Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(3):301–316. doi: 10.1111/j.1582-4934.2004.tb00320.x

Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy

D Baksh 1,, L Song 1,, R S Tuan 1,
PMCID: PMC6740223  PMID: 15491506

Abstract

A considerable amount of retrospective data is available that describes putative mesenchymal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be greatly advanced by analyzing the mechanisms that govern their self‐renewal and differentiation potential. This review begins with the current state of knowledge on the biology of MSCs, specifically with respect to their existence in the adult organism and postulation of their biological niche. While MSCs are considered suitable candidates for cell‐based strategies owing to their intrinsic capacity to self‐renew and differentiate, there is currently little information available regarding the molecular mechanisms that govern their stem cell potential. We propose here a model for the regulation of MSC differentiation, and recent findings regarding the regulation of MSC differentiation are discussed. Current research efforts focused on elucidating the mechanisms regulating MSC differentiation should facilitate the design of optimal in vitro culture conditions to enhance their clinical utility cell and gene therapy.

Keywords: mesenchymal stem cells, stem cell niche, differentiation, Wnt, gene therapy

References

  • 1. Horwitz E.M., Gordon P.L., Koo W.K., Marx J.C., Neel M.D., McNall R.Y., Muul L., Hofmann T., Isolated allogeneic bone marrow‐derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone, Proc. Natl. Acad. Sci. USA, 99: 8932–8937, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Koc O.N., Gerson S.L., Cooper B.W., Dyhouse S.M., Haynesworth S.E., Caplan A.I., Lazarus H.M., Rapid hematopoietic recovery after coinfusion of autologous blood stem cells and culture‐expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high‐dose chemotherapy, J Clin. Oncol., 18: 307–316, 2000. [DOI] [PubMed] [Google Scholar]
  • 3. Petite H., Viateau V., Bensaid W., Meunier A., de Pollak C., Bourguignon M., Oudina K., Sedel L., Guillemin G., Tissue‐engineered bone regeneration, Nat. Biotechnol., 18: 959–963, 2000. [DOI] [PubMed] [Google Scholar]
  • 4. Dexter T.M., Wright E.G., Krizsa F., Lajtha L.G., Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures, Biomedicine., 27: 344–349, 1977. [PubMed] [Google Scholar]
  • 5. Calvi L.M., Adams G.B., Weibrecht K.W., Weber J.M., Olson D.P., Knight M.C., Martin R.P., Schipani E., Divieti P., Bringhurst F.R., Milner L.A., Kronenberg H.M., Scadden D.T., Osteoblastic cells regulate the haematopoietic stem cell niche, Nature, 425: 841–846, 2003. [DOI] [PubMed] [Google Scholar]
  • 6. Friedenstein A.J., Chailakhjan R.K., Lalykina K.S., The development of fibroblast colonies in monolayer cultures of guinea‐ pig bone marrow and spleen cells, Cell Tissue Kinet., 3: 393–403, 1970. [DOI] [PubMed] [Google Scholar]
  • 7. Friedenstein A.J., Osteogenetic activity of transplanted transitional epithe lium, Acta Anat. (Basel), 45: 31–59, 1961. [DOI] [PubMed] [Google Scholar]
  • 8. Castro‐Malaspina H., Gay R.E., Resnick G., Kapoor N., Meyers P., Chiarieri D., McKenzie S., Broxmeyer H.E., Moore M.A., Characterization of human bone marrow fibroblast colony‐forming cells (CFU‐F) and their progeny, Blood, 56: 289–301, 1980. [PubMed] [Google Scholar]
  • 9. Janowska‐Wieczorek A., Majka M., Ratajczak J., Ratajczak M.Z., Autocrine/paracrine mechanisms in human hematopoiesis, Stem Cells, 19: 99–107, 2001. [DOI] [PubMed] [Google Scholar]
  • 10. Koller M.R., Manchel I., Palsson B.O., Importance of parenchymal:stromal cell ratio for the ex vivo reconstitution of human hematopoiesis, Stem Cells, 15: 305–313, 1997. [DOI] [PubMed] [Google Scholar]
  • 11. Strobel E.S., Gay R.E., Greenberg P.L., Characterization of the in vitro stromal microenvironment of human bone marrow, Int. J. Cell Cloning, 4: 341–356, 1986. [DOI] [PubMed] [Google Scholar]
  • 12. Tavassoli M., Takahashi K., Morphological studies on long‐term culture of marrow cells: characterization of the adherent stromal cells and their interactions in maintaining the proliferation of hemopoietic stem cells, Am. J. Anat., 164: 91–111, 1982. [DOI] [PubMed] [Google Scholar]
  • 13. Castro‐Malaspina H., Ebell W., Wang S., Human bone marrow fibroblast colony‐forming units (CFU‐F), Prog. Clin. Biol. Res., 154: 209–236, 1984. [PubMed] [Google Scholar]
  • 14. Wang Q.R., Wolf N.S., Dissecting the hematopoietic microenvironment. VIII. Clonal isolation and identification of cell types in murine CFU‐F colonies by limiting dilution, Exp. Hematol., 18: 355–359, 1990. [PubMed] [Google Scholar]
  • 15. Noth U., Osyczka A.M., Tuli R., Hickok N.J., Danielson K.G., Tuan R.S., Multilineage mesenchymal differentiation potential of human trabecular bone‐derived cells, J. Orthop. Res., 20: 1060–1069, 2002. [DOI] [PubMed] [Google Scholar]
  • 16. Tuan R.S., Boland G., Tuli R., Adult mesenchymal stem cells and cell‐based tissue engineering, Arthritis Res. Ther., 5: 32–45, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Sarugaser R., Lickorish D., Baksh D., Hosseini M.M., Davies J.E., Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors, Stem Cells, In Review , 2004. [DOI] [PubMed]
  • 18. Gronthos S., Graves S.E., Ohta S., Simmons P.J., The STRO‐1+ fraction of adult human bone marrow contains the osteogenic precursors, Blood, 84: 4164–4173, 1994. [PubMed] [Google Scholar]
  • 19. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R., Multilineage potential of adult human mesenchymal stem cells, Science, 284: 143–147, 1999. [DOI] [PubMed] [Google Scholar]
  • 20. Minguell J.J., Erices A., Conget P., Mesenchymal stem cells, Exp Biol. Med (Maywood.), 226: 507–520, 2001. [DOI] [PubMed] [Google Scholar]
  • 21. Tocci A., Forte L., Mesenchymal stem cell: use and perspectives, Hematol. J, 4: 92–96, 2003. [DOI] [PubMed] [Google Scholar]
  • 22. Haynesworth S.E., Baber M.A., Caplan A.I., Cell surface antigens on human marrow‐derived mesenchymal cells are detected by monoclonal antibodies, Bone, 13: 69–80, 1992. [DOI] [PubMed] [Google Scholar]
  • 23. Vogel W., Grunebach F., Messam C.A., Kanz L., Brugger W., Buhring H.J., Heterogeneity among human bone marrow‐derived mesenchymal stem cells and neural progenitor cells, Haematologica, 88: 126–133, 2003. [PubMed] [Google Scholar]
  • 24. Simmons P.J., Torok‐Storb B., CD34 expression by stromal precursors in normal human adult bone marrow, Blood, 78: 2848–2853, 1991. [PubMed] [Google Scholar]
  • 25. Jiang Y., Jahagirdar B.N., Reinhardt R.L., Schwartz R.E., Keene C.D., Ortiz‐Gonzalez X.R., Reyes M., Lenvik T., Lund T., Blackstad M., Du J., Aldrich S., Lisberg A., Low W.C., Largaespada D.A., Verfaillie C.M., Pluripotency of mesenchymal stem cells derived from adult marrow, Nature, 418: 41–49, 2002. [DOI] [PubMed] [Google Scholar]
  • 26. Bruder S.P., Jaiswal N., Haynesworth S.E., Growth kinetics, self‐renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation, J. Cell Biochem., 64: 278–294, 1997. [DOI] [PubMed] [Google Scholar]
  • 27. Colter D.C., Class R., DiGirolamo C.M., Prockop D.J., Rapid expansion of recycling stem cells in cultures of plastic‐adherent cells from human bone marrow, Proc. Natl. Acad. Sci. U.S.A., 97: 3213–3218, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Friedenstein A.J., Chailakhyan R.K., Latsinik N.V., Panasyuk A.F., Keiliss‐Borok I.V., Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo, Transplantation, 17: 331–340, 1974. [DOI] [PubMed] [Google Scholar]
  • 29. Bianchi G., Banfi A., Mastrogiacomo M., Notaro R., Luzzatto L., Cancedda R., Quarto R., Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2, Exp. Cell Res., 287: 98–105, 2003. [DOI] [PubMed] [Google Scholar]
  • 30. Bianco P., Riminucci M., Gronthos S., Robey P.G., Bone marrow stromal stem cells: nature, biology, and potential applications, Stem Cells, 19: 180–192, 2001. [DOI] [PubMed] [Google Scholar]
  • 31. Friedenstein A.J., Piatetzky‐Shapiro I.I., Petrakova K.V., Osteogenesis in transplants of bone marrow cells, J Embryol. Exp Morphol., 16: 381–390, 1966. [PubMed] [Google Scholar]
  • 32. Bruder S.P., Kurth A.A., Shea M., Hayes W.C., Jaiswal N., Kadiyala S., Bone regeneration by implantation of purified, culture‐expanded human mesenchymal stem cells, J Orthop. Res, 16: 155–162, 1998. [DOI] [PubMed] [Google Scholar]
  • 33. Kadiyala S., Young R.G., Thiede M.A., Bruder S.P., Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro, Cell Transplant., 6: 125–134, 1997. [DOI] [PubMed] [Google Scholar]
  • 34. Young R.G., Butler D.L., Weber W., Caplan A.I., Gordon S.L., Fink D.J., Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair, J. Orthop. Res., 16: 406–413, 1998. [DOI] [PubMed] [Google Scholar]
  • 35. Awad H.A., Butler D.L., Boivin G.P., Smith F.N., Malaviya P., Huibregtse B., Caplan A.I., Autologous mesenchymal stem cell‐mediated repair of tendon, Tissue Eng, 5: 267–277, 1999. [DOI] [PubMed] [Google Scholar]
  • 36. Ferrari G., Cusella‐De Angelis, G. , Coletta M., Paolucci E., Stornaiuolo A., Cossu G., Mavilio F., Muscle regeneration by bone marrow‐derived myogenic progenitors, Science, 279: 1528–1530, 1998. [DOI] [PubMed] [Google Scholar]
  • 37. Galmiche M.C., Koteliansky V.E., Briere J., Herve P., Charbord P., Stromal cells from human long‐term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway, Blood, 82: 66–76, 1993. [PubMed] [Google Scholar]
  • 38. Dennis J.E., Merriam A., Awadallah A., Yoo J.U., Johnstone B., Caplan A.I., A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse, J. Bone Miner. Res., 14: 700–709, 1999. [DOI] [PubMed] [Google Scholar]
  • 39. Prockop D.J., Marrow stromal cells as stem cells for non‐hematopoietic tissues, Science, 276: 71–74, 1997. [DOI] [PubMed] [Google Scholar]
  • 40. Richards M., Huibregtse B.A., Caplan A.I., Goulet J.A., Goldstein S.A., Marrow‐derived progenitor cell injections enhance new bone formation during distraction, J Orthop. Res, 17: 900–908, 1999. [DOI] [PubMed] [Google Scholar]
  • 41. Johnstone B., Yoo J.U., Autologous mesenchymal progenitor cells in articular cartilage repair, Clin. Orthop., 367: S156‐S162, 1999. [DOI] [PubMed] [Google Scholar]
  • 42. Muraglia A., Cancedda R., Quarto R., Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model, J. Cell Sci., 113: 1161–1166, 2000. [DOI] [PubMed] [Google Scholar]
  • 43. Majumdar M.K., Thiede M.A., Mosca J.D., Moorman M., Gerson S.L., Phenotypic and functional comparison of cultures of marrow‐derived mesenchymal stem cells (MSCs) and stromal cells, J. Cell Physiol, 176: 57–66, 1998. [DOI] [PubMed] [Google Scholar]
  • 44. Dormady S.P., Bashayan O., Dougherty R., Zhang X.M., Basch R.S., Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment, J. Hematother. Stem Cell Res., 10: 125–140, 2001. [DOI] [PubMed] [Google Scholar]
  • 45. Osyczka A.M., Noth U., O'Connor J., Caterson E.J., Yoon K., Danielson K.G., Tuan R.S., Multilineage differentiation of adult human bone marrow progenitor cells transduced with human papilloma virus type 16 E6/E7 genes, Calcif. Tissue Int., 71: 447–458, 2002. [DOI] [PubMed] [Google Scholar]
  • 46. Kuznetsov S.A., Krebsbach P.H., Satomura K., Kerr J., Riminucci M., Benayahu D., Robey P.G., Single‐colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo, J. Bone Miner. Res., 12: 1335–1347, 1997. [DOI] [PubMed] [Google Scholar]
  • 47. Gronthos S., Zannettino A.C., Hay S.J., Shi S., Graves S.E., Kortesidis A., Simmons P.J., Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow, J. Cell Sci., 116: 1827–1835, 2003. [DOI] [PubMed] [Google Scholar]
  • 48. Ohgushi H., Caplan A.I., Stem cell technology and bioceramics: from cell to gene engineering, J. Biomed. Mater. Res., 48: 913–927, 1999. [DOI] [PubMed] [Google Scholar]
  • 49. Gronthos S., Simmons P.J., The growth factor requirements of STRO‐1‐positive human bone marrow stromal precursors under serum‐deprived conditions in vitro, Blood, 85: 929–940, 1995. [PubMed] [Google Scholar]
  • 50. Sekiya I., Larson B.L., Smith J.R., Pochampally R., Cui J.G., Prockop D.J., Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality, Stem Cells, 20: 530–541, 2002. [DOI] [PubMed] [Google Scholar]
  • 51. Simmons P.J., Torok‐Storb B., Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO‐1, Blood, 78: 55–62, 1991. [PubMed] [Google Scholar]
  • 52. Zvaifler N.J., Marinova‐Mutafchieva L., Adams G., Edwards C.J., Moss J., Burger J.A., Maini R.N., Mesenchymal precursor cells in the blood of normal individuals, Arthritis Res, 2: 477–488, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Campagnoli C., Roberts I.A., Kumar S., Bennett P.R., Bellantuono I., Fisk N.M., Identification of mesenchymal stem/progenitor cells in human first‐trimester fetal blood, liver, and bone marrow, Blood, 98: 2396–2402, 2001. [DOI] [PubMed] [Google Scholar]
  • 54. Erices A., Conget P., Minguell J.J., Mesenchymal progenitor cells in human umbilical cord blood, Br. J. Haematol., 109: 235–242, 2000. [DOI] [PubMed] [Google Scholar]
  • 55. Baksh D., Davies J.E., Zandstra P.W., Adult human bone marrow‐derived mesenchymal progenitor cells are capable of adhesion‐independent survival and expansion, Exp. Hematol., 31: 723–732, 2003. [DOI] [PubMed] [Google Scholar]
  • 56. Doi M., Nagano A., Nakamura Y., Molecular cloning and characterization of a novel gene, EMILIN‐5, and its possible involvement in skeletal development, Biochem. Biophys. Res. Commun., 313: 888–893, 2004. [DOI] [PubMed] [Google Scholar]
  • 57. Qi H., Aguiar D.J., Williams S.M., la Pean, A. , Pan W., Verfaillie C.M., Identification of genes responsible for osteoblast differentia tion from human mesodermal progenitor cells, Proc. Natl. Acad. Sci. USA, 100: 3305–3310, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. LaBarge M.A., Blau H.M., Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury, Cell, 111: 589–601, 2002. [DOI] [PubMed] [Google Scholar]
  • 59. Zhao L.R., Duan W.M., Reyes M., Keene C.D., Verfaillie C.M., Low W.C., Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats, Exp. Neurol., 174: 11–20, 2002. [DOI] [PubMed] [Google Scholar]
  • 60. Jiang Y., Vaessen B., Lenvik T., Blackstad M., Reyes M., Verfaillie C.M., Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain, Exp Hematol., 30: 896–904, 2002. [DOI] [PubMed] [Google Scholar]
  • 61. Song L., Tuan R.S., Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow, FASEB J., 18: 980–982, 2004. [DOI] [PubMed] [Google Scholar]
  • 62. Roelen B.A., Dijke P., Controlling mesenchymal stem cell differentiation by TGFbeta family members, J. Orthop. Sci., 8: 740–748, 2003. [DOI] [PubMed] [Google Scholar]
  • 63. Olsen B.R., Reginato A.M., Wang W., Bone development, Annu. Rev. Cell Dev. Biol., 16: 191–220, 2000. [DOI] [PubMed] [Google Scholar]
  • 64. Waddington R.J., Roberts H.C., Sugars R.V., Schonherr E., Differential roles for small leucine‐rich proteoglycans in bone formation, Eur. Cell Mater., 6: 12–21, 2003. [DOI] [PubMed] [Google Scholar]
  • 65. McBeath R., Pirone D.M., Nelson C.M., Bhadriraju K., Chen C.S., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Dev. Cell, 6: 483–495, 2004. [DOI] [PubMed] [Google Scholar]
  • 66. Harada S., Rodan G.A., Control of osteoblast function and regulation of bone mass, Nature, 423: 349–355, 2003. [DOI] [PubMed] [Google Scholar]
  • 67. Madras N., Gibbs A.L., Zhou Y., Zandstra P.W., Aubin J.E., Modeling stem cell development by retrospective analysis of gene expression profiles in single progenitor derived colonies, Stem Cells, 20: 230–240, 2002. [DOI] [PubMed] [Google Scholar]
  • 68. de Boer J., Wang H.J., van Blitterswijk C., Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells, Tissue Eng., 10: 393–401, 2004. [DOI] [PubMed] [Google Scholar]
  • 69. Boland G.M., Perkins G., Hall D., Tuan R.S., Wnt 3a promotes proliferation and supressess osteogenic differentiation of adult human mesenchymal stem cells, J. Cell. Biochem, In press , 2004. [DOI] [PubMed]
  • 70. Willert K., Brown J.D., Danenberg E., Duncan A.W., Weissman I.L., Reya T., Yates J.R., III , Nusse R., Wnt proteins are lipid‐modified and can act as stem cell growth factors, Nature, 423: 448–452, 2003. [DOI] [PubMed] [Google Scholar]
  • 71. Reya T., Duncan A.W., Ailles L., Domen J., Scherer D.C., Willert K., Hintz L., Nusse R., Weissman I.L., A role for Wnt signalling in self‐renewal of haematopoietic stem cells, Nature, 423: 409–414, 2003. [DOI] [PubMed] [Google Scholar]
  • 72. Crevensten G., Walsh A.J., Ananthakrishnan D., Page P., Wahba G.M., Lotz J.C., Berven S., Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs, Ann. Biomed. Eng, 32: 430–434. [DOI] [PubMed] [Google Scholar]
  • 73. Chamberlain J.R., Schwarze U., Wang P.R., Hirata R.K., Hankenson K.D., Pace J.M., Underwood R.A., Song K.M., Sussman M., Byers P.H., Russell D.W., Gene targeting in stem cells from individuals with osteogenesis imperfecta, Science, 303: 1198–1201, 2004. [DOI] [PubMed] [Google Scholar]
  • 74. Arinzeh T.L., Peter S.J., Archambault M.P., van den B.C. , Gordon S., Kraus K., Smith A., Kadiyala S., Allogeneic mesenchymal stem cells regenerate bone in a critical‐sized canine segmental defe ct, J. Bone Joint Surg. Am., 85‐A: 1927–1935, 2003. [DOI] [PubMed] [Google Scholar]
  • 75. Grinnemo K.H., Mansson A., Dellgren G., Klingberg D., Wardell E., Drvota V., Tammik C., Holgersson J., Ringden O., Sylven C., Le Blanc, K. , Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium, J. Thorac. Cardiovasc. Surg., 127: 1293–1300, 2004. [DOI] [PubMed] [Google Scholar]
  • 76. Barry F.P., Mesenchymal stem cell therapy in joint disease, Novartis Found. Symp., 249: 86–96, 2003. [PubMed] [Google Scholar]
  • 77. Sugaya K., Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases, Int. Rev. Cytol., 228: 1–30, 2003. [DOI] [PubMed] [Google Scholar]
  • 78. Chapel A., Bertho J.M., Bensidhoum M., Fouillard L., Young R.G., Frick J., Demarquay C., Cuvelier F., Mathieu E., Trompier F., Dudoignon N., Germain C., Mazurier C., Aigueperse J., Borneman J., Gorin N.C., Gourmelon P., Thierry D., Mesenchymal stem cells home to injured tissues when co‐infused with hematopoietic cells to treat a radiation‐induced multi‐organ failure syndrome, J. Gene Med., 5: 1028–1038, 2003. [DOI] [PubMed] [Google Scholar]
  • 79. Deng Y., Guo X., Yuan Q., Li S., Efficiency of adenoviral vector mediated CTLA4Ig gene delivery into mesenchymal stem cells, Chin Med. J. (Engl.), 116: 1649–1654, 2003. [PubMed] [Google Scholar]
  • 80. Ortiz L.A., Gambelli F., McBride C., Gaupp D., Baddoo M., Kaminski N., Phinney D.G., Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects, Proc. Natl. Acad. Sci. USA, 100: 8407–8411, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Liechty K.W., Mackenzie T.C., Shaaban A.F., Radu A., Moseley A.M., Deans R., Marshak D.R., Flake A.W., Human mesenchymal stem cells engraft and demonstrate site‐specific differentiation after in utero transplantation in sheep, Nat. Med., 6: 1282–1286, 2000. [DOI] [PubMed] [Google Scholar]
  • 82. Song L., Chau L., Sakamoto Y., Nakashima J., Koide M., Tua n R.S., Electric field‐induced molecular vibration for noninvasive, high‐efficiency DNA transfection, Mol. Ther., 9: 607–616, 2004. [DOI] [PubMed] [Google Scholar]
  • 83. Haleem‐Smith H., Derfoul A., Okafor C., Tuli R., Olse D., Hall D.J., Tuan R.S., Optimization of high efficiency transfecrtion of adult human mesenchymal stem cells, Molecular Biotechnology, Accepted , 2004. [DOI] [PubMed]
  • 84. Zimmermann S., Voss M., Kaiser S., Kapp U., Waller C.F., Martens U.M., Lack of telomerase activity in human mesenchymal stem cells, Leukemia, 17: 1146–1149, 2003. [DOI] [PubMed] [Google Scholar]
  • 85. Simonsen J.L., Rosada C., Serakinci N., Justesen J., Stenderup K., Rattan S.I., Jensen T.G., Kassem M., Telomerase expression extends the proliferative life‐span and maintains the osteogenic potential of human bone marrow stromal cells, Nat. Biotechnol., 20: 592–596, 2002. [DOI] [PubMed] [Google Scholar]
  • 86. Shi S., Gronthos S., Chen S., Reddi A., Counter C.M., Robey P.G., Wang C.Y., Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression, Nat. Biotechnol., 20: 587–591, 2002. [DOI] [PubMed] [Google Scholar]
  • 87. Gronthos S., Chen S., Wang C.Y., Robey P.G., Shi S., Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin, J Bone Miner. Res, 18: 716–722, 2003. [DOI] [PubMed] [Google Scholar]
  • 88. Friedenstein A.J., Gorskaja J.F., Kulagina N.N., Fibroblast precursors in normal and irradiated mouse hematopoietic organs, Exp. Hematol., 4: 267–274, 1976. [PubMed] [Google Scholar]
  • 89. Friedenstein A.J., Latzinik N.W., Grosheva A.G., Gorskaya U.F., Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges, Exp. Hematol., 10: 217–227, 1982. [PubMed] [Google Scholar]
  • 90. Mori M., Sadahira Y., Awai M., Characteristics of bone marrow fibroblastic colonies (CFU‐F) formed in collagen gel, Exp. Hematol., 15: 1115–1120, 1987. [PubMed] [Google Scholar]
  • 91. Owen M.E., Cave J., Joyner C.J., Clonal analysis in vitro of osteogenic differentiation of marrow CFU‐F, J. Cell Sci., 87: 731–738, 1987. [DOI] [PubMed] [Google Scholar]
  • 92. Caplan A.I., Mesenchymal stem cells, J Orthop. Res, 9: 641–50, 1991. [DOI] [PubMed] [Google Scholar]
  • 93. Mori K.J., Fujitake H., Ohkubo H., Ito Y., Dexter T.M., Development of stromal cell colonies in bone marrow cell culture, Gann, 69: 689–693, 1978. [PubMed] [Google Scholar]
  • 94. Piersma A.H., Brockbank K.G., Ploemacher R.E., van Vliet E., Brakel‐van Peer K.M., Visser P.J., Characterization of fibroblastic stromal cells from murine bone marrow, Exp. Hematol., 13: 237–243, 1985. [PubMed] [Google Scholar]
  • 95. Dexter T.M., Lajtha L.G., Proliferation of haemopoietic stem cells in vitro, Br. J. Haematol., 28: 525–530, 1974. [DOI] [PubMed] [Google Scholar]
  • 96. Bianco P., Robey P.G., Marrow stromal stem cells, J. Clin. Invest., 105: 1663–1668, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Colter D.C., Sekiya I., Prockop D.J., Identification of a subpopulation of rapidly self‐renewing and multipotential adult stem cells in colonies of human marrow stromal cells, Proc. Natl. Acad. Sci. USA, 98: 7841–7845, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Reyes M., Lund T., Lenvik T., Aguiar D., Koodie L., Verfaillie C.M., Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells, Blood, 98: 2615–2625, 2001. [DOI] [PubMed] [Google Scholar]
  • 99. Lazarus H.M., Haynesworth S.E., Gerson S.L., Rosenthal N.S., Caplan A.I., Ex vivo expansion and subsequent infusion of human bone marrow‐derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use, Bone Marrow Transplant., 16: 557–564, 1995. [PubMed] [Google Scholar]
  • 100. Kuznetsov S.A., Mankani M.H., Gronthos S., Satomura K., Bianco P., Robey P.G., Circulating skeletal stem cells, J. Cell Biol., 153: 1133–1140, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Reyes M., Verfaillie C.M., Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells, Ann. N. Y. Acad. Sci., 938: 231–233, 2001. [DOI] [PubMed] [Google Scholar]
  • 102. Quirici N., Soligo D., Bossolasco P., Servida F., Lumini C., Deliliers G.L., Isolation of bone marrow mesenchymal stem cells by anti‐nerve growth factor receptor antibodies, Exp Hematol., 30: 783–791, 2002. [DOI] [PubMed] [Google Scholar]
  • 103. Suva D., Garavaglia G., Menetrey J., Chapuis B., Hoffmeyer P., Bernheim L., Kindler V., Non‐hematopoietic human bone marrow contains long‐lasting, pluripotential mesenchymal stem cells, J. Cell Physiol, 198: 110–118, 2004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES