Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(3):249–257. doi: 10.1111/j.1582-4934.2003.tb00225.x

Regulation of apoptosis by Bcl‐2 family proteins

Alexandrina Burlacu 1,
PMCID: PMC6741335  PMID: 14594549

Abstract

For multicellular organisms, the rigorous control of programmed cell death is as important as that of cell proliferation. The mechanisms involved in the regulation of cell death are not yet understood, but a key component is the family of caspases which are activated in a cascade and are responsible for the apoptotic‐specific changes and disassembly of the cell. Although the caspases represent a central point in apoptosis, their activation is regulated by a variety of other factors. Among these, Bcl‐2 family plays a pivotal role in caspases activation, by this deciding whether a cell will live or die. Bcl‐2 family members are known to focus much of their response to the mitochondria level, upstream the irreversible cellular damage, but their functions are not yet well defined. This review summarizes the recent data regarding the Bcl‐2 proteins and the ways they regulate the apoptosis.

Keywords: apoptosis, Bel‐2 proteins, mitochondria

References

  • 1. Vaux D.L. and Korsmeyer S.J., Cell death in development, Cell, 96: 245, 1999. [DOI] [PubMed] [Google Scholar]
  • 2. Kerr J.F., Wyllie A.H., Currie A.R., Apoptosis: a basic biological phenomenon with wide range implications in tissue kinetics, Br. J. Cancer, 26: 239, 1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Thompson C. B., Apoptosis in the pathogenesis and treatment of disease, Science, 267: 1456, 1995. [DOI] [PubMed] [Google Scholar]
  • 4. Thornberry N.A. and Lazebnik Y., Caspases: Enemies Within, Science, 281: 1312, 1998. [DOI] [PubMed] [Google Scholar]
  • 5. Adams J.M., Cory S., The Bcl‐2 Protein Family: Arbiters of Cell Survival, Science, 281: 1322, 1998. [DOI] [PubMed] [Google Scholar]
  • 6. Chao D.T., Korsmeyer S.J., Bcl‐2 family: regulators of cell death, Annu. Rev. Immunol., 16: 395, 1998. [DOI] [PubMed] [Google Scholar]
  • 7. Tsujimoto Y., Cossman J., Jaffe E., Croce C.M., Involvement of the bcl‐2 gene in human follicular lymphoma, Science, 228: 1440, 1985. [DOI] [PubMed] [Google Scholar]
  • 8. Hockenbery D., Nunez G., Milliman C., Schreiber R.D., SKorsmeyer. J. , Bcl‐2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature, 348: 334, 1990. [DOI] [PubMed] [Google Scholar]
  • 9. Gulbing E., Jekle A., Ferlinz K., Grassme H., Lang F., Physiology of apoptosis, Am. J. Physiol. Renal. Physiol., 279: F605, 2000. [DOI] [PubMed] [Google Scholar]
  • 10. Haunstetter A., Izumo S., Apoptosis. Basic Mechanisms and Implications for Cardiovascular Disease, Circ. Res., 82: 1111, 1998. [DOI] [PubMed] [Google Scholar]
  • 11. Puthalakath H., Strasser A., Keeping killers on a tight leash: transcriptional and post‐translational control of the pro‐apoptotic activity of BH3‐only proteins, Cell Death Differ., 9: 505, 2002. [DOI] [PubMed] [Google Scholar]
  • 12. Nguyen M., Millar D.G., Yong V.W., Korsmeyer S.J., Shore G.C., Targeting of Bcl‐2 to the mitochondrial outer membrane by a COOH‐ terminal signal anchor sequence, J. Biol. Chem., 268: 25265, 1993. [PubMed] [Google Scholar]
  • 13. Krajewski S., Bodrug S., Gascoyne R., Berean K., Krajewska M., Reed J.C., Immunohistochemical analysis of Mcl‐1 and Bcl‐2 proteins in normal and neoplastic lymph nodes, Am. J. Pathol., 145: 515, 1994. [PMC free article] [PubMed] [Google Scholar]
  • 14. Zhu W., Cowie A., Wasfy G.W., Penn L.Z., Leber B., and Andrews D.W., Bcl‐2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types, EMBO J., 15: 4130, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 15. Krajewski S., Tanaka S., Takayama S., Schibler M.J., Fenton W., Reed J.C., Investigation of the subcellular distribution of the bcl‐2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes, Cancer Res., 53: 4701, 1993. [PubMed] [Google Scholar]
  • 16. Wolter K.G., Hsu Y.T., Smith C.L., Nechushtan A., Xi X.G., Youle R.J., Movement of Bax from the cytosol to mito‐chondria during apoptosis, J. Cell Biol., 139: 1281, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Hsu Y.T., Wolter K.G., and Youle R.J., Cytosol‐to‐membrane redistribution of Bax and Bcl‐X(L) during apoptosis, Proc. Natl. Acad. Sci., 94: 3668, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Goping I.S., Gross A., Lavoie J.N., Nguyen M., Jemmerson R., Roth K., Korsmeyer S.J., Shore G.C., Regulated targeting of BAX to mitochondria, J. Cell Biol., 143: 207, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Griffiths G.J., Dubrez L., Morgan C.P., Jones N.A, Whitehouse J., Corfe B.M., Dive C., Hickman J.A., Cell damage‐induced conformational changes of the pro‐apoptotic protein Bak in vivo precede the onset of apoptosis, J. Cell Biol., 144: 903, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Matter M.L., Ruoslahti E., A signaling pathway from the α5β1 and αvβ3 integrins that elevates bcl‐2 transcription, J. Biol. Chem., 276: 27757, 2001. [DOI] [PubMed] [Google Scholar]
  • 21. Haendeler J., Messmer U.K., Brüne B., Neugebauer E., Dimmeler S., Endotoxic shock leads to apoptosis in vivo and reduces Bcl‐2, Shock, 6: 405, 1996. [DOI] [PubMed] [Google Scholar]
  • 22. Krajewski S., Mai J.K., Krajewska M., Sikorska M., Mossakowski M.J., Reed J.C., Upregulation of bax protein levels in neurons following cerebral ischemia, J. Neurosci., 15: 6364, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Inohara N., Ding L., Chen S., Nunez G., Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival‐promoting proteins Bcl‐2 and Bcl‐X(L), EMBO J., 16: 1686, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Miyashita T., Reed J.C., Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, 80: 293, 1995. [DOI] [PubMed] [Google Scholar]
  • 25. Gross A., Mcdonnell J.M., Korsmeyer S.J., Bcl‐2 family members and the mitochondria in apoptosis, Genes & Development, 13: 1899, 1999. [DOI] [PubMed] [Google Scholar]
  • 26. Oltvai Z.N., Milliman C.L., Korsmeyer S.J., Bcl‐2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell, 74: 609, 1993. [DOI] [PubMed] [Google Scholar]
  • 27. Sato T., Hanada M., Bodrug S., Irie S., Iwama N., Boise L.H., Thompson C.B., Golemis E., Fong L., Wang H.G., Reed J.C., Interactions among members of the Bcl‐2 protein family analyzed with a yeast two‐hybrid system, Proc. Natl. Acad. Sci. USA, 91: 9238, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Gross A., Jockel J., Wei M.C., Korsmeyer S.J., Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis, EMBO J., 17: 3878, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Zha J., Harada H., Yang E., Jockel J., and Korsmeyer S.J., Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14‐3‐3 not BCL‐X(L), Cell, 87: 619, 1996. [DOI] [PubMed] [Google Scholar]
  • 30. Muchmore S.W., Sattler M., Liang H., Meadows R.P., Harlan J.E., Yoon H.S., Nettesheim D., Chang B.S., Thompson C.B., Wong S.L., Ng S.L., Fesik S.W., X‐ray and NMR structure of human Bcl‐xL, an inhibitor of programmed cell death, Nature, 381: 335, 1996. [DOI] [PubMed] [Google Scholar]
  • 31. Sattler M., Liang H., Nettesheim D., Meadows R.P., Harlan J.E., Eberstadt M., Yoon H.S., Shuker S.B., Chang B.S., Minn A.J., Thompson C.B., Fesik S.W., Structure of Bcl‐XL‐Bak peptide complex: recognition between regulators of apoptosis, Science, 275: 983, 1997. [DOI] [PubMed] [Google Scholar]
  • 32. McDonnell J.M., Fushman D., Milliman C.L., Korsmeyer S.J., Cowburn D., Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists, Cell, 96: 625, 1999. [DOI] [PubMed] [Google Scholar]
  • 33. Condorelli F., Salomoni P., Cotteret S., Cesi V., Srinivasula M.S., Alnemri E.S., Calabretta B., Caspase Cleavage Enhances the Apoptosis‐Inducing Effects of BAD, Mol. Cell. Biol., 21: 3025, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Ayllón V., Fleischer A., Cayla X., Garcýa A., Rebollo A., Segregation of Bad from Lipid Rafts Is Implicated in the Induction of Apoptosis, J. Immunol., 168: 3387, 2002. [DOI] [PubMed] [Google Scholar]
  • 35. Kelekar A., Chang B.S., Harlan J.E., Fesik S.W., Thompson C.B., Bad is a BH3 domain‐containing protein that forms an in activating dimer with Bcl‐XL , Mol. Cell. Biol., 17: 7040, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Zha J., Harada H., Osipov K., Jockel J., Waksman G., Korsmeyer S.J., BH3 domain of BAD is required for heterodimerization with BCL‐XL and proapoptotic activity, J. Biol. Chem., 272: 24101, 1997. [DOI] [PubMed] [Google Scholar]
  • 37. Klumpp S., Krieglstein J., Serine/threonine protein phosphatases in apoptosis, Curr. Opin. Pharmacol., 2: 458, 2002. [DOI] [PubMed] [Google Scholar]
  • 38. Datta S.R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M.E., Akt phosphorylation of BAD couples survival signals to the cell‐intrinsic death machinery, Cell, 91: 231, 1997. [DOI] [PubMed] [Google Scholar]
  • 39. del Peso L., Gonzalez‐Garcia M., Page C., Herrera R., Nunez G., Interleukin‐3‐induced phosphorylation of BAD through the protein kinase Akt, Science, 278: 689, 1997. [DOI] [PubMed] [Google Scholar]
  • 40. Cardone, M.H. , Roy N., Stennicke H.R., Salvesen G.S., Franke T.F., Stanbridge E., Frisch S., Reed J.C., Regulation of cell death protease caspase‐9 by phosphorylation, Science, 282: 1318, 1998. [DOI] [PubMed] [Google Scholar]
  • 41. She Q.B., Ma W.Y., Zhong S., Dong Z, Activation of JNK1, RSK2, and MSK1 is involved in Serine 112 phosphorylation of Bad by ultraviolet B radiation, J. Biol. Chem., 5: 24039, 2002. [DOI] [PubMed] [Google Scholar]
  • 42. Harada H., Becknell B., Wilm M., Mann M., Huang L.J., Taylor S.S., Scott J.D., Korsmeyer S.J., Phosphorylation and inactivation of BAD by mitochondria‐anchored protein kinase A , Mol. Cell, 3: 413, 1999. [DOI] [PubMed] [Google Scholar]
  • 43. Brichese L, Barboule N, Heliez C, Valette A, Bcl‐2 phosphorylation and proteasome‐dependent degradation induced by Paclitaxel treatment: consequences on sensitivity of isolated mitochondria to Bid, Exp. Cell. Res., 1: 1101, 2002. [DOI] [PubMed] [Google Scholar]
  • 44. Ito T., Deng X., Carr B., and May W.S., Bcl‐2 phosphorylation required for anti‐apoptosis function, J. Biol. Chem, 272: 11671, 1997. [DOI] [PubMed] [Google Scholar]
  • 45. Poommipanit P.B., Chen B., Oltvai Z.N., Interleukin‐ 3 induces the phosphorylation of a distinct fraction of Bcl‐ 2, J. Biol. Chem., 274: 1033, 1999. [DOI] [PubMed] [Google Scholar]
  • 46. Breitschopf K., Haendeler J., Malchow P., Zeiher A. M., Dimmeler S., Posttranslational Modification of Bcl‐2 Facilitates its Proteasome‐Dependent Degradation: Molecular Characterization of the Involved signaling Pathway, Mol. Cell. Biol., 20: 1886, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Wang K., Yin X.M., Chao D.T., Milliman C.L., Korsmeyer S.J., BID: A novel BH3 domain‐only death agonist. Genes & Dev., 10: 2859, 1996. [DOI] [PubMed] [Google Scholar]
  • 48. Li H., Zhu H., Xu C.J., Yuan J., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell, 94: 491, 1998. [DOI] [PubMed] [Google Scholar]
  • 49. Blomgren K., Zhu C., Wang X., Karlsson J.O., Leverin A.L., Bahr B.A., Mallard C., Hagberg H., Synergistic activation of caspase‐3 by calpain after neonatal hypoxiaischemia: a mechanism of “pathological apoptosis”?, Biol. Chem., 276: 10191, 2001. [DOI] [PubMed] [Google Scholar]
  • 50. Barry M., Heibein J.A., Pinkoski M.J., Lee S.‐F., Moyer R.W., Green D.R., Bleackley R.C., Granzyme B short‐circuits the need for caspase 8 activity during granule‐mediated cytotoxic T‐lymphocyte killing by directly cleaving Bid, Mol. Cell. Biol., 20: 3781, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Gross A., Yin X.M., Wang K., Wei M.C., Jockel J., Milliman C., Erdjument‐Bromage H., Tempst P., Korsmeyer S.J., Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL‐XL prevents this release but not tumor necrosis factor‐R1/Fas death, J. Biol. Chem., 274: 1156, 1999. [DOI] [PubMed] [Google Scholar]
  • 52. Korsmeyer S. J., Wei M.C., Saito M., Weiler S., Oh K.J., Schlesinger P.H., Pro‐apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c, Cell Death Differ., 7: 1166, 2000. [DOI] [PubMed] [Google Scholar]
  • 53. Mandic A., Viktorsson K., Strandberg L., Heiden T., Maria C. Hansson J., Shoshan L.S., Calpain‐Mediated Bid Cleavage and Calpain‐Independent Bak Modulation: Two Separate Pathways in Cisplatin‐Induced Apoptosis, Mol. Cel. Biol., 22: 3003, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Velthuis J.H., Rouschop K.M., De Bont H.J., Mulder G.J., Nagelkerke J.F., Distinct Intracellular Signaling in Tumor Necrosis Factor‐related Apoptosis‐inducing Ligand‐ and CD95 Ligand‐mediated Apoptosis, J. Biol. Chem., 5: 24631, 2002. [DOI] [PubMed] [Google Scholar]
  • 55. Chou J.J., Li H., Salvesen G.S., Yuan J., Wagner G., Solution structure of BID, an intracellular amplifier of apoptotic signaling, Cell, 96: 615, 1999. [DOI] [PubMed] [Google Scholar]
  • 56. Darnell J.E., Lodish H.F., Baltimore D., Molecular Cell Biology, W.H. Freeman, New York , 1990. [Google Scholar]
  • 57. Desagher S., Osen‐Sand A., Nichols A., Eskes R., Montessuit S., Lauper S., Maundrell K., Antonsson B., Martinou J.C., Bid‐induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis, J. Cell Biol., 144: 891, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Cheng, E.H. , Kirsch D.G., Clem R.J., Ravi R., Kastan M.B., Bedi A., Ueno K., Hardwick J.M., Conversion of Bcl‐2 to a Bax‐like death effector by caspases, Science, 278: 1966, 1997. [DOI] [PubMed] [Google Scholar]
  • 59. Clem, R.J. , Cheng E.H., Karp C.L., Kirsch D.G., Ueno K., Takahashi A., Kastan M.B., Griffin D.E., Earnshaw W.C., Veliuona M.A., Hardwick J.M., Modulation of cell death by Bcl‐XL through caspase interaction, Proc. Natl. Acad. Sci., 95: 554, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Grandgirard D., Studer E., Monney L., Belser T., Fellay I., Borner C., Michel M.R., Alphaviruses induce apoptosis in Bcl‐2‐overexpressing cells: evidence for a caspase‐mediated, proteolytic inactivation of Bcl‐2, EMBO J., 17: 1268, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Puthalakath H., Huang D.C., O'Reilly L.A., King S.M., and Strasser A., The proapoptotic activity of the Bcl‐2 family member Bim is regulated by interaction with the dynein motor complex, Mol. Cell, 3: 287, 1999. [DOI] [PubMed] [Google Scholar]
  • 62. Zong W‐X, Lindsten T., Ross A.J., MacGregor G.R., Thompson C.B., BH3‐only proteins that bind pro‐survival Bcl‐2 family members fail to induce apoptosis in the absence of Bax and Bak, Genes & Development, 15: 1481, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES