Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(1):59–76. doi: 10.1111/j.1582-4934.2004.tb00260.x

Anti‐atherosclerotic effects of vitamin E – myth or reality?

Adelina Munteanu 1, J‐M Zingg 1, A Azzi 1,
PMCID: PMC6740318  PMID: 15090261

Abstract

Atherosclerosis and its complications such as coronary heart disease, myocardial infarction and stroke are the leading causes of death in the developed world. High blood pressure, diabetes, smoking and a diet high in cholesterol and lipids clearly increase the likelihood of premature atherosclerosis, albeit other factors, such as the individual genetic makeup, may play an additional role. Several epidemiological studies and intervention trials have been performed with vitamin E, and some of them showed that it prevents atherosclerosis. For a long time, vitamin E was assumed to act by decreasing the oxidation of LDL, a key step in atherosclerosis initiation. However, at the cellular level, vitamin E acts by inhibition of smooth muscle cell proliferation, platelet aggregation, monocyte adhesion, oxLDL uptake and cytokine production, all reactions implied in the progression of atherosclerosis. Recent research revealed that these effects are not the result of the antioxidant activity of vitamin E, but rather of precise molecular actions of this compound. It is assumed that specific interactions of vitamin E with enzymes and proteins are at the basis of its non‐antioxidant effects. Vitamin E influences the activity of several enzymes (e.g. PKC, PP2A, COX‐2, 5‐lipooxygenase, nitric oxide synthase, NADPH oxidase, superoxide dismutase, phopholipase A2) and modulates the expression of genes that are involved in atherosclerosis (e.g. scavenger receptors, integrins, selectins, cytokines, cyclins). These interactions promise to reveal the biological properties of vitamin E and allow designing better strategies for the protection against atherosclerosis progression.

Keywords: vitamin E, atherosclerosis, non‐antioxidant, gene expression, signalling, transcription factors, tocopherol binding proteins, clinical trials

References

  • 1. Vogelsang A., Shute, E.V. , Effect of vitamin E in coronary heart disease. Nature, 157: 772, 1946. [DOI] [PubMed] [Google Scholar]
  • 2. Ricciarelli R., Zingg J.M., Azzi, A. , Vitamin E: protective role of a Janus molecule, FASEB. J., 15: 2314–2325, 2001. [DOI] [PubMed] [Google Scholar]
  • 3. Brigelius‐Flohe R., Kelly F.J., Salonen J.T., Neuzil J., Zingg J.M., Azzi A., The European perspective on vitamin E: current knowledge and future research, Am. J. Clin. Nutr., 76: 703–716, 2002. [DOI] [PubMed] [Google Scholar]
  • 4. Rimbach G., Minihane A.M., Majewicz J., Fischer A., Pallauf J., Virgli F., Weinberg P.D., Regulation of cell signalling by vitamin E, Proc. Nutr. Soc, 61: 415–425, 2002. [DOI] [PubMed] [Google Scholar]
  • 5. Bauernfeind J.B., Tocopherols in Food. Vitamin E. A Comprehensive Treatise, Marcel Dekker, I, New York and Basel , Ed., 1980, pp. 99–167. [Google Scholar]
  • 6. Birringer M., Ey Tina J.H., Salvatore B.A., Neuzil J., Vitamin E analogues as inducers of apoptosis: structure‐function relation, Br. J. Cancer, 88: 1948–1955, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Burton G.W. Traber M.G., Vitamin E: antioxidant activity, biokinetics, and bioavailability, Annu. Rev. Nutr., 10: 357–382, 1990. [DOI] [PubMed] [Google Scholar]
  • 8. Catignani G.L., Bieri J.G., Rat liver alpha‐tocopherol binding protein, Biochim Biophys Acta, 497: 349–357, 1977. [DOI] [PubMed] [Google Scholar]
  • 9. Hosomi A., Arita M., Sato Y., Kiyose C., Ueda T., Igarashi O., Arai H., Inoue K., Affinity for alpha‐tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs, FEBS. Lett., 409: 105–108, 1997. [DOI] [PubMed] [Google Scholar]
