Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;9(1):21–40. doi: 10.1111/j.1527-3458.2003.tb00242.x

Dehydroepiandrosterone (DHEA) and the Aging Brain: Flipping a Coin in the “Fountain of Youth”

Marco Racchi 1,, Carla Balduzzi 1, Emanuela Corsini 2,1
PMCID: PMC6741703  PMID: 12595910

ABSTRACT

The physiological role of dehydroepiandrosterone (DHEA) and its sulphated ester DHEA(S) has been studied for nearly 2 decades and still eludes final clarification. The major interest in DHEA derives from its unique pattern of activity. Its levels exhibit a dramatic age‐related decline that supports significant involvement of DHEA(S) in the aging process. Particularly relevant to the aging process is the functional decline that involves memory and cognitive abilities. DHEA is derived mainly from synthesis in the adrenal glands and gonads. It can also be detected in the brain where it is derived from a synthesis that is independent from peripheral steroid sources. For this reason DHEA and other steroid molecules have been named “neurosteroids.” Pharmacological studies on animals provided evidence that neurosteroids could be involved in learning and memory processes because they can display memory‐enhancing properties in aged rodents. However, human studies have reported contradictory results that so far do not directly support the use of DHEA in aging‐related conditions. As such, it is important to remember that plasma levels of DHEA(S) may not reflect levels in the central nervous system (CNS), due to intrinsic ability of the brain to produce neurosteroids. Thus, the importance of neurosteroids in the memory process and in age‐related cognitive impairment should not be dismissed. Furthermore, the fact that the compound is sold in most countries as a health food supplement is hampering the rigorous scientific evaluation of its potential. We will describe the effect of neurosteroids, in particular DHEA, on neurochemical mechanism involved in memory and learning. We will focus on a novel effect on a signal transduction mechanism involving a classical “cognitive kinase” such as protein kinase C. The final objective is to provide additional tools to understand the physiological role and therapeutic potentials of neurosteroids in normal and/or pathological aging, such as Alzheimer's disease.

Keywords: Aging, Brain, Dehydroepiandrosterone, DHEA, Signal transduction

Full Text

The Full Text of this article is available as a PDF (219.7 KB).

References

  • 1. Adams JB Control of secretion and function of C19‐delta 5‐steroids of the human adrenal gland. Mol Cell Endocrinol 1985;41:1–17. [DOI] [PubMed] [Google Scholar]
  • 2. Aldred S, Waring RH. Localisation of dehydroepiandrosterone sulphotransferase in adult rat brain. Brain Res Bull 1999;48:291–296. [DOI] [PubMed] [Google Scholar]
  • 3. Arlt W, Haas J, Callies F, et al. Biotransformation of oral dehydroepiandrosterone in elderly men: Significant increase in circulating estrogens. J Clin Endocrinol Metab 1999;84:2170–2176. [DOI] [PubMed] [Google Scholar]
  • 4. Arlt W, Callies F, Koehler I, et al. Dehydroepiandrosterone supplementation in healthy men with an age‐related decline of dehydroepiandrosterone secretion. J Clin Endocrinol Metab 2001;86:4686–4692. [DOI] [PubMed] [Google Scholar]
  • 5. Ballabio A, Shapiro LJ. Steroid sulfatase deficiency and X‐linked ichthyosis In: Schriver CR, Beaudet AL, Sly WS, Valle D, Eds. The metabolic and molecular bases of inherited disease. New York : McGraw‐Hill, 1995:2999–3022. [Google Scholar]
  • 6. Barrett‐Connor E, Edelstein SL. A prospective study of dehydroepiandrosterone sulfate and cognitive function in an older population: The Rancho Bernardo Study. J Am Geriatr Soc 1994;42:420–423. [DOI] [PubMed] [Google Scholar]
  • 7. Battaini F, Del Vesco R, Govoni S, Trabucchi M. Regulation of phorbol ester binding and protein kinase C activity in aged rat brain. Neurobiol Aging 1990;11:563–566. [DOI] [PubMed] [Google Scholar]
  • 8. Battaini F, Govoni S, Lucchi L, Ladisa V, Bergamaschi S, Trabucchi M. Age‐related changes in brain protein kinase C, expression, activity, and translocation. Drugs Dev 1993;2:275–282. [Google Scholar]
  • 9. Battaini F, Elkabes S, Bergamaschi S, et al. Protein kinase C activity, translocation, and conventional isoforms in aging rat brain. Neurobiol Aging 1995;16:137–148. [DOI] [PubMed] [Google Scholar]
  • 10. Battaini F, Pascale A, Lucchi L, Pasinetti G M, Govoni S. Protein kinase C anchoring deficit in postmortem brains of Alzheimer's disease patients. Exp Neurol 1999;159:559–564. [DOI] [PubMed] [Google Scholar]
  • 11. Baulieu EE. Neurosteroids: A novel function of the brain. Psychoneuroendocrinology 1998;23:963–987. [DOI] [PubMed] [Google Scholar]
  • 12. Baulieu EE. Dehydroepiandrosterone (DHEA): A fountain of youth J Clin Endocrinol Metabol 1996;81:3147–3151. [DOI] [PubMed] [Google Scholar]
  • 13. Baulieu EE. Neurosteroids: Pregnenolone and dehydroepiandrosterone in the brain In: Fuxe K, Agnati L, Eds. Receptor interactions. Basingstoke : Macmillan, 1987:89–104. [Google Scholar]
  • 14. Baulieu EE, Robel P. Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids. Proc Natl Acad Sci USA 1998;95:4089–4091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Baulieu EE, Robel P. Dehydroepiandrosterone and dehydroepiandrosterone sulfate as neuroactive neurosteroids. J Endocrinol 1996;150:S221–S239. [PubMed] [Google Scholar]
  • 16. Baulieu EE, Robel P. Neurosteroids: Anew brain function J Steroid Biochem Mol Biol 1990;37:395–403. [DOI] [PubMed] [Google Scholar]
  • 17. Baulieu EE, Thomas G, Legrain S, et al. Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci USA 2000;97:4279–4284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Beaujean D, Mensah‐Nyagan AG, Do‐Rego JL, Luu‐The V, Pelletier G, Vaudry H. Immunocytochemical localization and biological activity of hydroxysteroid sulfotransferase in the frog brain. J Neurochem 1999;72:848–857. [DOI] [PubMed] [Google Scholar]
  • 19. Beyenburg S, Stoffel‐Wagner B, Watzka M, et al. Expression of cytochrome P450scc mRNA in the hippocampus of patients with temporal lobe epilepsy. Neuroreport 1999;10:3067–3070. [DOI] [PubMed] [Google Scholar]
  • 20. Bergeron R, de Montigny C, Debonnel G. Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: Effects mediated via sigma receptors. J Neurosci 1996;16:1193–1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Bliss TV, Collingridge GL. A synaptic model of memory: Long‐term potentiation in the hippocampus. Nature 1993;361:31–39. [DOI] [PubMed] [Google Scholar]
  • 22. Birkenhager‐Gillesse EG, Derksen J, Lagaay AM. Dehydroepiandrosterone sulphate (DHEAS) in the oldest old, aged 85 and over. Ann NY Acad Sci 1994;719:543–552. [DOI] [PubMed] [Google Scholar]
  • 23. Bloch M, Schmidt PJ, Danaceau MA, Adams LF, Rubinow D. Dehydroepiandrosterone treatment of midlife dysthymia. Biol Psychiatry 1999;45:1533–1541. [DOI] [PubMed] [Google Scholar]
  • 24. Bonnet KA, Brown RP. Cognitive effects of DHEA replacement therapy In: Kalimi M, Regelson W, Eds. The biologic role of dehydroepiandrosterone. Berlin : Walter de Gruyter, 1990;65–79. [Google Scholar]
  • 25. Cascio C, Prasad VV, Lin YY, Lieberman S, Papadopoulos V. Detection of P450c17‐independent pathways for dehydroepiandrosterone (DHEA) biosynthesis in brain glial tumor cells. Proc Natl Acad Sci USA 1998;95:2862–2867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Cascio C, Brown RC, Liu Y, Han Z, Hales D, Papadopoulos V. Pathways of dehydroepiandrosterone formation in rat brain glia. J Steroid Biochem Mol Biol 2000;75:177–186. [DOI] [PubMed] [Google Scholar]
  • 27. Carlson LE, Sherwin BB. Steroid hormones, memory and mood in a healthy elderly population. Psychoneuroendocrinology 1998;23:583–603. [DOI] [PubMed] [Google Scholar]
  • 28. Carlson L, Sherwin B. Relationships among cortisol (CRT), dehydroepiandrosterone‐sulfate (DHEAS), and memory in a longitudinal study of healthy elderly men and women. Neurobiol Aging 1999;20:315–324. [DOI] [PubMed] [Google Scholar]
  • 29. Castellano C, McGaugh J. Effects of post‐training bicuculline and muscimol on retention: Lack of state dependency. Behav Neural Biol 1990;54:156–164. [DOI] [PubMed] [Google Scholar]
  • 30. Cheney DL, Uzunov D, Guidotti A. Pregnenolone sulfate antagonizes dizocilpine amnesia: Role for allopregnanolone. Neuroreport 1995;6:1697–1700. [DOI] [PubMed] [Google Scholar]
  • 31. Compagnone N, Bulfone A, Rubenstein J, Mellon S. Expression of the steroidogenic enzyme P450scc in the central and peripheral nervous systems during rodent embryogenesis. Endocrinology 1995;136:2689–2696. [DOI] [PubMed] [Google Scholar]
  • 32. Compagnone N, Bulfone A, Rubenstein J, Mellon S. Steroidogenic enzyme P450c17 is expressed in the embryonic central nervous system. Endocrinology 1995;136:5212–5223. [DOI] [PubMed] [Google Scholar]
  • 33. Compagnone N, Mellon S. Dehydroepiandrosterone: Apotential signalling molecule for neocortical organization during development. Proc Natl Acad Sci USA 1998;95:4678–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Compagnone N, Mellon S. Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000;21:1–56. [DOI] [PubMed] [Google Scholar]
  • 35. Compagnone N, Salido E, Shapiro L, Mellon S. Expression of steroid sulfatase during embryogenesis. Endocrinology 1997;138:4768–4773. [DOI] [PubMed] [Google Scholar]
  • 36. Corpechot C, Robel P, Axelson M, Sjovall J, Baulieu E. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 1981;78:4704–4707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Corpechot C, Synguelakis M, Talha S, et al. Pregnenolone and its sulfate ester in the rat brain. Brain Res 1983;270:119–125. [DOI] [PubMed] [Google Scholar]
  • 38. Corsini E, Battaini F, Lucchi L, et al. A defective protein kinase C anchoring system underlying age‐associated impairment in TNFα production in rat macrophages. J Immunol 1999;163:3468–3473. [PubMed] [Google Scholar]
  • 39. Corsini E, Lucchi L, Meroni M, et al. In vivo dehydroepiandrosterone restores age‐associated defects in the protein kinase C signal transduction pathway and related functional responses. J Immunol 2002;168:1753–1758. [DOI] [PubMed] [Google Scholar]
  • 40. De Peretti E, Forest M. Pattern of plasma dehydroepiandrosterone sulfate levels in humans from birth to adulthood: Evidence for testicular production. J Clin Endocrinol Metab 1978;47:572–577. [DOI] [PubMed] [Google Scholar]
  • 41. Debonnel G. Current hypotheses on sigma receptors and their physiological role: Possible implications in psychiatry. J Psychiatry Neurosci 1993;18:157–172. [PMC free article] [PubMed] [Google Scholar]
  • 42. Debonnel G, Bergeron R, de Montigny C. Potentiation by dehydroepiandrosterone of the neuronal response to N‐methyl‐D‐aspartate in the CA3 region of the rat dorsal hippocampus: An effect mediated via sigma receptors. J Endocrinol 1996;150:S33–S42. [PubMed] [Google Scholar]
  • 43. Debonnel G, de Montigny C. Modulation of NMDA and dopaminergic neurotransmissions by sigma ligands: Possible implications for the treatment of psychiatric disorders. Life Sci 1996;58:721–734. [DOI] [PubMed] [Google Scholar]
  • 44. Dekker L. V, Parker P. J. Protein kinase C – a question of specificity. Trends Biochem Sci 1994;19:73–77. [DOI] [PubMed] [Google Scholar]
  • 45. Endoh A, Kristiansen S, Casson P, Buster J, Hornsby P. The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3‐beta‐hydroxysteroid dehydrogenase. J Clin Endocrinol Metab 1996;81:3558–3565. [DOI] [PubMed] [Google Scholar]
  • 46. Engelhardt W, Friess K, Hartung E. Sold M, Dierks T. EEG and auditory evoked potential P300 compared with psychometric tests in assessing vigilance after benzodiazepine sedation and antagonism. Br J Anaesth 1992;69:75–80. [DOI] [PubMed] [Google Scholar]
  • 47. Flood J, Morley J, Roberts E. Memory‐enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 1992;89:1567–1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Flood J, Roberts E. Dehydroepiandrosterone sulfate improves memory in aging mice. Brain Res 1988;448:178–181. [DOI] [PubMed] [Google Scholar]
  • 49. Flood J, Smith G, Roberts E. Dehydroepiandrosterone and its sulfate enhance memory retention in mice. Brain Res 1988;447:269–278. [DOI] [PubMed] [Google Scholar]
  • 50. Flood J, Farr S, Johnson D, Li P, Morley J. Peripheral steroid sulfatase inhibition potentiates improvement of memory retention for hippocampally administered dehydroepiandrosterone sulfate but not pregnenolone sulfate. Psychoneuroendocrinology 1999;24:799–811. [DOI] [PubMed] [Google Scholar]
  • 51. Friedman E, Wang H. Effect of age on brain cortical protein kinase C and its mediation of 5‐hydroxytryptamine release. J Neurochem 1989;52:187–192. [DOI] [PubMed] [Google Scholar]
  • 52. Frye C, Sturgis J. Neurosteroids affect spatial/reference, working, and long‐term memory of female rats. Neurobiol Learn Mem 1995;64:83–96. [DOI] [PubMed] [Google Scholar]
  • 53. Frye R, Kroboth P, Kroboth F, et al. Sex differences in the pharmacokinetics of dehydroepiandrosterone (DHEA) after single‐ and multiple‐dose administration in healthy older adults. J Clin Pharmacol 2000;40:596–605. [PubMed] [Google Scholar]
  • 54. Furukawa A, Miyatake A, Ohnishi T, Ichikawa Y. Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system: Colocalization of StAR, cytochrome P‐450scc (CYP XIA1), and 3‐beta‐hydroxysteroid dehydrogenase in the rat brain. J Neurochem 1998;71:2231–2238. [DOI] [PubMed] [Google Scholar]
  • 55. Guazzo E, Kirkpatrick P, Goodyer I, Shiers H, Herbert J. Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: Relation to blood levels and the effects of age. J Clin Endocrinol Metab 1996;81:3951–3960. [DOI] [PubMed] [Google Scholar]
  • 56. Harrison N, Simmonds M. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 1984;323:287–292. [DOI] [PubMed] [Google Scholar]
  • 57. Harrison N, Vicini S, Barker J. A steroid anesthetic prolongs inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurosci 1987;7:604–609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Hillen T, Lun A, Reischies F, Borchelt M, Steinhagen‐Thiessen E, Schaub R. DHEA‐S plasma levels and incidence of Alzheimer's disease. Biol Psychiatry 2000;47:161–3. [DOI] [PubMed] [Google Scholar]
  • 59. Hornsby P. Biosynthesis of DHEAS by the human adrenal cortex and its age‐related decline. Ann NY Acad Sci 1995;774:29–46. [DOI] [PubMed] [Google Scholar]
  • 60. Huppert F, Van Niekerk J. Dehydroepiandrosterone (DHEA) supplementation for cognitive function. Cochrane Database Syst Rev 2001;2:CD000304. [DOI] [PubMed] [Google Scholar]
  • 61. Imamura M, Prasad C. Modulation of GABA‐gated chloride ion influx in brain by dehydroepiandrosterone and its metabolites. Biochem Biophys Res Commun 1998;243:771–775. [DOI] [PubMed] [Google Scholar]
  • 62. Introini‐Collison I, Castellano C, McGaugh J. Interaction of GABA ergic and beta‐noradrenergic drugs in regulation of memory storage. Behav Neural Biol 1994;61:150–155. [DOI] [PubMed] [Google Scholar]
  • 63. Izquierdo I. Pharmacological evidence for a role of long‐term potentiation in memory. FASEB J 1994;8:1139–1145. [PubMed] [Google Scholar]
  • 64. Jung‐Testas I, Hu Z. Y, Baulieu E, Robel P. Neurosteroids: Biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology 1989;125:2083–2091. [DOI] [PubMed] [Google Scholar]
  • 65. Khorram O. DHEA: A hormone with multiple effects. Curr Opin Obstet Gynecol 1996;8:351–354. [PubMed] [Google Scholar]
  • 66. Kimonides V, Khatibi N, Svendsen C, Sofroniew M, Herbert J. Dehydroepiandrosterone (DHEA) and DHEA‐sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid‐induced neurotoxicity. Proc Natl Acad Sci USA 1998;95:1852–1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Kimonides V, Spillantini M, Sofroniew M, Fawcett J, Herbert J. Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress‐activated protein kinase 3 in hippocampal primary cultures. Neuroscience 1999;89:429–436. [DOI] [PubMed] [Google Scholar]
  • 68. Kimoto T, Tsurugizawa T, Ohta Y. Neurosteroid synthesis by cytochrome p450‐containing systems localized in the rat brain hippocampal neurons: N‐methyl‐D‐aspartate and calcium‐dependent synthesis. Endocrinology 2001;142:3578–3589. [DOI] [PubMed] [Google Scholar]
  • 69. Kohchi C, Ukena K, Tsutsui K, et al. Age‐ and region‐specific expressions of the messenger RNAs encoding for steroidogenic enzymes p450scc, P450c17 and 3beta‐HSD in the postnatal rat brain. Brain Res 1998;801:233–238. [DOI] [PubMed] [Google Scholar]
  • 70. Kraft AS, Anderson WB. Phorbol esters increase the amount of Ca2+, phospholipid‐dependent protein kinase associated with plasma membrane. Nature 1983;301:621–623. [DOI] [PubMed] [Google Scholar]
  • 71. Kulikowski J, McGlone F, Kranda K, Ott H. Are the amplitudes of visual evoked potentials sensitive indices of hangover effects after repeated doses of benzodiazepines Psychopharmacol Suppl 1984;1:154–164. [DOI] [PubMed] [Google Scholar]
  • 72. Ladurelle N, Eychenne B, Denton D, et al. Prolonged intracerebroventricular infusion of neurosteroids affects cognitive performances in the mouse. Brain Res 2000;858:371–379. [DOI] [PubMed] [Google Scholar]
  • 73. Lambert J, Belelli D, Hill‐Venning C, Peters J. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 1995;16:295–303. [DOI] [PubMed] [Google Scholar]
  • 74. Le Goascogne C, Robel P, Gouezou M, Sananes N, Baulieu E, Waterman M. Neurosteroids: Cytochrome P450scc in rat brain. Science 1987;237:1212–1215. [DOI] [PubMed] [Google Scholar]
  • 75. Le Goascogne C, Sananes N, Gouezou M, et al. Immunoreactive cytochrome P‐450(17α) in rat and guinea‐pig gonads, adrenal glands and brain. J Reprod Fertil 1991;93:609–622. [DOI] [PubMed] [Google Scholar]
  • 76. Le Goascogne C, Robel P, Gouezou M, Sananes N, Baulieu E, Waterman M. Neurosteroids: Cytochrome P450scc in rat brain. Science 1984;237:1212–1215. [DOI] [PubMed] [Google Scholar]
  • 77. Leblhuber F, Windhager E, Reisecker F, Steinparz F, Dienstl E. Dehydroepinadrosterone sulphate in Alzheimer's disease. Lancet 1990;336:449. [Google Scholar]
  • 78. Legrain S, Berr C, Frenoy N, Gourlet V, Debuire B, Baulieu E. Dehydroepiandrosterone sulfate in a long‐term care aged population. Gerontology 1995;41:343–51. [DOI] [PubMed] [Google Scholar]
  • 79. Legrain S, Massien C, Lahlou N, et al. Dehydroepiandrosterone replacement administration: Pharmacokinetic and pharmacodynamic studies in healthy elderly subjects. J Clin Endocrinol Metab 2000;85:3208–3217. [DOI] [PubMed] [Google Scholar]
  • 80. Li P, Rhodes M, Burke AM, Johnson D. Memory enhancement mediated by the steroid sulfatase inhibitor (p‐O‐sulfamoyl)‐N‐tetradecanoyl tyramine. Life Sci 1997;60:PL45–51. [DOI] [PubMed] [Google Scholar]
  • 81. Li X, Salido E, Gong Y, et al. Cloning of the rat steroid sulfatase gene (Sts), a non‐pseudo‐autosomal X‐linked gene that undergoes X inactivation. Mam Genome 1996;7:420–424. [DOI] [PubMed] [Google Scholar]
  • 82. Liu C, Laughlin G, Fischer U, Yen S. Marked attenuation of ultradian and circadian rhythms of dehydroepiandrosterone in postmenopausal women: Evidence for a reduced 17,20‐desmolase enzymatic activity. J Clin Endocrinol Metab 1990;71:900–906. [DOI] [PubMed] [Google Scholar]
  • 83. Lupien S, Lecours AR, Schwartz G, et al. Longitudinal study of basal cortisol levels in healthy elderly subjects: Evidence for subgroups. Neurobiol Aging 1996;17:95–105. [DOI] [PubMed] [Google Scholar]
  • 84. Majewska MD. Neurosteroids: Endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 1992;38:379–395. [DOI] [PubMed] [Google Scholar]
  • 85. Majewska M, Harrison NL, Schwartz RD, Barker JL, Paul S. M. Steroid hormone metabolites are barbiturate‐like modulators of the GABA receptor. Science 1986;232:1004–1007. [DOI] [PubMed] [Google Scholar]
  • 86. Martin F, Siddle DA, Gourley M, Taylor J, Dick R. P300 and traffic scenes: The effect of temazepam. Biol Psychol 1992;33:225–240. [DOI] [PubMed] [Google Scholar]
  • 87. Mathur C, Prasad V, Raju VS, Welch M, Lieberman S. Steroids and their conjugates in the mammalian brain. Proc Natl Acad Sci USA 1993;90:85–88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Mathis C, Paul SM, Crawley JN. The neurosteroid pregnenolone sulfate blocks NMDA antagonist‐induced deficits in a passive avoidance memory task. Psychopharmacology (Berl) 1994;116:201–6. [DOI] [PubMed] [Google Scholar]
  • 89. Matsuno K, Senda T, Kobayashi T, Mita S. Involvement of sigma 1 receptor in (+)‐N‐allylnormetazocine‐stimulated hippocampal cholinergic functions in rats. Brain Res 1995;690:200–206. [DOI] [PubMed] [Google Scholar]
  • 90. Matsuno K, Senda T, Matsunaga K, Mita S. Ameliorating effects of sigma receptor ligands on the impairment of passive avoidance tasks in mice: Involvement in the central acetylcholinergic system. Eur J Pharmacol 1994;261:43–51. [DOI] [PubMed] [Google Scholar]
  • 91. Maurice T, Su TP, Privat A. Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25–35‐amyloid peptide‐induced amnesia in mice through a common mechanism. Neuroscience 1998;83:413–428. [DOI] [PubMed] [Google Scholar]
  • 92. Maurice T, Lockhart BP. Neuroprotective and anti‐amnesic potentials of sigma (sigma) receptor ligands. Prog Neuropsychopharmacol Biol Psychiatry 1997;21:69–102. [DOI] [PubMed] [Google Scholar]
  • 93. Maurice T, Roman F, Privat A. Modulation by neurosteroids of the in vivo (+)‐[3H]SKF‐10,047 binding to sigma 1 receptors in the mouse forebrain. J Neurosci Res 1996;46:734–743. [DOI] [PubMed] [Google Scholar]
  • 94. Maurice T, Roman F, Su T, Privat A. Beneficial effects of sigma agonists on the age‐related learning impairment in the senescence‐accelerated mouse. Brain Res 1996;733:219–230. [DOI] [PubMed] [Google Scholar]
  • 95. Mayo W, Dellu F, Robel P, et al. Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processess in the rat. Brain Res 1993;607:324–328. [DOI] [PubMed] [Google Scholar]
  • 96. Melchior CL, Ritzmann RF. Neurosteroids block the memory‐impairing effects of ethanol in mice. Pharmacol Biochem Behav 1996;53:51–56. [DOI] [PubMed] [Google Scholar]
  • 97. Meyer EM, Judkins JH, Momol AE, Hardwick EO. Effects of peroxidation and aging on rat neocortical ACh‐release and protein kinase C. Neurobiol Aging 1994;15:63–67. [DOI] [PubMed] [Google Scholar]
  • 98. Mellon SH, Deschepper CF. Neurosteroid biosynthesis: Genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993;629:283–292. [DOI] [PubMed] [Google Scholar]
  • 99. Mellon SH, Griffin LD. Neurosteroids: Biochemistry and clinical significance. Trends Endocrinol Metab 2002;13:35–43. [DOI] [PubMed] [Google Scholar]
  • 100. Mensah‐Nyagan AG, Do‐Rego JL, Beaujean D, Luu‐The V, Pelletier G, Vaudry H. Neurosteroids: Expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 1999;51:63–81. [PubMed] [Google Scholar]
  • 101. Mensah‐Nyagan AG, Feuilloley M, Dupont E, et al. Immunocytochemical localization and biological activity of 3 beta‐hydroxysteroid dehydrogenase in the central nervous system of the frog. J Neurosci 1994;14:7306–7318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Meziane H, Mathis C, Paul SM, Ungerer A. The neurosteroid pregnenolone sulfate reduces learning deficits induced by scopolamine and has promnestic effects in mice performing an appetitive learning task. Psychopharmacology (Berl) 1996;126:323–330. [DOI] [PubMed] [Google Scholar]
  • 103. Micheau J, Riedel G. Protein kinases: Which one is the memory molecule Cell Mol Life Sci 1999;55:534–548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Miller P, Taylor J, Rogerson S, et al. Cognitive and noncognitive symptoms in dementia patients: Relationship to cortisol and dehydroepiandrosterone. Int Psychoger 1998;10:85–96. [DOI] [PubMed] [Google Scholar]
  • 105. Mochly‐Rosen D. Localization of protein kinases by anchoring proteins: A theme in signal transduction. Science 1995;268:247–251. [DOI] [PubMed] [Google Scholar]
  • 106. Mochly‐Rosen D, Smith BL, Chen CH, Disatnik MH, Ron D. Interaction of protein kinase C with RACK‐1, a receptor for activated C‐kinase: A role in beta protein kinase C mediated signal transduction. Biochem Soc Trans 1995;23:596–600. [DOI] [PubMed] [Google Scholar]
  • 107. Moffat SD, Zonderman AB, Harman SM, Blackman MR, Kawas C, Resnick SM. The relationship between longitudinal declines in dehydroepiandrosterone sulfate concentrations and cognitive performance in older men. Arch Intern Med 2000;160:2193–2198. [DOI] [PubMed] [Google Scholar]
  • 108. Monnet FP, Mahe V, Robel P, Baulieu E. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N‐methyl‐D‐aspartate in the rat hippocampus. Proc Natl Acad Sci USA 1995;92:3774–3778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Morganti S, Freddi M, Rebecchi I, et al. Serum profile of dehydroepiandrosterone (DHEA) concentrations in DHEA‐supplemented elderly subjects. J Endocrinol Invest 1999;22 (10, Suppl): 77–78. [PubMed] [Google Scholar]
  • 110. Morrison MF, Redei E, TenHave T, et al. Dehydroepiandrosterone sulfate and psychiatric measures in a frail, elderly residential care population. Biol Psychiatry 2000;47:144–150. [DOI] [PubMed] [Google Scholar]
  • 111. Morrison MF, Katz IR, Parmelee P, Boyce A. A, TenHave T. Dehydroepiandrosterone sulfate (DHEA‐S) and psychiatric and laboratory measures of frailty in a residential care. Am J Geriatr Psychiatry 1998;6:277–284. [PubMed] [Google Scholar]
  • 112. Nasman B, Olsson T, Backstrom T, et al. Serum dehydroepiandrosterone sulfate in Alzheimer's disease and in multi‐infarct dementia. Biol Psychiatry 1991;30:684–90. [DOI] [PubMed] [Google Scholar]
  • 113. Nieschlag E, Loriaux D, Ruder H, Zucker I, Kirschner M, Lipsett M. The secretion of dehydroepiandrosterone and dehydroepindrosterone sulfate in man. J Endocrinol 1973;57:123–134. [DOI] [PubMed] [Google Scholar]
  • 114. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258:607–14. [DOI] [PubMed] [Google Scholar]
  • 115. Orentreich N, Brind J, Vogelman J, Andres R, Baldwin H. Long‐term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J Clin Endocrinol Metab 1992;75:1002–1004. [DOI] [PubMed] [Google Scholar]
  • 116. Park IH, Han BK, Jo DH. Distribution and characterization of neurosteroid sulfatase from the bovine brain. J Steroid Biochem Mol Biol 1997;62:315–320. [DOI] [PubMed] [Google Scholar]
  • 117. Park‐Chung M, Wu FS, Farb DH. 3 alpha‐Hydroxy‐5‐beta‐pregnan‐20‐one sulfate: A negative modulator of the NMD A‐induced current in cultured neurons. Mol Pharmacol 1994;46:146–50. [PubMed] [Google Scholar]
  • 118. Parker CR Jr, Mixon RL, Brissie RM, Grizzle WE. Aging alters zonation in the adrenal cortex of men. J Clin Endocrinol Metab 1997;82:3898–3901. [DOI] [PubMed] [Google Scholar]
  • 119. Pascale A, Fortino I, Govoni S, Trabucchi M, Wetsel WC, Battaini F. Functional impairment in protein kinase C by RACK‐1 (receptor for activated C kinase 1) deficiency in aged rat brain cortex. J Neurochem 1996;67:2471–2477. [DOI] [PubMed] [Google Scholar]
  • 120. Pascale A, Govoni S, Battaini F. Age‐related alteration of PKC, a key enzyme in memory processes: Physiological and pathological examples. Mol Neurobiol 1998;16:49–62. [DOI] [PubMed] [Google Scholar]
  • 121. Paul SM, Purdy RH. Neuroactive steroids. FASEB J 1992;6:2311–2322. [PubMed] [Google Scholar]
  • 122. Plassart‐Schiess E, Baulieu EE. Neurosteroids: Recent findings. Brain Res Brain Res Rev 2001;37:133–140. [DOI] [PubMed] [Google Scholar]
  • 123. Racchi M, Govoni S, Solerte SB, Galli CL, Corsini E. Dehydroepiandrosterone and the relationship with aging and memory: A possible link with protein kinase C functional machinery. Brain Res Rev 2001;37:287–293. [DOI] [PubMed] [Google Scholar]
  • 124. Rajkowski KM, Robel P, Baulieu EE. Hydroxysteroid sulfotransferase activity in the rat brain and liver as a function of age and sex. Steroids 1997;62:427–436. [DOI] [PubMed] [Google Scholar]
  • 125. Ravaglia G, Forti P, Maioli F, et al. Dehydroepiandrosterone sulphate and dementia. Arch Gerontol Geriatr 1998;Suppl 6:423–426. [Google Scholar]
  • 126. Reddy DS, Kulkarni SK. The effects of neurosteroids on acquisition and retention of a modified passiveavoidance learning task in mice. Brain Res 1998;791:108–116. [DOI] [PubMed] [Google Scholar]
  • 127. Rison RA, Stanton PK. Long‐term potentiation and N‐methyl‐D‐aspartate receptors: foundations of memory and neurologic disease Neurosci Biobehav Rev 1995;19:533–552. [DOI] [PubMed] [Google Scholar]
  • 128. Roberts E, Bologa L, Flood JF, Smith GE. Effects of dehydroepiandrosterone and its sulfate on brain tissue in culture and on memory in mice. Brain Res 1987;406:357–62. [DOI] [PubMed] [Google Scholar]
  • 129. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly‐Rosen D. Cloning of an intracellular receptor for protein kinase C: A homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 1994;91:839–843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130. Ron D, Jiang Z, Yao L, Vagts A, Diamond I, Gordon A. Coordinated movement of RACK‐1 with activated beta II PKC. J Biol Chem 1999;274:27039–27046. [DOI] [PubMed] [Google Scholar]
  • 131. Rupprecht R, Holsboer F. Neuropsychopharmacological properties of neuroactive steroids. Steroids 1999;64:83–91. [DOI] [PubMed] [Google Scholar]
  • 132. Salido EC, Li XM, Yen PH, Martin N, Mohandas TK, Shapiro LJ. Cloning and expression of the mouse pseudoautosomal steroid sulphatase gene (Sts). Nat Genet 1996;13:83–86. [DOI] [PubMed] [Google Scholar]
  • 133. Schumacher M, Akwa Y, Guennoun R, et al. Steroid synthesis and metabolism in the nervous system: Trophic and protective effects. J Neurocytol 2000;29:307–326. [DOI] [PubMed] [Google Scholar]
  • 134. Schumacher M, Guennoun R, Mercier G, et al. Progesterone synthesis and myelin formation in peripheral nerves. Brain Res Brain Res Rev 2001;37:343–59. [DOI] [PubMed] [Google Scholar]
  • 135. Seeman TE, Robbins RJ. Aging and hypothalamic‐pituitary‐adrenal response to challenge in humans. Endocrinol Rev 1994;15:233–260. [DOI] [PubMed] [Google Scholar]
  • 136. Senda T, Matsuno K, Okamoto K, Kobayashi T, Nakata K, Mita S. Ameliorating effect of SA4503, a novel sigma 1 receptor agonist, on memory impairments induced by cholinergic dysfunction in rats. Eur J Pharmacol 1996;315:1–10. [DOI] [PubMed] [Google Scholar]
  • 137. Schneider LS, Hinsey M, Lyness S. Plasma dehydroepiandrosterone sulfate in Alzheimer's disease. Biol Psychiatry 1992;31:205–208. [DOI] [PubMed] [Google Scholar]
  • 138. Stoffel‐Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol 2001;145:669–679. [DOI] [PubMed] [Google Scholar]
  • 139. Stromstedt M, Waterman MR. Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Brain Res Mol Brain Res 1995;34:75–88. [DOI] [PubMed] [Google Scholar]
  • 140. Strott CA. Steroid sulfotransferases. Endocrinol Rev 1996;17:670–697. [DOI] [PubMed] [Google Scholar]
  • 141. Su TP. Delineating biochemical and functional properties of sigma receptors: Emerging concepts. Crit Rev Neurobiol 1993;7:187–203. [PubMed] [Google Scholar]
  • 142. Su TP, Shukla K, Gund T. Steroid binding at sigma receptors: CNS and immunological implications. Ciba Found Symp 1990;153:107–11 3;discussion 113–116. [DOI] [PubMed] [Google Scholar]
  • 143. Su TP. Delineating biochemical and functional properties of sigma receptors: Emerging concepts. Crit Rev Neurobiol 1993;7:187–203. [PubMed] [Google Scholar]
  • 144. Sunderland TS, Merril CR, Harrington MG, et al. Reduced plasma dehydroepiandrosterone concentrations in Alzheimer's disease. Lancet 1989;2:570. [DOI] [PubMed] [Google Scholar]
  • 145. Sui M, Yamazaki T, Kominami S, Tsutsui K. Avian neurosteroids. II. Localization of a cytochrome P450scc‐like substance in the quail brain. Brain Res 1995;678:10–20. [DOI] [PubMed] [Google Scholar]
  • 146. Takase M, Ukena K, Yamazaki T, Kominami S, Tsutsui K. Pregnenolone, pregnenolone sulfate, and cytochrome P450 side‐chain cleavage enzyme in the amphibian brain and their seasonal changes. Endocrinology 1999;140:1936–1944. [DOI] [PubMed] [Google Scholar]
  • 147. Tanaka C, Nishizuka Y. The protein kinase C family for neuronal signaling. Annu Rev Neurosci 1994;17:551–567. [DOI] [PubMed] [Google Scholar]
  • 148. Tsutsui K, Yamazaki T. Avian neurosteroids, I. Pregnenolone biosynthesis in the quail brain. Brain Res 1995;678:1–9. [DOI] [PubMed] [Google Scholar]
  • 149. Ukena K, Usui M, Kohchi C, Tsutsui K. Cytochrome P450 side‐chain cleavage enzyme in cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology 1998;139:137–147. [DOI] [PubMed] [Google Scholar]
  • 150. Urani A, Privat A, Maurice T. The modulation by neurosteroids of the scopolamine‐induced learning impairment in mice involves an interaction with sigma1 (sigma1) receptors. Brain Res 1998;799:64–77. [DOI] [PubMed] [Google Scholar]
  • 151. Vallee M, Mayo W, Darnaudery M, et al. Neurosteroids: Deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci USA 1997;94:14865–14870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152. van Niekerk JK, Huppert FA, Herbert J. Salivary cortisol and DHEA: Association with measures of cognition and well‐being in normal older men, and effects of three months of DHEA supplementation. Psychoneuroendocrinology 2001;26:591–612. [DOI] [PubMed] [Google Scholar]
  • 153. Valenti G, Banchini A, Denti L, Maggio M, Ceresini G, Ceda GP. Acute oral administration of dehydroepiandrosterone in male subjects: Effect of age on bioavailability, sulfoconjugation and bioconversion in other steroids. J Endocrinol Invest 1999;22 (10, Suppl): 24–28. [PubMed] [Google Scholar]
  • 154. Vermeulen A. Dehydroepiandrosterone sulfate and aging. Ann NY Acad Sci 1995;774:121–127. [DOI] [PubMed] [Google Scholar]
  • 155. Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC. Sigma receptors: Biology and function. Pharmacol Rev 1990;42:355–402. [PubMed] [Google Scholar]
  • 156. Watzka M, Bidlingmaier F, Schramm J, Klingmuller D, Stoffel‐Wagner B. Sex‐ and age‐specific differences in human brain CYP11A1 mRNA expression. J Neuroendocrinol 1999;11:901–5. [DOI] [PubMed] [Google Scholar]
  • 157. Webb EC. Enzyme nomenclature. New York : Academic Press, 1992:299–303. [Google Scholar]
  • 158. Wichmann U, Wichmann G, Krause W. Serum levels of testosterone precursors, testosterone and estradiol in 10 animal species. Exp Clin Endocrinol 1984;83:283–290. [DOI] [PubMed] [Google Scholar]
  • 159. Wolf OT, Neumann O, Hellhammer DH, et al. Effects of a two‐week physiological dehydroepiandrosterone substitution on cognitive performance and well‐being in healthy elderly women and men. Clin Endocrinol Metab 1997;82:2363–2367. [DOI] [PubMed] [Google Scholar]
  • 160. Wolf OT, Koster B, Kirschbaum C, et al. A single administration of dehydroepiandrosterone does not enhance memory performance in young healthy adults, but immediately reduces cortisol levels. Biol Psychiatry 1997;42:845–848. [DOI] [PubMed] [Google Scholar]
  • 161. Wolf OT, Naumann E, Hellhammer DH, Kirschbaum C. Effects of dehydroepiandrosterone replacement in elderly men on event‐related potentials, memory, and well‐being. J Gerontol A Biol Sci Med Sci 1998;53:M385–M390. [DOI] [PubMed] [Google Scholar]
  • 162. Wolf OT, Kudielka BM, Hellhammer DH, Hellhammer J, Kirschbaum C. Opposing effects of DHEA replacement in elderly subjects on declarative memory and attention after exposure to a laboratory stressor. Psychoneuroendocrinology 1998;23:617–629. [DOI] [PubMed] [Google Scholar]
  • 163. Wolf OT, Kirschbaum C. Actions of dehydroepiandrosterone and its sulfate in the central nervous system: Effects on cognition and emotion in animals and humans. Brain Res Brain Res Rev 1999;30:264–288. [DOI] [PubMed] [Google Scholar]
  • 164. Wolkowitz OM, Reus VI, Roberts E, et al. Antidepressant and cognition‐enhancing effects of DHEA in major depression. Ann NY Acad Sci 1995;774:337–339. [DOI] [PubMed] [Google Scholar]
  • 165. Wolkowitz OM, Reus VI, Roberts E, et al. Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry 1997;41:311–318. [DOI] [PubMed] [Google Scholar]
  • 166. Wolkowitz OM, Reus VI, Keebler A, et al. Double‐blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry 1999;156:646–649. [DOI] [PubMed] [Google Scholar]
  • 167. Yaffe K, Ettinger B, Pressman A, et al. Neuropsychiatric function and dehydroepiandrosterone sulfate in elderly women: Aprospective study. Biol Psychiatry 1998;43:694–700. [DOI] [PubMed] [Google Scholar]
  • 168. Yanase T, Fukahori M, Taniguchi S, et al. Serum dehydroepiandrosterone (DHEA) and DHEA‐sulfate (DHEA‐S) in Alzheimer's disease and in cerebrovascular dementia. Endocrinol J 1996;43:119–123. [DOI] [PubMed] [Google Scholar]
  • 169. Zhu WJ, Vicini S. Neurosteroid prolongs GABAA channel deactivation by altering kinetics of desensitized states. J Neurosci 1997;17:4022–4031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170. Zwain IH, Yen SS. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 1999;140:3843–3852. [DOI] [PubMed] [Google Scholar]
  • 171. Zwain IH, Yen SS. Dehydroepiandrosterone: Biosynthesis and metabolism in the brain. Endocrinology 1999;140:880–887. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES