Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(4):977–989. doi: 10.1111/j.1582-4934.2005.tb00395.x

The telomere length dynamic and methods of its assessment

Kah‐Wai Lin 1,, Ju Yan 2
PMCID: PMC6740290  PMID: 16364206

Abstract

Human telomeres are composed of long repeating sequences of TTAGGG, associated with a variety of telomere‐binding proteins. Its function as an end‐protector of chromosomes prevents the chromosome from end‐to‐end fusion, recombination and degradation. Telomerase acts as reverse transcriptase in the elongation of telomeres, which prevent the loss of telomeres due to the end replication problems. However, telomerase activity is detected at low level in somatic cells and high level in embryonic stem cells and tumor cells. It confers immortality to embryonic stem cells and tumor cells. In most tumor cells, telomeres are extremely short and stable. Telomere length is an important indicator of the telomerase activity in tumor cells and it may be used in the prognosis of malignancy. Thus, the assessment of telomeres length is of great experimental and clinical significance. This review describes the role of telomere and telomerase in cancer pathogenesis and the dynamics of the telomeres length in different cell types. The various methods of measurement of telomeres length, i.e. southern blot, hybridization protection assay, fluorescence in situ hybridization, primed in situ, quantitative PCR and single telomere length analysis are discussed. The principle and comparative evaluation of these methods are reviewed. The detection of G‐strand overhang by telomeric‐oligonucleotide ligation assay, primer extension/nick translation assay and electron microscopy are briefly discussed.

Keywords: telomere, telomerase, measurement, method, cancer, aging

References

  • 1. Hayflick, L , Moorhead, PS . The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585–621. [DOI] [PubMed] [Google Scholar]
  • 2. Olonikov, AM . A theory of marginotomy. J Theor Biol. 1973; 41: 181–90. [DOI] [PubMed] [Google Scholar]
  • 3. Makarov, VL , Hirose, Y , Langmore, JP . Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 1997; 88: 657–66. [DOI] [PubMed] [Google Scholar]
  • 4. Wright, WE , Tesmer, VM , Huffman, KE , Levene, SD , Shay, JW . Normal human chromosomes have long G‐rich telomeric overhangs at one end. Gen Dev. 1997; 11: 2801–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Hao, YH , Tan, Z . The generation of long telomere overhangs in human cells: a model and its implication. Bioinformatics 2002; 18: 666–71. [DOI] [PubMed] [Google Scholar]
  • 6. Griffith, JD , Comeau, L , Rosenfield, S , Stansel, RM , Bianchi, A , Moss, H , de Lange, T . Mammalian telomeres end in a large duplex loop. Cell 1999; 97: 503–14. [DOI] [PubMed] [Google Scholar]
  • 7. Greider, CW . Telomeres do d‐loop‐t‐loop. Cell 1999; 97: 419–22. [DOI] [PubMed] [Google Scholar]
  • 8. Broccoli, D , Smogorzewska, A , Chong, L , de Lange, T . Human telomeres contain two distinct Myb‐related protein, TRF1 and TRF2. Nat Genet. 1997; 17: 231–5. [DOI] [PubMed] [Google Scholar]
  • 9. Bilaud, T , Brun, C , Ancelin, K , Koering, CE , Laroche, T , Gilson, E . Telomeric localization of TRF2, a novel human telobox protein. Nat Genet. 1997; 17: 236–9. [DOI] [PubMed] [Google Scholar]
  • 10. Enrique, S , Fermin, AG , Predrag, S , Paul, PW van Buul, Blasco MA . Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G‐strand overhang. EMBO Reports 2000; 11: 244–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Kim, SH , Patrick, K , Judith, C . TIN2, a new regulator of telomere length in human cells. Nat Genet. 1999; 23: 405–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Blasco, MA . Mammalian telomeres and telomerase: why they matter for cancer and aging. Eur J Cell Biol. 2003; 82: 441–6. [DOI] [PubMed] [Google Scholar]
  • 13. Stewart, SA , Hahn, WC , O'Connor, BF , Banner, EN , Lundberg, AT , Modha, P , Mizuno, H , Brooks, MW , Fleming, M , Zimonjic, DB , Popescu, NC , Weinberg, RA . Telomerase contributes to tumorigenesis by a telomere length‐independent mechanism. Proc Natl Acad Sci USA. 2002; 99: 12606–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Shay, JW , Zhou, Y , Hiyama, E , Wright, WE . Telomerase and cancer. Hum Mol Genet. 2001; 10: 677–85. [DOI] [PubMed] [Google Scholar]
  • 15. Masutomi, K , Yu, EY , Khurts, S , Ben‐Porath, I , Currier, JL , Metz, GB , Brooks, MW , Kaneko, S , Murakami, S , de Caprio, JA , Weinberg, RA , Stewart, SA , Hahn, WC . Telomerase maintains telomere structure in normal human cells. Cell 2003; 114: 241–53. [DOI] [PubMed] [Google Scholar]
  • 16. Judy, MYW , Collins, K . Telomere maintenance and disease. Lancet 2003; 362: 983–8. [DOI] [PubMed] [Google Scholar]
  • 17. Greider, CW . Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci USA. 1998; 95: 90–2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Cong, YS , Wright, WE , Shay, JW . Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002; 66: 407–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Shay, JW , Bacchetti, S . A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787–91. [DOI] [PubMed] [Google Scholar]
  • 20. Hahn, WC , Weinberg, RA . Rules for making human tumor cells. N Engl J Med. 2002; 347: 1593–603. [DOI] [PubMed] [Google Scholar]
  • 21. Belair, CD , Yeager, TR , Lopez, PM , Reznikoff, CA . Telomerase activity: A biomarker of cell proliferation, not malignant transformation. Proc Natl Acad Sci USA. 1997; 94: 13677–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Halvorsen, TL , Leibowitz, G , Levine, F . Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol Cell Biol. 1999; 19: 1864–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Lutsig, AJ . Crisis intervention: the role of telomerase. Proc Natl Acad Sci USA. 1999; 96: 3339–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Reddel, RR . The role of senescence and immortalization in carcinogenesis. Carcinogenesis 2000; 21: 477–84. [DOI] [PubMed] [Google Scholar]
  • 25. Hahn, WC . Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol. 2003; 21: 2034–43. [DOI] [PubMed] [Google Scholar]
  • 26. Bryan, TM , Englezou, A , Dalla, PL , Dunham, MA , Reddel, RR . Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumorderived cell lines. Nat Med. 1997; 3: 1271–4. [DOI] [PubMed] [Google Scholar]
  • 27. Grogelny, JV , McEliece, MK , Broccoli, D . Effects of reconstitution of telomerase activity on telomere maintenance by the alternative lengthening of telomeres (ALT) pathway. Hum Mol Genet. 2001; 10: 1953–61. [DOI] [PubMed] [Google Scholar]
  • 28. Johnson, FB , Sinclair, DA , Guarente, L . Molecular biology of aging. Cell 1999; 96: 291–302. [DOI] [PubMed] [Google Scholar]
  • 29. Londono‐Vallejo, JA , de RSarkissian, H , Cazes, L , Thomas, G . Differences in telomere length between homologous chromosomes in humans. Nucleic Acids Res. 2001; 29: 3164–71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Martens, UM , Zijlmans, JMJM , Poon, SSS , Dragowska, W , Yui, J , Chavez, EA , Ward, RK , Lansdorp, PM . Short telomeres on human chromosome 17p. Nat Genet. 1998; 18: 76–80. [DOI] [PubMed] [Google Scholar]
  • 31. de Lange, T , Shiue, L , Myers, RM , Cox, DR , Naylor, SL , Killery, AM , Vermus, HE . Structure and variability of human chromosome ends. Mol Cell Biol. 1990; 10: 518–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Engelhardt, M , Kumar, R , Albanell, J , Pettengell, R , Han, W , Moore, MAS . Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 1997; 90: 182–93. [PubMed] [Google Scholar]
  • 33. Zhang, XL , Mar, V , Zhou, W , Harrington, L , Robinson, MO . Telomere shortening and apoptosis in telomeraseinhibited human tumor cells. Gen Dev. 1999; 13: 2388–99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Bodnar, AG , Quellete, M , Frolkis, M , Holt, SE , Chiu, CP , Morin, GB , Harley, CB , Shay, JW , Lichtsteiner, S , Wright, WE . Extension of life‐span by introduction of telomerase into normal human cells. Science 1998; 279: 349–52. [DOI] [PubMed] [Google Scholar]
  • 35. Zhou, Y , Sfeir, A , Gryaznov, SM , Shay, JW , Wright, WE . Does a sentinel or subset of short telomeres determine replicative senescence Mol Biol Cell. 2004; 15: 3709–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Dahse, R , Fiedler, W , Ernst, G . Telomeres and telomerase: biological and clinical important. Clin Chem. 1997; 43: 708–14. [PubMed] [Google Scholar]
  • 37. Saldanha, SN , Andrews, LG , Tollefsbol, TO . Assessment of telomere length and factors that contribute to its stability. Eur J Biochem. 2003; 270: 389–403. [DOI] [PubMed] [Google Scholar]
  • 38. Kim, NW , Piatyszek, MA , Prowse, KR , Harley, CB , West, MD , Ho, PL , Coviello, GM , Wright, WE , Weinrich, SL , Shay, JW . Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–5. [DOI] [PubMed] [Google Scholar]
  • 39. Savre‐Train, I , Gollahon, LS , Holt, SE . Clonal heterogeneity in telomerase activity and telomere length in tumor‐derived cell lines. PSEBM. 2000; 223: 379–88. [DOI] [PubMed] [Google Scholar]
  • 40. Kim, HR , Kim, YJ , Kim, HJ , Kim, SK , Lee, JH . Telomere length changes in colorectal cancers and polyps. J Korean Med Sci. 2002; 17: 360–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Counter, CM , Gupta, J , Harley, CB , Leber, B , Bacchetti, S . Telomerase activity in normal leukocytes and in hematological malignancies. Blood 1995; 85: 2315–20. [PubMed] [Google Scholar]
  • 42. Albanell, J , Bosl, GJ , Reuter, VE , Engelhardt, M , Franco, S , Moore, MAS , Dmitrovsky, E . Telomerase activity in germ cell cancers and mature teratomas. J Natl Cancer Inst. 1999; 91: 1321–6. [DOI] [PubMed] [Google Scholar]
  • 43. Maruyama, Y , Hanai, H , Fujita, M , Kaneko, E . Telomere length and telomerase activity in carcinogenesis of the stomach. Jpn J Clin Oncol. 1997; 27: 216–20. [DOI] [PubMed] [Google Scholar]
  • 44. Southern, EM . Long range periodicities in mouse satellite DNA. J Mol Biol. 1975; 94: 51–69. [DOI] [PubMed] [Google Scholar]
  • 45. Oexle, K . Telomere length distribution and southern blot analysis. J Theor Biol. 1998; 190: 369–77. [DOI] [PubMed] [Google Scholar]
  • 46. Slijepcevic, P . Telomere length and telomere‐centromere relationship Mutat Res. 1998; 404: 267–78. [DOI] [PubMed] [Google Scholar]
  • 47. Norwood, D , Dimitrov, DS . Sensitive method for measuring telomere lengths by quantifying telomeric DNA content of whole cells. Biotechniques 1998; 25: 1040–5. [DOI] [PubMed] [Google Scholar]
  • 48. Nakamura, Y , Hirose, M , Matsuo, H , Tsuyama, N , Kamisango, K , Ide, T . Simple, rapid, quantitative, and sensitive detection of telomere repeats in cell lysate by a hybridization protection assay. Clin Chem. 1999; 45: 1718–24. [PubMed] [Google Scholar]
  • 49. Lansdorp, PM , Verwoerd, NP , van de Rijke, FM , Dragowska, V , Little, MT , Dirks, RW , Rapp, AK , Tanke, HJ . Heterogeneity in telomere length of human chromosome. Hum Mol Genet. 1996; 5: 685–91. [DOI] [PubMed] [Google Scholar]
  • 50. McNeil, N , Reid, T . Novel molecular cytogenetic techniques for identifying complex chromosomal rearrangements: technology and applications in molecular medicine. Exp Rev Mol Med. 2000, Available at: http://www‐ermm.cbcu.cam.ac.uk/00001940h.htm. [DOI] [PubMed] [Google Scholar]
  • 51. Uhlmann, V , Prasad, M , Silva, I , Luettich, K , Grande, L , Alonso, L , Thisted, M , Pluzek, KJ , Gorst, J , Ring, M , Sweeney, M , Kenny, C , Martin, C , Russell, J , Bermingham, N , O'Donovan, M , Sheils, O , O'Leary, JJ . Improved in in situ detection method for telomeric tandem repeats in metaphase spreads and interphase nuclei. J Clin Pathol Mol Pathol. 2000; 53: 48–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Poon, SS , Martens, UM , Ward, RK , Lansdorp, PM . Telomere length measurements using digital fluorescence microscopy. Cytometry 1999; 36: 267–78. [DOI] [PubMed] [Google Scholar]
  • 53. Hacia, JG , Movotny, EA , Mayer, RA , Woski, SA , Ashlock, MA , Collins, FS . Design of modified oligonucleotide probes to detect telomere repeat sequences in FISH assays. Nucleic Acids Res. 1999; 27: 4034–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Meeker, AK , Gage, WR , Hicks, JL , Simon, I , Coffman, JR , Platz, EA , March, GE , De Marzo, AM . Telomere length assessment in human archival tissues. Combined telomere fluorescence in situ hybridization and immunostaining. Am J Pathol. 2002; 160: 1259–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Perner, S , Bruderlein, S , Hasel, C , Waibel, I , Holdenried, A , Ciloglu, N , Chopurian, H , Neilsen, KV , Plesch, A , Hogel, J , Moller, P . Quantifying telomere lengths of human individual chromosome arms by centromere‐calibrated fluorescence in situ hybridization and digital imaging. Am J Pathol. 2003; 163: 1751–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Yan, J , Bouchard, E , Chen, BZ , Drouin, R . Measurement of chromosome specific telomere length on chromatin/DNA fibers. The American Society of Human Genetics 54th Annual Meeting, Toronto, Canada, October 2630, 2004.
  • 57. Henry, HQ , Tsui, LC . High resolution free chromatin/DNA fiber fluorescent in situ hybridization. J Chromatography A 1998; 806; 219–29. [DOI] [PubMed] [Google Scholar]
  • 58. Rufer, N , Dragowska, W , Thornbury, G , Roosnek, E , Lansdorp, PM . Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol. 1998; 16: 743–7. [DOI] [PubMed] [Google Scholar]
  • 59. Ishikawa, F . FISH goes with the flow. Nat Biotechnol. 1998; 16: 723–4. [DOI] [PubMed] [Google Scholar]
  • 60. Baerlocher, GM , Mak, J , Tien, T , Lansdorp, PM . Telomere length measurement by fluorescence in situ hybridization and flow cytometry: tips and pitfalls. Cytometry 2002; 47: 88–99. [DOI] [PubMed] [Google Scholar]
  • 61. Hultdin, M , Gronlund, E , Norrback, KF , Eriksson‐Lindstrom, E , Just, T , Roos, G . Telomere analysis by fluorescence in situ hybridization and flow cytometry. Nucleic Acids Res. 1998; 26: 3651–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Schmid, I , Dagarang, MD , Hausner, MA , Matud, JL , Just, T , Effros, RB , Jamieson, BD . Simultaneous flow cytometric analysis of two cell surface markers, telomere length, and DNA content. Cytometry 2002; 49: 96–105. [DOI] [PubMed] [Google Scholar]
  • 63. Brummendorf, TH , Holyoake, TL , Rufer, N , Barnett, MJ , Schulzer, M , Eaves, CJ , Eaves, AC , Lansdorp, PM . Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood 2000; 95: 1883–90. [PubMed] [Google Scholar]
  • 64. Brummendorf, TH , Maciejewski, JP , Mak, J , Yong, NS , Lansdorp, PM . Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood 2001; 97: 895–900. [DOI] [PubMed] [Google Scholar]
  • 65. Schmid, I , Jamieson, BD . Assessment of telomere length, phenotype, and DNA content In: Robinson JP, Darzynkiewicz Z, Hyun W, Orfao A, Robinovitch P, eds, Current Protocols in Cytometry. vol. 1, John Wiley & Sons, 2004, pp. 7.26.1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Baelocher, GM , Lansdorp, PM . Telomere length measurements in leukocyte subsets by automated multicolor flow‐FISH. Cytometry 2003; 55A: 1–6. [DOI] [PubMed] [Google Scholar]
  • 67. Therkelsen, AJ , Nielsen, A , Koch, J , Hindkjaer, J , Kolvraa, S . Staining of human telomeres with primed in situ labeling (PRINS). Cytogenet Cell Genet. 1995; 68: 115–8. [DOI] [PubMed] [Google Scholar]
  • 68. Lavoie, J , Bronsard, M , Lebel, M , Drouin, R . Mouse telomere analysis using an optimized primed in situ (PRINS) labeling technique. Chromosoma 2003; 111: 438–44. [DOI] [PubMed] [Google Scholar]
  • 69. Musio, A , Rainaldi, G . Cycling‐PRINS. A method to improved the accuracy of telomeric sequence detection in mammalian chromosomes. Mutat Res. 1997; 390: 1–4. [DOI] [PubMed] [Google Scholar]
  • 70. Wilkens, L , Tchinda, J , Komminoth, P , Werner, M . Single‐ and double‐color oligonucleotide primed in situ labeling (PRINS): applications in pathology. Histochem Cell Biol. 1997; 108; 439–46. [DOI] [PubMed] [Google Scholar]
  • 71. Krejci, K , Koch, J . An A in situ study of variant telomeric repeats in human chromosomes. Genomics 1999; 58: 202–6. [DOI] [PubMed] [Google Scholar]
  • 72. Malaska, J , Sklenickova, M , Krejci, K , Fajkusova, L , Bajer, M , Hrstkova, H , Fajkus, J . Telomerase activity and expression and telomere analysis in situ in the course of treatment of childhood leukemias. Blood Cells Mol Dis. 2000; 26: 534–9. [DOI] [PubMed] [Google Scholar]
  • 73. Yan, J , Chen, BZ , Bouchard, EF , Grouin, R . The labeling efficacy of human telomeres is increased by double‐strand PRINS. Chromosoma 2004; 113: 204–9. [DOI] [PubMed] [Google Scholar]
  • 74. Cawthon, RM . Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002; 30: e47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Gil, ME , Coetzer, TL . Real‐time quantitative PCR of telomere length. Mol Biotechnol. 2004; 27: 169–72. [DOI] [PubMed] [Google Scholar]
  • 76. Baird, DM , Rowson, J , Thomas, DW , Kipling, D . Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet. 2003; 33: 203–7. [DOI] [PubMed] [Google Scholar]
  • 77. Cheung, I , Schertzer, M , Baross, A , Rose, AM , Lansdorp, PM , Baird, DM . Strain‐specific telomere length revealed by single telomere length analysis in Caenorhabditis elegans. Nucleic Acids Res. 2004; 32: 3383–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Baird, DM , Davis, T , Rowson, J , Jones, CJ , Kipling, D . Normal telomere erosion rates at the single cell level in Werner syndrome fibroblast cells. Hum Mol Genet. 2004; 13: 1515–24. [DOI] [PubMed] [Google Scholar]
  • 79. Huffman, KE , Levene, SD , Tesmer, VM , Shay, JW , Wright, WE . Telomere shortening is proportional to the size of the G‐rich telomeric 3′‐overhang. J Biol Chem. 2000; 275: 19719–22. [DOI] [PubMed] [Google Scholar]
  • 80. Cimino‐Reale, G , Pascale, E , Battiloro, E , Starace, G , Verna, R , D'Ambrosio, E . The length of telomeric Gstrand 3′‐overhang measured by oligonucleotide ligation assay. Nucleic Acids Res. 2001; 29: e35. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES