Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(4):341–350. doi: 10.1111/j.1582-4934.2003.tb00237.x

Involvement of protein kinase C‐δ in DNA damage‐induced apoptosis

Alakananda Basu 1,
PMCID: PMC6740315  PMID: 14754503

Abstract

Apoptosis is a highly orchestrated cell suicidal program required to maintain a balance between cell proliferation and cell death. A defect in apoptotic machinery can cause cancer. Many anticancer drugs are known to kill tumor cells by inducing apoptosis, and a defect in apoptosis can lead to anticancer drug resistance. Apoptosis is regulated by a complex cellular signaling network. Several members of the protein kinase C (PKC) family serve as substrates for caspases and PKCδ isozyme has been intimately associated with DNA damage‐induced apoptosis. It can act both upstream and downstream of caspases. In response to apoptotic stimuli, the full‐length and the catalytic fragment of PKCδ may translocate to distinct cellular compartments, including mitochondria and the nucleus, to reach their targets. Both activation and intracellular distribution of PKCδ may have significant impact on apoptosis. This review intends to assimilate recent views regarding the involvement of PKCδ in DNA damage‐induced apoptosis.

Keywords: protein kinase C, apoptosis, DNA damage, caspases, mitochondria, cytochrome c

References

  • 1. Kerr J.F.R., Wyllie A.H., Currie A.R., Apoptosis: a basic biological phenomenon with wide‐ranging implications in tissue kinetics, Br. J. Cancer, 26: 239–257, 1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Kerr J.F.R., Winterford C.M., Harmon B.V., Apoptosis: Its significance in cancer and cancer therapy, Cancer, 73: 2013–2026, 1994. [DOI] [PubMed] [Google Scholar]
  • 3. Fisher D., Apoptosis in cancer therapy: crossing the threshold, Cell, 78: 539–542, 1994. [DOI] [PubMed] [Google Scholar]
  • 4. Schmitt C.A., Lowe S.W., Apoptosis and therapy, J. Pathol., 187: 127–137, 1999. [DOI] [PubMed] [Google Scholar]
  • 5. Salvesen G.S., Dixit V.M., Caspases: Intracellular signaling by proteolysis, Cell, 91: 443–446, 1997. [DOI] [PubMed] [Google Scholar]
  • 6. Cohen G.M., Caspases: the executioners of apoptosis, Biochem. J., 326: 1–16, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Nunez G., Benedict M.A., Hu Y., Inohara N. Caspases: the proteases of the apoptotic pathway, Oncogene, 17: 3237–3245, 1998. [DOI] [PubMed] [Google Scholar]
  • 8. Duan H., Dixit V.M., RAIDD is a new “death” adaptor molecule, Nature, 385: 86–89, 1997. [DOI] [PubMed] [Google Scholar]
  • 9. Ashkenazi A., Dixit V.M., Death receptors: signaling and modulation, Science, 281: 1305–1308, 1998. [DOI] [PubMed] [Google Scholar]
  • 10. Green D.R., Reed J.C., Mitochondria and apoptosis, Science, 281: 1309–1312, 1998. [DOI] [PubMed] [Google Scholar]
  • 11. Adams J.M., Cory S., The Bcl‐2 protein family: arbiters of cell survival, Science, 281: 1322–1326, 1998. [DOI] [PubMed] [Google Scholar]
  • 12. Nishizuka Y., Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C, Science, 258: 607–613, 1992. [DOI] [PubMed] [Google Scholar]
  • 13. Johannes F.‐J., Prestle J., Eis S., Oberhagemann P., Pfizenmaier K., PKCμ is a novel, atypical member of the protein kinase C family, J. Biol. Chem., 269: 6140–6148, 1994. [PubMed] [Google Scholar]
  • 14. Stabel S., Parker P.J., Protein kinase C, Pharmac. Ther., 51: 71–95, 1991. [DOI] [PubMed] [Google Scholar]
  • 15. Basu A., The potential of protein kinase C as a target for anticancer treatment, Pharmac. Ther., 59: 257–280, 1993. [DOI] [PubMed] [Google Scholar]
  • 16. Basu A., Lazo J.S., Protein kinase C, In: New targets for cancer chemotherapy, eds., Kerr D.J. and Workman P. CRC Press; Boca Raton , FL. , 1994, pp. 121–141. [Google Scholar]
  • 17. Newton A.C., Protein kinase C: structure, function and regulation, J. Biol. Chem., 270: 28495–28498, 1995. [DOI] [PubMed] [Google Scholar]
  • 18. Emoto Y., Manome Y., Meinhardt G., Kisaki H., Kharbanda S., Robertson M., Ghayur T., Wong W.W., Kamen R., Weichelbaum R., Kufe D., Proteolytic activation of protein kinase C δ by an ICE‐like protease in apoptotic cells, EMBO J., 14: 6148–6156, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Datta R., Kojima H., Yoshida K., Kufe D., Caspase‐3‐mediated cleavage of protein kinase C in induction of apoptosis, J. Biol. Chem., 272: 20317–20320, 1997. [DOI] [PubMed] [Google Scholar]
  • 20. Endo K., Oki E., Biedermann V., Kojima H., Yoshida K., Johannes F‐J., Kufe D., Datta R., Proteolytic cleavage and activation of protein kinase C μ by caspase‐3 in the apoptotic response of cells to 1‐β‐D‐arabinofuranosylcytosine and other genotoxic agents, J. Biol. Chem., 275: 18476–18481, 2000. [DOI] [PubMed] [Google Scholar]
  • 21. Smith L., Chen L., Reyland M.E., DeVries T.A., Talanian R.V., Omura S., Smith J.B., Activation of atypical protein kinase C by caspase processing and degradation by the ubiquitin‐proteasome system. J. Biol. Chem., 275: 40620–40627, 2000. [DOI] [PubMed] [Google Scholar]
  • 22. Basu A., Lu D., Sun B., Moor A.N., Akkaraju G.R., Huang J., Proteolytic Activation of Protein Kinase C‐δ by Caspase‐mediated Processing and Transduction of Antiapoptotic Signals, J. Biol. Chem., 277: 41850–41856, 2002. [DOI] [PubMed] [Google Scholar]
  • 23. Gschwendt M., Protein kinase C, Eur. J. Biochem., 259: 555–564, 1999. [DOI] [PubMed] [Google Scholar]
  • 24. Ono Y., Fujii T., Ogita K., Kikkawa U., Igarashi K., Nishizuka Y., Identification of three additional members of rat protein kinase C family: δ‐, δ‐ and δ‐subspecies, FEBS Lett., 226: 125–128, 1987. [DOI] [PubMed] [Google Scholar]
  • 25. Parekh D.B., Ziegler W., Parker P.J., Multiple pathways control protien kinase C phosphorylation, EMBO J., 19: 496–503, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Newton A.C., Regulation of the ABC kinaes by phosphorylation: protein kinase C as a paradigm, Biochem. J., 370: 361–371, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Kikkawa U., Matsuzaki H., Yamamoto T., Protein Kinase C (PKC): Activation Mechanisms and Functions, J. Biochem., 132: 831–839, 2002. [DOI] [PubMed] [Google Scholar]
  • 28. Kraft A.S., Anderson W.B., Phorbol esters increase the amount of Ca2+, phospholipid‐dependent protein kinase associated with plasma membrane, Nature, 301: 621–623, 1983. [DOI] [PubMed] [Google Scholar]
  • 29. Kiss Z., Deli E., Kuo J.F., Temporal changes in intracellular distribution of protein kinase C during differentiation of human leukemia HL‐60 cells induced by phorbol ester, FEBS Lett., 231: 41–46, 1988. [DOI] [PubMed] [Google Scholar]
  • 30. Szallasi Z., Smith C.B., Blumberg P.M., Dissociation of phorbol esterx leads to immediate redistribution to the cytosol of protein kinases C alpha and C delta in mouse keratinocytes, J. Biol. Chem., 269: 27159–27162, 1994. [PubMed] [Google Scholar]
  • 31. Li L., Lorenzo P.S., Bogi K., Blumberg P.M., Yuspa S.H., Protein Kinase Cδ Targets Mitochondria, Alters Mitochondrial Membrane Potential, and Induces Apoptosis in Normal and Neoplastic Keratinocytes When Overexpressed by an Adenoviral Vector, Mol. Cell. Biol., 19: 8547–8558, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Majumder P.K., Pandey P., Sun X., Cheng K., Datta R., Saxena S., Kharbanda S., Kufe D., Mitochondrial translocation of protein kinase C δ in phorbol ester‐induced cytochrome c release and apoptosis, J. Biol. Chem., 275: 21793–21796, 2000. [DOI] [PubMed] [Google Scholar]
  • 33. Chen N., Ma W., Huang C., Dong Z., Translocation of protein kinase C and protein kinase C is required for ultraviolet B‐induced activation of mitogen‐activated protein kinases and apoptosis, J. Biol. Chem., 274: 15389–15394, 1999. [DOI] [PubMed] [Google Scholar]
  • 34. Cross T., Griffiths G., Deacon E., Sallis R., Gough M., Watters D., Lord J.M., PKC‐ is an apoptotic lamin kinase, Oncogene, 19: 2331–2337, 2000. [DOI] [PubMed] [Google Scholar]
  • 35. Blass M., Kronfeld I., Kazimirsky G., Blumberg P.M., Brodie C., Tyrosine phosphorylation of protein kinase Cδ is essential for its apoptotic effect in response to etoposide, Mol. Cell. Biol., 22: 182–195, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Basu A., Woolard M.D., Johnson C.L., Involvement of protein kinase C‐δ in DNA damage‐induced apoptosis, Cell Death and Differentiation, 8: 899–908, 2001. [DOI] [PubMed] [Google Scholar]
  • 37. Denning M.F., Wang Y., Tibudan S., Alkan S., Nickoloff B.J., Qin J.Z., Caspase activation and disruption of mitochondrial membrane potential during UV radiation induced apoptosis of human keratinocytes requires activation of protein kinase C, Cell Death Differ., 9: 40–52, 2002. [DOI] [PubMed] [Google Scholar]
  • 38. Pra I.D., Whitfield J.F., Chiarini A., Armato U., Changes in nuclear protein kinase C‐δ holoenzyme, its catalytic fragments, and its activity in polyomavirus‐translformed pyF111 rat fibroblasts while proliferating and following exposure to apoptogenic topoisomerase‐II inhibitors, Exp. Cell Res., 249: 147–160, 1999. [DOI] [PubMed] [Google Scholar]
  • 39. Pra I.D., Whitfield J.F., Chiarini A., Armato U., Increased activity of the protein kinase C‐δ holoenzyme in the cytoplasmic particulate fraction precedes the activation of caspases in polyomavirus‐transformed pyF11 rat fibroblasts exposed to calphostin C or topoisomerase‐II inhibitors, Exp. Cell Res., 255: 171–183, 2000. [DOI] [PubMed] [Google Scholar]
  • 40. Watanabe T., Ono Y., Taniyama Y., Hazama K., Igarashi K., Ogita K., Kikkawa U., Nishizuka Y., Cell division arrest induced by phorbol ester in CHO cells overexpressing protein kinase C‐ subspecies, Proc. Natl. Acad. Sci. USA, 89: 10159–10163, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Lu Z., Hornia A., Jiang Y‐W., Zang Q, Ohno S., Foster D.A., Tumor promotion by depleting cells of protein kinase C, Mol. Cell Biol., 17: 3418–3428, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Fine R.L., Patel J., Chabner B.A., Phorbol esters induce multidrug resistance in human breast cancer cells, Proc. Natl. Acad. Sci. USA, 85: 582–586, 1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Hofmann J., Doppler W., Jakob A., Maly K., Posch L., Uberall F., Grunicke H.H., Enhancement of the antiproliferative activity of cis‐diamminedichloroplainum(II) and nitrogen mustard by inhibitors of protein kinase C, Int. J. Cancer, 42: 382–388, 1988. [DOI] [PubMed] [Google Scholar]
  • 44. Isonishi S., Andrews P.A., Howell S.B., Increased sensitivity to cis‐diamminedichloroplatinum(II) in human ovarian carcinoma cells in response to treatment with 12‐O‐tetradecanoylphorbol 13‐acetate, J. Biol. Chem., 265: 3623–3627, 1990. [PubMed] [Google Scholar]
  • 45. Basu A., Teicher B.A., Lazo J.S., Involvement of protein kinase C in phorbol ester‐induced sensitization of HeLa cells to cis‐diamminedichloroplatinum(II), J. Biol. Chem., 265: 8451–8457, 1990. [PubMed] [Google Scholar]
  • 46. Kharbanda S.D.R., Kufe D., Regulation of c‐jun gene expression in HL‐60 leukemia cells by 1‐β‐D‐arabinofuranosylcytosine. Potential involvement of a protein kinase C‐dependent mechanism, Biochemistry, 32: 7947–7952, 1991. [DOI] [PubMed] [Google Scholar]
  • 47. Grant S., Jarvis W.D., Swerdlow P.S., Turner A.J., Traylor R.S., Wallace H.J., Lin P‐S., Pettit G.R., Gewirtz, D.A. , Potentiation of the activity of 1‐D‐arabinofuranosylcytosine by the protein kinase C activator bryostatin 1 in HL‐60 cells: association with enhanced fragmentation of mature DNA, Cancer Res., 52: 6270–6278, 1992. [PubMed] [Google Scholar]
  • 48. Yuan Z.M.U.T., Ishiko T., Nakada S., Huang Y., Kharbanda S., Weischselbaum R., Kufe D., Activation of protein kinse C δ by the c‐Abl tyrosine kinase in response to ionizing radiation. Oncogene, 16: 1643–1648, 1998. [DOI] [PubMed] [Google Scholar]
  • 49. Denning M.F., Wang Y., Nickoloff B.J., Wrone‐Smith T., Protein kinase Cd is activated by caspase‐dependent proteolysis during ultraviolet radiation‐induced apoptosis of human keratinocytes, J. Biol. Chem., 273: 29995–30002, 1998. [DOI] [PubMed] [Google Scholar]
  • 50. Basu A., Akkaraju G.R., Regulation of caspase activation and cis‐diamminedichloroplatinum(II)‐induced cell death by protein kinase C, Biochemistry, 38: 4245–4251, 1999. [DOI] [PubMed] [Google Scholar]
  • 51. Koriyama H., Kouchi Z., Umeda T., Saido T.C., Momoi T., Ishiura S., Suzuki K., Proteolytic activation of protein kinase C δ and δ by caspase‐3 in U937 cells during chemotherapeutic agent‐induced apoptosis, Cell. Signal., 11: 831–838, 1999. [DOI] [PubMed] [Google Scholar]
  • 52. Reyland M.E., Anderson S.M., Matassa A.A., Barzen K.A., Quissell D.O., Protein kinase C δ is essential for etoposide‐induced apoptosis in salivary gland acinar cells, J. Biol. Chem., 274: 19115–19123, 1999. [DOI] [PubMed] [Google Scholar]
  • 53. Park I. C., Park M.J., Hwang C.S., Rhee C.H., Whang D.Y., Jang J.J., Choe T.B., Hong S.I., Lee S.H., Mitomycin C induces apoptosis in a caspases‐dependent and Fas/CD95‐independent manner in human gastric adenocarcinoma cells, Cancer Lett., 158: 125–132, 2000. [DOI] [PubMed] [Google Scholar]
  • 54. Godbout J.P., Pesavento J., Hartman M.E., Manson S.R., Freund G.C., Methylglyoxal enhances cisplatin‐induced cytotoxicity by activating protein kinase C, J. Biol. Chem., 277: 2554–2561, 2002. [DOI] [PubMed] [Google Scholar]
  • 55. Ghayur T., Hugunin M., Talanian R.V., Ratnofsky S., Quinlan C., Emoto Y., Pandey P., Datta R., Huang Y., Kharbanda S., Allen H., Kamen R., Wong W., Kufe D., Proteolytic activation of protein kinase C δ by an ICE/CED 3‐like protease induces characteristics of apoptosis, J. Exp. Med., 184: 2399–2404, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Mizuno K., Noda K., Araki T., Imaoka T., Kobayashi Y., Akita Y., Shimonaka M., Kishi S., Ohno S., The proteolytic cleavage of protein kinase C isotypes, which generates kinase and regulatory fragments, correlates with Fas‐mediated and 12‐O‐tetradecanoyl‐phorbol‐13‐acetate‐induced apoptosis, Eur. J. Biochem., 250: 7–18, 1997. [DOI] [PubMed] [Google Scholar]
  • 57. Matassa A.A., Carpenter L., Biden T.J., Humphries M.J., Reyland M.E., PKCdelta is required for mitochondrial‐dependent apoptosis in salivary epithelial cells, J. Bio. Chem., 276: 29719–29728, 2001. [DOI] [PubMed] [Google Scholar]
  • 58. Leverrier S., Vallentin A., Joubert D., Positive feedback of protein kinase C proteolytic activation during apoptosis, Biochem. J., 368: 905–913, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Clark A.S., West K.A., Blumberg P.M., Dennis P.A., Altered Protein Kinase C (PKC) Isoforms in Non‐Small Cell Lung Cancer Cells: PKC Promotes Cellular Survival and Chemotherapeutic Resistance, Cancer Res., 63: 780–786, 2003. [PubMed] [Google Scholar]
  • 60. Goerke A., Sakai N., Gutjahr E., Schlapkohl W.A., Mushinski J.F., Haller H., Kolch W., Saito N., Mischak H., Induction of apoptosis by protein kinase C is independent of its kinase activity, J. Biol. Chem., 277: 32054–32062, 2002. [DOI] [PubMed] [Google Scholar]
  • 61. Basu A., Miura A., Differential regulation of extrinsic and intrinsic cell death pathways by protein kinase C, Int. J. Mol. Med., 10: 541–545, 2002. [PubMed] [Google Scholar]
  • 62. Kojima H., Endo K., Moriyama H., Tanaka Y., Alnemri E.S., Slapak C.A., Teicher B., Kufe D., Datta R., Abrogation of mitochondrial cytochrome c release and caspase‐3 activation in acquired multidrug resistance, J. Biol. Chem., 273: 16647–16650, 1998. [DOI] [PubMed] [Google Scholar]
  • 63. Soltoff S.P., Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase C tyrosine phosphorylation, J. Bio. Chem., 276: 37986–37992, 2001. [DOI] [PubMed] [Google Scholar]
  • 64. Bharti A., Kraeft S.‐K., Gounder M., Pandey P., Jin S., Yuan Z.‐M., Lees‐Miller S.P., Weichselbaum R., Weaver D., Chen L.B., Kufe D., Kharbanda S., Inactivation of DNA‐dependent protein kinase by protein kinase Cδ: implications for apoptosis, Mol. Cell. Biol., 18: 6719–6728, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Yuan Z.M., Utsugisawa T., Ishiko T., Nakada S., Huang Y., Kharbanda S., Weischselbaum R., Kufe D., Activation of protein kinse C δ by the c‐Abl tyrosine kinase in response to ionizing radiation, Oncogene, 16: 1643–1648, 1998. [DOI] [PubMed] [Google Scholar]
  • 66. Kharbanda S.P.P., Jin S., Inoue S., Bharti A., Yuan Z.M., Weichselbaum R., Weaver D., Kufe D., Functional interaction between DNA‐PK and c‐Abl in response to DNAdamage, Nature, 386: 732–735, 1997. [DOI] [PubMed] [Google Scholar]
  • 67. Ren J., Datta R., Shioya H., Yongqing Li, Oki E., Biedermann V., Bharti A., Kufe D., p73β is regulated by protein kinase Cδ catalytic fragment generated in the apoptotic response to DNA damage, J. Biol. Chem., 277: 33758–33765, 2002. [DOI] [PubMed] [Google Scholar]
  • 68. Frasch S.C., Henson P.M., Kailey J.M., Richter D.A., Janes M.S., Fadok V.A., Bratton D., Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase Cδ, J. Biol. Chem., 275: 23065–23073, 2000. [DOI] [PubMed] [Google Scholar]
  • 69. Liu J., Chen J., Dai Q., Lee R.M., Phospholipid Scramblase 3 Is the Mitochondrial Target of Protein Kinase Cδ‐induced Apoptosis, Cancer Res., 63: 1153–1156, 2003. [PubMed] [Google Scholar]
  • 70. Matassa A. A., Kalkofen R.L., Carpenter L., Biden T.J., Reyland M.E., Inhibition of PKCδ induces a PKCδ‐dependent apoptotic program in salivary epithelial cells, Cell Death Differ., 10: 269–277, 2003. [DOI] [PubMed] [Google Scholar]
  • 71. Meinhardt G., Roth J., Totok G., Auner H., Emmerich B., Hass R., Signaling defect in the activation of caspase‐3 and PKCδ in human TUR leukemia cells is associated with resistance to apoptosis, Exp. Cell. Res., 247: 534–542, 1999. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES