Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(1):51–58. doi: 10.1111/j.1582-4934.2005.tb00336.x

HSP60, Bax, Apoptosis and the Heart

S Gupta 1, A A Knowlton 1,
PMCID: PMC6741334  PMID: 15784164

Abstract

HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria. It is now clear that a significant amount of HSP60 is also present in the extra‐mitochondrial cytosol of many cells. In the heart, this cytosolic HSP60 complexes with Bax, Bak and Bcl‐XL, but not with Bcl‐2. Reduction in HSP60 expression precipitates apoptosis, but does not alter mitochondrial function. During hypoxia, HSP60 cellular distribution changes, with HSP60 leaving the cytosol, and translocating to the plasma membrane. Total cellular HSP60 does not change until 10 h of reoxygenation; however, release of cytochrome c from the mitochondria occurs prior to reoxygenation, coinciding with the redistribution of HSP60. The changes in HSP60, Bax and cytochrome c during hypoxia can be replicated by ATP depletion. HSP60 has also been shown to accelerate the cleavage of pro‐caspase3. Thus, HSP60 has a complex role in apoptosis in the cell. Its binding to Bax under normal conditions suggests a key regulatory role in apoptosis.

Keywords: Cytocrome c, HSP60, Bax, apoptosis, Bcl‐2, Bak, Bcl‐XL

References

  • 1. Skowyra D., Georgopoulos C., Zylicz M., The E. coli dnaK gene product, the HSP70 homolog, can reactivate heat‐inactivated RNA polymerase in an ATP hydrolysisdependent manner, Cell, 62: 939–944, 1990. [DOI] [PubMed] [Google Scholar]
  • 2. Knowlton A. A., Brecher P., Apstein C. S., Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia, J. Clin. Invest., 87: 139–147, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Nakano M., Mann D. L., Knowlton A. A., Blocking the endogenous increase in HSP72 increases susceptibility to hypoxia and reoxygenation in isolated adult feline cardiocytes, Circulation, 95: 1523–1531, 1997. [DOI] [PubMed] [Google Scholar]
  • 4. Marbe M. S., Mestril R., Chi S. H., Sayen M. R., Yellon D. M., Dillmann W. H., Overexpression of the rat inducible 70‐kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury, J. Clin. Invest., 95: 1854–1860, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Plumier J. C. L., Ross B. M., Currie R. W., Angelidis C. E., Kazlaris H., Kollias G., Pagoulatos G. N., Transgenic mice expressing the human heat shock protein 70 have improved post‐ischemic myocardial recovery, J. Clin. Invest., 95: 1854–1860, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Marber M. S., Latchman D. S., Walker J. M., Yellon D. M., Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction, Circulation, 88: 1264–1272, 1993. [DOI] [PubMed] [Google Scholar]
  • 7. Welch W. J., Feramisco J. R., Nuclear and nucleolar localization of the 72,000‐dalton heat shock protein in heat‐shocked mammalian cells, J. Biol. Chem., 259: 4501–4513, 1984. [PubMed] [Google Scholar]
  • 8. Sun J. Z., Tang X. L., Knowlton A. A., Park S. W., Qiu Y., Bolli R., Late preconditioning against myocardial stunning: An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs, J. Clin. Invest., 95: 388–403, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Knowlton A. A., Mutation of amino acids 246–251 alters nuclear accumulation of human heat shock protein (HSP) 72 with stress, but does not reduce viability, J. Mol. Cell. Cardiol., 31: 523–532, 1999. [DOI] [PubMed] [Google Scholar]
  • 10. Soltys B. J., Gupta, R. S. , Immunoelectron microscopic localization of the 60‐kDa heat shock chaperonin protein (HSP60) in mammalian cells, Ex. Cell Res., 222: 16–27, 1996. [DOI] [PubMed] [Google Scholar]
  • 11. Thompson C., Apoptosis in the pathogenesis and treatment of disease, Science, 267: 1456–1462, 1995. [DOI] [PubMed] [Google Scholar]
  • 12. Strasser A., O'Connor L., Dixit V. M., Apoptosis signaling, Annual Review of Biochemistry, 69: 217–245, 2000. [DOI] [PubMed] [Google Scholar]
  • 13. Hengartner M. O., The biochemistry of apoptosis, Nature, 407: 770–776, 2000. [DOI] [PubMed] [Google Scholar]
  • 14. Newmeyer D., Ferguson‐Miller S., Mitochondria: Releasing power for life and unleashing machineries of death, Cell, 112: 481–490, 2003. [DOI] [PubMed] [Google Scholar]
  • 15. Green D. R., Kroemer G., The pathophysiology of mitochondrial cell death, Science, 305: 626–629, 2004. [DOI] [PubMed] [Google Scholar]
  • 16. Brustovetsky N., Brustovetsky T., Jemmerson R., Dubinsky, J. M. , Calcium‐induced Cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane, Journal of Neurochemistry, 80: 207–218, 2002. [DOI] [PubMed] [Google Scholar]
  • 17. Thornberry N. A., Lazebnik Y., Caspases: Enemies Within, Science, 281: 1312–1316, 1998. [DOI] [PubMed] [Google Scholar]
  • 18. Danial N. N., Korsmeyer S. J., Cell Death: Critical Control Points, Cell, 116: 205–219, 2004. [DOI] [PubMed] [Google Scholar]
  • 19. Tewari M., Quan L., O'Roarke K., Desnoyers S., Zeng Z., Beidler D., Poirier G., Salvesen G., Dixit V., Yama/CPP32 beta, a mammalian homolog of CED‐3, is a CrmA inhibitable protease that cleaves the death substrate poly(ADP‐ribose) polymerase, Cell, 81: 801–809, 1995. [DOI] [PubMed] [Google Scholar]
  • 20. Emoto Y., Manome Y., Meinhardt G., Kisaki H., Kharbanda S., Robertson M., Ghayur T., Wong W. W., Kamen R., Weichselbaum R., Proteolytic activation of protein kinase C delta by an ICE‐like protease in apoptotic cells, EMBO, 14: 6148–6156, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Casciola‐Rosen L., Nicholson D. W., Chong T., Rowan K. R., Thornberry N. A., Miller D. K., Rosen A., Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death, J. Exp. Med., 183: 1957–1964, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Casciola‐Rosen L. A., Miller D. K., Anhalt G. J., Rosen A., Specific cleavage of the 70‐kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of cell death, J. Biol. Chem., 269: 30757–30760, 1994. [PubMed] [Google Scholar]
  • 23. Goldberg Y. P., Nicholson D. W., Rasper D. M., Kalchman M. A., Koide H. B., Graham R. K., Bromm M., Kazemi‐Esfarjani P., Thornberry N. A., Vaillancourt J. P., Hayden M. R., Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract, Nat Genet, 13: 442–449, 1996. [DOI] [PubMed] [Google Scholar]
  • 24. Liu X., Zou H., Slaughter C., Wang X., DFF, a hertodimeric protein that functions downstream of caspase‐3 to trigger DNA fragmentation during apoptosis, Cell, 89: 175–184, 1997. [DOI] [PubMed] [Google Scholar]
  • 25. Wang K. K. W., Posmantur R., Nadimpalli R., Nath R., Mohan P., Nixon R. A., Talanian R. V., Keegan M., Herzog L., Allen H., Caspase‐Mediated Fragmentation of Calpain Inhibitor Protein Calpastatin during Apoptosis, Arch. Biochem. Biophys., 356: 187–196, 1998. [DOI] [PubMed] [Google Scholar]
  • 26. De Giorgi F., Lartigue L., Bauer M., Schubert A., Grimm S., Hanson G. T., Remington S. J., Youle R. J., Ichas F., The permeability transition pore signals apoptosis by directing Bax translocation and multimerization, FASEB J., 16: 607–609, 2002. [DOI] [PubMed] [Google Scholar]
  • 27. Madesh M., Hajnoczky G., VDAC‐dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release, J. Cell Biol., 155: 1003–1016, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Kroemer G., Reed, J. C. , Mitochondrial control of cell death, Nature Med., 6: 513–519, 2000. [DOI] [PubMed] [Google Scholar]
  • 29. Yang J., Liu X., Bhalla K., Kim C. N., Ibrado A. M., Cai J., Peng T. I., Jones D. P., Wang X., Prevention of apoptosis by Bcl‐2: Release of cytochrome c from mitochondria blocked, Science, 275: 1129–1132, 1997. [DOI] [PubMed] [Google Scholar]
  • 30. Kluck R. M., Bossy‐Wetzel E., Green D. R., Newmeyer D. D., The release of cytochrome c from mitochondria: A primary site for bcl‐2 regulation of apoptosis, Science, 275: 1132–1136, 1997. [DOI] [PubMed] [Google Scholar]
  • 31. Cheng E. H. Y., Wei M. C., Weiler S., Flavell R. A., Mak T. W., Lindsten T., Korsmeyer S. J., Bcl‐2, Bcl‐xl sequester BH3 domain‐only molecules preventing Baxand Bak‐mediated mitochondrial apoptosis, Mol. Cell., 8: 705–711, 2001. [DOI] [PubMed] [Google Scholar]
  • 32. Brustugun O., Fladmark K., Doskeland S., Orrenius S., Zhivotovsky B., Apoptosis induced by microinjection of cytochrome c is caspase‐dependent and is inhibited by Bcl‐2, Cell Death Diff., 5: 660–668, 1998. [DOI] [PubMed] [Google Scholar]
  • 33. Rosse T., Bcl‐2 prolongs cell survival after Bax‐induced release of cytochrome c, Nature, 391: 496–499, 1998. [DOI] [PubMed] [Google Scholar]
  • 34. Kroemer G., The proto‐oncogene Bcl‐2 and its role in regulating apoptosis, Nature Med., 3: 614–620, 1997. [DOI] [PubMed] [Google Scholar]
  • 35. Kuwana T., Mackey M., Perkins G., Ellison MH., Latterich M., Schneiter R., Green D., Newmeyer D. D., Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane, Cell, 111: 331–342, 2002. [DOI] [PubMed] [Google Scholar]
  • 36. Wolter K. G., Hsu Y. T., Smith C. L., Nechushtan A., Xi, X. G. , Youle R. J., Movement of Bax from the cytosol to the mitochondria during apoptosis, J. Cell Biol., 139: 1281–1292, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Wei M. C., Zong W., Cheng E. H., Lindsten T., Panoutsakopoulou V., Ross A. J., Roth K. A., MacGregor G. R., Thompson C. B., Korsmeyer S. J., Proapoptotic bax and bak: A requisite gateway to mitochondrial dysfunction and death, Science, 292: 727–730, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Nechushtan A., Smith C. L., Hsu Y. T., Youle R. J., Conformation of the Bax C‐terminus regulates subcellular location and cell death, EMBO, 18: 2230–2241, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Eskes R., Desagher S., Antonsson B., Martinou J. C., Bid induces the oligomerization and insertion of bax into the outer mitochondrial membrane, Mol. Cell. Biol., 20: 929–935, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. von Ahnsen O., Renkin C., Perkins G., Kluck R., Bossy‐Wetzel E., Newmeyer D. D., Preservation of mitochondrial structure and function after bid‐ or baxmediated cytochrome c release, J. Cell Biol., 150: 1027–1036, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Jürgensmeier J. M., Xie Z., Deveraux Q., Ellerby L., Bredesen D., Reed J. C., Bax directly induces release of cytochrome c from isolated mitochondria, PNAS, USA, 95: 4997–5002, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Ghatan S., Larner S., Kinoshita Y., Hetman M., Patel L., Xia Z., Youle R. J., Morrison R. S., p38 MAP kinase mediates bax translocation in nitric oxide‐induced apoptosis in neurons, J. Cell Biol., 150: 335–347, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Samali A., Cotter T. G., Heat shock proteins increase resistance to apoptosis, Ex.l Cell Res., 223: 163–170, 1996. [DOI] [PubMed] [Google Scholar]
  • 44. Mehlen P., Schulze‐Osthoff K., Arrigo A. P., Small stress proteins as novel regulators of apoptosis, J. Biol. Chem., 271: 16510–16514, 1996. [DOI] [PubMed] [Google Scholar]
  • 45. Jolly C., Morimoto R. I., Role of the heat shock response and molecular chaperones in oncogenesis and cell death, J. Nat. Can. Inst., 92: 1564–1572, 2000. [DOI] [PubMed] [Google Scholar]
  • 46. Beere H. M., Wolf B. B., Cain K., Kuwana T., Tailor P., Morimoto R. I., Cohen G., Green D., Heat shock protein 70 inhibits apoptosis by preventing recruitment of procaspase‐9 to the apaf‐1 apoptosome, Nature Cell Biology, 2: 469–475, 2005. [DOI] [PubMed] [Google Scholar]
  • 47. Garrido C, Bruey J. M., Fromentin A., Hammann A., Arrigo A. P., Solary E., HSP27 inhibits cytochrome cdependent activation of procaspase‐9, FASEB J., 13: 2061–2070, 1999. [DOI] [PubMed] [Google Scholar]
  • 48. Mosser D. D., Caron A. W., Bourget L., Meriin A. B., Sherman M. Y., Morimoto R. I., Massie B., The Chaperone Function of HSP70 Is Required for Protection against Stress‐Induced Apoptosis, Molecular and Cellular Biology, 20: 7146–7159, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Mao H., Li F., Ruchalski K., Mosser D. D., Schwartz, J. H. , Wang Y., Borkan S. C., HSP72 Inhibits Focal Adhesion Kinase Degradation in ATP‐depleted Renal Epithelial Cells, Journal of Biological Chemistry, 278: 18214–18220, 2003. [DOI] [PubMed] [Google Scholar]
  • 50. Wang Y., Knowlton A. A., Christensen T. G., Shih T., and Borkan S. C., Prior heat stress inhibits apoptosis in adenosine triphosphate‐depleted renal tubular cells, Kidney International, 55: 2224–2235, 1999. [DOI] [PubMed] [Google Scholar]
  • 51. Kamradt M. C., Chen F., Cryns V. L., The Small Heat Shock Protein alpha B‐Crystallin Negatively Regulates Cytochrome c‐ and Caspase‐8‐dependent Activation of Caspase‐3 by Inhibiting Its Autoproteolytic Maturation, J. Biol. Chem., 276: 16059–16063, 2001. [DOI] [PubMed] [Google Scholar]
  • 52. Gabai V. L., Meriin A. B., Yaglom J. A., Volloch V. Z., Sherman M. Y., Role of HSP70 in regulation of stresskinase JNK: implications for apoptosis and aging, FEBS Lett., 43: 1–4, 1998. [DOI] [PubMed] [Google Scholar]
  • 53. Jäättela M., Wissing D., Kikolm K., Kallunki T., Egeblad M., HSP70 exerts is anti‐apoptotic function downstream of caspase‐3‐like proteases, EMBO, 17: 6124–6134, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Galea‐Lauri J., Richardson A. J., Latchman D. S., Katz D. R., Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid line U937 following induction with TNF‐ and cycloheximide, J. Immunol., 157: 4109–4118, 1996. [PubMed] [Google Scholar]
  • 55. Lin K. M., Lin B., Lian I. Y., Mestril R., Scheffler I., Dillmann W. H., Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia‐reoxygenation, Circulation, 103: 1787–1792, 2001. [DOI] [PubMed] [Google Scholar]
  • 56. Samali A., Cai J., Zhivotovsky B., Jones D. P., Orrenius S., Presence of a pre‐apoptotic complex of procaspase‐3, HSP60 and HSP10 in the mitochondrial fraction of Jurkat cells, EMBO, 18: 2040–2048, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Kirchhoff S. R., Gupta S., Knowlton A. A., Cytosolic HSP60, Apoptosis, and Myocardial Injury, Circulation, 105: 2899–2904, 2002. [DOI] [PubMed] [Google Scholar]
  • 58. Gupta S., Knowlton A. A., Cytosolic HSP60, Hypoxia and Apoptosis, Circulation, 106: 2727–2733, 2002. [DOI] [PubMed] [Google Scholar]
  • 59. Nouraini S., Six E., Matsuyama S., Reed J. C., The putative pore forming domain of Bax regulates mitochondrial localization and interaction with Bcl‐Xl, Mol. and Cell. Biol., 20: 1604–1615, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Hsu Y. T., Wolter K. G., and Youle R. J., Cytosol‐tomembrane redistribution of Bax and Bcl‐Xl during apoptosis, PNAS, USA, 94: 3668–3672, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Saikumar P., Dong Z., Patel Y., Hall K., Hopfer U., Weinberg J. M., Venkatachalam M. A., Role of hypoxia‐induced Bax translocation and cytochrome c release in reoxygenation injury, Oncogene, 17: 3401–3415, 1998. [DOI] [PubMed] [Google Scholar]
  • 62. Leri A., Liu Y., Malhotra A., Li Q., Stiegler P., Claudio P. P., Giordano A., Kajstura J., Hintze T. H., Anversa P., Pacing‐induced heart failure in dogs enhances the expression of p53 and p53‐dependent genes in ventricular myocytes, Circulation, 97: 194–203, 1998. [DOI] [PubMed] [Google Scholar]
  • 63. Shan Y. X., Liu T. J., Su H. F., Samsamshariat A., Mestril R., Wang P. H., Hsp10 and Hsp60 modulate Bcl‐2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells, J. Mol. Cell. Cardiol., 35: 1135–1143, 2003. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES