Bacchus F, Li J. Hepatocyte growth factor regulates proliferation and differentiation of epithelial monolayers derived from islets of postantal rat pancreas.. J Endocrinol. 2004; 183: 163–171. [DOI] [PubMed] [Google Scholar]
  • 99. Demeterco C, Beattie GM, Dib SA, Lopez AD, Hayek A. A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth. J Clin Endocrinol Metab. 2000; 85: 3892–7. [DOI] [PubMed] [Google Scholar]
  • 100. Zhang YQ, Cleary MM, Si Y, Liu G, Eto Y, Kritzik M, Dabernat S, Kayali AG, Sarvetnick N. Inhibition of activin signaling induces pancreatic epithelial cell expansion and diminishes terminal differentiation of pancreatic β‐cells. Diabetes 2004; 53: 2024–33. [DOI] [PubMed] [Google Scholar]
  • 101. Zhang YQ, Sarvetnick N. Development of cell markers for the identification and expansion of islet progenitor cells. Diabetes Metab Res Rev. 2003; 19: 363–74. [DOI] [PubMed] [Google Scholar]
  • 102. Zhang YQ, Zhang H, Maeshima A, Kurihara H, Miyagawa J, Takeuchi T, Kojima I. Up‐regulation of the expression of activins in the pancreatic duct by reduction of the β‐cell mass. Endocrinology 2002; 143: 3540–7. [DOI] [PubMed] [Google Scholar]
  • 103. Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. Activin‐binding protein from rat ovary is follistatin. Science 1990; 247: 836–8. [DOI] [PubMed] [Google Scholar]
  • 104. Gray PC, Harrison CA, Vale W. Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci USA. 2003; 100: 5193–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Kayali AG, van Gunst K, Campbell IL, Stotland A, Kritzik M, Liu G, Flodstrom‐Tullberg M, Zhang YQ, Sarvetnick N. The stromal cell‐derived factor‐1alpha/CXCR4 ligand‐receptor axis is critical for progenitor survival and migration in the pancreas. J Cell Biol. 2003; 163: 859–69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Oberg‐Welsh C, Sandler S, Andersson A, Welsh M. Effects of vascular endothelial growth factor on pancreatic duct cell replication and the insulin production of fetal islet‐like cell clusters in vitro. Mol Cell Endocrinol. 1997; 126: 125–32. [DOI] [PubMed] [Google Scholar]
  • 107. Rooman I, Schuit F, Bouwens L. Effect of vascular endothelial growth factor on growth and differentiation of pancreatic ductal epithelium. Lab Invest. 1997; 76: 225–32. [PubMed] [Google Scholar]
  • 108. Harmon EB, Apelqvist AA, Smart NG, Gu X, Osborne DH, Kim SK. GDF11 modulates NGN3+ islet progenitor cell number and promotes β‐cell differentiation in pancreas development. Development 2004; 131: 6163–74. [DOI] [PubMed] [Google Scholar]
  • 109. Umezawa K, Hiroki A, Kawakami M, Naka H, Takei I, Ogata T, Kojima I, Koyano T, Kowithayakorn T, Pang HS, Kam TS. Induction of insulin production in rat pancreatic acinar carcinoma cells by conophylline. Biomed Pharmacother. 2003; 57: 341–50. [DOI] [PubMed] [Google Scholar]
  • 110. Ogata T, Li L, Yamada S, Yamamoto Y, Tanaka Y, Takei I, Umezawa K, Kojima I. Promotion of β‐cell differentiation by conophylline in fetal and neonatal rat pancreas. Diabetes 2004; 53: 2596–602. [DOI] [PubMed] [Google Scholar]
  • 111. Zhou J, Pineyro MA, Wang X, Doyle ME, Egan JM. Exendin‐4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX‐1 and HNF3β transcription factors. J Cell Physiol. 2002; 192: 304–14. [DOI] [PubMed] [Google Scholar]
  • 112. Sosa‐Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin‐producing β cells in the mammalian pancreas. Nature 1997; 386: 399–402. [DOI] [PubMed] [Google Scholar]
  • 113. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H. Notch signalling controls pancreatic cell differentiation. Nature 1999; 400: 877–881. [DOI] [PubMed] [Google Scholar]
  • 114. Zhang YQ, Mashima H, Kojima I. Changes in the expression of transcription factors in pancreatic AR42J cells during differentiation into insulin‐producing cells. Diabetes 2001; 50 Suppl 1: S10–14. [DOI] [PubMed] [Google Scholar]
  • 115. Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S. Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc. 2000; 5: 34–9. [DOI] [PubMed] [Google Scholar]
  • 116. McKay R. Stem cells in the central nervous system. Science 1997; 276: 66–71. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES