Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jul 10;12(1):21–38. doi: 10.1111/j.1527-3458.2006.00021.x

Pharmacological Profile of the Selective FAAH Inhibitor KDS‐4103 (URB597)

Daniele Piomelli 1,2,, Giorgio Tarzia 3, Andrea Duranti 3, Andrea Tontini 3, Marco Mor 4, Timothy R Compton 1, Olivier Dasse 1, Edward P Monaghan 1, Jeff A Parrott 1, David Putman 1
PMCID: PMC6741741  PMID: 16834756

Abstract

In the present article, we review the pharmacological properties of KDS‐4103 (URB597), a highly potent and selective inhibitor of the enzyme fatty‐acid amide hydrolase (FAAH), which catalyzes the intracellular hydrolysis of the endocannabinoid anandamide. In vitro, KDS‐4103 inhibits FAAH activity with median inhibitory concentrations (IC50) of 5 nM in rat brain membranes and 3 nM in human liver microsomes. In vivo, KDS‐4103 inhibits rat brain FAAH activity after intraperitoneal (i.p.) administration with a median inhibitory dose (ID50) of 0.15 mg/kg. The compound does not significantly interact with other cannabinoid‐related targets, including cannabinoid receptors and anandamide transport, or with a broad panel of receptors, ion channels, transporters and enzymes. By i.p. administration to rats and mice KDS‐4103 elicits significant, anxiolytic‐like, antidepressant‐like and analgesic effects, which are prevented by treatment with CB1 receptor antagonists. By contrast, at doses that significantly inhibit FAAH activity and substantially raise brain anandamide levels, KDS‐4103 does not evoke classical cannabinoid‐like effects (e.g., catalepsy, hypothermia, hyperphagia), does not cause place preference, and does not produce generalization to the discriminative effects of the active ingredient of cannabis, Δ9‐tetrahydrocannabinol (Δ9‐THC). These findings suggest that KDS‐4103 acts by enhancing the tonic actions of anandamide on a subset of CB1 receptors, which may normally be engaged in controlling emotions and pain. KDS‐4103 is orally available in rats and cynomolgus monkeys. Sub‐chronic repeated dose studies (1500 mg/kg, per os) in these two species have not demonstrated systemic toxicity. Likewise, no toxicity was noted in bacterial cytotoxicity tests in vitro and in the Ames test. Furthermore, no deficits were observed in rats on the rotarod test after acute i.p. treatment with KDS‐4103 at doses up to 5 mg/kg or in a functional observation battery after oral doses up to 1500 mg/kg. The results suggest that KDS‐4103 will offer a novel approach with a favorable therapeutic window for the treatment of anxiety, depression and pain.

Keywords: Anandamide, Anxiety, Cannabinoids, Depression, Fatty‐acid amide hydrolase, Pain

Full Text

The Full Text of this article is available as a PDF (165.3 KB).

REFERENCES

  • 1. Basso E, Duranti, A. , Mor, M. , et al. Tandem mass spectrometric data‐FAAH inhibitory activity relationships of some carbamic acid O‐aryl esters. J Mass Spectrom 2004;39: 1450–1455. [DOI] [PubMed] [Google Scholar]
  • 2. Batkai S, Pacher P, Osei‐Hyiaman D, et al. Endocannabinoids acting at cannabinoid‐1 receptors regulate cardiovascular function in hypertension. Circulation 2004;110: 1996–2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Beltramo M, Di Tomaso, E , and Piomelli D. Inhibition of anandamide hydrolysis in rat brain tissue by (E)‐6‐(bromomethylene) tetrahydro‐3‐(1‐naphthalenyl)‐2H‐pyran‐2‐one. FEBS Lett 1997;403: 263–267. [DOI] [PubMed] [Google Scholar]
  • 4. Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D. Functional role of high‐affinity anandamide transport, as revealed by selective inhibition. Science 1997;277: 1094–1097. [DOI] [PubMed] [Google Scholar]
  • 5. Boger DL, Sato H, Lerner AE, et al. Exceptionally potent inhibitors of fatty acid amide hydrolase: The enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci USA 2000;97: 5044–5049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Calignano A, La Rana, G , Giuffrida A, Piomelli D. Control of pain initiation by endogenous cannabinoids. Nature 1998;394: 277–281. [DOI] [PubMed] [Google Scholar]
  • 7. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty‐acid amides. Nature 1996;384: 83–87. [DOI] [PubMed] [Google Scholar]
  • 8. Cravatt BF, Demarest K, Patricelli MP, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 2001;98: 9371–9376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Cravatt BF, Saghatelian A, Hawkins EG, Clement AB, Bracey MH, Lichtman AH. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc Natl Acad Sci USA 2004;101: 10821–10826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Désarnaud F, Cadas H, Piomelli D. Anandamide amidohydrolase activity in rat brain microsomes. Identification and partial characterization. J Biol Chem 1995;270: 6030–6035. [DOI] [PubMed] [Google Scholar]
  • 11. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992;258: 1946–1949. [DOI] [PubMed] [Google Scholar]
  • 12. Di Marzo, V , Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994;372: 686–691. [DOI] [PubMed] [Google Scholar]
  • 13. Dinh TP, Freund TF, Piomelli D. A role for monoglyceride lipase in 2‐arachidonoylglycerol inactivation. Chem Phys Lipids 2002;121: 149–158. [DOI] [PubMed] [Google Scholar]
  • 14. Fegley D, Gaetani S, Duranti A, et al. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′‐carbamoyl‐biphenyl‐3‐yl ester (URB597): Effects on anandamide and oleoylethanol‐amide deactivation. J Pharmacol Exp Ther 2005;313: 352–358. [DOI] [PubMed] [Google Scholar]
  • 15. Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 2003;83: 1017–1066. [DOI] [PubMed] [Google Scholar]
  • 16. Fu J, Gaetani S, Oveisi F, Lo Verme, J , et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR‐alpha. Nature 2003;425: 90–93. [DOI] [PubMed] [Google Scholar]
  • 17. Giuffrida A, Parsons LH, Kerr, TM , Rodríguez de Fonseca, F , Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 1999;2: 358–363. [DOI] [PubMed] [Google Scholar]
  • 18. Gobbi G, Bambico FR, Mangieri R, et al. Antidepressant‐like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 2005;102: 18620–18625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Guzman M, Lo Verme, J , Oveisi F, Blazquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor PPAR‐alpha. J Biol Chem 2004;E‐publication April 26. [DOI] [PubMed] [Google Scholar]
  • 20. Haller J, Varga B, Ledent C, Barna I, Freund TF. Context‐dependent effects of CB1 cannabinoid gene disruption on anxiety‐like and social behaviour in mice. Eur J Neurosci 2004;19: 1906–1912. [DOI] [PubMed] [Google Scholar]
  • 21. Hillard CJ, Wilkison DM, Edgemond WS, Campbell WB. Characterization of the kinetics and distribution of N‐arachidonylethanolamine (anandamide) hydrolysis by rat brain. Biochim Biophys Acta 1995;1257: 249–256. [DOI] [PubMed] [Google Scholar]
  • 22. Hillard CJ, Campbell WB. Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res 1997;38: 2383–2398. [PubMed] [Google Scholar]
  • 23. Hohmann AG, Suplita RL, Bolton NM, et al. An endocannabinoid mechanism for stress‐induced analgesia. Nature 2005;435: 1108–1112. [DOI] [PubMed] [Google Scholar]
  • 24. Holt S, Comelli F, Costa B, Fowler CJ. Inhibitors of fatty acid amide hydrolase reduce carrageenan‐induced hind paw inflammation in pentobarbital‐treated mice: Comparison with indomethacin and possible involvement of cannabinoid receptors. Br J Pharmacol 2005;146: 467–476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Iversen LL. The science of marijuana. Oxford : University Press, 2000. [Google Scholar]
  • 26. Jayamanne A, Greenwood R, Mitchell VA, Aslan S, Piomelli D, Vaughan CW. Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol 2005;147: 281–288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 2003;9: 76–81. [DOI] [PubMed] [Google Scholar]
  • 28. Lichtman AH, Leung D, Shelton C, et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: Evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther 2004;311: 441–448. [DOI] [PubMed] [Google Scholar]
  • 29. Lodola A, Mor M, Hermann JC, Tarzia G, Piomelli D, Mulholland AJ. QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation. Chem Commun (Camb) 2005: 4399–4401. [DOI] [PubMed] [Google Scholar]
  • 30. Lo Verme, J , Fu J, Astarita G, et al. The nuclear receptor peroxisome proliferator‐activated receptor‐alpha mediates the anti‐inflammatory actions of palmitoylethanolamide. Mol Pharmacol 2005;67: 15–19. [DOI] [PubMed] [Google Scholar]
  • 31. Makara JK, Mor M, Fegley D, et al. Selective inhibition of 2‐AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 2005;8: 1139–1141. [DOI] [PubMed] [Google Scholar]
  • 32. Marsicano G, Wotjak CT, Azad SC, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002;418: 530–534. [DOI] [PubMed] [Google Scholar]
  • 33. Mazzari S, Canella R, Petrelli L, Marcolongo G, Leon A. N‐(2‐hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down‐modulating mast cell activation. Eur J Pharmacol 1996;300: 227–236. [DOI] [PubMed] [Google Scholar]
  • 34. McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 2004;74: 411–432. [DOI] [PubMed] [Google Scholar]
  • 35. Mechoulam R, Ben‐Shabat S, Hanus L, et al. Identification of an endogenous 2‐monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995;50: 83–90. [DOI] [PubMed] [Google Scholar]
  • 36. Moore SA, Nomikos GG, Dickason‐Chesterfield AK, et al. Identification of a high‐affinity binding site involved in the transport of endocannabinoids. Proc Natl Acad Sci USA 2005;102: 17852–17857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Mor M, Rivara S, Lodola A, et al. Cyclohexylcarbamic acid 3′‐ or 4′‐substituted biphenyl‐3‐yl esters as fatty acid amide hydrolase inhibitors: Synthesis, quantitative structure‐activity relationships, and molecular modeling studies. J Med Chem 2004;47: 4998–5008. [DOI] [PubMed] [Google Scholar]
  • 38. Munro S, Thomas KL, Abu‐Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993;365: 61–65. [DOI] [PubMed] [Google Scholar]
  • 39. Navarro M, Hernández E, Muñoz RM, et al. Acute administration of the CB1 cannabinoid receptor antagonist SR 141716A induces anxiety‐like responses in the rat. Neuroreport 1997;8: 491–496. [DOI] [PubMed] [Google Scholar]
  • 40. Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I. Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology (Berl) 1999;147: 162–167. [DOI] [PubMed] [Google Scholar]
  • 41. Patel S, Roelke CT, Rademacher DJ, Hillard CJ. Inhibition of restraint stress‐induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci 2005;21: 1057–1069. [DOI] [PubMed] [Google Scholar]
  • 42. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003;4: 873–884. [DOI] [PubMed] [Google Scholar]
  • 43. Rodríguez de Fonseca, F , Navarro M, Gómez R, et al. An anorexic lipid mediator regulated by feeding. Nature 2001;414: 209–212. [DOI] [PubMed] [Google Scholar]
  • 44. Schmid PC, Zuzarte‐Augustin ML, Schmid HH. Properties of rat liver N‐acylethanolamine amidohydrolase. J Biol Chem 1985;260: 14145–14149. [PubMed] [Google Scholar]
  • 45. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long‐term potentiation. Nature 1997;388: 773–778. [DOI] [PubMed] [Google Scholar]
  • 46. Sugiura T, Kondo S, Sukagawa A, et al. 2—Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995;215: 89–97. [DOI] [PubMed] [Google Scholar]
  • 47. Tarzia G, Duranti A, Tontini A, et al. Synthesis and structure‐activity relationships of a series of pyrrole cannabinoid receptor agonists. Bioorg Med Chem 2003;11: 3965–3973. [DOI] [PubMed] [Google Scholar]
  • 48. Tarzia G, Duranti A., Tontini A., et al. Synthesis and structure‐activity relationships of FAAH inhibitors: Cyclohexylcarbamic acid biphenyl esters with chemical modulation at the proximal phenyl ring. Chem Med Chem 2005;6: 1–11. [DOI] [PubMed] [Google Scholar]
  • 49. Ueda N, Yamamoto K, Yamamoto S, et al. Lipoxygenase‐catalyzed oxygenation of arachidonylethanol‐amide, a cannabinoid receptor agonist. Biochim Biophys Acta 1995;1254: 127–134. [DOI] [PubMed] [Google Scholar]
  • 50. Uriguen L, Perez‐Rial S, Ledent C, Palomo T, Manzanares J. Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 2004;46: 966–973. [DOI] [PubMed] [Google Scholar]
  • 51. Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005;310: 329–332. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES