Skip to main content
Journal of Clinical Laboratory Analysis logoLink to Journal of Clinical Laboratory Analysis
. 2000 Jul 18;14(4):141–156. doi: 10.1002/1098-2825(2000)14:4<141::AID-JCLA3>3.0.CO;2-0

Functions of the Fc receptors for immunoglobulin G

Brigitte K Flesch 1,, Jürgen Neppert 1
PMCID: PMC6808100  PMID: 10906767

The content is available as a PDF (175.3 KB).

REFERENCES

  • 1. Woof JM, Partridge LJ, Jeffris R, Burton DR. 1986. Localisation of the monocyte‐binding region on human immunoglobulin. G Molec Immunol 23:319–330. [DOI] [PubMed] [Google Scholar]
  • 2. Simister NE, Story CM. 1997. Human placental Fc receptors and the transmission of antibodies from mother to fetus. J Reprod Immunol 37:1–23. [DOI] [PubMed] [Google Scholar]
  • 3. Kristoffersen EK, Ulvestad E, Vedeler CA, Matre R. 1990. Fcγ receptor heterogeneity in the human placenta. Scand J Immunol 31:561–564. [DOI] [PubMed] [Google Scholar]
  • 4. Kameda T, Koyama M, Matsuzaki N, Taniguchi T, Saji F, Tanizawa O. 1991. Localization of three subtypes of Fcγ receptors in human placenta by immunohistochemical analysis. Placenta 12:15–26. [DOI] [PubMed] [Google Scholar]
  • 5. Sedmak DD, Davis DH, Singh U, van de Winkel JGJ, Anderson CL. 1991. Expression of IgG Fc receptor antigens in placenta and on endothelial cells in humans. An immunohistochemical study. Am J Pathol 138:175–181. [PMC free article] [PubMed] [Google Scholar]
  • 6. Fanger MW, Shen L, Graziano RF, Guyre PM. 1989. Cytotoxicity mediated by human Fc receptors for IgG. Immunol Today 10:92–99. [DOI] [PubMed] [Google Scholar]
  • 7. van de Winkel JGJ, Ernst LK, Anderson CL, Chiu IM. 1991. Gene organization of the human high affinity receptor for IgG, Fc RI (CD64). J Biol Chem 266:13449–13455. [PubMed] [Google Scholar]
  • 8. de Wit TPM, Suijkerbuijk RF, Capel RJA, van Kessel AG, van de Winkel JGJ. 1993. Assignment of three human high‐affinity Fcγ receptor I genes to chromosome 1, band q21. 1. Immunogenetics 38:57–59. [DOI] [PubMed] [Google Scholar]
  • 9. van de Winkel JGJ, Capel PJA. 1993. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today 14:215–221. [DOI] [PubMed] [Google Scholar]
  • 10. Hulett MD, Hogarth PM. 1994. Molecular basis of Fc receptor function. Adv Immunol 57:1–127. [DOI] [PubMed] [Google Scholar]
  • 11. Porges AJ, Redecha PB, Doebele R, Pan LC, Salmon JE, Kimberly RP. 1992. Novel Fcγ receptor 1 family gene products in human mononuclear cells. J Clin Invest 90:2101–2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Ceuppens JL, Baroja ML, van Vaeck F, Anderson CL. 1988. Defect in the membrane expression of high affinity 72‐kD Fcγ receptors on phagocytic cells in four healthy subjects. J Clin Invest 82:571–578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. van de Winkel JGJ, de Wit TPM, Ernst LK, Capel PJA, Ceuppens JL. 2903. Molecular basis for a familial defect in phagocyte expression of IgG receptor I (CD64). J Immunol 1995;154:2896–. [PubMed] [Google Scholar]
  • 14. Reth M. 1989. Antigen receptor tail clue. Nature 338:383–384. [PubMed] [Google Scholar]
  • 15. Cambier JC. 1995. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Immunol Today 16:110–114. [DOI] [PubMed] [Google Scholar]
  • 16. Agarwal A, Salem P, Robbins KC. 1993. Involvement of p72syk, a protein‐tyrosine kinase, in Fcγ receptor signaling. J Biol Chem 268:15900–15905. [PubMed] [Google Scholar]
  • 17. Kiener PA, Rankin BM, Burkhardt AL, et al. 1993. Cross‐linking of Fcγ receptor I (FcγRI) and receptor II (FcγRII) on monocytic cells activates a signal transduction pathway common to both Fc receptors that involves the stimulation of p72 Syk protein tyrosine kinase. J Biol Chem 268:24442–24448. [PubMed] [Google Scholar]
  • 18. Ernst LK, Duchemin A‐M, Anderson CL. 1993. Association of the high‐affinity receptor for IgG (FcγRI) with the γ subunit of the IgE receptor. Proc Natl Acad Sci U S A 90:6023–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Durden DL, Kim HM, Calore B, Liu Y. 1995. The FcγRI receptor signals through the activation of hck and MAP kinase. J Immunol 154:4039–4047. [PubMed] [Google Scholar]
  • 20. Ravetch JV, Kinet J‐P. 1991. Fc receptors. Annu Rev Immunol 9:457–492. [DOI] [PubMed] [Google Scholar]
  • 21. Hulett MD, McKenzie IFC, Hogarth PM. 1993. Chimeric Fc receptors identify immunoglobulin‐binding regions in human FcγRII and FcγRI. Eur J Immunol 23:640–645. [DOI] [PubMed] [Google Scholar]
  • 22. Hulett MD, Witort E, Brinkworth RI, McKenzie IF, Hogarth PM. 1995. Multiple regions of human FcγRII (CD32) contribute to the binding of IgG. J Biol Chem 270:21188–21194. [DOI] [PubMed] [Google Scholar]
  • 23. Qiu WQ, de Bruin D, Brownstein BH, Pearse R, Ravetch JV. 1990. Organization of the human and mouse low‐affinity FcγR genes: duplication and recombination. Science 248:732–753. [DOI] [PubMed] [Google Scholar]
  • 24. Sammartino L, Webber LM, Hogarth PM, McKenzie IFC, Garson OM. 1988. Assignment of the gene coding for human FcRII (CD32) to bands q23q24 on chromosome 1. Immunogenetics 28:380–381. [DOI] [PubMed] [Google Scholar]
  • 25. van de Winkel JGJ, Anderson CL. 1991. Biology of human immunoglobulin G Fc receptors. J Leuk Biol 49:511–524. [DOI] [PubMed] [Google Scholar]
  • 26. Stuart SG, Simister NE, Clarkson SB, Kacinski BM, Shapiro M, Mellman I. 1989. Human IgG Fc receptor (hFcRII; CD32) exists as multiple isoforms in macrophages, lymphocytes and IgG‐transporting placental epithelium. EMBO J 8:3657–3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Brooks DG, Qiu WQ, Luster AD, Ravetch JV. 1989. Structure and expression of human IgG FcRII (CD32). J Exp Med 170:1369–1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Warmerdam PAM, van de Winkel JGJ, Gosselin EJ, Capel PJA. 1990. Molecular basis for a polymorphism of human Fcγ receptor II (CD32). J Exp Med 172:19–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Warmerdam PAM, van de Winkel JGJ, Vlug A, Westerdal NAC, Capel PJA. 1991. A single amino acid in the second Ig‐like domain of the human Fcγ receptor II is critical for human IgG2 binding. J Immunol 147:1338–1343. [PubMed] [Google Scholar]
  • 30. Parren PWHI, Warmdam PAM, Boeije LCM, et al. 1992. On the interaction of IgG subclasses with the low‐affinity FcγRIIa (CD32) on human monocytes, neutrophils and platelets; analysis of a functional polymorphism to human IgG2. J Clin Invest 90:1537–1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Flesch BK, Bauer F, Neppert J. 1998. Rapid typing of the human Fcγ receptor IIA polymorphism by polymerase chain reaction amplification with allele‐specific primers. Transfusion 38:174–176. [DOI] [PubMed] [Google Scholar]
  • 32. Osborne JM, Chaacko GW, Brandt JT, Anderson CL. 1994. Ethnic variation in frequency of an allelic polymorphism of human FcγRIIA determined with allele specific oligonucleotide probes. J Immunol Meths 173:207–217. [DOI] [PubMed] [Google Scholar]
  • 33. Reilly AF, Norris CF, Surrey S, et al. 1994. Genetic diversity in human Fc receptor II for immunoglobulin G: Fcγ receptor IIA ligand‐binding polymorphism. Clin Diagnostic Lab Immunol 1:640–644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Schnackenberg L, Flesch BK, Neppert J. 1997. Linkage disequilibria between Duffy blood groups, FcγRIIa and FcγRIIIb allotypes. Exp Clin Immunogenet 14:235–242. [PubMed] [Google Scholar]
  • 35. Tax WJM, Hermes FFM, Willems RW, Capel PJA, Koene RAP. 1984. Fc receptors for mouse IgG1 on human monocytes: polymorphism and role in antibody‐induced T cell proliferation. J Immunol 133:1185–1189. [PubMed] [Google Scholar]
  • 36. Tate BJ, Witort E, McKenzie IFC, Hogarth PM. 1992. Expression of the high responder/ non‐responder human FcγRII. Analysis by PCR and transfection into FcR‐COS cells. Immunol Cell Biol 70:79–87. [DOI] [PubMed] [Google Scholar]
  • 37. Norris CF, Pricop L, Millard SS, et al. 1998. A naturally occurring mutation in FcγRIIA: a Q to K127 change confers unique IgG binding properties to the R131 allelic form of the receptor. Blood 91:656–662. [PubMed] [Google Scholar]
  • 38. Cassel DL, Keller MA, Surrey S, et al. 1993. Differential expression of FcγRIIA, FcγRIIB and FcγRIIC in hematopoietic cells: analysis of transcipts. Mol Immunol 30:451–460. [DOI] [PubMed] [Google Scholar]
  • 39. Warmerdam PAM, van den Herik‐Oudijk IE, Parren PWHI, Westerdaal NAC, van de Winkel JGJ, Capel PJA. 1993. Interaction of a human FcγRIIb1 (CD32) isoform with murine and human IgG subclasses. Int Immunol 5:239–247. [DOI] [PubMed] [Google Scholar]
  • 40. Warmerdam PAM, Nabben NMJM, van de Graaf SAR, van de Winkel JGJ, Capel PJ. 1992. The human low affinity immunoglobulin G Fc receptor IIC gene is a result of an unequal crossover event. J Biol Chem 268:7346–7349. [PubMed] [Google Scholar]
  • 41. Odin JA, Edberg JC, Painter CJ, Kimberly RP, Unkeless JC. 1991. Regulation of phagocytosis and [Ca2+]i flux by distinct regions of an Fc receptor. Science 254:1785–1788. [DOI] [PubMed] [Google Scholar]
  • 42. van den Herik‐Oudijk IE, Capel PJA, van der Bruggen T, van de Winkel JGJ. 1995. Identification of signalling motifs within human FcγRIIA and FcγRIIB isoforms. Blood 85:2202–2211. [PubMed] [Google Scholar]
  • 43. Indik ZK, Park J‐G, Hunter S, Schreiber AD. 1995. The molecular dissection of Fcγ receptor mediated phagocytosis. Blood 86:4389–4399. [PubMed] [Google Scholar]
  • 44. Masuda M, Roos D. 1993. Association of all three types of FcγR (CD64, CD32, CD16) with a γ chain homodimer in cultured human monocytes. J Immunol 151:6382–6388. [PubMed] [Google Scholar]
  • 45. Huang MM, Indik ZK, Brass LF, Hoxie JA, Schreiber AD, Brugge JS. 1992. Activation of FcγRII induces tyrosine phosphorylation of multiple proteins including FcγRII. J Biol Chem 267:5467–5473. [PubMed] [Google Scholar]
  • 46. Hunter S, Indik ZK, Kim M‐K, Cauley MD, Park J‐G, Schreiber AD. 1998. Inhibition of Fcγ receptor‐mediated phagocytosis by a nonphagocytic Fcγ receptor. Blood 91:1762–1768. [PubMed] [Google Scholar]
  • 47. Ravetch JV, Perussia B. 1989. Alternative membrane forms of FcγRIII (CD16) on human natural killer cells and neutrophils. J Exp Med 170:481–497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Edberg CJ, Barinsky M, Redecha PB, Salmon JE, Kimberly RP. 1990. FcγRIII expressed on cultured monocytes is a N‐glycosylated transmembrane protein distinct from FcγRIII expressed on natural killler cells. J Immunol 144:4729–4734. [PubMed] [Google Scholar]
  • 49. Wainwright SD, Holmes CH. 1993. Distribution of Fcγ receptors on trophoblast during human placental development: an immunohistochemical and immunoblotting study. Immunology 80:343–351. [PMC free article] [PubMed] [Google Scholar]
  • 50. Vance BA, Huizinga TWJ, Wardwell K, Guyre PM. 1993. Binding of monomeric human IgG defines an expression polymorphism of Fc gamma RIII on large granular lymphocyte/natural killer cells. J Immunol 151:6429–6439. [PubMed] [Google Scholar]
  • 51. Letourneur O, Kennedy ICS, Brini AT, Ortaldo JR, O’Shea JJ, Kinet JP. 1991. Characterization of the family of dimers associated with Fc receptors (FcγRI and FcγRIII). J Immunol 147:2652–2656. [PubMed] [Google Scholar]
  • 52. Vivier E, Morin P, O’Brien C, Druker B, Schlossman SF, Anderson P. 1991. Tyrosine phosphorylation of the FcγRIII (CD16): complex in human natural killer cells. J Immunol 146:206–210. [PubMed] [Google Scholar]
  • 53. Ting AT, Karnitz LM, Schoon RA, Abraham RT, Leibson PJ. 1992. Fcγ receptor activation induces the tyrosine phosporylation of both phospholipase C (PLC)‐ γ1 and PLC‐γ2 in natural killer cells. J Exp Med 176:1751–1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Selvaraj P, Rosse WF, Silber R, Springer TA. 1988. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 333:565–567. [DOI] [PubMed] [Google Scholar]
  • 55. Huizinga TW, Kerst M, Nuyens JH, et al. 1989. Binding characteristics of dimeric IgG subclass complexes to human neutrophils. J Immunol 142:2359–2364. [PubMed] [Google Scholar]
  • 56. Fleit HG, Wright SD, Unkeless JC. 1982. Human neutrophil Fcγ receptor distribution and structure. Proc Natl Acad Sci U S A 79:3275–3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Anderson CL, Looney RJ. 1986. Human leukocyte IgG Fc receptors. Immunol Today 7:264–266. [DOI] [PubMed] [Google Scholar]
  • 58. Hibbs ML, Tolvanen M, Carpén O. 1994. Membrane‐proximal Ig‐like domain of FcγRIII (CD16) contains residues critical for ligand binding. J Immunol 152:4466–4474. [PubMed] [Google Scholar]
  • 59. Ory PA, Goldstein IM, Kwoh EE, Clarkson SB. 1989. Characterization of polymorphic forms of FcRIII on human neutrophils. J Clin Invest 83:1676–1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Huizinga TWJ, Kleijer M, Tetteroo PAT, Roos D, von dem Brone AEGKr. 1990. Biallelic neutrophil NA‐antigen system is associated with a polymorphism on the phospho‐inositol‐linked Fcγ receptor III (CD16). Blood 75:213–217. [PubMed] [Google Scholar]
  • 61. Bux J, Stein EL, Bierling P, et al. 1997. Characterization of a new alloantigen (SH) on the human neutrophil Fc receptor IIIB. Blood 89:1027–1034. [PubMed] [Google Scholar]
  • 62. de Haas M, Kleijer M, van Zwieten R, Roos D, von dem Borne AEGKr. 1995. Neutrophil FcγRIIIb deficiency, nature, and clinical consequences: a study of 21 individuals from 14 families. Blood 86:2403–2413. [PubMed] [Google Scholar]
  • 63. Huizinga TWJ, Kuijpers RWAM, Kleijer M, et al. 1990. Maternal genomic neutrophil FcRIII deficiency leading to neonatal isoimmune neutropenia. Blood 76:1927–1932. [PubMed] [Google Scholar]
  • 64. Flesch BK, Achtert G, Bauer F, Neppert J. 1998. The NA “null” phenotype of a young man is caused by an FcγRIIIB gene deficiency while the products of the neighboured FcγRIIA and FcγRIIIA genes are present. Ann Hematol 76:215–220. [DOI] [PubMed] [Google Scholar]
  • 65. de Haas M, Kleijer M, Minchinton RM, Roos D, von dem Borne AEGKr. 1994. Soluble FcγRIIIa is present in plasma and is derived from natural killer cells. J Immunol 152:900–907. [PubMed] [Google Scholar]
  • 66. Simister NE, Rees AR. 1985. Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur J Immunol 15:733–738. [DOI] [PubMed] [Google Scholar]
  • 67. Ahouse JJ, Hagerman CL, Mittal P, et al. 1993. A mouse MHC class‐I‐like Fc receptor encoded outside the MHC. J Immunol 152:6076–6088. [PubMed] [Google Scholar]
  • 68. Story CM, Mikulska JE, Simister NE. 1994. A major histocompatibility complex class I‐like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G form mother to fetus. J Exp Med 180:2377–2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Leach JL, Sedmak DD, Osborne JM, Rahill B, Lairmore MD, Anderson CL. 1996. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal‐fetal antibody transport. J Immunol 157:3317–3322. [PubMed] [Google Scholar]
  • 70. Israel EJ, Taylor S, Wu Z, et al. 1997. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92:69–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Junghans RP, Anderson CL. 1996. The protection receptor for IgG catabolism is the β1‐microglobulin‐containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A 93:5512–5516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Kandil E, Egashira M, Miyoshi O, Niikawa N, Ishibashi T, Kasahara M. 1996. The human gene encoding the heavy chain of the major histocompatibility complex class I‐like Fc receptor (FCGRT) maps to 19q13. 3. Cytogenet Cell Genet 73:97–98. [DOI] [PubMed] [Google Scholar]
  • 73. Burmeister WP, Gastinel LN, Simister NE, Blum ML, Bjorkman PJ. 1994. Crystal structure at 2. 2 Å resolution of the MHC‐related neonatal Fc receptor. Nature 372:336–343. [DOI] [PubMed] [Google Scholar]
  • 74. Burmeister WP, Huber AH, Bjorkman PJ. 1994. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372:379–383. [DOI] [PubMed] [Google Scholar]
  • 75. Raghavan M, Chen MY, Gastinel LN, Bjorkman PJ. 1994. Investigation of the interaction between the class I MHC‐related Fc receptor and its immunoglobulin G ligand. Immunity 1:303–315. [DOI] [PubMed] [Google Scholar]
  • 76. Medesan C, Radu C, Kim J‐K, Ghetie V, Ward ES. 1996. Localization of the site of the IgG molecule that regulates maternofetal transmission in mice. Eur J Immunol 26:2533–2536. [DOI] [PubMed] [Google Scholar]
  • 77. Ghetie V, Ward ES. 1997. FcRn: the MHC class I‐related receptor that is more than an IgG transporter. Immunol Today 18:592–598. [DOI] [PubMed] [Google Scholar]
  • 78. Stefaner I, Stefanescu A, Hunziker W, Fuchs R. 1997. Expression of placental alkaline phosphatase does not correlate with IgG binding, internalization and transcytosis. Biochem J 327:585–592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Kristoffersen EK. 1996. Human placental Fc gamma‐binding proteins in the maternofetal transfer of IgG. APMIS 104:(Suppl)64:5–36. [DOI] [PubMed] [Google Scholar]
  • 80. Forsgren A, Sjöquist J. 1966. “Protein A” from S. aureus. I. Pseudo‐immune reaction with human γ‐globulin. J Immunol 97:822–827. [PubMed] [Google Scholar]
  • 81. Kronvall G, Seal US, Finstad J, Williams RC. 1970. Phylogenetic insight into evolution of mammalian Fc fragment of gamma G globulin using staphylococcal protein A. J Immunol 104:140–147. [PubMed] [Google Scholar]
  • 82. Åkerström B, Björck L. 1986. A physicochemical study of protein G, a molecule with unique immunoglobulin G‐binding properties. J Biol Chem 261:10240–10247. [PubMed] [Google Scholar]
  • 83. Kronvall G, Quie PG, Williams RC. 1970. Quantitation of staphylococcal protein A: determination of equilibrium constant and number of protein A residues on bacteria. J Immunol 104:273–278. [PubMed] [Google Scholar]
  • 84. Deisenhofer J. 1981. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of Protein A from Staphylococcus aureus at 2. 9‐ and 2. 8‐Å resolution. Biochemistry 20:2361–2370. [PubMed] [Google Scholar]
  • 85. Moks T, Abrahmsen L, Nilsson B, Hellman U, Sjöquist J, Uhlén M. 1986. Staphylococcal protein A consists of five IgG‐binding domains. Eur J Biochem 156:637–643. [DOI] [PubMed] [Google Scholar]
  • 86. Guss B, Eliasson M, Olsson A, Uhlén M, Frej A‐K, Jörnvall H, Flock J‐I, Lindberg M. 1986. Structure of the IgG‐binding regions of streptococcal protein G. EMBO J 5:1567–1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Espersen F. 1987. Interactions between human plasma proteins and cell wall components of Staphylococcus aureus . Dan Med Mull 34:59–69. [PubMed] [Google Scholar]
  • 88. Foster TJ, McDevitt D. 1994. Surface‐associated proteins of Staphylococcus aureus: their possible roles in virulence. FEMS Microbiol Lett 118:199–205. [DOI] [PubMed] [Google Scholar]
  • 89. Schäcke H, Müller WEG, Gamulin V, Rinkevich B. 1994. The Ig superfamily includes members from the lowest invertebrates to the highest vertebrates. Immunol Today 15:497–498. [DOI] [PubMed] [Google Scholar]
  • 90. Kobayashi K, Tomonaga S. 1988. The second immunoglobulin class commonly present in cartilaginous fish belonging to the order Rajiformes. Mol Immunol 25:115–120. [DOI] [PubMed] [Google Scholar]
  • 91. Atanossov CL, Botev BA. 1988. Isolation and partial characterization of IgM‐like immunoglobulins from the serum of carp (Cyprinas carpio L. ), frog (Rana ridibunda Pall. ) and tortoise (Testudo graeca Pall. ). Comp Biochem Physiol 89:737–741. [DOI] [PubMed] [Google Scholar]
  • 92. Rosenshein IL, Schluter SF, Marchalonis JJ. 1986. Conservation among the immunoglobulins of carcharhine sharks and phylogenetic conservation of variable region determinants. Vet Immunol Immunopathol 12:13–20. [DOI] [PubMed] [Google Scholar]
  • 93. Sandor M, Lynch RG. 1996. A possible role of FcγR in hematopoietic cell development In: van de Winkel JGJ, Capel PJA, editors. Human IgG Fc receptors. Heidelberg, Germany: Springer‐Verlag; p 165–179. [Google Scholar]
  • 94. Haynes L, Fuller L, McKinney EC. 1988. Fc receptor for shark IgM. Dev Comp Immunol 12:561–571. [DOI] [PubMed] [Google Scholar]
  • 95. Williams FA, Barclay AN. 1988. The immunoglobulin superfamily‐domains for cell surface recognition. Ann Rev Immunol 6:381–405. [DOI] [PubMed] [Google Scholar]
  • 96. Novak JS, Lassila O, Vainio O, Granfors K, Toivanen P. 1982. IgG Fc receptor‐bearing cells during early lymphoid cell development in the chicken. Cell Immunol 74:198–203. [DOI] [PubMed] [Google Scholar]
  • 97. Lassilla O, Alanen A, Lefkovits I, Cooper MD, Pink JR. 1988. Immunoglobulin diversification in embryonic chicken bursae in individual bursal follicles. Eur J Immunol 18:943–948. [DOI] [PubMed] [Google Scholar]
  • 98. Sandor M, Galone J, Takacs L, et al. 1994. An alternative Fcγ‐receptor ligand: potential role in T‐cell development. Proc Natl Acad Sci U S A 91:12857–12861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Nossal GJV, Pike BL. 1973. Studies on the differentiation of B lymphocytes in the mouse. Immunology 25:33–45. [PMC free article] [PubMed] [Google Scholar]
  • 100. Manca F, Fenoglio D, Li Pira G, Kunkel A, Celada F. 1991. Effect of antigen/antibody ratio on macrophage uptake, processing and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med 173:37–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Lowry MB, Duchemin AM, Robinson JM, Anderson CL. 1998. Functional separation of pseudopod extension and particle internalization during Fc receptor‐mediated phagocytosis. J Exp Med 187:161–176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Griffin FM Jr, Griffin JA, Leider JE, Silverstein SC. 1975. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle‐bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 142:1263–1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Griffiths HL, Kumpel BM, Elson CJ, Hadley AG. 1994. The functional activity of human monocytes passively sensitized with monoclonal anti‐D suggests a novel role for Fc gamma RI in the immune destruction of blood cells. Immunology 83:370–377. [PMC free article] [PubMed] [Google Scholar]
  • 104. Anderson CL, Shen L, Eicher DM, Wewers Md, Gill JK. 1990. Phagocytosis mediated by three distinct Fcγ receptor classes on human leukocytes. J Exp Med 171:1333–1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Graziano RF, Fanger MW. 1987. FcγRI and FcγRII on monocytes and granulocytes are cytotoxic trigger molecules for tumor cells. J Immunol 139:3536–3541. [PubMed] [Google Scholar]
  • 106. Davis W, Harrison PT, Hutchinson MJ, Allen JM. 1995. Two distinct regions of FcγRI initiate separate signalling pathways involved in endocytosis and phagocytosis. EMBO J 14:432–441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Salmon JE, Brogle N, Edberg JC, Kimberly RP. 1991. Fcγ receptor III induces actin polymerization in human neutrophils and primes phagocytosis mediated by FcγRII. J Immunol 146:997–1004. [PubMed] [Google Scholar]
  • 108. Kumpel BM, Hadley AG. 1990. Functional interactions of red cells sensitized by IgG1 and IgG3 human monoclonal anti‐D with enzyme‐modified human monocytes and FcR‐bearing cell lines. Molec Immunol 27:247–256, . [DOI] [PubMed] [Google Scholar]
  • 109. Neppert J, Jungi TW. 1996. Antibodies to human major histocompatibility complex products inhibit Fcγ receptors types I and II. Transfusion Med 6:125–131. [DOI] [PubMed] [Google Scholar]
  • 110. Dougherty GJ, Selvendran Y, Murdoch S, Palmer DG, Hogg N. 1987. The human mononuclear phagocyte high‐affinity Fc receptor, FcRI, defined by a monoclonal antibody, 10. 1. Eur J Immunol 17:1453–1459. [DOI] [PubMed] [Google Scholar]
  • 111. Hadley AG, Kumpel BM. 1989. Synergistic effect of blending IgG1 and IgG3 monoclonal anti‐D in promoting the metabolic response of monocytes to sensitized red cells. Immunology 67:550–552. [PMC free article] [PubMed] [Google Scholar]
  • 112. Flesch BK, Maass W, Neppert J. 1998. NA1/NA2 antisera inhibit FcRγI‐ but not FcγRII‐mediated phagocytosis. Vox Sang 75:247–252. [PubMed] [Google Scholar]
  • 113. Flesch BK, Achtert G, Neppert J. 1997. Inhibition of monocyte and polymorphonuclear granulocyte immune phagocytosis by monoclonal antibodies specfic for FcγRI, II and III. Ann Hematol 74:15–22. [DOI] [PubMed] [Google Scholar]
  • 114. Wiener E, Dellow RA, Mawas F, Rodeck CH. 1996. Role of FcγRIIa (CD32) in IgG anti‐RhD‐mediated red cell phagocytosis in vitro. Transfusion Med 6:235–241. [DOI] [PubMed] [Google Scholar]
  • 115. Edberg JC, Kimberly RP. 1994. Modulation of Fcγ and complement receptor function by the glycosyl‐phosphatidylinositol‐anchored form of FcγRIII. J Immunology 152:5826–5835. [PubMed] [Google Scholar]
  • 116. Kumpel BM. 1997. In vitro functional activity of IgG1 and IgG3 polyclonal and monoclonal anti‐D. Vox Sang 72:45–51. [DOI] [PubMed] [Google Scholar]
  • 117. Kumpel BM, van de Winkel JGJ, Westerdaal NAC, Hadley AG, Dugoujon JM, Blancher A. 1996. Antigen topography is critical for interaction of IgG2 anti‐red‐cell antibodies with Fc gamma receptors. Br J Haematol 94:175–183. [DOI] [PubMed] [Google Scholar]
  • 118. Hadley AG, Kumpel BM, Merry AH. 1988. The chemiluminescent response of human monocytes to red cells sensitized with monoclonal anti‐Rh(D) antibodies. Clin Lab Haematol 10:377–384. [DOI] [PubMed] [Google Scholar]
  • 119. Anderson CL, Guyre PM, Whitin JC, Ryan DH, Looney RJ, Fanger MW. 1986. Monoclonal antibodies to Fc receptors for IgG on human mononuclear phagocytes. J Biol Chem 261:12856–12864. [PubMed] [Google Scholar]
  • 120. MacIntyre EA, Roberts PJ, Jones M, et al. 1989. Activation of human monocytes occurs on cross‐linking monocytic antigens to an Fc receptor. J Immunol 142:2377–2383. [PubMed] [Google Scholar]
  • 121. Akerley WL III, Guyre PM, Davis BH. 1991. Neutrophil activation through high‐affinity Fcγ receptor using a monomeric antibody with unique properties. Blood 77:607–615. [PubMed] [Google Scholar]
  • 122. Huizinga TWJ, van Kemenade F, Koenderman L, Dolman KM, von dem Borne AEGKr, Tetteroo PAT, Roos D. 1989. The 40 KDa Fcγ receptor (FcγRII) on human neutrophils is essential for the IgG‐induced respiratory burst, IgG‐induced phagocytosis. J Immunol 142:2365–2369. [PubMed] [Google Scholar]
  • 123. Willis HE, Browder B, Feister AJ, Mohanakumar T, Ruddy S. 1988. Monoclonal antibody to human IgG Fc receptors. Cross‐linking of receptors induces lysosomal enzyme release and superoxide generation by neutrophils. J Immunol 140:234–239. [PubMed] [Google Scholar]
  • 124. Marsh CB, Gadek JE, Kindt GC, Moore SH, Wewers MD. 1995. Monocyte Fcγ receptor cross‐linking induces IL‐8 production. J Immunol 155:3161–3167. [PubMed] [Google Scholar]
  • 125. Krutmann J, Kirnbauer R, Köck A, Schwarz T, Schöpf E, May LT, Sehgal PB, Luger TA. 1990. Crosslinking Fc receptors on monocytes triggers IL‐6 production. J Immunol 145:1337–1342. [PubMed] [Google Scholar]
  • 126. Debets JMH, van de Winkel JGJ, Ceuppens JL, Dieteren IEM, Buurman WA. 1990. Cross‐linking of both FcγRI and FcγRII induces secretion of tumor necrosis factor by human monocytes, requiring high affinity Fc‐FcγR interactions. J Immunol 144:1304–1310. [PubMed] [Google Scholar]
  • 127. Marsh CB, Wewers MD, Tan LC, Rovin BH. 1997. Fcγ receptor cross‐linking induces peripheral blood mononuclear cell monocyte chemoattractant protein‐1 expression. J Immunol 158:1078–1084. [PubMed] [Google Scholar]
  • 128. Amigorena S. 1997. Internalization through receptors for immunoglobulin In: Fridman WH, Sautès C, editors. Cell‐mediated effects of immunoglobulins. New York: Springer Landes Bioscience; p 117–138. [Google Scholar]
  • 129. Gosselin EJ, Wardwell K, Gosselin DR, Alter N, Fisher JL, Guyre PM. 1992. Enhanced antigen presentation using human Fc gamma receptor (monocyte/macrophage)‐specific immunogens. J Immunol 149:3477–3481. [PubMed] [Google Scholar]
  • 130. Brambell FWR, Hemmings WA, Morris IG. 1964. A theoretical model of γ‐globulin catabolism. Nature 203:1352–1355. [DOI] [PubMed] [Google Scholar]
  • 131. Malek A, Sager R, Schneider H. 1994. Maternal‐fetal transport of immunoglobulin G and its subclasses during the third trimester of human pregnancy. Am J Reprod Immunol 32:8–14. [DOI] [PubMed] [Google Scholar]
  • 132. Neppert J, Mueller‐Eckhardt G, Heine O. 1988. Reduced immune phagocytosis of monocytes from neonates whose mothers produce HLA antibodies. Vox Sang 54:177–180. [DOI] [PubMed] [Google Scholar]
  • 133. Neppert J, Marquard F, Mueller‐Eckhardt C. 1985. Murine monoclonal antibodies and human alloantisera specific for HLA inhibit monocyte phagocytosis of anti‐D sensitized human red blood cells. Eur J Immunol 15:559–563. [DOI] [PubMed] [Google Scholar]
  • 134. Neppert J. 1986. Insignificant immune phagocytosis inhibition (IPI) and cytotoxicity by the murine monoclonal HLA‐DP antibody B7/21 tested on human monocytes and macrophages. Scand J Immunol 24:321–326. [DOI] [PubMed] [Google Scholar]
  • 135. Faust A, Neppert J. 1987. Detection of antibodies specific for HLA‐A, B, C, DR, DQ and DP by the erythrocyte antibody rosette inhibition (EAI) and immune phagocytosis inhibition (IPI) tests. J Immunol Meths 102:71–75. [DOI] [PubMed] [Google Scholar]
  • 136. Adeniyi‐Jones SCA, Ozato K. 1987. Transfer of antibodies directed to paternal major histocompatibility class I antigens from pregnant mice to the developing fetus. J Immunol 138:1408–1415. [PubMed] [Google Scholar]
  • 137. Neppert J. 1987. Rhesus‐Du and ‐D incompatibility in the newborn without haemolytic disease: immune phagocytosis inhibition? Vox Sang 53–239. [DOI] [PubMed] [Google Scholar]
  • 138. Dooren MC, Kuijpers RWAM, Joekes EC, et al. 1992. Protection against immune haemolytic disease of newborn infants by maternal monocyte‐reactive IgG alloantibodies (anti‐HLA‐DR). Lancet 339:1067–1070. [DOI] [PubMed] [Google Scholar]
  • 139. Shepard SL, Noble AL, Filbey D, Hadley AG. 1996. Inhibition of the monocyte chemiluminescent response to anti‐D‐sensitized red cells by FcγRI‐blocking antibodies which ameliorate the severity of haemolytic disease of the newborn. Vox Sang 70:157–163. [DOI] [PubMed] [Google Scholar]
  • 140. Neppert J, Witzleben‐Schürholz E, Zupanska B, et al. 1999. High incidence of maternal HLA A, B and C antibodies associated with a mild course of haemolytic disease of the newborn. European J Haematol 63:120–125. [DOI] [PubMed] [Google Scholar]
  • 141. Snell GD. 1968. The H‐2 locus of the mouse: observations, speculations concerning its comparative genetics and its polymorphism. Folia Biol (Praha) 14:335–358. [PubMed] [Google Scholar]
  • 142. Friedrichson T, Kurzschalia TV. 1998. Microdomains of GPI‐anchored proteins in living cells revealed by crosslinking. Nature 394:802–805. [DOI] [PubMed] [Google Scholar]
  • 143. Varma R, Mayor S. 1998. GPI‐anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801. [DOI] [PubMed] [Google Scholar]
  • 144. Zhou MJ, Todd RF III, van de Winkel JGJ, Petty HR. 1993. Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function‐associated antigen‐1 with Fcγ receptor III on human neutrophils. J Immunol 150:3030–3041. [PubMed] [Google Scholar]
  • 145. Zhou M‐J, Brown EJ. 1994. CR3 (Mac‐1, αMβ2, CD11b/CD18) and FcγRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcγRII and tyrosine phosphorylation. J Cell Biol 125:1407–1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146. Krauss JC, Poo H, Xue W, Mayo‐Bond L, Todd RF III, Petty HR. 1994. Reconstitution of antibody‐dependent phagocytosis in fibroblasts expressing Fcγ receptor IIIB and the complement receptor type 3. J Immunol 153:1769–1777. [PubMed] [Google Scholar]
  • 147. Sullam PM, Hyun WC, Szöllösi J, Dong JF, Foss WM, López JA. 1998. Physical proximity and functional interplay of the glycoprotein Ib‐IX‐V complex and the Fc receptor FcγRIIA on the platelet plasma membrane. J Biol Chem 273:5331–5336. [DOI] [PubMed] [Google Scholar]
  • 148. Vossebeld PJM, Homburg CHE, Roos D, Verhoeven AJ. 1997. The anti‐FcγRIII mab 3G8 induces neutrophil activation via a cooperative action of FcγRIIIb and FcγRIIa. Int J Biochem Cell Biol 29:465–473. [DOI] [PubMed] [Google Scholar]
  • 149. Dickler HB, Sachs DH. 1974. Evidence for identity or close association of the Fc receptor of B lymphocytes and alloantigens determined by the Ir region of the H‐2 complex. J Exp Med 140:779–796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150. Solheim BG, Thorsby E, Moller E. 1976. Inhibition of the Fc receptor of human lymphoid cells by antisera‐recognizing determinants of the HLA system. J Exp Med 143:1568–1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151. Nusbacher J, MacPherson JL, Gore I Jr, Grinberg R. 1979. Inhibition of granulocyte erythrophagocytosis by HLA antisera. Blood 53:350–357. [PubMed] [Google Scholar]
  • 152. Kurlander RJ. 1983. Blockade of Fc receptor‐mediated binding to U‐937 cells by murine monoclonal antibodies directed against a variety of surface antigens. J Immunol 131:140–147. [PubMed] [Google Scholar]
  • 153. Bux J, Dickmann JO, Stockert U, Mueller‐Eckhardt C. 1993. Influence of granulocyte antibodies on granulocyte function. Vox Sang 64:220–225. [DOI] [PubMed] [Google Scholar]
  • 154. Neppert J, Mueller‐Eckhardt C. 1984. Monoclonal mouse antibodies to human MHC class I antigens cocap class II antigens. Tissue Antigens 24:187–189. [DOI] [PubMed] [Google Scholar]
  • 155. Neppert J. 1987. Persistence and selectivity of the immune phagocytosis inhibition by major histocompatibility complex antibodies. Scand J Immunol 26:737–743. [DOI] [PubMed] [Google Scholar]
  • 156. Shepard SL, Hadley AG. 1993. A chemiluminescence test for the detection of monocyte‐binding Fcγ receptor (FcγR)‐blocking antibodies; comparison with inhibition of red cell phagocytosis and lysis. Transfusion Med 3(Suppl):99. [Google Scholar]
  • 157. Seeger W, Schneider U, Kreusler B, et al. 1990. Reproduction of transfusion‐related acute lung injury in an ex vivo lung model. Blood 76:1438–1444. [PubMed] [Google Scholar]
  • 158. Popovsky MA. 1996. Transfusion‐related acute lung injury (TRALI) In: Popovsky MA, editor. Transfusion reactions. Bethesda: AABB Press; p 167–183. [Google Scholar]
  • 159. Siber GR, Schur PH, Aisenberg AC, Weitzman SA, Schiffman G. 1980. Correlation between serum IgG‐2 concentrations and the antibody response to bacterial polysaccharide antigens. N Engl J Med 303:178–182. [DOI] [PubMed] [Google Scholar]
  • 160. Sanders LAM, van de Winkel JGJ, Rijkers GT, et al. 1994. Fcγ receptor IIa (CD32) heterogeneity in patients with recurrent bacterial respiratory tract infections. J Infect Dis 170:854–861. [DOI] [PubMed] [Google Scholar]
  • 161. Bredius RGM, deVries CEE, Troelstra A, et al. 1993. Phagocytosis of Staphylococcus aureus and Haemophilus influenzae type B opsonized with polyclonal human IgG1 and IgG2 antibodies. Functional hFcγRIIA polymorphism to IgG2. J Immunol 151:1463–1468. [PubMed] [Google Scholar]
  • 162. Bredius RGM, Derkx BHF, Fijen CAP, et al. 1994. Fcγ receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J Infect Dis 170:848–853. [DOI] [PubMed] [Google Scholar]
  • 163. Denomme GA, Warkentin TE, Horsewood P, Sheppard JAI, Warner MN, Kelton JG. 1997. Activation of platelets by sera containing IgG1 heparin‐dependent antibodies: an explanation for the predominance of the FcγRIIa “low responder” (his131) gene in patients with heparin‐induced thrombocytopenia. J Lab Clin Med 130:278–284. [DOI] [PubMed] [Google Scholar]
  • 164. Burgess JK, Lindeman R, Chesterman CN, Chong BH. 1995. Single amino acid mutation of Fc gamma receptor is associated with the development of heparin‐induced thrombocytopenia. Br J Haematol 91:761–766. [DOI] [PubMed] [Google Scholar]
  • 165. Brandt JT, Isenhart CE, Osborne JM, Ahmed A, Anderson CL. 1995. On the role of platelet Fc gamma RIIa phenotype in heparin‐induced thrombocytopenia. Thromb Haemost 74:1564–1572. [PubMed] [Google Scholar]
  • 166. Carlsson LE, Santoso S, Baurichter G, et al. 1998. Heparin‐induced thrombocytopenia: new insights into the impact of the FcγRIIa‐R‐H131 polymorphism. Blood 92:1526–1531. [PubMed] [Google Scholar]
  • 167. Arepally G, McKenzie SE, Jiang XM, Poncz M, Cines DB. 1997. Fc gamma RIIA H/R 131 polymorphism, subclass specific IgG anti‐heparin/platelet factor 4 antibodies and clinical course in patients with heparin‐induced thrombocytopenia and thrombosis. Blood 89:370–375. [PubMed] [Google Scholar]
  • 168. Smyth LJC, Snowden N, Carthy D, Papasteriades C, Hajeer A, Ollier WER. 1997. FcγRIIa polymorphism in systemic lupus erythematosus. Ann Rheum Dis 56:744–746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169. Botto M, Theodoridis E, Thompson EM, et al. 1996. FcγRIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin Exp Immunol 104:264–268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170. Manger K, Repp R, Spriewald BM, et al. 1998. Fcγ receptor IIa polymorphism in Caucasian patients with systemic lupus erythematosus: association with clinical symptoms. Arthritis Rheum 41:1181–1189. [DOI] [PubMed] [Google Scholar]
  • 171. Raknes G, Skeie GO, Gilhus NE, Aadland S, Vedeler C. 1998. FcγRIIA and FcγRIIIB polymorphisms in myasthenia gravis. J Neuroimmunol 81:173–176. [DOI] [PubMed] [Google Scholar]
  • 172. Moura E, Verheul AFM, Marx JJM. 1997. Evaluation of the role of Fc and complement receptors in the decreased phagoctosis of hereditary haemochromatosis patients. Scand J Immunol 46:399–405. [DOI] [PubMed] [Google Scholar]
  • 173. Boros P, Muryoi T, Spiera H, Bona C, Unkeless JC. 1993. Autoantibodies directed against different classes of FcγR are found in sera of autoimmune patients. J Immunol 150:2018–2024. [PubMed] [Google Scholar]
  • 174. Szegedi A, Boros P, Chen J, Kaffina M, Bona C, Unkeless JC. 1993. An FcγRIII (CD16)‐specific autoantibody from a patient with progressive systemic sclerosis. Immunol Lett 35:69–76. [DOI] [PubMed] [Google Scholar]
  • 175. Gross WL, Csernok E, Flesch BK. 1993. Classic anti‐neutrophil cytoplasmic autoantibodies (cANCA), Wegeners autoantigen and their immunopathogenic role in Wegener’s granulomatosis. J Autoimmun 6:171–184. [DOI] [PubMed] [Google Scholar]
  • 176. Mulder AHL, Heeringa P, Brouwer E, Limburg PC, Kallenber CGM. 1994. Activation of granulocytes by anti‐neutrophil cytoplasmic antibodies (ANCA): a FcγRII‐dependent process. Clin Exp Immunol 98:270–278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177. Porges AJ, Redecha PB, Kimberly WT, Csernok E, Gross WL, Kimberly RP. 1994. Anti‐neutrophil cytoplasmic antibodies engage and activate human neutrophils via FcγRII. J Immunol 153:1271–1280. [PubMed] [Google Scholar]
  • 178. Edberg JC, Wainstein E, Wu J, et al. 1997. Analysis of FcγRII gene polymorphisms in Wegener’s granulomatosis. Exp Clin Immunogenet 14:183–195. [PubMed] [Google Scholar]
  • 179. Lalezari P, Khorshidi M, Petrosova M. 1986. Autoimmune neutropenia of infancy. J Pediatr 109:764–769. [DOI] [PubMed] [Google Scholar]
  • 180. Bux J, Kissel K, Nowak K, Spengel U, Mueller‐Eckhardt C. 1991. Autoimmune neutropenia: clinical and laboratory studies in 143 patients. Ann Hematol 63:249–252. [DOI] [PubMed] [Google Scholar]
  • 181. Brunati S, Moncuit J, Fridman WH, Teillaud JL. 1990. Regulation of IgG production by suppressor Fc gamma RII+ T hybridomas. Eur J Immunol 20:55–61. [DOI] [PubMed] [Google Scholar]
  • 182. Gavin AL, Wines BD, Powell MS, Hogarth PM. 1995. Recombinant soluble Fc gamma RII inhibits immune complex precipitation. Clin Exp Immunol 102:620–625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183. Ulvestad E, Matre R, Tonder O. 1988. IgG Fc receptors in sera from patients with Rheumatoid Arthritis and Systemic Lupus Erythematosus. Scand J Rheumatol Suppl 75:203–209. [DOI] [PubMed] [Google Scholar]
  • 184. Hutin P, Lamour A, Pennec YL, et al. 1994. Cell‐free Fc‐gamma receptor III in sera from patients with systemic lupus erythematosus: correlation with clinical and biological features. Int Arch Allergy Immunol 103:23–27. [DOI] [PubMed] [Google Scholar]
  • 185. Astier A, Merle‐Beral H, de la Salle H, et al. 1997. Soluble Fcγ receptor, FcγRIIa2, is present in two forms in human serum and is increased in patients: with stage C chronic lymphocytic leukemia. Leuk Lymphoma 26:317–326. [DOI] [PubMed] [Google Scholar]
  • 186. Fleit HB, Kobasiuk CD, Daly C, Furie R, Levy PC, Webster RO. 1992. A soluble form of FcγRIII is present in human serum and other body fluids and is elevated at sites of inflammation. Blood 79:2721–2728. [PubMed] [Google Scholar]
  • 187. Clark MR, Liu L, Clarkson SB, Ory PA, Goldstein IM. 1990. An abnormality of the gene that encodes neutrophil Fc receptor III in a patient with systemic lupus erythematosus. J Clin Invest 86:341–346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188. Faust A, Neppert J, Kissel K. 1994. Circulatory clearance of transfused antibody‐sensitized red cells in an entirely allogenic rabbit model. Infusionstherapie 21:260–264. [DOI] [PubMed] [Google Scholar]
  • 189. Neppert J, Witzleben‐Schürholz E. 1997. Treatment of chronic autoimmune thrombocytopenic purpura with monoclonal anti‐D; lack of efficiency due to absence of FcγR‐inhibiting activity? Transfusion 37:444–445. [DOI] [PubMed] [Google Scholar]
  • 190. Neppert J. 1999. International Forum. Treatment of patients with autoimmune thrombocytopenia (AITP) with intravenous IgG‐anti‐D. Vox Sang 76:254. [PubMed] [Google Scholar]
  • 191. Leger R, Palm S, Wulf H, Vosberg A, Neppert J. 1999. Transfusion‐related lung injury with leukopenic reaction caused by fresh frozen plasma containing anti‐NB1. Anesthesiology 91:1529–1532. [DOI] [PubMed] [Google Scholar]
  • 192. Dooren MC, Ouwehand WH, Verhoeven AJ, von dem Borne AEGKr, Kuijpers RWAM. 1998. Adult respiratory distress syndrome after experimental intravenous γ‐globulin concentrate, monocyte‐reactive IgG antibodies. Lancet 352:1601–1602. [DOI] [PubMed] [Google Scholar]
  • 193. Yu Z, Lennon VA. 1999. Mechanism of intravenous immune globulin therapy in antibody‐mediated autoimmune diseases. N Engl J Med 340:227–228. [DOI] [PubMed] [Google Scholar]
  • 194. Deo YM, Graziano RF, Repp R, van de Winkel JGJ. 1997. Clinical significance of IgG Fc receptors and FcγR‐directed immunotherapies. Immunol Today 18:127–135. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Laboratory Analysis are provided here courtesy of Wiley

RESOURCES