  • 10. Kostner G.M., Oettl K., Jauhiainen M., Ehnholm C., Esterbauer H., Dieplinger H., Human plasma phospholipid transfer protein accelerates exchange/transfer of alpha‐tocopherol between lipoproteins and cells, Biochem. J., 305: 659–667, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Goti D., Reicher H., Malle E., Kostner G.M., Panzenboeck U., Sattler W., High‐density lipoprotein (HDL3)‐associated alpha‐tocopherol is taken up by HepG2 cells via the selective uptake pathway and resecreted with endogenously synthesized apo‐lipoprotein B‐rich lipoprotein particles, Biochem. J., 332: 57–65, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Fechner H., Schlame M., Guthmann F., Stevens P.A. Rustow B., alpha‐ and delta‐tocopherol induce expression of hepatic alpha‐tocopherol‐transfer‐protein mRNA, Biochem. J., 331: 577–581, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Yokota T., Shiojiri T., Gotoda T., Arita M., Arai H., Ohga T., Kanda T., Suzuki J., Imai T., Matsumoto H., Harino S., Kiyosawa M., Mizusawa H., Inoue, K. , Friedreich‐like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha‐tocopherol transfer protein gene, Ann. Neurol., 41: 826–832, 1997. [DOI] [PubMed] [Google Scholar]
  • 14. Terasawa Y., Ladha Z., Leonard S.W., Morrow J.D., Newland D., Sanan D., Packer L., Traber M.G., Farese R.V., Jr. , Increased atherosclerosis in hyperlipidemic mice deficient in alpha ‐ tocopherol transfer protein and vitamin E, Proc. Natl. Acad. Sci. U.S.A., 97: 13830–13834, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Roxborough H.E., Burton G.W., Kelly, F.J. , Inter‐ and intra‐individual variation in plasma and red blood cell vitamin E after supplementation, Free Radic Res, 33: 437–445, 2000. [DOI] [PubMed] [Google Scholar]
  • 16. Drevon C.A., Absorption, transport and metabolism of vitamin E, Free. Radic. Res. Commun., 14: 229–246, 1991. [DOI] [PubMed] [Google Scholar]
  • 17. Copp R.P., Wisniewski T., Hentati F., Larnaout A., Ben Hamida M., Kayden H.J., Localization of alphatocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders, Brain Res., 822: 80–87, 1999. [DOI] [PubMed] [Google Scholar]
  • 18. Tamaru Y., Hiran, M. , Kusaka, H. , Ito H., Imai T., Ueno S., alpha‐Tocopherol transfer protein gene: exon skipping of all transcripts causes ataxia, Neurology, 49: 584–588, 1997. [DOI] [PubMed] [Google Scholar]
  • 19. Kempnà P., Zingg J.M., Ricciarelli R., Hierl M., Saxena S. Azzi A., Cloning of novel human SEC14p‐like proteins: cellular localization, ligand binding and functional properties, Free Radic. Biol. Med., 34, 1458–1472, 2003. [DOI] [PubMed] [Google Scholar]
  • 20. Dutta‐Roy A.K., Leishman D.J., Gordon M.J., Campbell F.M., Duthie G.G., Identification of a low molecular mass (14.2 kDa) alpha‐tocopherol‐ binding protein in the cytosol of rat liver and heart, Biochem. Biophys. Res. Commun., 196: 1108–1112, 1993. [DOI] [PubMed] [Google Scholar]
  • 21. Simon E.J., The metabolism of vitamin E. II. Purification and characterization of urinary metabolites of alpha‐tocopherol. J. Biol. Chem., 221: 807–817, 1956. [PubMed] [Google Scholar]
  • 22. Simon E.J., Gross C.S., Milhorat, A.T. , The metabolism of vitamin E. The absorption and excretion of d‐α‐tocopheryl‐5‐methyl‐C14‐succinate. J. Biol. Chem., 221: 797–805, 1956. [PubMed] [Google Scholar]
  • 23. Schultz M., Leist M., Petrzika M., Gassmann B., Brigelius‐Flohe R., Novel urinary metabolite of alphatocopherol, 2,5,7,8‐tetramethyl‐2(2′‐carboxyethyl)‐6‐hydroxychroman, as an indicator of an adequate vitamin E supply?, Am. J. Clin. Nutr., 62: 1527S–1534S, 1995. [DOI] [PubMed] [Google Scholar]
  • 24. Chiku S., Hamamura K., Nakamura T., Novel urinary metabolite of d‐delta‐tocopherol in rats, J. Lipid. Res., 25: 40–48, 1984. [PubMed] [Google Scholar]
  • 25. Wechter W.J., Kantoci D., Murray E.D., Jr. , D'Amico, D.C. , Jung, M.E. , Wang, W.H. , A new endogenous natriuretic factor: LLU‐alpha, Proc. Natl. Acad. Sci. U.S.A., 93: 6002–6007, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Himmelfarb J., Kane J., McMonagle E., Zaltas E., Bobzin S., Boddupalli S., Phinney S., Miller, G. , Alpha and gamma tocopherol metabolism in healthy subjects and patients with end‐stage renal disease, Kidney Int., 64: 978–991, 2003. [DOI] [PubMed] [Google Scholar]
  • 27. Murray E.D., Jr. , Wechter W.J., Kantoci D., Wang W.H., Pham T., Quiggle D.D., Gibson K.M., Leipold, D. , Anner, B.M. , Endogenous natriuretic factors 7: biospecificity of a natriuretic gamma‐tocopherol metabolite LLU‐alpha, J. Pharmacol. Exp. Ther., 282: 657–662, 1997. [PubMed] [Google Scholar]
  • 28. Jiang Q., Christen S., Shigenaga M.K., Ames B.N., gamma‐Tocopherol, the major form of vitamin E in the US diet, deserves more attention, Am. J. Clin. Nutr., 74: 714–722, 2001. [DOI] [PubMed] [Google Scholar]
  • 29. Jiang Q., Elson‐Schwab I., Courtemanche C., Ames, B.N. , gamma‐Tocopherol and its major metabolite, in contrast to alpha‐tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells, Proc. Natl. Acad. Sci. U.S.A., 97: 11494–11499, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Schwenke D.C., Rudel L.L., Sorci‐Thomas M.G., Thomas M.J., alpha‐Tocopherol protects against diet induced atherosclerosis in New Zealand white rabbits, J. Lipid Res., 43: 1927–1938, 2002. [DOI] [PubMed] [Google Scholar]
  • 31. Peluzio M.C., Homem A.P., Cesar G.C., Azevedo G.S., Amorim R., Cara D.C., Saliba H., Vieira E.C., Arantes R.E., Alvarez‐Leite J., Influences of alphatocopherol on cholesterol metabolism and fatty streak development in apolipoprotein E‐deficient mice fed an atherogenic diet, Braz. J. Med. Biol. Res., 34: 1539–1545, 2001. [DOI] [PubMed] [Google Scholar]
  • 32. Peluzio M.C., Miguel E., Jr. , Drumond T.C., Cesar G.C., Santiago H.C., Teixeira M.M., Vieira E.C., Arantes R.M., Alvarez‐Leite, J.I. , Monocyte chemoattractant protein‐1 involvement in the alpha‐tocopherol‐induced reduction of atherosclerotic lesions in apolipoprotein E knockout mice, Br. J. Nutr., 90: 3–11, 2003. [DOI] [PubMed] [Google Scholar]
  • 33. Verlangieri A.J., Bush M.J., Effects of d‐alpha‐tocopherol supplementation on experimentally induced primate atherosclerosis, J. Am. Coll. Nutr., 11: 131–138, 1992. [PubMed] [Google Scholar]
  • 34. Upston J.M., Terentis A.C., Stocker, R. , Tocopherol‐mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement, FASEB. J., 13: 977–994, 1999. [DOI] [PubMed] [Google Scholar]
  • 35. Gohil K., Schock B.C., Chakraborty A.A., Terasawa Y., Raber J., Farese R.V., Jr. , Packer L., Cross C.E., Traber, M.G. , Gene expression profile of oxidant stress and neurodegeneration in transgenic mice deficient in alpha‐tocopherol transfer protein, Free Radic Biol Med, 35: 1343–1354, 2003. [DOI] [PubMed] [Google Scholar]
  • 36. Rapola J.M., Virtamo J., Haukka J.K., Heinonen O.P., Albanes D., Taylor P.R., Huttunen J.K., Effect of vitamin E and beta carotene on the incidence of angina pectoris. A randomized, double‐blind, controlled trial, JAMA, 275: 693–698, 1996. [DOI] [PubMed] [Google Scholar]
  • 37. De Gaetano G., Low‐dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Collaborative Group of the Primary Prevention Project, Lancet, 357: 89–95, 2001. [DOI] [PubMed] [Google Scholar]
  • 38. Salonen J.T., Nyyssonen K., Salonen R., Lakka H.M., Kaikkonen J., Porkkala‐Sarataho E., Voutilainen S., Lakka T.A., Rissanen T., Leskinen L., Tuomainen T.P., Valkonen V.P., Ristonmaa U., Poulsen H.E., Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3‐year progression of carotid atherosclerosis, J. Intern. Med., 248: 377–386, 2000. [DOI] [PubMed] [Google Scholar]
  • 39. Stephens N.G., Parsons A., Schofield P.M., Kelly F., Cheeseman K., Mitchinson M.J., Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS), Lancet, 347: 781–786, 1996. [DOI] [PubMed] [Google Scholar]
  • 40. Boaz M., Smetana S., Weinstein T., Matas Z., Gafter U., Iaina A., Knecht A., Weissgarten Y., Brunner D., Fainaru M., Green, M.S. , Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo‐controlled trial, Lancet, 356: 1213–1218, 2000. [DOI] [PubMed] [Google Scholar]
  • 41. Marchioli R., Dietary supplementation with n‐3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI‐Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico, Lancet, 354: 447–455, 1999. [PubMed] [Google Scholar]
  • 42. Yusuf S., Dagenais G., Pogue J., Bosch J., Sleight P., Vitamin E supplementation and cardiovascular events in high‐risk patients. The Heart Outcomes Prevention Evaluation Study Investigators, N. Engl. J. Med., 342: 154–160, 2000. [DOI] [PubMed] [Google Scholar]
  • 43. Ehnholm C., Tenkanen H., De Knijff P., Havekes L., Rosseneu M., Menzel H.J., Tiret L., Genetic polymorphism of apolipoprotein A‐IV in five different regions of Europe. Relations to plasma lipoproteins and to history of myocardial infarction: the EARS study. European Atherosclerosis Research Study, Atherosclerosis, 107: 229–238, 1994. [DOI] [PubMed] [Google Scholar]
  • 44. Morris B.J., Glenn C.L., Wilcken D.E., Wang X.L., Influence of an inducible nitric oxide synthase promoter variant on clinical variables in patients with coronary artery disease, Clin Sci (Lond), 100: 551–556, 2001. [PubMed] [Google Scholar]
  • 45. Tang Y., Taylor K.T., Sobieski D.A., Medved E.S., Lipsky R.H., Identification of a human CD36 isoform produced by exon skipping. Conservation of exon organization and pre‐mRNA splicing patterns with a CD36 gene family member, CLA‐1, J. Biol. Chem., 269: 6011–6015, 1994. [PubMed] [Google Scholar]
  • 46. Kern P., Kolowos W., Hagenhofer M., Frank C., Kalden J.R., Herrmann M., Alternatively spliced mRNA molecules of the thrombospondin receptor (CD36) in human PBMC, Eur. J. Immunogenet., 26: 337–342, 1999. [DOI] [PubMed] [Google Scholar]
  • 47. Fang J.C., Kinlay S., Beltrame J., Hikiti H., Wainstein, M. , Behrendt D., Suh J., Frei B., Mudge G.H., Selwyn A.P., Ganz P., Effect of vitamins C and E on progression of transplant‐associated arteriosclerosis: a randomised trial, Lancet, 359: 1108–1113, 2002. [DOI] [PubMed] [Google Scholar]
  • 48. Vivekananthan D.P., Penn M.S., Sapp S.K., Hsu A., Topol E.J., Use of antioxidant vitamins for the prevention of cardiovascular disease: meta‐analysis of randomised trials, Lancet, 361: 2017–2023, 2003. [DOI] [PubMed] [Google Scholar]
  • 49. Meagher E.A., Barry O.P., Lawson J.A., Rokach J., FitzGerald G.A., Effects of vitamin E on lipid peroxidation in healthy persons, JAMA, 285: 1178–1182, 2001. [DOI] [PubMed] [Google Scholar]
  • 50. Traber M.G., Elsner A., Brigelius‐Flohe R., Synthetic as compared with natural vitamin E is preferentially excreted as alpha‐CEHC in human urine: studies using deuterated alpha‐tocopheryl acetates, FEBS Lett., 437: 145–148, 1998. [DOI] [PubMed] [Google Scholar]
  • 51. Burton G.W., Traber M.G., Acuff R.V., Walters D.N., Kayden H., Hughes L., Ingold K.U., Human plasma and tissue alpha‐tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E, Am. J. Clin. Nutr., 67: 669–684, 1998. [DOI] [PubMed] [Google Scholar]
  • 52. Mitchinson M.J., Macrophages, oxidised lipids and atherosclerosis, Med. Hypotheses, 12: 171–178, 1983. [DOI] [PubMed] [Google Scholar]
  • 53. Steinberg D., Parthasarathy S., Carew T.E., Khoo J.C., Witztum, J.L. , Beyond cholesterol. Modifications of low‐density lipoprotein that increase its atherogenicity, N Engl J Med, 320: 915–924, 1989. [DOI] [PubMed] [Google Scholar]
  • 54. Ross R., The pathogenesis of atherosclerosis: a perspective for the 1990s, Nature, 362: 801–809, 1993. [DOI] [PubMed] [Google Scholar]
  • 55. Stocke R., The ambivalence of vitamin E in atherogenesis, Trends Biochem. Sci., 24: 219–223, 1999. [DOI] [PubMed] [Google Scholar]
  • 56. Cachia O., Leger C.L., Descomps B., Monocyte superoxide production is inversely related to normal content of alpha‐tocopherol in low‐density lipoprotein, Atherosclerosis, 138: 263–269, 1998. [DOI] [PubMed] [Google Scholar]
  • 57. Keaney J.F., Jr. , Atherosclerosis: from lesion formation to plaque activation and endothelial dysfunction, Mol Aspects Med, 21: 99–166, 2000. [DOI] [PubMed] [Google Scholar]
  • 58. Serbinova E., Kagan V., Han D., Packer L., Free radical recycling and intramembrane mobility in the antioxidant properties of alpha‐tocopherol and alpha‐tocotrienol, Free Radic Biol Med, 10: 263–275, 1991. [DOI] [PubMed] [Google Scholar]
  • 59. Suzuki Y.J., Packer, L. , Inhibition of NF‐kappa B activation by vitamin E derivatives, Biochem Biophys Res Commun, 193: 277–283, 1993. [DOI] [PubMed] [Google Scholar]
  • 60. Wolf G., gamma‐Tocopherol: an efficient protector of lipids against nitric oxide‐ initiated peroxidative damage, Nutr. Rev., 55: 376–378, 1997. [DOI] [PubMed] [Google Scholar]
  • 61. Goss S.P., Hogg N., Kalyanaraman B., The effect of alpha‐tocopherol on the nitration of gamma‐tocopherol by peroxynitrite, Arch. Biochem. Biophys., 363: 333–340, 1999. [DOI] [PubMed] [Google Scholar]
  • 62. Boscoboinik D., Szewczyk A., Hensey C., Azzi A., Inhibition of cell proliferation by alpha‐tocopherol. Role of protein kinase C, J. Biol. Chem., 266: 6188–6194, 1991. [PubMed] [Google Scholar]
  • 63. Tasinato A., Boscoboinik D., Bartoli G.M., Maroni P., Azzi A., d‐alpha‐tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition, and is independent of its antioxidant properties, Proc. Natl. Acad. Sci. U.S.A., 92: 12190–12194, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Devaraj S., Li D., Jialal I., The effects of alpha tocopherol supplementation on monocyte function. Decreased lipid oxidation, interleukin 1 beta secretion, and monocyte adhesion to endothelium, J. Clin. Invest., 98: 756–763, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Devaraj S., Adams‐Huet B., Fuller C.J., Jialal I., Dose‐response comparison of RRR‐alpha‐tocopherol and all‐racemic alpha‐tocopherol on LDL oxidation, Arterioscler. Thromb. Vasc. Biol., 17: 2273–2279, 1997. [DOI] [PubMed] [Google Scholar]
  • 66. Freedman J.E., Farhat J.H., Loscalzo J., Keaney, J.F., Jr. , Alpha‐tocopherol inhibits aggregation of human platelets by a protein kinase C‐dependent mechanism, Circulation, 94: 2434–2440, 1996. [DOI] [PubMed] [Google Scholar]
  • 67. Tada H., Ishii H., Isogai S., Protective effect of D‐alpha‐tocopherol on the function of human mesangial cells exposed to high glucose concentrations, Metabolism, 46: 779–784, 1997. [DOI] [PubMed] [Google Scholar]
  • 68. Martin‐Nizard F., Boullier A., Fruchart J.C., Duriez, P. , Alpha‐tocopherol but not beta‐tocopherol inhibits thrombin‐induced PKC activation and endothelin secretion in endothelial cells, J. Cardiovasc. Risk, 5: 339–345, 1998. [PubMed] [Google Scholar]
  • 69. Cachia O., Benna J.E., Pedruzzi E., Descomps B., Gougerot‐Pocidalo, M.A. , Leger, C.L. , alpha‐tocopherol inhibits the respiratory burst in human monocytes. Attenuation of p47(phox) membrane translocation and phosphorylation, J. Biol. Chem., 273: 32801–32805, 1998. [DOI] [PubMed] [Google Scholar]
  • 70. Williams J.C., Forster L.A., Tull S.P., Wong M., Bevan R.J., Ferns G.A., Dietary vitamin E supplementation inhibits thrombin‐induced platelet aggregation, but not monocyte adhesiveness, in patients with hypercholesterolaemia, Int. J. Exp. Pathol, 78: 259–266, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Saldeen T., Li D., Mehta J.L., Differential effects of alpha‐ and gamma‐tocopherol on low‐density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis, J. Am. Coll. Cardiol., 34: 1208–1215, 1999. [DOI] [PubMed] [Google Scholar]
  • 72. Mabile L., Bruckdorfer K.R., Rice‐Evans C., Moderate supplementation with natural alpha‐tocopherol decreases platelet aggregation and low‐density lipoprotein oxidation, Atherosclerosis, 147: 177–185, 1999. [DOI] [PubMed] [Google Scholar]
  • 73. Ricciarelli R., Azzi A., Regulation of recombinant PKC alpha activity by protein phosphatase 1 and protein phosphatase 2A, Arch. Biochem. Biophys., 355: 197–200, 1998. [DOI] [PubMed] [Google Scholar]
  • 74. Ricciarelli R., Tasinato A., Clement S., Ozer N.K., Boscoboinik D., Azzi A., alpha‐Tocopherol specifically inactivates cellular protein kinase C alpha by changing its phosphorylation state, Biochem. J., 334: 243–249, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Clement S., Tasinato A., Boscoboinik D., Azzi A., The effect of alpha‐tocopherol on the synthesis, phosphorylation and activity of protein kinase C in smooth muscle cells after phorbol 12‐ myristate 13‐acetate down‐regulation, Eur. J. Biochem., 246: 745–749, 1997. [DOI] [PubMed] [Google Scholar]
  • 76. Jiang Q., Ames B.N., gamma‐Tocopherol, but not alpha‐tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats, FASEB J., 17: 816–822, 2003. [DOI] [PubMed] [Google Scholar]
  • 77. Wu D.Y., Hayek M.G., Meydani S.N., Vitamin E and macrophage cyclooxygenase regulation in the aged, J. Nutr., 131: 382S–388S, 2001. [DOI] [PubMed] [Google Scholar]
  • 78. Devaraj S., Jialal I., Alpha‐tocopherol decreases interleukin‐1 beta release from activated human monocytes by inhibition of 5‐lipoxygenase, Arterioscler. Thromb. Vasc. Biol., 19: 1125–1133, 1999. [DOI] [PubMed] [Google Scholar]
  • 79. Poynter M.E., Daynes R.A., Age‐associated alterations in splenic iNOS regulation: influence of constitutively expressed IFN‐gamma and correction following supplementation with PPARalpha activators or vitamin E, Cell Immunol., 195: 127–136, 1999. [DOI] [PubMed] [Google Scholar]
  • 80. Li D., Saldeen T., Romeo F., Mehta J.L., Relative Effects of alpha‐ and gamma‐Tocopherol on Low‐Density Lipoprotein Oxidation and Superoxide Dismutase and Nitric Oxide Synthase Activity and Protein Expression in Rats, J. Cardiovasc. Pharmacol. Ther., 4: 219–226, 1999. [DOI] [PubMed] [Google Scholar]
  • 81. Lindner V., Collins T., Expression of NF‐kappa B and I kappa B‐alpha by aortic endothelium in an arterial injury model, Am. J. Pathol., 148: 427–438, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 82. Liao F., Andalibi A., De Beer F.C., Fogelman A.M., Lusis A.J., Genetic control of inflammatory gene induction and NF‐kappa B‐like transcription factor activation in response to an atherogenic diet in mice, J. Clin. Invest., 91: 2572–2579, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Yan S.D., Schmidt A.M., Anderson G.M., Zhang J., Brett J., Zou Y.S., Pinsky D., Stern D., Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins, J. Biol. Chem., 269: 9889–9897, 1994. [PubMed] [Google Scholar]
  • 84. Rimbach G., Valacchi G., Canali R., Virgili F., Macrophages stimulated with IFN‐gamma activate NFkappa B and induce MCP‐1 gene expression in primary human endothelial cells, Mol. Cell. Biol. Res. Commun., 3: 238–242, 2000. [DOI] [PubMed] [Google Scholar]
  • 85. Collins T., Cybulsky M.I., NF‐kappaB: pivotal mediator or innocent bystander in atherogenesis?, J. Clin. Invest., 107: 255–264, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Stauble, B. , Boscoboinik, D. , Tasinato, A. , Azzi, A. , Modulation of activator protein‐1 (AP‐1) transcription factor and protein kinase C by hydrogen peroxide and D‐alpha‐tocopherol in vascular smooth muscle cells, Eur. J. Biochem., 226: 393–402, 1994. [DOI] [PubMed] [Google Scholar]
  • 87. Poynter, M.E. , Daynes, R.A. , Peroxisome proliferator‐activated receptor α activation modulates cellular redox status, represses nuclear factor‐αB signaling, and reduces inflammatory cytokine production in aging, J. Biol. Chem., 273: 32833–32841, 1998. [DOI] [PubMed] [Google Scholar]
  • 88. Landes N., Pfluger P., Kluth D., Birringer M., Ruhl R., Bol G.F., Glatt H., Brigelius‐Flohe R., Vitamin E activates gene expression via the pregnane X receptor, Biochem. Pharmacol., 65: 269–273, 2003. [DOI] [PubMed] [Google Scholar]
  • 89. Yoshida N., Manabe H., Terasawa Y., Nishimura H., Enjo F., Nishino H., Yoshikawa T., Inhibitory effects of vitamin E on endothelial‐dependent adhesive interactions with leukocytes induced by oxidized low density lipoprotein, Biofactors, 13: 279–288, 2000. [DOI] [PubMed] [Google Scholar]
  • 90. Islam K.N., Devaraj S., Jialal I., alpha‐Tocopherol enrichment of monocytes decreases agonist‐induced adhesion to human endothelial cells, Circulation, 98: 2255–2261, 1998. [DOI] [PubMed] [Google Scholar]
  • 91. Martin G., Schoonjans K., Lefebvre A.M., Staels B., Auwerx J., Coordinate regulation of the expression of the fatty acid transport protein and acyl‐CoA synthetase genes by PPARalpha and PPARgamma activators, J. Biol. Chem., 272: 28210–28217, 1997. [DOI] [PubMed] [Google Scholar]
  • 92. Yoshida N., Yoshikawa T., Manabe H., Terasawa Y., Kondo M., Noguchi N., Niki E., Vitamin E protects against polymorphonuclear leukocyte‐dependent adhesion to endothelial cells, J. Leukoc. Biol., 65: 757–763, 1999. [DOI] [PubMed] [Google Scholar]
  • 93. Wu D., Koga T., Martin K.R., Meydani M., Effect of vitamin E on human aortic endothelial cell production of chemokines and adhesion to monocytes, Atherosclerosis, 147: 297–307, 1999. [DOI] [PubMed] [Google Scholar]
  • 94. Yoshikawa T., Yoshida N., Manabe H., Terasawa Y., Takemura T., Kondo M., alpha‐Tocopherol protects against expression of adhesion molecules on neutrophils and endothelial cells, Biofactors, 7: 15–19, 1998. [DOI] [PubMed] [Google Scholar]
  • 95. Steiner M., Li W., Ciaramella J.M., Anagnostou A., Sigounas, G. , dl‐alpha‐tocopherol, a potent inhibitor of phorbol ester induced shape change of erythro‐ and megakaryoblastic leukemia cells, J. Cell. Physiol, 172: 351–360, 1997. [DOI] [PubMed] [Google Scholar]
  • 96. De Nigris F., Franconi F., Maida I., Palumbo G., Anania V., Napoli C., Modulation by alpha‐ and gamma‐tocopherol and oxidized low‐density lipoprotein of apoptotic signaling in human coronary smooth muscle cells, Biochem Pharmacol, 59: 1477–1487, 2000. [DOI] [PubMed] [Google Scholar]
  • 97. Lyons N.M., Woods J.A., O'Brien N.M., alpha‐Tocopherol, but not gamma‐tocopherol inhibits 7 beta‐hydroxycholesterol‐induced apoptosis in human U937 cells, Free Radic Res, 35: 329–339, 2001. [DOI] [PubMed] [Google Scholar]
  • 98. Azzi A., Boscoboinik D., Fazzio A., Marilley D., Maroni P., Ozer N.K., Spycher, S. , Tasinato, A. , RRRalpha‐tocopherol regulation of gene transcription in response to the cell oxidant status, Z. Ernahrungswiss., 37 Suppl 1, 21–28, 1998. [PubMed] [Google Scholar]
  • 99. Azzi A., Gysin R., Kempna P., Ricciarelli R., Villacorta L., Visarius T., Zingg J.M., Regulation of Gene and Protein Expression by Vitamin E, Free Radic. Res., 36: 30–35, 2002. [Google Scholar]
  • 100. Ricciarelli R., Zingg J.M., Azzi A., Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured human aortic smooth muscle cells, Circulation, 102: 82–87, 2000. [DOI] [PubMed] [Google Scholar]
  • 101. Teupser D., Thiery J., Seidel D., Alpha‐tocopherol down‐regulates scavenger receptor activity in macrophages, Atherosclerosis, 144: 109–115, 1999. [DOI] [PubMed] [Google Scholar]
  • 102. Devaraj, S. , Hugou, I. , Jialal, I. , Alpha‐tocopherol decreases CD36 expression in human monocyte‐derived macrophages, J. Lipid. Res., 42: 521–527, 2001. [PubMed] [Google Scholar]
  • 103. Febbraio M., Podrez E.A., Smith J.D., Hajjar D.P., Hazen S.L., Hoff H.F., Sharma K., Silverstein R.L., Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice, J. Clin. Invest., 105: 1049–1056, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Fuhrman B., Volkova N., Aviram M., Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low‐density lipoprotein in macrophages from atherosclerotic mice: protective role of antioxidants and of paraoxonase, Atherosclerosis, 161: 307–316, 2002. [DOI] [PubMed] [Google Scholar]
  • 105. Marui N., Offermann M.K., Swerlick R., Kunsch C., Rosen C.A., Ahmad M., Alexander R.W., Medford R.M., Vascular cell adhesion molecule‐1 (VCAM‐1) gene transcription and expression are regulated through an antioxidant‐sensitive mechanism in human vascular endothelial cells, J. Clin. Invest., 92: 1866–1874, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Zapolska‐Downar D., Zapolski‐Downar A., Markiewski M., Ciechanowicz A., Kaczmarczyk M., Naruszewicz M., Selective inhibition by alpha‐tocopherol of vascular cell adhesion molecule‐1 expression in human vascular endothelial cells, Biochem. Biophys. Res. Commun., 274: 609–615, 2000. [DOI] [PubMed] [Google Scholar]
  • 107. Sabat, R. , Kolleck, I. , Witt, W. , Volk, H. , Sinha, P. , Rustow, B. , Immunological dysregulation of lung cells in response to vitamin E deficiency, Free Radic Biol Med, 30: 1145–1153, 2001. [DOI] [PubMed] [Google Scholar]
  • 108. Terasawa Y., Manabe H., Yoshida N., Uemura M., Sugimoto N., Naito Y., Yoshikawa T., Kondo M., Alpha‐tocopherol protects against monocyte Mac‐1 (CD11b/CD18) expression and Mac‐1‐dependent adhesion to endothelial cells induced by oxidized low‐density lipoprotein, Biofactors, 11: 221–233, 2000. [DOI] [PubMed] [Google Scholar]
  • 109. Kim H.S., Arai H., Arita M., Sato Y., Ogihara T., Inoue K., Mino M., Tamai, H. , Effect of alpha‐tocopherol status on alpha‐tocopherol transfer protein expression and its messenger RNA level in rat liver, Free Radic. Res., 28: 87–92, 1998. [DOI] [PubMed] [Google Scholar]
  • 110. Kolleck, I. , Schlame, M. , Fechner, H. , Looman, A.C. , Wissel, H. , Rustow, B. , HDL is the major source of vitamin E for type II pneumocytes, Free Radic. Biol. Med., 27: 882–890, 1999. [DOI] [PubMed] [Google Scholar]
  • 111. Teupser D., Thiery J., Seidel, D. , Alpha‐tocopherol down‐regulates scavenger receptor activity in macrophages, Atherosclerosis, 144: 109–115, 1999. [DOI] [PubMed] [Google Scholar]
  • 112. Ikeda M., Schroeder K.K., Mosher L.B., Woods C.W., Akeson A.L., Suppressive effect of antioxidants on intercellular adhesion molecule‐1 (ICAM‐1) expression in human epidermal keratinocytes, J. Invest. Dermatol., 103: 791–796, 1994. [DOI] [PubMed] [Google Scholar]
  • 113. Desideri G., Croce G., Marinucci M.C., Masci P.G., Stati M., Valeri L., Santucci A., Ferri C., Prolonged, low dose alpha‐tocopherol therapy counteracts intercellular cell adhesion molecule‐1 activation, Clin. Chim. Acta, 320: 5–9, 2002. [DOI] [PubMed] [Google Scholar]
  • 114. Breyer I., Azzi A., Differential inhibition by alpha‐ and beta‐tocopherol of human erythroleukemia cell adhesion: role of integrins, Free Radic. Biol. Med., 30: 1381–1389, 2001. [DOI] [PubMed] [Google Scholar]
  • 115. Faruqi R., De la Motte, C. , Di Corleto P.E., Alphatocopherol inhibits agonist‐induced monocytic cell adhesion to cultured human endothelial cells, J. Clin. Invest., 94: 592–600, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Chang S.J., Lin J.S., Chen H.H., Alpha‐tocopherol downregulates the expression of GPIIb promoter in HEL cells, Free Radic. Biol. Med., 28: 202–207, 2000. [DOI] [PubMed] [Google Scholar]
  • 117. Villacorta L., Graca‐Souza, A.V. , Ricciarelli, R. , Zingg, J.M. , Azzi A., Alpha‐Tocopherol Induces Expression of Connective Tissue Growth Factor and Antagonizes Tumor Necrosis Factor‐Alpha‐Mediated Downregulation in Human Smooth Muscle Cells, Circ. Res., 92, 104–110, 2003. [DOI] [PubMed] [Google Scholar]
  • 118. Li‐Weber M., Giaisi M., Treiber M.K., Krammer P.H., Vitamin E inhibits IL‐4 gene expression in peripheral blood T cells, Eur. J. Immunol., 32: 2401–2408, 2002. [DOI] [PubMed] [Google Scholar]
  • 119. Akeson A.L., Schroeder K., Woods C., Schmidt C.J., Jones W.D., Suppression of interleukin‐1 beta and LDL scavenger receptor expression in macrophages by a selective protein kinase C inhibitor, J. Lipid Res., 32: 1699–1707, 1991. [PubMed] [Google Scholar]
  • 120. Parola M., Muraca R., Dianzani I., Barrera G., Leonarduzzi G., Bendinelli P., Piccoletti R., Poli G., Vitamin E dietary supplementation inhibits transforming growth factor beta 1 gene expression in the rat liver, FEBS Lett., 308: 267–270, 1992. [DOI] [PubMed] [Google Scholar]
  • 121. Venkateswaran V., Fleshner N.E., Klotz L.H., Modulation of cell proliferation and cell cycle regulators by vitamin E in human prostate carcinoma cell lines, J. Urol., 168: 1578–1582, 2002. [DOI] [PubMed] [Google Scholar]
  • 122. Gysin R., Azzi A., Visarius T., Gamma‐tocopherol inhibits human cancer cell cycle progression and cell proliferation by down‐regulation of cyclins, FASEB. J., 16: 1952–1954, 2002. [DOI] [PubMed] [Google Scholar]
  • 123. Li‐Weber M., Weigand M.A., Giaisi M., Suss D., Treiber M.K., Baumann S., Ritsou E., Breitkreutz R., Krammer P.H., Vitamin E inhibits CD95 ligand expression and protects T cells from activation‐induced cell death, J. Clin. Invest., 110: 681–690, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124. Fischer A., Pallauf J., Gohil K., Weber S.U., Packer L., Rimbach G., Effect of selenium and vitamin E deficiency on differential gene expression in rat liver, Biochem. Biophys. Res. Commun., 285: 470–475, 2001. [DOI] [PubMed] [Google Scholar]
  • 125. Campbell S.E., Stone W.L., Whaley S.G., Qui M., Krishnan K., Gamma (gamma) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (gamma) expression in SW 480 human colon cancer cell lines, BMC Cancer, 3: 25, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Pal S., Thomson A.M., Bottema C.D., Roach P.D., alpha‐Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells, Nutr J., 2: 3, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES