Skip to main content
Molecules logoLink to Molecules
. 2019 Nov 1;24(21):3964. doi: 10.3390/molecules24213964

Flame Retardant Epoxy Composites on the Road of Innovation: An Analysis with Flame Retardancy Index for Future Development

Elnaz Movahedifar 1, Henri Vahabi 2,3,*, Mohammad Reza Saeb 4,*, Sabu Thomas 5
PMCID: PMC6866146  PMID: 31683861

Abstract

Nowadays, epoxy composites are elements of engineering materials and systems. Although they are known as versatile materials, epoxy resins suffer from high flammability. In this sense, flame retardancy analysis has been recognized as an undeniable requirement for developing future generations of epoxy-based systems. A considerable proportion of the literature on epoxy composites has been devoted to the use of phosphorus-based additives. Nevertheless, innovative flame retardants have coincidentally been under investigation to meet market requirements. This review paper attempts to give an overview of the research on flame retardant epoxy composites by classification of literature in terms of phosphorus (P), non-phosphorus (NP), and combinations of P/NP additives. A comprehensive set of data on cone calorimetry measurements applied on P-, NP-, and P/NP-incorporated epoxy systems was collected and treated. The performance of epoxy composites was qualitatively discussed as Poor, Good, and Excellent cases identified and distinguished by the use of the universal Flame Retardancy Index (FRI). Moreover, evaluations were rechecked by considering the UL-94 test data in four groups as V0, V1, V2, and nonrated (NR). The dimensionless FRI allowed for comparison between flame retardancy performances of epoxy composites. The results of this survey can pave the way for future innovations in developing flame-retardant additives for epoxy.

Keywords: epoxy, Flame Retardancy Index (FRI), fire retardancy, cone calorimetry

1. Introduction

Innovations are mainly born in a very disciplined manner, but sometimes they arise from serendipity. Regardless of the origin of innovative materials and systems, the identification and classification of systems in terms of explanatory variables requires the use of universal, well-accepted criteria. Nowadays, epoxy-based composites are elements of advanced systems [1,2,3]. There has been continued interest in the use of epoxy for developing a wide variety of general- and specific-purpose products such as adhesives, coatings, and medical devices thanks to the versatility of this thermosetting material [4,5,6,7]. Nevertheless, research outcomes reveal that epoxy is highly flammable, and one principally requires flame retardant materials for applications where epoxy should stand against fire [8,9,10,11,12]. In general, it has been understood that careful selection of additives is the first step in development of flame retardant polymer composites, but the performance of the material may additionally depend on the type and the amount of additives used individually or simultaneously [13,14]. Particularly, flame retardant epoxy composites consisting of phosphorus flame-retardant additives were the subject of different reports [15,16]. Moreover, combination of phosphorus and nonphosphorus additives was considered in the quest of higher flame retardancy performance [17,18,19]. In almost all reports, however, there was a lack of a correlation between the crosslinking state of resin in the presence of additives and flame retardancy.

In a previous work, we used two dimensionless indexes to correlate cure state with corrosion inhibition and flame-retardant properties of epoxy/Fe3O4 nanocomposites [20]. By the use of dimensionless Cure Index [21] and dimensionless Flame Retardancy Index (FRI) [22], it was demonstrated that the quality of cure in epoxy composites (Poor, Good, or Excellent) can be correlated to the performance of flame retardancy (Poor, Good, or Excellent). The FRI was also powerful in exploring the complementary actions of mineral and organic additives in polymer systems in terms of the peak of HRR (pHRR), the total heat release (THR), and the time to ignition (TTI) of neat polymer and polymer composites [23]. In this work, with the aim of recognizing the future ahead of innovations in flame-retardant epoxy composites, reports on flame-retardant epoxy composites were comprehensively reviewed and then classified as a function of their flame retardancy performance by the use of the FRI criterion. Classification was performed on account of phosphorus (P)-, nonphosphorus (NP)-, and combined P/NP-incorporated epoxy composites. In each class, comprehensive master tables were provided in which the polymer matrix, the additives, the content of additives, and cone calorimetry data including TTI, THR, and pHRR and the calculated FRI values were summarized. Moreover, the available UL-94 test data were provided and plotted similar to the FRI curves, but in four groups of V0, V1, V2, and nonrated (NR).

2. Epoxy Resins Containing Phosphorus-Based Flame Retardants

According to the literature, a variety of phosphorus-based flame retardants have been used in epoxy resins. Table 1 summarizes pHRR, THR, and TTI and the FRI values of epoxy/P systems. The percentage of incorporated flame retardant (FR) as well as the results of limiting oxygen index (LOI) and UL-94 test are given.

Table 1.

The flame retardancy performance of epoxy containing phosphorus-based (P) flame retardants in terms of FRI (* the name and percentage of incorporated flame retardant is given after each epoxy resin). Notes a to l on the bottom of the table are representative of composite systems containing woven or nonwoven fibers.

Epoxy Resins and Incorporated Phosphorus FR * wt.% TTI (s) pHRR (kW·m2) THR (MJ·m2) FRI LOI UL94 Ref.
0 49 1477 118 27 NR [24]
N, N′-diallyl-p-phenylphosphonicdiamide (FP1) 4 46 831 106 1.85 33 NR [24]
N, N′-diallyl-p-phenylphosphonicdiamide (FP1) 6 42 500 115 2.59 36 V-1 [24]
N, N′-diallyl-p-phenylphosphonicdiamide (FP1) 8 40 587 109 2.22 38 V-0 [24]
0 31 1068 76 23.7 NR [25]
(bis(4- hydroxyphenyl) methyl) diphenylphosphine oxide (DPO-PHE) 11.68 41 657 59 2.76 32.1 V-0 [25]
1-(bis(4-hydroxyphenyl)methyl)-9,10-dihydro-9- oxa-10-phosphaphenan-threne-10-oxide (DOPO-PHE) 12.03 39 956 57 1.87 30.5 V-0 [25]
0 47 1208 80 22.5 NR [26]
Reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T) 2.34 38 836 69 1.35 32.5 NR [26]
reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T) 4.67 36 727 62 1.64 34.6 V-1 [26]
reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T) 6.99 32 629 56 1.86 36.2 V-1 [26]
Reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T) 9.34 30 613 54 1.86 33.4 V-0 [26]
0 131 495 179 21.3 V-2 [27]
Aluminum ethylphenylphosphinate (AEPP) 5 119 254 131 2.41 23.3 V-2 [27]
aluminum ethylphenylphosphinate (AEPP) 10 105 241 124 2.37 25.7 V-1 [27]
aluminum ethylphenylphosphinate (AEPP) 15 91 223 119 2.31 28.2 V-0 [27]
0 32 827 116 21.8 NR [28]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 3 41 387 104 3.05 32.7 V-0 [28]
0 32 781 107 21.8 NR [29]
Phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 10 38 508 83 2.35 38 V-0 [29]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 11 43 441 96 2.65 37.4 V-0 [29]
0 32 781 107 21.8 NR [30]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 7 36 491 80 2.39 35.7 V-0 [30]
0 32 781 107 21.8 NR [31]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 1 33 516 116 1.43 24.1 V-2 [31]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative(DiDOPO) 5 35 491 81 2.29 35.8 V-0 [31]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 10 38 508 83 2.35 38 V-0 [31]
0 32 781 107 21.8 NR [32]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 1 33 516 116 1.43 24.1 V-2 [32]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 5 35 491 81 2.29 35.7 V-0 [32]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 10 38 508 83 2.35 38 V-0 [32]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 15 41 436 72 3.41 33.6 V-0 [32]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO) 20 16 298 68 2.06 27.5 V-0 [32]
0 19 1324.6 95.7 19.2 HB [33]
pentaerythritol phosphate melamine salt (PPMS) 15 20 491.6 74 3.66 22.8 V-2 [33]
pentaerythritol phosphate melamine salt functionalized Expandable graphite (PPMS-EG) 15 16 414.3 66.7 3.86 25.8 V-1 [33]
0 15 1334.6 100.1 19.3 HB [34]
Pentaerythritol phosphate melamine salt-functionalized Multiwalled carbon nanotube (PPMS-MWCNT) 5 13 1013.4 93.7 1.21 21.5 HB [34]
Pentaerythritol phosphate melamine salt-functionalized Multiwalled carbon nanotube (PPMS-MWCNT) 10 8 680.7 90.7 1.15 22.6 V-2 [34]
Pentaerythritol phosphate melamine salt-functionalized Multiwalled carbon nanotube (PPMS-MWCNT) 15 6 444.6 77.6 1.54 24.5 V-2 [34]
pentaerythritol phosphate melamine salt (PPMS) 15 11 489.5 85.2 2.34 22.8 V-2 [34]
0 66 793.5 86.3 21 NR [35]
diphenyl 1H-imidazol-1-ylphosphonate (DPIPP) 7.5 56 535.2 61.3 1.77 27.5 NR [35]
diphenyl 1H-imidazol-1-ylphosphonate (DPIPP) 15 59 427.5 53.7 2.66 31.5 V-0 [35]
1-(diphenylphosphinyl)-1H-imidazole oxide (DPPIO) 7.5 62 583.1 60 1.83 33 NR [35]
1-(diphenylphosphinyl)-1H-imidazole oxide (DPPIO) 15 63 432.9 48.4 3.11 38 V-0 [35]
0 57 770.1 82.6 20.5 NR [36]
imidazolium dibenzo[c,e[1,2]oxaphosphate (IDOP) 5 65 617.5 65.8 1.78 27 NR [36]
imidazolium dibenzo[c,e [1,2]oxaphosphate (IDOP) 10 67 586.5 64.2 1.98 34.5 V-1 [36]
imidazolium dibenzo[c,e [1,2]oxaphosphate (IDOP) 15 68 485.6 51.2 3.05 37 V-0 [36]
0 63 731.2 103.2 21.1 NR [37]
polyphosphoric acid piperazine (PPAP) 5 38 511.9 92.5 0.96 30.8 V-0 [37]
diglycidyl ether of bisphenol A epoxy resin epoxy/hollow glass microspheres(foam) 0 17 444.92 138.2 21.5 NR [38]
aluminum diisobutylphosphinate (AlPBu) 10 17 272.28 113.2 1.99 26.5 NR [38]
aluminum diisobutylphosphinate (AlPBu) 12.5 17 264.98 110.8 2.09 27.8 V-1 [38]
Aluminum diisobutylphosphinate (AlPBu) 15 17 260.77 109.3 2.15 29 V-0 [38]
0 53 1484 86.4 26 NR [39]
6-morpholino-6Hdibenzo[c,e][1,2]oxaphosphinine 6-oxide (MPL-DOPO) 2.5 46 1296 74.3 1.15 29.5 V-1 [39]
6-morpholino-6Hdibenzo[c,e][1,2]oxaphosphinine 6-oxide (MPL-DOPO) 5 45 1145 67.1 1.41 30.5 V-0 [39]
6,6′-((methylenebis(4,1 phenylene))bis(azanediyl))bis(6Hdibenzo[c,e][1,2]oxaphosphinine 6-oxide) (DDM-DOPO) 2.5 51 1236 76.5 1.30 30 V-0 [39]
6,6′-((methylenebis(4,1 phenylene))bis(azanediyl))bis(6Hdibenzo[c,e][1,2]oxaphosphinine 6-oxide) (DDM-DOPO) 5 48 999 69.7 1.66 31.5 V-0 [39]
0 71 654.3 100.3 25.7 NR [40]
6-(((1H-tetrazol-5-yl)amino)(4hydroxyphenyl)methyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (ATZ) 6 81 482.5 83.9 1.84 33.7 V-0 [40]
Waterborne EP resin 0 25 343.7 18.3 19.3 NR [41]
phosphated K-carrageenan (P-KC) 30 14 313.7 19.3 0.58 20.8 NR [41]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 30 10 279.6 15.1 0.59 22.1 V-1 [41]
0 39 1162 104 26.8 NR [42]
Tris(Bis(4((Diphenoxyphosphoryl)Oxy)Phenyl)Methyl)Benzene-1,3,5-Tricarboxylate (DHPP-OH-BAC) 5 50 796 97 2.00 31.2 V-2 [42]
Tris(Bis(4((Diphenoxyphosphoryl)Oxy)Phenyl)Methyl)Benzene-1,3,5-Tricarboxylate (DHPP-OH-BAC) 10 58 643 91 3.07 32.4 V-1 [42]
Tris(Bis(4((Diphenoxyphosphoryl)Oxy)Phenyl)Methyl)Benzene-1,3,5-Tricarboxylate (DHPP-OH-BAC) 15 62 610 88 3.57 33.6 V-0 [42]
0 40 1511.7 115.8 19 NR [43]
poly(pentaerythritol phosphate phosphinic acyl piperazine) (PPAP) 5 38 838.1 75.4 2.63 26 NR [43]
poly(pentaerythritol phosphate phosphinic acyl piperazine) (PPAP) 10 36 522 54.2 5.56 28 V-1 [43]
poly(pentaerythritol phosphate phosphinic acyl piperazine) (PPAP) 20 34 416 44.5 8.03 35 V-0 [43]
0 61 1125.8 66.2 26.5 NR [44]
1-methyl-3-((6-oxidodibenzo[c,e][1,2]oxaphosphinin 6-yl)methyl)-1H-imidazol-3-ium 4 methylbenzenesulfonate ([Dmim]Tos) 2.4 51 947.6 67.3 0.97 31.7 V-1 [44]
1-methyl-3-((6-oxidodibenzo[c,e][1,2]oxaphosphinin 6-yl)methyl)-1H-imidazol-3-ium 4 methylbenzenesulfonate ([Dmim]Tos) 4 57 705.4 57.6 1.71 32.5 V-0 [44]
1-methyl-3-((6-oxidodibenzo[c,e][1,2]oxaphosphinin 6-yl)methyl)-1H-imidazol-3-ium 4 methylbenzenesulfonate ([Dmim]Tos) 7.5 51 767 56.2 1.44 33.9 V-0 [44]
0 32 1111 18.2 20.5 NR [45]
melamine phenylphosphate (MPhP) 10 38 1008 12.4 1.92 23.5 NR [45]
melamine phenylphosphate (MPhP) 15 40 846 12.2 2.44 24.5 V-1 [45]
melamine phenylphosphate (MPhP) 20 41 545 12 3.96 26.5 V-0 [45]
0 74 1205.4 77.1 26.4 NR [46]
melamine-organophosphinic acid salt (MDOP) 0.96 79 1426.4 75.4 0.92 31 V-1 [46]
melamine-organophosphinic acid salt (MDOP) 1.9 76 1209.5 74.2 1.06 32 V-1 [46]
melamine-organophosphinic acid salt (MDOP) 3.75 78 915.3 67.1 1.59 35.6 V-0 [46]
melamine-organophosphinic acid salt (MDOP) 7.24 67 660.7 60.2 2.11 38 V-0 [46]
0 70 1491 81 19 NR [47]
aluminum diethyl phosphinate (AlPi) 7 58 572 63 2.77 28.5 V-0 [47]
Melamine polyphosphate (MPP) 7 75 479 68 3.97 [47]
0 70 1000.5 95.2 22.6 NR [48]
bisphenol-A bridged penta(phenoxy)cyclotriphosphazene (A-BP) 9 62 783 55.9 1.92 33.9 V-0 [48]
0 60 1285 83.5 25.5 NR [19]
cage–ladder-structure, phosphorus-containing polyhedral oligomeric silsesquinoxane (CLEP–DOPO–POSS) via the hydrolytic condensation of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)–vinyl trimethoxysilane (VTMS)with 2-(3,4-epoxycyclohexyl) ethyl trimethoxysilane (CLEP–DOPO–POSS) 2.91 62 961 84.9 1.35 31.9 V-0 [19]
0 95 939 98 23 NR [49]
copper phenylphosphate nanoplate (CuPP) 1 103 511 93 2.09 32.4 NR [49]
copper phenylphosphate nanoplate (CuPP) 2 80 466 83 2.00 35.5 V-1 [49]
copper phenylphosphate nanoplate (CuPP) 4 88 454 82 2.28 38.2 V-1 [49]
copper phenylphosphate nanoplate (CuPP) 6 88 448 72 2.64 37.8 V-1 [49]
copper phenylphosphate nanoplate (CuPP) 8 86 401 73 2.84 34.6 V-1 [49]
0 69 1139.7 75.7 25.2 NR [50]
reaction of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane-2-oxide & 2-aminobenzothiazole (DOP-ABZ) 15 66 327.2 63 4.00 26.8 V-1 [50]
reaction of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane-2-oxide & 2-aminobenzothiazole (DOP-ABZ) 17.5 65 308.9 40.6 6.48 27.5 V-0 [50]
reaction of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane-2-oxide & 2-aminobenzothiazole (DOP-ABZ) 20 52 238.9 28 9.72 28.3 V-0 [50]
0 36 1558 93 24.2 NR [51]
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 7.11 33 1301 64.6 1.58 35.1 V-1 [51]
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD) 3.38 34 1313 78.9 1.32 32.8 V-1 [51]
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD) 6.71 32 1273 69.8 1.44 34.3 V-1 [51]
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD) 10.04 33 1220 63.8 1.70 36.9 V-0 [51]
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD) 13.41 31 1071 59.1 1.97 39.1 V-0 [51]
0 61 1208 77.3 22.5 NR [52]
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 7.7 56 828 61.6 1.68 34.5 V-1 [52]
hexa-phenoxy-cyclotriphosphazene (HPCP) 8.2 52 510 63.1 2.47 32.5 V-1 [52]
78 1934.2 103.3 23.5 NR [53]
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP) 2.5 76 1683.9 91.1 1.26 28.2 V-1 [53]
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e] [1,2]oxaphosphinine 6-oxide (DOPO-TPMP) 5 72 1544.8 82.9 1.44 34.8 V-1 [53]
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP) 7.5 72 1483.6 75.7 1.64 35.6 V-0 [53]
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP) 10 63 819.3 69.2 2.84 36.1 V-0 [53]
54 880 187 24.1 NR [54]
10-(hydroxy(4-hydroxyphenyl)methyl)-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA) 2 65 800 162 1.52 29.3 V-0 [54]
53 1121 102 20 NR [55]
ammonium polyphosphate (APP) 21 57 594 53 3.90 33 NR [55]
ethanediamine-modified ammonium polyphosphate (EDA-APP) 21 61 398 54 6.12 33 V-0 [55]
45 1091 83 22.8 NR [56]
hexakis(4-boronic acid-phenoxy)-cyclophosphazene (CP-6B) 3 42 608 71 1.95 30.8 V-0 [56]
57 1108 96.2 22 NR [57]
N,N′-diamyl-p-phenylphosphonicdiamide (PM) 2 56 970 84.2 1.28 24.5 NR [57]
N,N′-diamyl-p-phenylphosphonicdiamide (PM) 6 54 840 78.5 1.53 25.5 NR [57]
IC: inclusion complex β-cyclodextrin & N,N′-diamyl-p-phenylphosphonicdiamide (PM-βCD) 2 55 905 73 1.55 26.5 NR [57]
IC: inclusion complex β-cyclodextrin & N,N′-diamyl-p-phenylphosphonicdiamide (PM-βCD) 6 50 541 68.8 2.51 26.8 NR [57]
43 469 66.2 24.7 NR [58]
poly(4,40-diamino diphenyl sulfone 2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol-substituted phosphoramide) (PSA) 10 28 149 33.2 4.08 28 V-1 [58]
poly(4,40-diamino diphenyl sulfone 2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol-substituted phosphoramide) (PSA) 20 26 118 21.7 7.33 31 V-0 [58]
82 1148 88.4 21 NR [59]
bisphenol A bridged penta(anilino) cyclotriphosphazene (BPA-BPP) 9 72 457 78.4 2.48 28.7 V-1 [59]
46 1291 87.2 23 NR [60]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 9.1 26 893 59.6 1.19 29 NR [60]
1-oxo-4-hydroxymethyl-2,6,7-trioxa-l phosphabicyclo[2.2.2] octane (PEPA) 9.1 40 847 59.5 1.94 28 NR [60]
reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-1-oxo-4-hydroxymethyl-2,6,7-trioxa-l phosphabicyclo[2.2.2] octane (DOPO-PEPA) 5.7 44 873 60.9 2.02 30 V-0 [60]
reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-1-oxo-4-hydroxymethyl-2,6,7-trioxa-l phosphabicyclo[2.2.2] octane (DOPO-PEPA) 7.4 48 683 46.3 3.71 35 V-0 [60]
reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-1-oxo-4-hydroxymethyl-2,6,7-trioxa-l phosphabicyclo[2.2.2] octane (DOPO-PEPA) 9.1 42 595 45.9 3.76 35 V-0 [60]
58 839 129 NR [61]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO-POSS) 2.5 58 631 104 1.64 27.1 V-1 [61]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO-POSS) 5 62 404 87 3.29 NR [61]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO-POSS) 10 61 346 79 4.16 NR [61]
53 1034 114 24.2 NR [62]
Hexaphenoxycyclotriphosphazene (HPCTP) 7.46 56 918 94 1.44 26.2 V-1 [62]
Hexaphenoxycyclotriphosphazene (HPCTP) 11.19 53 796 83 1.78 28 V-0 [62]
Hexaphenoxycyclotriphosphazene (HPCTP) 14.92 54 840 78 1.83 28.6 V-0 [62]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 6.97 51 947 92 1.30 25.9 NR [62]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 10.46 50 850 88 1.48 27.4 NR [62]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 13.94 46 785 81 1.60 27.8 V-1 [62]
60 872.8 88.5 22.5 NR [63]
2-(hydroxy(phenyl)methyl)-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (TP) 12.42 23 312.6 59 1.60 31.8 V-1 [63]
[4-(2,4,6-Tris[24] dioxaphosphinan-2-yl) hydroxymety] phenoxy]-(1,3,5)-triazine (TNTP) 14.36 34 253 65.8 2.62 32.4 V-0 [63]
47 1208 81 22.5 NR [64]
9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO) 7 32 853 64 1.22 34 V-1 [64]
reaction between triglycidyl isocyanurate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & phenylboronic acid (BNP) 7 38 505 60 2.61 29.5 NR [64]
reaction between triglycidyl isocyanurate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & phenylboronic acid (BNP) 11 35 425 52 3.29 32 V-1 [64]
reaction between triglycidyl isocyanurate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & phenylboronic acid (BNP) 14.7 34 410 50 3.45 32.5 V-0 [64]
reaction between triglycidyl isocyanurate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & phenylboronic acid (BNP) 18.4 33 400 47 3.65 33.3 V-0 [64]
47 1208 81 22.5 NR [65]
9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO) 7 32 853 64 1.22 34 V-1 [65]
reaction between triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide & boric acid (DTB) 7 32 556 61 1.96 31.5 NR [65]
reaction between triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide & boric acid (DTB) 10 33 453 55 2.75 33.2 V-1 [65]
reaction between triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide & boric acid (DTB) 15 34 425 54 3.08 35.6 V-0 [65]
reaction between triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide & boric acid (DTB) 20 31 461 57 2.45 35.2 V-0 [65]
58 1208 80.6 22.5 NR [66]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 7.7 58 828 63.7 1.84 34.5 V-1 [66]
hexa-phenoxy-cyclotriphosphazene (HPCP) 8.2 49 510 64 2.52 32.5 V-1 [66]
57 1557 94.5 24.5 NR [67]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 7.1 52 1301 65 1.58 35.2 V-1 [67]
61 1208 80.6 22.5 NR [68]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 7 58 833 66.3 1.67 34 V-1 [68]
tri(phosphaphenanthrene-maleimide-phenoxyl)-triazine (DOPO-TMT) 7 56 919 71.2 1.36 29.5 NR [68]
tri(phosphaphenanthrene-maleimide-phenoxyl)-triazine (DOPO-TMT) 10.4 56 694 63.7 2.02 33 V-1 [68]
tri(phosphaphenanthrene-maleimide-phenoxyl)-triazine (DOPO-TMT) 13.9 53 776 60.6 1.79 36.2 V-0 [68]
tri(phosphaphenanthrene-maleimide-phenoxyl)-triazine (DOPO-TMT) 17.3 48 556 56.5 2.43 37.5 V-0 [68]
tri(phosphaphenanthrene-maleimide-phenoxyl)-triazine (DOPO-TMT) 20.8 50 674 59.6 1.98 38.4 V-0 [68]
47 1208 80.6 22.5 NR [69]
hexa(4-maleimido-phenoxyl) cyclotriphosphazene (HMCP) 3.4 39 751 77 1.39 27 NR [69]
hexa(4-maleimido-phenoxyl) cyclotriphosphazene (HMCP) 6.8 38 469 66.5 2.52 29 V-1 [69]
hexa(4-maleimido-phenoxyl) cyclotriphosphazene (HMCP) 10.2 36 506 63 2.33 33.4 V-0 [69]
hexa(4-maleimido-phenoxyl) cyclotriphosphazene (HMCP) 13.6 36 467 58 2.75 35 V-0 [69]
hexa(4-maleimido-phenoxyl) cyclotriphosphazene (HMCP) 17 39 351 50 4.60 36.5 V-0 [69]
53 939.2 227.4 24.2 NR [70]
addition reaction between DOPO and Schiff-base obtained in advance by the condensation of 4,4′-diaminodiphenyl methane & 4-hydroxybenzaldehyde (DOPO-bp) 3.4 48 757.1 154.1 1.65 30.5 V-1 [70]
addition reaction between DOPO and Schiff-base obtained in advance by the condensation of 4,4′-diaminodiphenyl methane & 4-hydroxybenzaldehyde (DOPO-bp) 6.7 47 633.9 145.2 2.05 39.7 V-0 [70]
addition reaction between DOPO and Schiff-base obtained in advance by the condensation of 4,4′-diaminodiphenyl methane & 4-hydroxybenzaldehyde (DOPO-bp) 13.5 39 535.1 121.9 2.40 41.6 V-0 [70]
63 619.9 77.6 21.7 NR [71]
hexa-[4-(phydroxyanilino- phosphaphenanthrene methyl)-phenoxyl]-cyclotriphosphazene (CTP-DOPO) 10.6 52 349.9 51.7 2.19 36.6 V-0 [71]
63 731.2 103.2 20.3 NR [72]
polymelamine tetramethylene phosphonium sulfate (PMTMPS) 11 59 489.9 80.9 1.78 32.5 V-0 [72]
63 731.4 103.2 20.3 NR [73]
poly(urea tetramethylene phosphonium sulfate) (PUTMPS) 12 57 525.8 79.2 1.63 31.3 V-0 [73]
56 1420 144 26.2 NR [74]
aluminum poly-hexamethylenephosphinate (APHP) 2 54 742 98 2.71 29.3 NR [74]
aluminum poly-hexamethylenephosphinate (APHP) 4 58 540 95 4.12 32.7 V-1 [74]
aluminum poly-hexamethylenephosphinate (APHP) 6 55 603 93 3.58 33.1 NR [74]
56 1420 116 26.2 NR [75]
aluminum poly-hexamethylenephosphinate (APHP) 6 55 603 69 3.88 33.1 NR [75]
9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) 6 44 725 70 2.55 38.5 V-1 [75]
101 685 106 19 NR [76]
α,ω-dicarboxyl aromatic polyphosphonate (HP-1001-COOH) 10 72 454 84 1.35 26.6 NR [76]
α,ω-dicarboxyl aromatic polyphosphonate (HP-1001-COOH) 20 68 393 79 1.57 30.9 NR [76]
α,ω-dicarboxyl aromatic polyphosphonate (HP-1001-COOH) 30 66 324 75 1.95 32.4 V-0 [76]
α,ω-dicarboxyl aromatic polyphosphonate (HP-1001-COOH) 40 68 351 74 1.88 30.3 V-0 [76]
α,ω-dicarboxyl aromatic polyphosphonate (HP-1001-COOH) 50 76 351 85 1.83 27 V-1 [76]
56 1420 140 26 NR [77]
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD) 4 46 1106 82 1.80 33.6 V-1 [77]
69 966 93.9 22.5 NR [78]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 10 50 463 64.8 2.19 30.6 V-1 [78]
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD) 6 51 691 60.8 1.59 32.4 NR [78]
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD) 8 56 590 53.7 2.32 32.6 V-1 [78]
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD) 10 54 452 57.7 2.72 34.2 V-1 [78]
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD) 12 55 641 55.7 2.02 33.5 V-0 [78]
52 1334.3 58.8 22.2 NR [79]
piperazine-modified ammonium polyphosphate (PAz-APP) 10 33 261.5 15.6 12.20 29 V-0 [79]
piperazine-modified ammonium polyphosphate (PAz-APP) 15 33 246.1 11.3 17.90 31.5 V-0 [79]
40 980.4 55.2 21.5 NR [80]
diethylenetriamine-modified ammonium polyphosphate (DETA-APP) 10 35 388 12.7 9.60 28.5 V-0 [80]
diethylenetriamine-modified ammonium polyphosphate (DETA-APP) 15 32 310.5 11.4 12.23 30.5 V-0 [80]
52 995 93.3 22.5 NR [81]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 8.3 57 437.2 60.6 3.84 31.7 V-1 [81]
tri-(phosphaphenanthrene-(hydroxyl-methylene)-phenoxyl)-1, 3, 5-triazine (Trif-DOPO) 11.7 48 390.8 70.4 3.11 33.9 NR [81]
tri-(phosphaphenanthrene-(hydroxyl-methylene)-phenoxyl)-1, 3, 5-triazine (Trif-DOPO) 14 44 420.7 67.9 2.74 36 V-0 [81]
61 1420 144 26.4 NR [82]
addition reaction of 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & 10-(2,5-dihydroxyphenyl)-10-H-9-oxa-10-phosphaphenanthrene-10-oxide (TOD) 2 61 852 89 2.69 32.8 V-1 [82]
addition reaction of 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & 10-(2,5-dihydroxyphenyl)-10-H-9-oxa-10-phosphaphenanthrene-10-oxide (TOD) 4 61 830 77 3.19 35.9 V-0 [82]
addition reaction of 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & 10-(2,5-dihydroxyphenyl)-10-H-9-oxa-10-phosphaphenanthrene-10-oxide (TOD) 6 61 720 69 4.11 38 V-0 [82]
68 1730 110 23 NR [83]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-4,4-diaminodiphenyl methane (DOPO-DDM) 10 76 1480 49 2.93 29.5 V-1 [83]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-4,4-diaminodiphenyl sulfone (DOPO-DDE) 10 78 1370 56 2.84 31.5 V-0 [83]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-4,40-diaminodiphenyl ether (DOPO-DDS) 10 74 1190 60 2.90 31 V-0 [83]
61 893 112 23 NR [84]
diphenylphosphine containing polyhedral oligomeric silsesquioxanes (DPP-POSS) 5 65 489 94.1 2.31 33.2 V-0 [84]
diphenylphosphine oxide containing polyhedral oligomeric silsesquioxanes (DPOP-POSS) 5 62 419 87.8 2.76 29.3 V-1 [84]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide containing polyhedral oligomeric silsesquioxanes (DOPO-POSS) 5 64 433 91.1 2.66 30 V-1 [84]
69 961 96 20 NR [85]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide modified Aluminum hydroxide (ATH-DOPO) 10 75 586 64 2.67 25.6 NR [85]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide modified Aluminum hydroxide (ATH-DOPO) 20 87 341 57 5.98 27.7 V-0 [85]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide modified honeycomb-like mesoporous aluminum hydroxide (pATH-DOPO) 10 75 391 52 4.93 27.1 V-0 [85]
70 1000 89 21.5 NR [86]
bisphenol-S bridged penta(anilino)cyclotriphosphazene (BPS-BPP) 9 62 537 76 1.93 29.7 V-1 [86]
62 688 106 21 NR [87]
1,3,5-tris(3-(diphenylphosphoryl)propyl)-1,3,5-triazinane-2,4,6-trione (PN) 15 55 567 82 1.39 33.5 V-0 [87]
[(1,1,3,3-tetramethyl-1,3-disiloxanediyl)-di-2,1-ethanediyl]-bis(diphenylphosphine oxide) (PSi) 25 49 309 74 2.52 34 V-0 [87]
75 685 95 20.3 NR [88]
bis(2,6-dimethyphenyl) phenylphosphonate (BDMPP) 14 65 528 68 1.57 33.8 V-0 [88]
62 840 84 23 V-1 [89]
amine-terminated cyclophosphazene (ATCP) 15 66 658 62 1.84 35 V-0 [89]
57 713 64 28 V-1 [90]
amine-terminated cyclophosphazene (ATCP) 15 52 610 58 1.17 34 V-0 [90]
63 1068 76 26 NR [91]
9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 4.5 83 724 73 2.02 31.5 V-1 [91]
reaction between 9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & 2-aminobenzothiazole (DOPO-ABZ) 7.5 71 652 72 1.94 33.5 V-0 [91]
reaction between 9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & 2-aminobenzothiazole (DOPO-ABZ) 10 66 609 67 2.08 33.5 V-0 [91]
47 1208 81 22.5 NR [92]
reaction between maleimide & phosphaphenanthrene & triazine-trione (DMT) 3.3 39 837 67 1.44 31.2 NR [92]
reaction between maleimide & phosphaphenanthrene & triazine-trione (DMT) 6.6 35 685 63 1.68 32.8 NR [92]
reaction between maleimide & phosphaphenanthrene & triazine-trione (DMT) 10 37 544 62 2.28 34.4 V-1 [92]
reaction between maleimide & phosphaphenanthrene & triazine-trione (DMT) 13.5 36 506 60 2.46 35.8 V-0 [92]
reaction between maleimide & phosphaphenanthrene & triazine-trione (DMT) 17 34 491 58 2.48 33 V-0 [92]
50 860 112 23 NR [93]
Ammonium polyphosphate (APP) 10 59 458 62 4.00 25 NR [93]
Ammonium polyphosphate–montmorillonite (APP-MMT) 10 60 393 34 8.65 30 V-0 [93]
50 860 133 23 NR [94]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 6 64 502 79 3.69 31.2 V-1 [94]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-Montmorillonite (DOPO-MMT) 6 59 398 73 4.64 33.4 V-0 [94]
65 966 96 22.5 NR [95]
aluminum poly-hexamethylenephosphinate (APHP) 10 56 855 90 1.03 31.5 NR [95]
bisphenol-A bis(diphenyl phosphate) (BDP) 10 50 746 86 1.11 33.4 NR [95]
56 722.7 86.7 20.5 NR [96]
isopropylphenyl phosphate (FIPF) 20 47 363.1 61 2.37 33 V-0 [96]
tertbutylphenyl phosphate (FTBF) 20 50 361.8 61.4 2.51 30.3 V-0 [96]
47 955 59.7 22.5 NR [97]
phenylphosphonic di-benzothiazolyl amide (PPDAB) 10 65 611 46.4 2.78 31 V-0 [97]
48 1227 111 26.8 NR [98]
boron phosphate (BP) 5 46 892 91 1.60 28.3 V-1 [98]
boron phosphate (BP) 9 47 805 89 1.86 29.2 V-1 [98]
boron phosphate (BP) 15 46 602 84 2.58 31.5 V-1 [98]
40 1163.1 90.3 22 NR [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP) 2 21 1092.2 86.4 0.58 23.2 NR [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP) 5 20 959.5 92.6 0.59 25.7 V-1 [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP) 10 10 614.2 85.8 0.49 26.8 V-1 [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP) 15 8 375.4 65.7 0.85 28.5 V-1 [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP) 20 25 733.7 81.7 1.09 28.7 V-1 [99]
46 892 137 20 NR [100]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 2.5 46 963 129 0.98 21.5 NR [100]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 5 47 937 128 1.04 23.5 NR [100]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 10 46 690 113 1.56 25.9 V-1 [100]
58 839 129 22 NR [100]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 2.5 58 631 104 1.64 27.1 V-1 [100]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 5 62 404 87 3.29 26.2 NR [100]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 10 61 346 79 4.16 24.8 NR [100]
45 855 112 25 NR [101]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 2.5 48 969 103 1.02 30.2 V-1 [101]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 5 58 588 92 2.28 28.5 NR [101]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 10 61 483 85 3.16 23 NR [101]
45 855 112 25 NR [102]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 5 54 731 93 1.69 27.6 NR [102]
45 855 112 25 NR [103]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 6.3 54 686 96 1.74 30.5 NR [103]
45 855 112 25 NR [104]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 6.3 54 686 96 1.74 30.5 NR [104]
50 860 112 23 NR [105]
ammonium polyphosphate montmorillonite nanocomposite (APP-MMT) 10 60 393 33 8.91 30 V-0 [105]
50 860 112 23 NR [106]
1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2] octane (PEPA) 5.2 53 538 78 2.43 27 NR [106]
Ammonium polyphosphate (APP) 2.9 61 1087 96 1.12 23.5 NR [106]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 6.3 55 684 76 2.03 32 NR [106]
76 1160.9 135 22.5 NR [107]
poly(4,4-dihydroxy-1-methyl-ethyl diphenol-o-bicyclic pentaerythritol phosphatephosphate) (PCPBO) 5 65 882.8 132.1 1.14 27.3 NR [107]
poly(4,4-dihydroxy-1-methyl-ethyl diphenol-o-bicyclic pentaerythritol phosphatephosphate) (PCPBO) 10 61 460.5 122.3 2.23 28.8 NR [107]
poly(4,4-dihydroxy-1-methyl-ethyl diphenol-o-bicyclic pentaerythritol phosphatephosphate) (PCPBO) 15 44 375.4 119.8 2.017 30.3 V-1 [107]
poly(4,4-dihydroxy-1-methyl-ethyl diphenol-o-bicyclic pentaerythritol phosphatephosphate) (PCPBO) 20 31 337.1 117.3 1.616 31.2 V-0 [107]
57 1730.27 114.16 21.5 NR [108]
ammonium polyphosphate (APP) 15 63 397.89 35.49 15.46 36 V-0 [108]
glycidyl methacrylate microencapsulated ammonium polyphosphate (GMA-APP) 15 68 283.09 44 18.91 38.5 V-0 [108]
62 1192 184 20.9 NR [109]
ammonium polyphosphate(APP) 12 41 200 104 6.97 31 V-0 [109]
modified ammonium polyphosphate(MAPP) 12 47 184 98 9.22 32.5 V-0 [109]
62 1192 184 20.9 NR [110]
ammonium polyphosphate(APP) 12 41 200 104 6.97 31.9 V-0 [110]
66 893 68 22.5 NR [111]
hexa-(phosphaphenanthrene -hydroxyl-methyl-phenoxyl)-cyclotriphosphazene(HAP-DOPO) 9.3 51 383 53 2.31 31 V-0 [111]
hexa-(phosphaphenanthrene -hydroxyl-methyl-phenoxyl)-cyclotriphosphazene(HAP-DOPO) 15.47 43 303 41 3.18 30.8 V-0 [111]
65 966 102 22.5 NR [112]
ring-opening addition reaction between 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TGIC-DOPO) 6.1 54 800 75 1.36 33.3 NR [112]
ring-opening addition reaction between 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TGIC-DOPO) 8.1 54 680 76 1.58 34.3 V-1 [112]
ring-opening addition reaction between 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TGIC-DOPO) 10.2 50 520 71 2.05 35.2 V-1 [112]
ring-opening addition reaction between 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TGIC-DOPO) 12.2 48 481 61 2.47 33.3 V-0 [112]
35 1719 74.2 25 HB [113]
9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide units linked to the star-shaped aliphatic ground body tetra-[(acryloyloxy)ethyl] pentarythrit (DOPP) 19.6 40 1191 44.8 2.73 37.9 V-1 [113]
9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide units linked to the star-shaped aliphatic ground body heterocyclic tris-[(acryloyloxy)ethyl] isocyanurate (DOPI) 23.1 36 869 41.5 3.63 34.2 V-0 [113]
49 781 76 20.5 NR [114]
poly(melamine-ethoxyphosphinyl-diisocyanate) (PMPC) 10 59 390 33 5.55 26 NR [114]
poly(melamine-ethoxyphosphinyl-diisocyanate) (PMPC) 15 64 292 30 8.85 27.5 V-1 [114]
poly(melamine-ethoxyphosphinyl-diisocyanate) (PMPC) 20 59 235 27 11.26 28 V-0 [114]
64 821 94 23.2 NR [115]
9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) 5 54 461 70 2.01 33.7 V-1 [115]
60 920 90.5 22.7 NR [116]
((1,1,3,3-tetramethyldisiloxane-1,3-diyl)bis(propane-3,1-diyl))bis(2-methoxy-4,1-phenylene)bis(phenylphosphonochloridate) modified Magnesium-Aluminum layered double hydroxide (SIEPDP-Mg-Al LDH) 4 55 658 86.9 1.33 25.3 V-1 [116]
64 939 179 19.6 NR [117]
ammonium polyphosphate (APP) 5 61 283 111 5.09 27.1 V-0 [117]
53 1262 84.7 25 NR [118]
cardanol derived benzoxazine monomer (CBz) 10 49 1119 80.5 1.09 31 V-1 [118]
cardanol derived benzoxazine monomer (CBz) 15 50 920 79.4 1.38 32 V-0 [118]
cardanol derived benzoxazine monomer (CBz) 20 50 962 77.2 1.35 33 V-0 [118]
59 1063 76.1 25.8 NR [119]
poly (piperazine phosphaphenanthrene) (DOPMPA) 10 68 393 56.3 4.21 29 NR [119]
poly (piperazine phosphaphenanthrene) (DOPMPA) 13 67 285 27.4 11.76 34 V-0 [119]
27 673.7 56 22.3 NR [9]
reaction of spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride & 2,4-dihydroxybenzophenone (MFR) 10 26 402.3 53.3 1.69 29.6 V-1 [9]
reaction of spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride & 2,4-dihydroxybenzophenone (MFR) 15 17 479.7 47.8 1.03 30.8 V-0 [9]
reaction of spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride & 2,4-dihydroxybenzophenone (MFR) 20 22 241.6 42.3 3.00 32.2 V-0 [9]
58 1369 135.6 23.5 NR [17]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-covalent organic frameworksnanosheets(reaction between melamine & o-phthalaldehyde) (DOPO-COFs) 0.4 70.2 1295 133.4 1.30 23.5 NR [17]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-covalent organic frameworksnanosheets(reaction between melamine & o-phthalaldehyde) (DOPO-COFs) 0.8 64 1086 125.3 1.50 24 NR [17]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-covalent organic frameworksnanosheets(reaction between melamine & o-phthalaldehyde) (DOPO-COFs) 1.6 58.6 1227 131.5 1.16 24.5 NR [17]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-covalent organic frameworksnanosheets(reaction between melamine & o-phthalaldehyde) (DOPO-COFs) 3.2 60.7 1117 110.5 1.57 25 NR [17]
COFs: covalent organic frameworksnanosheets(reaction between melamine & o-phthalaldehyde) (COFs) 3.2 55 1295 140.4 0.96 24 NR [17]
21 1910 84.4 22.1 NR [120]
melamine coated ammonium polyphosphate (Mel-APP) 20 22 312.6 30.8 17.54 32.6 V-0 [120]
0 51 1914 81.9 22 NR [121]
phosphorus and nitrogen-containing flame retardant (FR) 1 43 1631 69.6 1.16 22.5 NR [121]
0 50 1712 83.7 NR [122]
poly(4,4′-diamino diphenyl sulfone phenyl phosphonamide) (ArPN2) 15 29 847 61.5 1.59 V-0 [122]
poly(bisphenol sulfone phenyl phosphonate) (ArPO2) 15 32 608 42.7 3.53 V-1 [122]
poly(4,4-dia-minodiphenyl sulfone phenyl dichlorophosphate) (ArOPN2) 15.6 30 546 59.4 2.65 NR [122]
poly(bisphenol sulfone phenoxy phosphate) (ArOPO2) 15.6 30 726 55.3 2.14 NR [122]
0 75 977 100 NR [123]
ionic liquid-based metal–organic hybrid = Phosphomolybdic acid hydrate:PMA & 1-ethyl 3-(diethoxyphosphoryl)-propylimidazolium bromide:IL (PMAIL) 6 85 674.4 99 1.65 V-0 [123]
epoxy novolac resin 0 51 682 110 NR [124]
oligo[DOPAc-2-tris(acryloyloxy)ethyl isocyanurate] (oDOPI) 13.81 52 426 86 2.08 V-0 [124]
Phosphazene (PZ) 10.8 50 466 80 1.97 V-0 [124]
melamine polyphosphate(MPP) 15 45 370 86 2.08 V-1 [124]
0 50 985.7 91 NR [125]
aluminum hypophosphite (AHP) 5 48 970.2 89 0.99 V-1 [125]
23 1910 61 NR [126]
Melamine coated ammonium polyphosphate (Mel-APP) 29.7 24 281 23 18.81 V-0 [126]
54 1068 75.8 HB [127]
Melamine poly(aluminum phosphate) (MPAlP) 20 40 540 60 1.85 HB [127]
melamine poly(zinc phosphate) (MPZnP) 20 43 312 60 3.44 HB [127]
melamine poly(magnesium phosphate) (MPMgP) 20 44 298 57.3 3.86 V-1 [127]
melamine polyphosphate (MPP) 20 38 244 26.6 8.77 V-0 [127]
diethyl aluminum phosphinate (AlPi-Et) 20 41 492 55.8 2.23 V-0 [127]
6H-dibenz[c,e][1,2] oxaphosphorin-6-propanoic acid, butyl ester, 6-oxide (DOPAc-Bu) 20 44 624 50.2 2.10 HB [127]
53 1084 115 NR [128]
hexaphenoxycyclotriphosphazene (HPCTP) 5 58 807 96 1.76 V-0 [128]
hexaphenoxycyclotriphosphazene (HPCTP) 10 60 566 93 2.68 V-0 [128]
hexaphenoxycyclotriphosphazene (HPCTP) 15 51 513 82 2.85 V-0 [128]
63 1321 157 NR [129]
Hexaphenoxycyclotriphosphazene (HPCTP) 15 54 513 82 4.22 V-0 [129]
100 733 141 21 HB [130]
Tetraphenylphosphonium modified montmorillonite (TPP-MMT) 5 110 482 140 1.68 25 HB [130]
47 891 151 21 HB [130]
Tetraphenylphosphonium modified montmorillonite (TPP-MMT) 5 53 571 138 1.92 25 HB [130]
22 1196 147 21 HB [130]
Tetraphenylphosphonium modified montmorillonite (TPP-MMT) 5 25 694 140 2.05 25 HB [130]
49 904 95 21 NR [131]
hyperbranched poly(phosphoester) (hbPPE) 10 49 506 62 2.73 23.6 HB [131]
hyperbranched poly(phosphoester) (hbPPE) 20 49 699 53 2.31 25.9 HB [131]
0 58 1126.3 100.36 26.1 [132]
poly(cyclotriphosphazeneco-4,4′-sulfonyldiphenol) (PZS) 3 61 986.5 91.89 1.31 28.6 [132]
hybrid poly(cyclotriphosphazeneco-4,4′-sulfonyldiphenol)-strontium hydroxystannate nanorod (PZS@SrSn(OH)6) 3 60 801.2 88.96 1.64 29.5 [132]
0 36.6 970.9 59.1 19.8 [133]
1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo [2.2.2] octane modified trimellitic anhydride chloride (PEPA-TMAC) 16.5 30.1 523.7 42 2.14 23.4 [133]
1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo [2.2.2] octane modified trimellitic anhydride chloride (PEPA-TMAC) 33 33.9 337.2 36.9 4.27 26.9 [133]
50 986 91.1 25.9 [134]
poly(cyclotriphosphazene-c-sulfonyldiphenol) (PCPS) 1 49 979 92.1 0.97 27 [134]
poly(cyclotriphosphazene-c-sulfonyldiphenol) (PCPS) 3 44 500 85.8 1.84 29.8 [134]
poly(cyclotriphosphazene-c-sulfonyldiphenol) (PCPS) 5 43 542 78.7 1.81 30.5 [134]
60 1146 56 26.5 [135]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 300 ˚C (BP1) 5 53 652 31 2.80 29.6 [135]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 400 ˚C (BP2) 5 53 654 34 2.54 29.7 [135]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 500 ˚C (BP3) 5 54 681 33 2.57 29.6 [135]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 600 ˚C (BP4) 5 56 710 38 2.22 29.3 [135]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 700 ˚C (BP5) 5 56 754 38 2.09 29 [135]
86 1650 213 20.2 [136]
3-((Methoxydiphenylsilyl) oxy)-9-methyl-2, 4, 8, 10-tetraoxa-3, 9-diphosphaspiro [5. 5] undecane 3, 9-dioxide (SDPS) 10.4 62 1378 203 0.90 28.9 [136]
48 1023 109 22.2 [137]
dibenzylphosphinic acid modified aluminum hydroxide (AOPH-NR) 4.25 79 789 101 2.30 28 [137]
diallylphosphinic acid modified aluminum hydroxide (AOPH-C1) 4.25 80 1092 107 1.59 23.4 [137]
bis(3-methoxy-3-oxopropyl)phosphinic acid modified aluminum hydroxide (AOPH-C2) 4.25 58 1063 99 1.28 23.6 [137]
bis(2-cyanoethyl)phosphinic acid modified aluminum hydroxide (AOPH-C3) 4.25 78 1024 106 1.66 23.8 [137]
epoxy acrylate 41 889 28.3 21 [138]
N,N-bis(2-hydroxyethyl acrylate) aminomethyl phosphonic acid diethylester (BHAAPE) 5 35 719 25.3 1.18 28 [138]
N,N-bis(2-hydroxyethyl acrylate) aminomethyl phosphonic acid diethylester (BHAAPE) 10 25 590 23.7 1.09 30 [138]
N,N-bis(2-hydroxyethyl acrylate) aminomethyl phosphonic acid diethylester (BHAAPE) 20 19 508 22.3 1.02 31 [138]
0 25 1113 222.9 [139]
ammonium polyphosphate (APP) 10 35 685.9 127.4 3.97 [139]
0 60 2187 124 [140]
poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) 2 57 1871 101 1.36 [140]
poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol)@molybdenum disulfide nanoflower (PZS@MoS2) 2 52 1335 91 1.93 [140]
poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol)@molybdenum disulfide nanoflower (PZS@MoS2) 3 56 1251 85 2.38 [140]
0 19 980 81 [141]
N,N′-dibutyl-phosphate diamide assembled into the cavity of β-cyclodextrin (DBPDA-βCD) 3 19 756 75 1.40 [141]
0 78 2116 167.1 [142]
Polyphosphazene functionalized black phosphorus nanosheets (BP-PZN) 0.5 78 1613.7 119.8 1.82 [142]
Polyphosphazene functionalized black phosphorus nanosheets (BP-PZN) 1 85 1082.1 73.5 4.84 [142]
Polyphosphazene functionalized black phosphorus nanosheets (BP-PZN) 2 81 859.5 60.8 7.02 [142]
black phosphorus bulk nanosheets (BP-Bulk) 2 87 1082.3 94.3 3.86 [142]
63 1396.9 81.3 [143]
ene-terminated hyperbranched polyphosphate acrylate (HPPA) 2 57 1096.9 75.4 1.24 [143]
ene-terminated hyperbranched polyphosphate acrylate-thiol-functionalized mesoporous silica (HPPA-SH-mSiO2) 2 62 995.3 68.3 1.64 [143]
76 850 88 [144]
phosphorous metal-organic framework (P-MOF) 0.5 75 766 84 1.14 [144]
phosphorous metal-organic framework (P-MOF) 1 79 728 71 1.50 [144]
phosphorous metal-organic framework (P-MOF) 2 70 615 69 1.62 [144]
53 1484 86.3 [145]
cardanol-derived zirconium phosphate (CZrP) 2 56 1122 76.1 1.58 [145]
cardanol-derived zirconium phosphate (CZrP) 4 50 970 73.2 1.70 [145]
cardanol-derived zirconium phosphate (CZrP) 6 54 858 67.8 2.24 [145]
zirconium phosphate (ZrP) 6 51 1248 85.5 1.15 [145]
24 1002.4 104.1 [146]
Dimethyl methylphosphonate loaded halloysite nanotube (DMMP-HNT) 20 24 578.1 73.8 2.44 [146]
54 1068 76 21 [147]
melamine poly(magnesium phosphate) (S600) 20 44 298 57 3.89 [147]
aluminium diethylphosphinate (AlPi) 20 41 492 56 2.23 [147]
melamine polyphosphate (MPP) 20 38 244 26 9.00 [147]
74 1915.3 107.6 [148]
poly-(cyclotriphos pazene-co-4,40-diaminodiphenyl ether) surface modified silica nanospheres (SiO2@PZM) 1 80 1363.4 86.8 1.88 [148]
poly-(cyclotriphos pazene-co-4,40-diaminodiphenyl ether) surface modified silica nanospheres-cuprous (SiO2@PZM@Cu) 1 74 1289.3 78 2.04 [148]
poly-(cyclotriphos pazene-co-4,40-diaminodiphenyl ether) surface modified silica nanospheres-cuprous (SiO2@PZM@Cu) 2 80 1188.8 73.9 2.53 [148]
82 1820.7 99.3 [149]
functionalized polyphosphazene nanotubes wrapped with a cross-linked DOPO-based flame retardant (FR@PZS) 0.5 82 1584.2 87 1.31 [149]
functionalized polyphosphazene nanotubes wrapped with a cross-linked DOPO-based flame retardant (FR@PZS) 1 82 1298.2 80.8 1.72 [149]
functionalized polyphosphazene nanotubes wrapped with a cross-linked DOPO-based flame retardant (FR@PZS) 3 82 982.6 72.4 2.54 [149]
polyphosphazene nanotube (PZS) 3 82 1152.5 83.9 1.86 [149]
38 943 60.3 [150]
ammonium polyphosphate (APP) 5 36 543 58.8 1.68 [150]
45 855 118 [151]
polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) 20 57 431 91 3.25 [151]
Epoxy acrylic 32 223.4 30.8 [152]
ammonium polyphosphate (APP) 30 35 225.2 30.7 1.08 [152]
Co-microencapsulated ammonium polyphosphate and pentaerythritol (M(APP & PER)) 30 58 233.2 27.3 1.95 [152]
29 2467 164 [153]
Triphenylphosphite (TPPi) 15 21 504 114 5.09 [153]
Triphenylphosphate (TPPa) 15 12 1959 128 0.66 [153]
triphenylphosphine oxide (TPPO) 15 34 1310 126 2.87 [153]
32 2572 184 [154]
poly(m-phenylene methyl 1phosphonate) (PMP) 11.4 12 724 102 2.40 [154]
9,10-dihydro-9-oxa-10phosphaphenanthrene-10-oxide (DOPO) 13.9 7 1286 100 0.80 [154]
red phosphorus (RP) 4.3 7 1614 156 0.41 [154]
aluminum diethylphosphinate (OP) 8.3 7 1480 146 0.47 [154]
33 910 97.54 [155]
IFR: reaction between phosphorus acid & melamine & pentaerythritol with the molar ratio of 1:1:2.12 (IFR) 30 38 357 80.35 3.56 [155]
IFR: reaction between phosphorus acid & melamine & pentaerythritol with the molar ratio of 1:1:2.12 (IFR) 30 65 350 82.28 6.07 [155]
IFR: reaction between phosphorus acid & melamine & pentaerythritol with the molar ratio of 1:1:2.12 (IFR) 30 71 263 73.25 9.91 [155]
67 979.7 128 [156]
Butyl phosphate ester (EPE) 33.3 35 203.3 87 3.70 [156]
Ethylphosphonate ester (EPE) 33.3 76 304.8 80 5.83 [156]
Butanediol and butanol mixed phosphate ester (BBPE) 33.3 76 300.4 83 5.70 [156]
Butanediol and octanol mixed phosphate ester (BOPE) 33.3 79 296.9 91 5.47 [156]
Hexanediol and butanol mixed phosphate ester (HBPE) 33.3 82 283.1 88 6.16 [156]
32 910 98 [157]
IFR: reaction between phosphorus acid & melamine & pentaerythritol with the molar ratio of 1:1:2 (IFR) 30 61 341 68 7.33 [157]
IFR: reaction between phosphorus acid & melamine & pentaerythritol with the molar ratio of 1:1:2 (IFR) 30 41 248 73 6.31 [157]
IFR: reaction between phosphorus acid & melamine & pentaerythritol with the molar ratio of 1:1:2 (IFR) 30 41 268 68 6.26 [157]
IFR: reaction between phosphorus acid & melamine & pentaerythritol with the molar ratio of 1:1:2 (IFR) 30 45 237 71 7.45 [157]
94 1097.2 119 [158]
phosphorus oxychloride & pentaerythritol (POCl3 & PER) modified expandable graphite (EGM) 5 76 276.2 136 2.81 [158]
phosphorus oxychloride & pentaerythritol (POCl3 & PER) modified expandable graphite (EGM) 15 45 184.1 88 3.85 [158]
54 1327 99.1 [159]
Phosphorylated chitosan modified montmorillonite intercalation iron compounds (PCTS-Fe-OMMT) 1 51 1071 88.3 1.31 [159]
Phosphorylated chitosan modified montmorillonite intercalation iron compounds (PCTS-Fe-OMMT) 3 48 917 86.8 1.46 [159]
Phosphorylated chitosan modified montmorillonite intercalation iron compounds (PCTS-Fe-OMMT) 5 44 794 82.2 1.64 [159]
41 1222 159 [160]
ammonium polyphosphate (APP) 20 49 879 105 2.51 [160]
ammonium polyphosphate (APP) 40 56 225 55 21.44 [160]
0 47 1630 82.3 [161]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-phosphonamidate functionalized reduced graphene oxide(DOPOph-RGNO) 1 49 1268 62.3 1.77 [161]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-phosphonamidate functionalized reduced graphene oxide(DOPOph-RGNO) 2 43 1248 55 1.78 [161]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-phosphonamidate functionalized reduced graphene oxide(DOPOph-RGNO) 3 45 1117 54 2.12 [161]
0 21 453.5 36.2 22.1 NR [120]
melamine coated ammonium polyphosphate (Mel-APP) a 9.59 20 290.4 32.2 1.67 32 V-1 [120]
0 53 387 24.3 31 NR [24]
N, N′-diallyl-p-phenylphosphonicdiamide (FP1) b 2.6 49 423 20.4 1.00 43 NR [24]
0 54 508.3 47.8 31 NR [162]
polyelectrolyte complexes consisting of chitosan & ammonium polyphosphate (PEC) c 5.2 51 358 44 1.45 36 NR [162]
polyelectrolyte complexes consisting of chitosan & ammonium polyphosphate (PEC) c 6.9 50 307.5 39.6 1.84 38.5 V-1 [162]
polyelectrolyte complexes consisting of chitosan & ammonium polyphosphate (PEC) c 8.1 49 255.9 35.5 2.42 40.5 V-0 [162]
51 347 26.2 33.2 HB [113]
9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide units linked to the star-shaped aliphatic ground body tetra-[(acryloyloxy)ethyl] pentarythrit (DOPP) d 5.9 56 248 19.9 2.02 45.3 V-0 [113]
9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide units linked to the star-shaped aliphatic ground body heterocyclic tris-[(acryloyloxy)ethyl] isocyanurate (DOPI) d 6.9 60 247 20 2.16 47.7 V-0 [113]
24 451 37 NR [126]
Melamine coated ammonium polyphosphate (Mel-APP) e 14.6 22 233 11 5.96 V-1 [126]
42 385 21.8 27.5 [163,164]
IFR: contains melamine phosphate (IFR) f 4.7 35 278 18.3 1.37 35.2 [163,164]
28 349 20.4 [150]
ammonium polyphosphate (APP) g 5 24 345 18.6 0.95 [150]
21.2 720.5 68 [165]
ammonium polyphosphate (APP) h 3.15 20.3 375.3 42 2.97 [165]
ammonium polyphosphate (APP) h 8.88 18.1 293.8 33 4.31 [165]
ammonium polyphosphate (APP) h 16.32 21 186.7 27 9.62 [165]
44 853 51.9 [166]
melamine phosphate (MP) i 5 38 528 48.8 1.48 [166]
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) i 5 34 624 41.3 1.32 [166]
0 39 456 38 [167]
IFR: contains melamine phosphate (IFR) j 5 35 374 28.8 1.44 [167]
IFR: contains melamine phosphate (IFR) j 10 50 226 17.3 5.68 [167]
IFR: contains melamine phosphate (IFR) j 15 94 253 18.6 8.87 [167]
55 754 61.3 [168]
ammonium polyphosphate (APP) k 15 46 259 34.4 4.33 [168]
39 642 64.2 [168]
ammonium polyphosphate (APP) l 15 44 232 40.1 4.99 [168]

a Matrix: eight layers of Woven E-glass fabric reinforced epoxy; b Matrix: six layers of dry carbon fiber fabric reinforced RTM6 epoxy; c Matrix: Unidirectional carbon fiber reinforced epoxy resin; d Matrix: Carbon fibers reinforced epoxy; e Matrix: eight layers of Woven E-glass fabric reinforced epoxy; f Matrix: eight layers of woven E-glass reinforced film of multifunctional epoxy resin; g Matrix: carbon fiber reinforced epoxy resin; h Matrix: four fabric layers of unidirectional hemp fabric reinforced epoxy; I Matrix: eight layers of woven roving glass fabric reinforced epoxy phenol novolak resin blend; j Matrix: eight layers of woven E-glass reinforced epoxy; k Matrix: six layers of plain weave hemp fabric-reinforced epoxy; l Matrix: six layers of plain weave Hemp fabrics treated with water glass-reinforced epoxy.

A brief yet informative view of the effect of the used P family of FRs on the flame retardancy performance of epoxy resins is given in Figure 1. It is apparent from the figure that all sorts of behavior, including Poor, Good, and Excellent flame-retardant performance, are achieved. This is the characteristic of dependency of flame retardancy performance on both the type and the content of the P type of FR. It can be observed that the majority of epoxy systems contains less than 20 wt.% of phosphorus flame retardants. For instance, a compromise between FRI and FR loading percentage was achieved by incorporation of encapsulated ammonium polyphosphate (APP-Inline graphic) at 15 wt.% with an FRI value of 19. Detailed information about the type of phosphorus flame retardants was provided to the reader in the caption of Figure 1. Thus, innovations in design and manufacture of P type FR for epoxy should carefully meet the requirements based on the lesson learned from the multivariable behavior of flame retardancy brought about by P-type FR additives. Precise detection of the performance of each class of P-type FR in this table from one side and the chemical structure of the used FR from the other side should be balanced towards a high-performance FR for developing flame-retardant epoxy composites.

Figure 1.

Figure 1

Flame retardancy analysis of epoxy resins containing phosphorus flame retardants in terms of the FRI values as a function of P type and content. Symbols are indicative of different types of phosphorus flame retardant used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as a to l notes. Here: Inline graphic FP1-4, FP1-6, FP1-8 [24], Inline graphic DPO-PHE-11.68, DOPO-PHE-12.03 [25], Inline graphic DOPO-T-2.34, DOPO-T-4.67, DOPO-T-6.99, DOPO-T-9.34 [26], Inline graphic AEPP-5, AEPP-10, AEPP-15 [27], Inline graphic DiDOPO-3 [28], Inline graphic DiDOPO-10, DiDOPO-11 [29], Inline graphic DiDOPO-7 [30], Inline graphic DiDOPO-1, DiDOPO-5, DiDOPO-10 [31], Inline graphic DiDOPO-1, DiDOPO-5, DiDOPO-10, DiDOPO-15, DiDOPO-20 [32], Inline graphic PPMS-15, PPMS-EG-15 [33], Inline graphic PPMS-MWCNT-5, PPMS-MWCNT-10, PPMS-MWCNT-15, PPMS-15 [34], Inline graphic DPIPP-7.5, DPIPP-15, DPPIO-7.5, DPPIO-15 [35], Inline graphic IDOP-5, IDOP-10, IDOP-15 [36], Inline graphic PPAP-5 [37], Inline graphic AlPBu-10, AlPBu-11, AlPBu-12 [38], Inline graphic MPL-DOPO-2.5, MPL-DOPO-5, DDM-DOPO-2.5, DDM-DOPO-5 [39], Inline graphic ATZ-6 [40], Inline graphic P-KC-30, DOPO-30 [41], Inline graphic DHPP-OH-BAC-5, DHPP-OH-BAC-10, DHPP-OH-BAC-15 [42], Inline graphic PPAP-5, PPAP-10, PPAP-20 [43], Inline graphic [Dmim]Tos-2.4, [Dmim]Tos-4, [Dmim]Tos-7.5 [44], Inline graphic MPhP-10, MPhP-15, MPhP-20 [45], Inline graphic MDOP-0.96, MDOP-1.9, MDOP-3.75, MDOP-7.24 [46], Inline graphic AlPi-7, MPP-7 [47], Inline graphic A-BP-9 [48], Inline graphic CLEP–DOPO–POSS-2.91 [19], Inline graphic CuPP-1, CuPP-2, CuPP-4, CuPP-6, CuPP-8 [49], Inline graphic DOP-ABZ-15, DOP-ABZ-17.5, DOP-ABZ-20 [50], Inline graphic DOPO-7.11, BPD-3.38, BPD-6.71, BPD-10.04, BPD-13.41 [51], Inline graphic DOPO-7.7, HPCP-8.2 [52], Inline graphic DOPO-TPMP-2.5, DOPO-TPMP-5, DOPO-TPMP-7.5, DOPO-TPMP-10 [53], Inline graphic HB-DPPA-2 [54], Inline graphic APP-21, EDA-APP-21 [55], Inline graphic CP-6B-3 [56], Inline graphic PM-2, PM-6, PM-βCD-2, PM-βCD-6 [57], Inline graphic PSA-10, PSA-20 [58], Inline graphic BPA-BPP-9 [59], Inline graphic DOPO-9.1, PEPA-9.1, DOPO-PEPA-5.7, DOPO-PEPA-7.4, DOPO-PEPA-9.1 [60], Inline graphic DOPO-POSS-2.5, DOPO-POSS-5, DOPO-POSS-10 [61], Inline graphic HPCTP-7.46, HPCTP-11.19, HPCTP-14.92, DOPO-6.97, DOPO-10.46, DOPO-13.94 [62], Inline graphic TP-12.42, TNTP-14.36 [63], Inline graphic DOPO-7, BNP-7, BNP-11, BNP-14.7, BNP-18.4 [64], Inline graphic DOPO-7, DTB-7, DTB-10, DTB-15, DTB-20 [65], Inline graphic DOPO-7.7, HPCP-8.2 [66], Inline graphic DOPO-7.1 [67], Inline graphic DOPO-7, DOPO-TMT-7, DOPO-TMT-10.4, DOPO-TMT-13.9, DOPO-TMT-17.3, DOPO-TMT-20.8 [68], Inline graphic HMCP-3.4, HMCP-6.8, HMCP-10.2, HMCP-13.6, HMCP-17 [69], Inline graphic DOPO-bp-3.4, DOPO-bp-6.7, DOPO-bp-13.5 [70], Inline graphic CTP-DOPO-10.6 [71], Inline graphic PMTMPS-11 [72], Inline graphic PUTMPS-12, [73], Inline graphic APHP-2, APHP-4, APHP-6 [74], Inline graphic APHP-6, DOPO-6 [75], Inline graphic HP-1001-COOH-10, HP-1001-COOH-20, HP-1001-COOH-30, HP-1001-COOH-40, HP-1001-COOH-50 [76], Inline graphic TAD-4 [77], Inline graphic DOPO-10, TAD-6, TAD-8, TAD-10, TAD-12 [78], Inline graphic PAz-APP-10, PAz-APP-15 [79], Inline graphic DETA-APP-10, DETA-APP-15 [80], Inline graphic DOPO-8.3, Trif-DOPO-11.7, Trif-DOPO-14 [81], Inline graphic TOD-2, TOD-4, TOD-6 [82], Inline graphic DOPO-DDM-10, DOPO-DDE-10, DOPO-DDS-10 [83], Inline graphic DPP-POSS-5, DPOP-POSS-5, DOPO-POSS-5 [84], Inline graphic ATH-DOPO-10, ATH-DOPO-20, pATH-DOPO-10 [85], Inline graphic BPS-BPP-9 [86], Inline graphic PN-15, PSi-25 [87], Inline graphic BDMPP-14 [88], Inline graphic ATCP-15 [89], Inline graphic ATCP-15 [90], Inline graphic DOPO-4.5, DOPO-ABZ-7.5, DOPO-ABZ-10 [91], Inline graphic DMT-3.3, DMT-6.6, DMT-10, DMT-13.5, DMT-17 [92], Inline graphic APP-10, APP-MMT-10 [93], Inline graphic DOPO-6, DOPO-MMT-6 [94], Inline graphic APHP-10, BDP-10 [95], Inline graphic FIPF-20, FTBF-20 [96], Inline graphic PPDAB-10 [97], Inline graphic BP-5, BP-9, BP-15 [98], Inline graphic PS-APP-2, PS-APP-5, PS-APP-10, PS-APP-15, PS-APP-20 [99], Inline graphic DOPO-POSS-2.5, DOPO-POSS-5, DOPO-POSS-10 [100], Inline graphic DOPO-POSS-2.5, DOPO-POSS-5, DOPO-POSS-10 [100], Inline graphic DOPO-POSS-2.5, DOPO-POSS-5, DOPO-POSS-10 [101], Inline graphic DOPO-5 [102], Inline graphic DOPO-6.3 [103], Inline graphic DOPO-6.3 [104], Inline graphic APP-MMT-10 [105], Inline graphic PEPA-5.2, APP-2.9, DOPO-6.3 [106], Inline graphic PCPBO-5, PCPBO-10, PCPBO-15, PCPBO-20 [107], Inline graphic APP-15, GMA-APP-15 [108], Inline graphic APP-12, MAPP-12 [109], Inline graphic APP-12 [110], Inline graphic HAP-DOPO-9.3, HAP-DOPO-15.47 [111], Inline graphic TGIC-DOPO-6.1, TGIC-DOPO-8.1, TGIC-DOPO-10.2, TGIC-DOPO-12.2 [112], Inline graphic DOPP-19.6, DOPI-23.1 [113], Inline graphic PMPC-10, PMPC-15, PMPC-20 [114], Inline graphic DOPO-5 [115], Inline graphic SIEPDP-Mg-Al LDH-4 [116], Inline graphic CBz-10, CBz-15, CBz-20 [118], Inline graphic APP-5 [117], Inline graphic DOPMPA-10, DOPMPA-13 [119], Inline graphic MFR-10, MFR-15, MFR-20 [9], Inline graphic DOPO-COFs-0.4, DOPO-COFs-0.8, DOPO-COFs-1.6, DOPO-COFs-3.2, COFs-3.2 [17], Inline graphic Mel-APP-20 [120], Inline graphic FR-1 [121], Inline graphic ArPN2-15, ArPO2-15, ArOPN2-15.6, ArOPO2-15.6 [122], Inline graphic PMAIL-6 [123], Inline graphic oDOPI-13.81, PZ -10.8, MPP-15 [124], Inline graphic AHP-5 [125], Inline graphic Mel-APP-29.7 [126], Inline graphic MPAlP-20, MPZnP-20, MPMgP-20, MPP-20, AlPi-Et-20, DOPAc-Bu-20 [127], Inline graphic HPCTP-5, HPCTP-10, HPCTP-15 [128], Inline graphic HPCTP-15 [129], Inline graphic TPP-MMT-5 [130], Inline graphic TPP-MMT-5 [130], Inline graphic TPP-MMT-5 [130], Inline graphic hbPPE-10, hbPPE-20 [131], Inline graphic PZS-3, PZS@SrSn(OH)6-3 [132], Inline graphic PEPA-TMAC-16.5, PEPA-TMAC-33 [133], Inline graphic PCPS-1, PCPS-3, PCPS-5 [134], Inline graphic BP1-5, BP2-5, BP3-5, BP4-5, BP5-5 [135], Inline graphic SDPS-10.4 [136], Inline graphic AOPH-NR-4.25, AOPH-C1-4.25, AOPH-C2-4.25, AOPH-C3-4.25 [137], Inline graphic BHAAPE-5, BHAAPE-10, BHAAPE-20 [138], Inline graphic APP-10 [139], Inline graphic PZS-2, PZS@MoS2-2, PZS@MoS2-3 [140], Inline graphic DBPDA-βCD-3 [141], Inline graphic BP-PZN-0.5, BP-PZN-1, BP-PZN-2, BP-Bulk-2 [142], Inline graphic HPPA-2, HPPA-SH-mSiO2-2 [143], Inline graphic P-MOF-0.5, P-MOF-1, P-MOF-2 [144], Inline graphic CZrP-2, CZrP-4, CZrP-6, ZrP-6 [145], Inline graphic DMMP-HNT-20 [146], Inline graphic S600-20, AlPi-20, MPP-20 [147], Inline graphic SiO2@PZM-1, SiO2@PZM@Cu-1, SiO2@PZM@Cu-2 [148], Inline graphic FR@PZS-0.5, FR@PZS-1, FR@PZS-3, PZS-3 [149], Inline graphic APP-5 [150], Inline graphic DOPO-POSS [151], Inline graphic APP-30, M(APP & PER)-30 [152], Inline graphic TPPi-15, TPPa-15, TPPO-15 [153], Inline graphic PMP-11.4, DOPO-13.9, RP-4.3, OP-8.3 [154], Inline graphic IFR-30, IFR-30, IFR-30 [155], Inline graphic BPE-33.3, EPE-33.3, BBPE-33.3, BOPE-33.3, HBPE-33.3 [156], Inline graphic IFR-30, IFR-30, IFR-30, IFR-30 [157], Inline graphic EGM-5, EGM-15 [158], Inline graphic PCTS-Fe-OMMT-1, PCTS-Fe-OMMT-3, PCTS-Fe-OMMT-5 [159], Inline graphic APP-20, APP-40 [160], Inline graphic DOPOph-RGNO-1, DOPOph-RGNO-2, DOPOph-RGNO-3 [161], Inline graphic Mel-APP-9.59 [120], Inline graphic FP1-2.6 [24], Inline graphic PEC-5.2, PEC-6.9, PEC-8.1 [162], Inline graphic DOPP-5.9, DOPI-6.9 [113], Inline graphic Mel-APP-14.6 [126], Inline graphic IFR-4.7 [163,164], Inline graphic APP-5 [150], Inline graphic APP-3.15, APP-8.88, APP-16.32 [165], Inline graphic MP-5, DOPO-5 [166], Inline graphic IFR-5, IFR-10, IFR-15 [167], Inline graphic APP-15 [168], Inline graphic APP-15 [168].

Although variation of FRI values according to the composition reflects the flame retardancy of epoxy composites from cone calorimetry angle (the most reliable test among those normally used for analysis of performance of flame retardants), other types of flame tests would give more insights into the real effect of one or complementary actions of two or more P type FR additives in epoxy. Based on available data, a brief view of the effect of the used P-based FRs on the flame retardancy performance of epoxy resins as a function of UL94 results is given in Figure 2. The distribution of data in this figure gives useful information about the efficiency of the FR system in harsh conditions. For instance, this figure suggests that V-0 performance in UL94 can be achieved even at the Poor category of flame retardancy performance in terms of FRI. It appears that it is not possible to roughly correlate the obtained results in UL94 to those obtained in cone calorimetry tests.

Figure 2.

Figure 2

Flame retardancy analysis of epoxy resins containing phosphorus flame retardants in terms of the FRI values as a function of UL-94 test results. Symbols are indicative of different types of phosphorus flame retardant used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as a to l notes. The vertical variation in each category, i.e., V-0, V-1, V-2, and NR, is schematically representative of the amount of additive used. For example, among two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), which have different vertical quantity both revealed V-1 behavior in UL-94 test, but the upper was an FR used in more quantity in preparation of epoxy composites.

Another test of importance is the limiting oxygen index (LOI), which is demonstrative of flammability. A self-extinguishing behavior is expected when the LOI value is higher than 28. A brief overview of the effect of the used phosphorus-type flame retardants on the flame retardancy performance of epoxy resins as a function of LOI results is given in Figure 3. Surprisingly, the highest value obtained in LOI testing is located in the Good zone of FRI. The collection of data with FRI values below 5, where LOI% varies depending on the type of phosphorus additive and undoubtedly the content, is hidden behind these symbols.

Figure 3.

Figure 3

Flame retardancy analysis of epoxy resins containing phosphorus flame retardants in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of phosphorus flame retardant used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as a to l notes.

3. Epoxy Resins Containing Nonphosphorus Flame Retardants

According to the literature, a variety of nonphosphorus FRs have been used in epoxy resins. Table 2 summarizes pHRR, THR, and TTI and the FRI values of epoxy/NP systems. The percentage of incorporated FR as well as the results of LOI and UL-94 test are also given for comprehensive determination of the behavior of this family of epoxy composites.

Table 2.

The state of flame retardancy performance of epoxy resins containing nonphosphorus flame retardants in terms of FRI (* the name and percentage of incorporated flame retardant is given after each epoxy resin). The notes a to h on the bottom of the table are representative of composite systems containing woven or nonwoven fibers.

Epoxy Resins and Incorporated Non Phosphorus FR * wt.% TTI (s) pHRR (kW.m2) THR (MJ·m2) FRI LOI UL94 Ref.
0 11 781 142 21.8 [169]
(2,4,6-tris(4-boronic-2-thiophene)-1,3,5-triazine (3TT-3BA) 20 17 454 108 3.49 31.2 V-0 [169]
0 32 827 116 21.8 NR [28]
graphene nanosheet (GN) 3 35 560 113 1.65 26.7 NR [28]
0 32 781 107 21.8 NR [29]
multiwalled carbon nanotube (MWCNT) 0.8 40 473 97 2.27 21.2 NR [29]
0 32 781 107 21.8 NR [30]
Organically modified montmorillonite (DK4:two longchain alkyl ammonium modified montmorillonite) (OMMT) 7 40 576 98 1.85 23.7 NR [30]
0 32 781 107 21.8 NR [31]
organomodified magnesium aluminium layered double hydroxide (OLDH) 1 35 543 121 1.39 21.9 NR [31]
organomodified magnesium aluminium layered double hydroxide (OLDH) 5 35 521 104 1.68 23.6 V-0 [31]
organomodified magnesium aluminium layered double hydroxide (OLDH) 10 49 391 106 3.08 22.1 V-0 [31]
0 71 1146 56 21.2 NR [170]
magnesium aluminium layered double hydroxide (MgAl-LDH) 2 63 865 49 1.34 23.8 NR [170]
zeolitic imidazolate framework8 (ZIF8) 2 58 886 41 1.44 23.3 NR [170]
zeolitic imidazolate framework8 decorated magnesium aluminium layered double hydroxide (ZIF8@MgAl-LDH) 2 54 562 39 2.22 24.7 V-1 [170]
zeolitic imidazolate framework67 (ZIF67) 2 62 817 42 1.63 23.6 NR [170]
zeolitic imidazolate framework67 decorated MgAl-layered double hydroxide (ZIF67@MgAl-LDH) 2 56 432 34 3.44 25.5 V-1 [170]
0 61 1208 77.3 22.5 NR [52]
triazine-based flame retardant (TAT) 20 42 1030 75.8 0.82 24.1 NR [52]
35 1065 80.3 22.9 NR [171]
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB) 1 23 686 68.1 1.20 26.1 V-1 [171]
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB) 5 22 427 64.1 1.96 28.3 V-1 [171]
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB) 10 20 324 59.3 2.54 29.4 V-1 [171]
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB) 15 22 309 58.3 2.98 30.4 V-0 [171]
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB) 20 22 305 58 3.03 31.2 V-0 [171]
53 1121 102 20 NR [55]
Cuprous oxide (Cu2O) 21 47 1007 86 1.17 22 NR [55]
45 1091 83 22.8 NR [56]
magnesium hydroxide (MH) 3 38 751 80 1.27 25.2 NR [56]
60 873 88.5 22.5 NR [63]
2,4,6-triphenoxy-1,3,5-triazine (TN) 3.42 25 943 78.4 0.43 29 NR [63]
58 1208 80.6 22.5 NR [66]
expandable graphite (EG) 20 49 225 63.3 5.77 31 NR [66]
57 1557 94.5 24.5 NR [67]
nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleimide & cyanuric chloride (TMT) 8 52 1395 88.4 1.08 27 NR [67]
61 1208 80.6 22.5 NR [68]
nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleimide & cyanuric chloride (TMT) 7 61 858 73.5 1.54 25.5 NR [68]
56 1420 140 26 NR [77]
organically modified montmorillonite (OMMT) 1 39 1540 116 0.77 29.3 NR [77]
69 966 93.9 22.5 NR [78]
triallyl isocyanurate (TAIC) 10 61 1306 123 0.50 23.6 NR [78]
52 995 93.3 22.5 NR [81]
Triphenoxy-1,3,5-triazine (TPT) 14 48 964 88.7 1.00 24.5 NR [81]
67 950 98 24.1 NR [172]
Halloysite nanotube (HNT) 5 65 1170 93 0.83 26.1 NR [172]
Halloysite nanotube (HNT) 10 65 1002 95 0.94 25.4 NR [172]
biomimetic polydopamine nanocoating functionalized Halloysite nanotube (HNT@PDA) 5 65 1088 104 0.79 25.6 NR [172]
biomimetic polydopamine nanocoating functionalized Halloysite nanotube (HNT@PDA) 10 67 881 91 1.16 25.6 NR [172]
biomimetic polydopamine nanocoating functionalized Halloysite nanotube and ultrafine Fe(OH)3 nanoparticles (HNT@PDA@Fe(OH)3) 5 61 695 90 1.35 33.9 V-1 [172]
biomimetic polydopamine nanocoating functionalized Halloysite nanotube and ultrafine Fe(OH)3 nanoparticles (HNT@PDA@Fe(OH)3) 10 58 698 88 1.31 33.8 NR [172]
50 860 133 23 NR [94]
Montmorillonite (MMT) 6 49 792 100 1.41 26 NR [94]
45 855 112 25 NR [102]
octaphenyl polyhedral oligomeric silsesquioxane (OPS) 5 60 712 103 1.74 31.1 NR [102]
45 855 112 25 NR [103]
Octaphenyl silsesquioxane (OPS) 4.1 55 626 112 1.66 27.2 NR [103]
Polyphenyl silsesquioxane (PPSQ) 4.1 50 925 116 0.99 27.1 NR [103]
45 855 112 25 NR [104]
Octaphenyl silsesquioxane (OPS) 4.1 55 626 112 1.66 27.2 NR [104]
Octaaminophenylsilsesquioxane (OAPS) 4.6 57 635 110 1.73 27 NR [104]
50 860 112 23 NR [106]
Octaphenyl polyhedral oligomeric silsesquioxane (OPS) 4.1 55 626 112 1.51 25 NR [106]
57 459 55.2 19.5 NR [173]
aluminum trihydroxide (ATH) 40 68 231 41.2 3.17 23.6 NR [173]
Colemanite (C) 40 58 158 34.3 4.75 23.6 NR [173]
Ulexite (U) 40 62 171 38.2 4.21 22.6 NR [173]
boric acid (BA) 40 76 132 32.1 7.97 28.5 V-0 [173]
boric oxide (BO) 40 68 82 20.6 17.89 24.2 NR [173]
melamine borate (MB) 30 78 107 26.9 12.05 24.5 V-0 [173]
guanidinium nonaborate (GB) 30 65 105 26.8 10.27 23.6 NR [173]
64 821 94 23.2 NR [115]
polyhedral oligomeric octadiphenylsulfonylsilsesquioxane (ODPSS) 5 59 417 74 2.30 24.3 NR [115]
60 920 90.5 22.7 NR [116]
Magnesium-Aluminum layered double hydroxide (Mg-Al LDH) 4 53 835 89.6 0.98 24.3 NR [116]
108 1634 78 19.8 NR [174]
Trisilanolisobutyl Polyhedral oligomeric silsesquioxane (T8POSS) 10 99 774 56 2.69 20.7 NR [174]
triglycidyl isocyanurate (TGIC) 10 86 1190 67 1.27 19.9 NR [174]
0 51 1914 81.9 22 NR [121]
reduced graphene oxide (RGO) 1 47 1356 67.6 1.57 23.5 NR [121]
21 1910 84.4 22.1 NR [120]
halloysite nano-tube (HNT) 2 20 1591 90.7 1.06 19.5 NR [120]
layered double hydroxide (LDH) 2 21 803 87.5 2.29 21.6 NR [120]
layered double hydroxide (LDH) 4 22 861 85.4 2.29 20. 6 NR [120]
layered double hydroxide (LDH) 6 20 791 82.9 2.34 19.7 NR [120]
epoxy novolac resin 0 51 682 110 NR [124]
Boehmite (AlO(OH)) 30 69 535 88 2.15 V-1 [124]
0 50 992 91 NR [125]
activated carbon spheres (ACS) 2 56 898 91 1.23 [125]
activated carbon spheres@SnO2 hybrid (ACS@SnO2) 2 50 761 98 1.21 [125]
activated carbon spheres@SnO2@NiO hybrid (ACS@SnO2@NiO) 2 56 839 92 1.31 NR [125]
0 50 986 91 NR [125]
activated carbon spheres@SnO2@NiO hybrid (ACS@SnO2@NiO) 5 51 823 88 1.26 NR [125]
63 1321 157 NR [129]
octapropylglycidylether polyhedral oligomeric silsesquioxane (OGPOSS) 15 60 1026 145 1.32 NR [129]
0 19 1325 95.7 19.2 HB [33]
Expandable graphite (EG) 15 34 1015 85.3 2.61 25.4 HB [33]
100 733 141 21 HB [130]
Silicate glass (CP) 10 101 315 139 2.38 25 HB [130]
Silicate glass (CP) 15 89 268 132 2.60 24 HB [130]
47 891 151 21 HB [130]
Silicate glass (CP) 10 44 408 136 2.27 25 HB [130]
Silicate glass (CP) 15 46 346 134 2.84 24 HB [130]
22 1196 147 21 HB [130]
Silicate glass (CP) 10 20 565 137 2.06 25 HB [130]
Silicate glass (CP) 15 19 585 129 2.01 24 HB [130]
0 58 1126 100 26.1 [132]
strontium hydroxystannate nanorod (SrSn(OH)6) 3 55 889 92.6 1.30 28.4 [132]
0 73 1054 39.1 22.4 [175]
silica nanoparticles (SiO2) 2 65 727 34.4 1.46 26 [175]
Zeolitic imidazolate framework-8 nanocrystals (ZIF8) 2 60 431 25.3 3.10 26.9 [175]
Zeolitic imidazolate framework-8 coated with SiO2 (ZIF8@SiO2) 2 68 254 23.9 6.32 28.1 [175]
0 69 1150 54.7 22 [176]
molybdenum disulfide (MoS2) 2 65 854 41.7 1.66 25.7 [176]
titanium dioxide nanotube (TNT) 2 58 815 39.5 1.64 25.5 [176]
molybdenum disulfide decorated titanium dioxide nanotube (MoS2-TNT) 1 63 859 43.7 1.53 25.1 [176]
molybdenum disulfide decorated titanium dioxide nanotube (MoS2-TNT) 2 60 701 37.1 2.10 26.8 [176]
molybdenum disulfide decorated titanium dioxide nanotube (MoS2-TNT) 3 61 627 32.1 2.76 28.1 [176]
45 1193 76 23.8 [177]
Sepiolite (Sep) 2 49 1288 78 0.98 29.8 [177]
Sepiolite (Sep) 4 61 963 101 1.26 30.1 [177]
Fe3O4-doped sepiolite (Fe3o4–Sep) 2 42 1093 83 0.93 33.8 [177]
Fe3O4-doped sepiolite (Fe3o4–Sep) 4 45 883 89 1.15 36.7 [177]
45 1193 76 23.8 [178]
oxidized graphene nanoplatelets (GNO) 1 49 1204 81 1.01 25.2 [178]
oxidized graphene nanoplatelets (GNO) 3 47 1244 72 1.05 25.6 [178]
Cu-doped graphene (GN-Cu) 1 45 825 66 1.66 25.8 [178]
Cu-doped graphene (GN-Cu) 3 47 786 64 1.88 26.4 [178]
0 54 1068 76 21 [147]
Boehmite (AlO(OH)) 20 49 870 65 1.30 [147]
54 1068 75.8 HB [127]
Boehmite (AlO(OH)) 20 49 870 65.5 1.28 HB [127]
amorphous silicon dioxide (SiO2) 20 41 907 57.6 1.17 HB [127]
Bisphenol-A 0 22 1680 79 [179]
α-Manganese dioxide nanosheets (α-MnO2) 0.5 25 1701 77 1.15 [179]
α-Manganese dioxide nanosheets (α-MnO2) 1 24 1480 73 1.34 [179]
α-Manganese dioxide nanosheets (α-MnO2) 2 23 1400 67 1.47 [179]
δ-Manganese dioxide nanosheets (δ-MnO2) 0.5 25 1617 74 1.26 [179]
δ-Manganese dioxide nanosheets (δ-MnO2) 1 26 1547 74 1.37 [179]
δ-Manganese dioxide nanosheets (δ-MnO2) 2 27 1358 64 1.87 [179]
0 60 2187 124 [140]
molybdenum disulfide nanoflower (MoS2) 2 49 1457 98 1.55 [140]
0 47.7 1308 86.8 [180]
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (AI-POSS) 7.2 44.3 880 83.6 1.43 [180]
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (AI-POSS) 21.8 36.3 585 97.7 1.51 [180]
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (AI-POSS) 54 32.2 616 65.3 1.90 [180]
0 5 986 113 [181]
Expandable graphite (EG) 9 10 152 110 13.33 [181]
halloysite nanotube (HNT) 9 5 969 110 1.04 [181]
0 117 1184 95.3 [182]
Boron Nitride with D50 = 2 μm (BN 2 μm) 45 175 767 71.5 3.07 [182]
Boehmite with D50 = 2 μm (BT 2 μm) 45 140 674 72.2 2.77 [182]
0 22 1650 80 [183]
Manganese dioxide (MnO2) 2 27 1443 71 1.58 [183]
Manganese dioxide@zinc hydroxystannate binary hybrid (MnO2@ZHS) 0.5 24 1487 56 1.72 [183]
Manganese dioxide@zinc hydroxystannate binary hybrid (MnO2@ZHS) 1 25 1275 49 2.40 [183]
Manganese dioxide@zinc hydroxystannate binary hybrid (MnO2@ZHS) 2 23 989 61 2.28 [183]
Diglycidyl ether of bisphenol-F epoxy 0 66 1197 82.7 [184]
ionic liquid flame retardant (ILFR) 5 55 753 62.5 1.75 [184]
boron nitride nanosheets (BN) 5 70 813 68.2 1.89 [184]
ionic liquid flame retardant functionalized boron nitride nanosheets (ILFR-fBN) 5 104 689 51.5 4.39 [184]
63 1397 81.3 [143]
thiol-functionalized mesoporous silica (SH-mSiO2) 2 65 1117 77.8 1.34 [143]
52 972 99 [185]
short carbon fiber (SCF) 0.5 69 793 92 1.75 [185]
short carbon fiber (SCF) 0.7 80 723 88 2.32 [185]
short carbon fiber (SCF) 1 62 840 89 1.53 [185]
short carbon fiber (SCF) 1.5 98 793 101 2.26 [185]
24 1002 104 [146]
halloysite nanotube (HNT) 20 43 790 75.2 3.14 [146]
38 1542 76.2 [186]
nanomer I.28E organoclay (m-Clay) 2.5 58 1298 56.6 2.44 [186]
Deoxyribonucleic Acid modified clay (d-Clay) 2.5 55 1220 52.4 2.66 [186]
22 1032 49.2 [187]
Layered double hydroxide (LDH) 3 27 968 49.6 1.29 [187]
β-Iron oxyhydroxide (β-FeOOH) 3 25 857 48 1.40 [187]
Layered double hydroxide nanosheet-wrapped β-Iron oxyhydroxide rod hybrid (LDH-β-FeOOH) 3 20 736 44.8 1.40 [187]
47 1083 45.7 [188]
amorphous hydrous TiO2 solid spheres (AHTSS) 0.5 52 1125 46 1.05 [188]
amorphous hydrous TiO2 solid spheres (AHTSS) 2 53 951 43.6 1.34 [188]
urchin-like mesoporous TiO2 hollow spheres (UMTHS) 0.5 52 827 43.3 1.52 [188]
urchin-like mesoporous TiO2 hollow spheres (UMTHS-2) 2 52 706 38.5 2.01 [188]
65 1592 39.7 [189]
chitosan-modified molybdenum disulfide nanosheets (CS-MoS2) 0.5 71 1243 35.9 1.54 [189]
chitosan-modified molybdenum disulfide nanosheets (CS-MoS2) 1 74 1107 28.6 2.27 [189]
chitosan-modified molybdenum disulfide nanosheets (CS-MoS2) 2 75 902 33.9 2.38 [189]
molybdenum disulfide nanosheets (MoS2) 2 72 1178 40.1 1.48 [189]
74 1915 108 [148]
silica nanospheres (SiO2) 1 74 1777 95.6 1.21 [148]
38 943 60.3 [150]
carbon nanotube (CNT) 1 26 673 53.8 1.07 [150]
chemical treatment carbon nanotube (CCNT) 1 32 837 57.4 0.99 [150]
thermal treatment carbon nanotube (TCNT) 1 25 585 56.6 1.13 [150]
layered double hydroxide (LDH) 5 35 578 58.4 1.55 [150]
Hydrogenated fatty acid modified layered double hydroxide (OLDH) 5 38 453 66.5 1.88 [150]
Montmorillonite (MMT) 5 38 717 58.6 1.35 [150]
Quaternary ammonium salt modified montmorillonite (OMMT) 5 33 823 61.7 0.97 [150]
aluminium trihydroxide (ATH) 5 35 617 59.2 1.43 [150]
65 993 141 [190]
Expanded graphite (EG) 5 68 1188 125 0.98 [190]
Expanded graphite (EG) 10 80 1487 113 1.02 [190]
Expanded graphite (EG) 15 102 1911 124 0.92 [190]
Expanded graphite (EG) 23 116 1992 102 1.23 [190]
Expanded graphite (EG) 50 132 1800 81 1.95 [190]
141 932 74.3 [191,192]
Bentonite (BT) 3 150 1094 74 0.91 [191,192]
Bentonite (BT) 5 158 1192 88.1 0.73 [191,192]
6-(4-butylphenyl)21,3,5-triazine-2,4-diamine modified bentonite (BFTDA-BT) 3 140 966 74.1 0.96 [191,192]
6-(4-butylphenyl)21,3,5-triazine-2,4-diamine modified bentonite (BFTDA-BT) 5 145 998 82.2 0.86 [191,192]
11-amino-N-(pyridine-2yl)undecanamide modified bentonite (APUA-BT) 3 138 772 74.7 1.17 [191,192]
11-amino-N-(pyridine-2yl)undecanamide modified bentonite (APUA-BT) 5 139 814 74.2 1.13 [191,192]
68 1730 113 [193]
graphene nanosheets (GN) 2 86 980 65.1 3.87 [193]
Ni–Fe layered double hydroxide (Ni–Fe LDH) 2 80 1070 58.9 3.65 [193]
49 1261 114 [194]
octaammonium polyhedral oligomeric silsesquioxane-modified montmorillonite (OAPOSS-MMT) 2 42 1207 103 0.99 [194]
octaammonium polyhedral oligomeric silsesquioxane-modified montmorillonite (OAPOSS-MMT) 4 48 1095 94 1.36 [194]
octaammonium polyhedral oligomeric silsesquioxane-modified montmorillonite (OAPOSS-MMT) 6 50 982 88 1.69 [194]
31 1933 146 [195]
Sodium magadiite (Na-magadiite) 3 39 1283 116 2.38 [195]
Sodium magadiite reaction with silane coupling agent (S-Na-magadiite) 3 38 1641 120 1.75 [195]
protonated magadiite reaction with silane coupling agent (S-H-magadiite) 3 38 1416 114 2.14 [195]
organo-modified magadiite (OM-magadiite) 3 29 1332 105 1.88 [195]
silane grafting organo modified magadiite (S-OM-magadiite) 3 34 1273 103 2.36 [195]
32 2572 184 [154]
tetrabromobisphenol-A (TBBA) 17 17 1390 92 1.96 [154]
90 1653 130 [196]
graphene sheet (GN) 2 84 1156 108 1.60 [196]
Ce-doped MnO2 (Ce–MnO2) 2 79 920 96.7 2.11 [196]
Ce-doped MnO2 decorated graphene sheets (Ce–MnO2–GN) 2 100 765 83.8 3.72 [196]
89 1473 87.8 [197]
mesoporous silica (m-SiO2) 2 107 1191 96.5 1.35 [197]
Co−Al layered double hydroxide (Co−Al LDH) 2 103 1188 84.3 1.49 [197]
mesoporous silica@Co−Al layered double hydroxide (m-SiO2@Co−Al LDH) 2 110 894 56 3.19 [197]
65 1653 130 [198]
Zinc sulfide (ZnS) 2 88 1213 119 2.00 [198]
graphene sheet (GN) 2 70 1141 108 1.88 [198]
Zinc sulfide decorated Graphene sheets (ZnS-GN) 2 87 879 94.2 3.47 [198]
55 1298 97.6 [199]
hydrated pre-treated sepiolite (sep idra) 2 55 1370 101 0.91 [199]
hydrated pre-treated sepiolite (sep idra) 5 65 1157 99.5 1.30 [199]
hydrated pre-treated sepiolite (sep idra) 10 65 1072 95.7 1.45 [199]
dehydrated pre-treated sepiolite (sep anidra) 2 55 1129 97 1.157 [199]
dehydrated pre-treated sepiolite (sep anidra) 5 65 1114 107 1.26 [199]
dehydrated pre-treated sepiolite (sep anidra) 10 65 958 108 1.45 [199]
94 1097 119 [158]
expandable graphite (EG) 5 111 463 142 2.34 [158]
54 1327 99.1 [159]
chitosan modified montmorillonite intercalation iron compounds (CTS-Fe-OMMT) 3 55 1168 91.4 1.25 [159]
cetyltrimethylammoniumbromide modified montmorillonite intercalation iron compounds (CTAB-Fe-OMMT) 3 47 975 89.2 1.31 [159]
80.4 1111 140 [200]
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish)) 0.05 72.8 1161 93.6 1.29 [200]
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish)) 0.1 68.8 992 93.6 1.43 [200]
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish)) 0.5 74 926 96.9 1.59 [200]
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish)) 1 71.9 875 92.6 1.72 [200]
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish)) 5 78.3 1141 98.9 1.34 [200]
carboxylated multiwalled carbon nanotubes supplied by the Polish company (C-MWCNT(Polish)) 0.05 78.7 1080 101 1.40 [200]
carboxylated multiwalled carbon nanotubes supplied by the Polish company (C-MWCNT(Polish)) 0.1 72.6 1250 100 1.12 [200]
carboxylated multiwalled carbon nanotubes supplied by the Polish company (C-MWCNT(Polish)) 0.5 80.2 1163 98.8 1.35 [200]
carboxylated multiwalled carbon nanotubes supplied by the Polish company (C-MWCNT(Polish)) 1 81.2 945 102 1.63 [200]
carboxylated multiwalled carbon nanotubes supplied by the Belgian company (C-MWCNT(Belgian)) 0.05 76.2 919 96.3 1.66 [200]
carboxylated multiwalled carbon nanotubes supplied by the Belgian company (C-MWCNT(Belgian)) 0.5 67.4 1110 99 1.19 [200]
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish)) 0.05 83.9 1240 104 1.26 [200]
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish)) 0.1 73.8 1162 99 1.24 [200]
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish)) 0.5 76 1095 99.5 1.35 [200]
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish)) 1 67.3 1192 97.8 1.12 [200]
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish)) 5 69.7 1198 100 1.12 [200]
aminated multiwalled carbon nanotubes supplied by the Belgian company (A-MWCNT(Belgian)) 0.05 77.4 1314 98.3 1.16 [200]
aminated multiwalled carbon nanotubes supplied by the Belgian company (A-MWCNT(Belgian)) 0.1 80.2 1225 98.6 1.28 [200]
aminated multiwalled carbon nanotubes supplied by the Belgian company (A-MWCNT(Belgian)) 0.5 56.6 1005 62.4 1.75 [200]
66 934 95 [201]
graphene oxide (GNO) 1 76 811 133 0.94 [201]
41 1222 159 [160]
onium ion modified nanoclay (I.30E) 3 32 1274 154 0.77 [160]
0 101 1348 87.1 [202]
molybdenum disulfide (MoS2) 2 96 1076 75.7 1.37 [202]
graphene (GN) 2 92 965 70.1 1.58 [202]
molybdenum disulfide modified graphene (MoS2-GN) 2 90 730 65.1 2.20 [202]
0 47 1630 82.3 [161]
graphene oxide(GNO) 1 41 1426 76.8 1.06 [161]
epoxy resin modified with (3-isocyanatopropyl)-triethoxysilane 0 93 1331 63.8 [203]
hydroxylated hexagonal boron nitride (BNO) 1 113 860 56.3 2.13 [203]
hydroxylated hexagonal boron nitride (BNO) 3 117 765 55.5 2.51 [203]
42 385 21.8 27.5 [163,164]
cellulosic fibre containing polysilicic acid (Vis) a 4.7 41 329 19.4 1.28 28.1 [163,164]
phenol–formaldehyde fibers (Ky) a 4.7 51 367 28.8 0.96 27.7 [163,164]
44 818 28.8 [204]
Nanoclay (clay) b 1 32 558 26.4 1.16 [204]
Nanoclay (clay) b 3 32 570 25.5 1.18 [204]
Nanoclay (clay) b 5 32 533 24.8 1.29 [204]
28 349 20.4 [150]
layered double hydroxide (LDH) c 5 22 343 21.9 0.74 [150]
Hydrogenated fatty acid modified layered double hydroxide (OLDH) c 5 21 310 23 0.74 [150]
carbon nanotube (CNT) c 1 27 396 22.7 0.76 [150]
chemical treatment carbon nanotube (CCNT) c 1 26 411 21.7 0.74 [150]
thermal treatment carbon nanotube (TCNT) c 1 27 471 22.2 0.65 [150]
aluminium trihydroxide (ATH) c 5 22 417 22.6 0.59 [150]
0 33 520 29.4 [205]
magnesium hydroxide (Mg(OH)2) d 1 28 518 37.4 0.67 [205]
magnesium hydroxide (Mg(OH)2) d 7.5 30 550 28.4 0.89 [205]
magnesium hydroxide (Mg(OH)2) d 15 30 392 31.2 1.13 [205]
magnesium hydroxide (Mg(OH)2) d 25 35 476 41.7 0.81 [205]
aluminum hydroxide (Al(OH)3) d 1 28 456 37.3 0.76 [205]
aluminum hydroxide (Al(OH)3) d 7.5 28 585 35.3 0.62 [205]
aluminum hydroxide (Al(OH)3) d 15 26 451 32.8 0.81 [205]
aluminum hydroxide (Al(OH)3) d 25 32 396 31.6 1.18 [205]
Zinc borate (ZB) d 1 26 572 35.9 0.58 [205]
Zinc borate (ZB) d 7.5 32 427 42.7 0.81 [205]
Zinc borate (ZB) d 15 27 458 36.3 0.75 [205]
Zinc borate (ZB) d 25 37 352 30.6 1.59 [205]
46 568 23.2 [206]
Single-walled carbon nanotube Buckypaper (SWCNT-BP) e 1.06 50 526 24.5 1.11 [206]
multiwalled carbon nanotube Buckypaper (MWCNT-BP) e 1.34 64 258 13.2 5.38 [206]
carbon nanofiber (CNF) e 1.57 59 508 24.8 1.34 [206]
0 39 456 38 [167]
cellulosic fibre containing polysilicic acid (Vis) f 5 46 451 37.2 1.21 [167]
cellulosic fibre containing polysilicic acid (Vis) f 10 58 434 36.3 1.63 [167]
cellulosic fibre containing polysilicic acid (Vis) f 15 55 321 31.1 2.44 [167]
46 568 23.2 [207]
Single-walled carbon nanotube Buckypaper (SWCNT-BP) g 1.06 50 526 24.5 1.11 [207]
multiwalled carbon nanotube Buckypaper (MWCNT-BP) g 1.34 64 258 13.2 5.38 [207]
125 857 50 [174]
Trisilanolisobutyl Polyhedral oligomeric silsesquioxane (T8POSS) h 5 121 420 32 3.08 [174]
triglycidyl isocyanurate (TGIC) h 5 108 620 47 1.27 [174]

a Matrix: eight layers of woven E-glass reinforced film of multifunctional epoxy resin; b Matrix: six layers of biaxial E-glass fabric reinforced epoxy; c Matrix: carbon fiber reinforced epoxy resin; d Matrix: eight plies of carbon fiber reinforced system HexFlow RTM6 (matrix) and HexForce G0939 (fabric); e Matrix: six layers of IM-7 carbon fiber fabrics reinforced epoxy; f Matrix: eight layers of woven E-glass reinforced epoxy; g Matrix: six layers of IM-7 carbon fiber fabrics reinforced epoxy; h Matrix: eight layers of woven glass Fiber Reinforced epoxy.

From the comparison between Table 1 and Table 2, one can simply infer that the NP family is less effective in terms of the flame retardancy of the composite epoxy with respect to the P family of FR. The effect of the used NP-type FR on the flame retardancy performance of epoxy resins can be visually assessed in Figure 4. Moreover, detailed information about the type of NP additives is provided to the reader in the caption of Figure 4. The quality of epoxy composites containing NP additives suggests that even at high loading levels it is difficult to attain very high efficiencies. As an informative case, alumina Trihydrate (ATH, Inline graphic) has been used in a wide range of content in development of flame-retardant epoxy nanocomposites. It can be seen that at high loading rate (up to 30 wt.%), it gives the best results, Excellent in terms of FRI. It can be concluded that the NP class of additives are not individually responsible for high fire resistance of epoxy.

Figure 4.

Figure 4

Flame retardancy analysis of epoxy resins containing nonphosphorus flame retardants in terms of the FRI values as a function of NP type and content. Symbols are indicative of different types of NP type of FR used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as notes a to h. Here: Inline graphic 3TT-3BA-20 [169], Inline graphic GN-3 [28], Inline graphic MWCNT-0.8 [29], Inline graphic OMMT-7 [30], Inline graphic OLDH-1, OLDH-5, OLDH-10 [31], Inline graphic MgAl-LDH-2, ZIF8-2, ZIF8@MgAl-LDH-2, ZIF67-2, ZIF67@MgAl-LDH-2 [170], Inline graphic TAT-20 [52], Inline graphic TNB-1, TNB-5, TNB-10, TNB-15, TNB-20 [171], Inline graphic Cu2O-21 [55], Inline graphic MH-3, [56], Inline graphic TN-3.42 [63], Inline graphic EG-20 [66], Inline graphic TMT-8 [67], Inline graphic TMT-7 [68], Inline graphic OMMT-1 [77], Inline graphic TAIC-10 [78], Inline graphic TPT-14 [81], Inline graphic HNT-5, HNT-10, HNT@PDA-5, HNT@PDA-10, HNT@PDA@Fe(OH)3-5, HNT@PDA@Fe(OH)3-10 [172], Inline graphic MMT-6 [94], Inline graphic OPS-5 [102], Inline graphic OPS-4.1, PPSQ-4.1 [103], Inline graphic OPS-4.1, OAPS-4.6 [104], Inline graphic OPS-4.1 [106], Inline graphic ATH-40, C-40, U-40, BA-40, BO-40, MB-30, GB-30 [173], Inline graphic ODPSS-5 [115], Inline graphic Mg-Al LDH-4 [116], Inline graphic T8POSS-10, TGIC-10 [174], Inline graphic RGO-1 [121], Inline graphic HNT-2, LDH-2, LDH-4, LDH-6 [120], Inline graphic AlO(OH)-30 [124], Inline graphic ACS-2, ACS@SnO2-2, ACS@SnO2@NiO-2 [125], Inline graphic ACS@SnO2@NiO-5 [125], Inline graphic OGPOSS-15 [129], Inline graphic EG-15 [33], Inline graphic CP-10, CP-15 [130], Inline graphic CP-10, CP-15 [130], Inline graphic CP-10, CP-15 [130], Inline graphic SrSn(OH)6-3 [132], Inline graphic SiO2-2, ZIF8-2, ZIF8@SiO2-2 [175], Inline graphic MoS2-2, TNT-2, MoS2-TNT-1, MoS2-TNT-2, MoS2-TNT-3 [176], Inline graphic Sep-2, Sep-4, Fe3o4–Sep-2, Fe3o4–Sep-4 [177], Inline graphic GNO-1, GNO-3, GN-Cu-1, GN-Cu-3 [178], Inline graphic AlO(OH)-20 [147], Inline graphic AlO(OH)-20, SiO2-20 [127], Inline graphic α-MnO2-0.5, α-MnO2-1, α-MnO2-2, δ-MnO2-0.5, δ-MnO2-1, δ-MnO2-2 [179], Inline graphic MoS2-2 [140], Inline graphic AI-POSS-7.2, AI-POSS-21.8, AI-POSS-54 [180], Inline graphic EG-9, HNT-9 [181], Inline graphic BN 2 μm-45, BT 2 μm-45 [182], Inline graphic MnO2-2, MnO2@ZHS-0.5, MnO2@ZHS-1, MnO2@ZHS-2 [183], Inline graphic ILFR-5, BN-5, ILFR-fBN-5 [184], Inline graphic SH-mSiO2-2 [143], Inline graphic SCF-0.5, SCF-0.7, SCF-1, SCF-1.5 [185], Inline graphic HNT-20 [146], Inline graphic m-Clay-2.5, d-Clay-2.5 [186], Inline graphic LDH-3, β-FeOOH-3, LDH-β-FeOOH-3 [187], Inline graphic AHTSS-0.5, AHTSS-2, UMTHS-0.5, UMTHS-2 [188], Inline graphic CS-MoS2-0.5, CS-MoS2-1, CS-MoS2-2, MoS2-2 [189], Inline graphic SiO2-1 [148], Inline graphic CNT-1, CCNT-1, TCNT-1, LDH-5, OLDH-5, MMT-5, OMMT-5, ATH-5 [150], Inline graphic EG-5, EG-10, EG-15, EG-23, EG-50 [190], Inline graphic BT-3, BT-5, BFTDA-BT-3, BFTDA-BT-5, APUA-BT-3, APUA-BT-5 [191,192], Inline graphic GN-2, Ni–Fe LDH-2 [193], Inline graphic OAPOSS-MMT-2, OAPOSS-MMT-4, OAPOSS-MMT-6 [194], Inline graphic Na-magadiite-3, S-Na-magadiite-3, S-H-magadiite-3, OM-magadiite-3, S-OM-magadiite-3 [195], Inline graphic TBBA-17 [154], Inline graphic GN-2, Ce–MnO2-2, Ce–MnO2–GN-2 [196], Inline graphic m-SiO2-2, Co−Al LDH-2, m-SiO2@Co−Al LDH-2 [197], Inline graphic ZnS-2, GN-2, ZnS-GN-2 [198], Inline graphic sep idra-2, sep idra-5, sep idra-10, sep anidra-2, sep anidra-5, sep anidra-10 [199], Inline graphic EG-5 [158], Inline graphic CTS-Fe-OMMT-3, CTAB-Fe-OMMT-3 [159], Inline graphic A-MWCNT(Polish)-0.05, A-MWCNT(Polish)-0.1, A-MWCNT(Polish)-0.5, A-MWCNT(Polish)-1, A-MWCNT(Polish)-5, C-MWCNT(Polish)-0.05, C-MWCNT(Polish)-0.1, C-MWCNT(Polish)-0.5, C-MWCNT(Polish)-1, C-MWCNT(Belgian)-0.05, C-MWCNT(Belgian)-0.5, CA-MWCNT(Polish)-0.05, CA-MWCNT(Polish)-0.1, CA-MWCNT(Polish)-0.5, CA-MWCNT(Polish)-1, CA-MWCNT(Polish)-5, A-MWCNT(Belgian)-0.05, A-MWCNT(Belgian)-0.1, A-MWCNT(Belgian)-0.5 [200], Inline graphic GNO-1 [201], Inline graphic I.30E-3 [160], Inline graphic MoS2-2,GN-2, MoS2-GN-2 [202], Inline graphic GNO-1 [161], Inline graphic BNO-1, BNO-3 [203], Inline graphic Vis-4.7, Ky-4.7 [163,164], Inline graphic clay-1, clay-3, clay-5 [204], Inline graphic LDH-5, OLDH-1, CNT-1, CCNT-1, TCNT-1, ATH-5 [150], Inline graphic Mg(OH)2-1, Mg(OH)2-7.5, Mg(OH)2-15, Mg(OH)2-25, Al(OH)3-1, Al(OH)3-7.5, Al(OH)3-15, Al(OH)3-25, ZB-1, ZB-7.5, ZB-15, ZB-25 [205], Inline graphic SWCNT-BP-1.06, MWCNT-BP-1.34, CNF-1.57 [206], Inline graphic Vis-5, Vis-10, Vis-15 [167], Inline graphic SWCNT-BP-1.06, MWCNT-BP-1.34 [207], Inline graphic T8POSS-5, TGIC-5 [174].

A brief overview of the effect of the NP used as FR in epoxy composite preparation and on the flame retardancy performance of epoxy resins as a function of UL-94 results is given in Figure 5. Since data are limited and spread over the plot, there is no conclusion about the relationship between FRI (cone calorimetry) and UL-94 analysis to be highlighted. Nevertheless, all sorts of behavior can be seen in the plot, depending on the type and content of NP type of FRs. It is worthy of note that the NR category of UL-94 constitutes a high proportion of the results.

Figure 5.

Figure 5

Flame retardancy analysis of epoxy resins containing nonphosphorus flame retardants in terms of the FRI values as a function of UL-94 test results. Symbols are indicative of different types of NP type of FR used in this figure. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 2 as notes a to h. The vertical variation in each category, i.e., V-0, V-1, V-2, and NR, is schematically representative of the amount of additive used. For example, among two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), which have different vertical quantity both revealed V-1 behavior in UL-94 test, but the upper was an FR used in greater quantity in preparation of epoxy composites.

A brief overview of the effect of NP-type FR on the flame retardancy performance of epoxy resins as a function of LOI results is given in Figure 6. Surprisingly, the highest value obtained in LOI testing is located in Poor zone of FRI. On the other hand, Excellent flame retardancy seen at high FRI values has LOI of about 22%. From this perspective, it can be concluded that cone calorimetry is not monotonically representative of the character of FR when used in epoxy.

Figure 6.

Figure 6

Flame retardancy analysis of epoxy resins containing nonphosphorus flame retardants in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of NP flame retardant used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 2 as notes a to h.

4. Epoxy Resins Containing Combinatorial Flame Retardant Systems

Assessing the flame retardancy performance of P- and NP-incorporated epoxy systems unraveled the inadequacy of using one FR additive alone when a high performance is required. The antagonism or synergism may be the result of using two or more FR systems in a given polymer matrix. In the case of epoxy, there have been some attempts towards combinatorial use of P and NP additives for the sake of higher performance. Table 3 summarizes pHRR, THR, TTI, and FRI values of epoxy/P/NP combinatorial flame-retardant systems. The percentage of incorporated FR as well as the results of LOI and UL-94 tests are also given.

Table 3.

The flame retardancy performance of epoxy containing combinatory flame retardants in terms of FRI (* the name and percentage of incorporated flame retardant is given after each epoxy resin). Notes a to i on the bottom of the table are representative of composite systems containing woven or nonwoven fibers.

Epoxy Resins and Incorporated P/NP FR * wt.% TTI (s) pHRR (kW·m2) THR (MJ·m2) FRI LOI UL94 Ref.
0 32 827 116 21.8 NR [28]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/graphene nanosheet (DiDOPO/GN) 3 51 374 99 4.13 32.2 V-0 [28]
0 32 781 107 21.8 NR [29]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/multiwalled carbon nanotube (DiDOPO/MWCNT) 10.8 47 352 72 4.84 38.6 V-0 [29]
0 32 781 107 21.8 NR [30]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/Organically modified montmorillonite (DiDOPO/OMMT) 7 46 396 95 3.19 32.2 V-0 [30]
0 32 781 107 21.8 NR [31]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/organomodified magnesium aluminium layered double hydroxide (DiDOPO/OLDH) 1 41 437 142 1.73 25.2 V-0 [31]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/organomodified magnesium aluminium layered double hydroxide (DiDOPO/OLDH) 5 44 420 120 2.28 27.8 V-0 [31]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/organomodified magnesium aluminium layered double hydroxide (DiDOPO/OLDH) 10 46 406 82 3.61 31.5 V-0 [31]
0 30 1293 86.9 19.2 HB [208]
IFR: Ammonium polyphosphate & pentaerythritol & melamine(APP & PER & MEL/5:3:2) (IFR) 40 10 314 51 2.34 29.1 V-0 [208]
IFR: Ammonium polyphosphate & pentaerythritol & melamine(APP & PER & MEL/5:3:2)/Chicken eggshell (IFR/CES) 40 22 266 45.9 6.75 29.6 V-0 [208]
IFR: Ammonium polyphosphate & pentaerythritol & melamine(APP & PER & MEL/5:3:2)/Chicken eggshell (IFR/CES) 40 12 235 41.3 4.63 30.4 V-0 [208]
IFR: Ammonium polyphosphate & pentaerythritol & melamine(APP & PER & MEL/5:3:2)/Chicken eggshell (IFR/CES) 40 23 181 33 14.4 31.5 V-0 [208]
IFR: Ammonium polyphosphate & pentaerythritol & melamine(APP & PER & MEL/5:3:2)/Chicken eggshell (IFR/CES) 40 20 201 38 9.81 30.7 V-0 [208]
Waterborne EP resin 0 25 344 18.3 19.3 NR [41]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/phosphated K-carrageenan (DOPO/P-KC) 30 13 176 13.3 1.39 27.1 V-0 [41]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/phosphated K-carrageenan (DOPO/P-KC) 30 15 131 12.3 2.34 28.2 V-0 [41]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/phosphated K-carrageenan (DOPO/P-KC) 30 20 197 14.5 1.76 25 V-1 [41]
0 49 1247 49.8 22.5 NR [209]
microencapsulated ammonium polyphosphate/pentaerythritol (mAPP/PER) 10 27 961 39.9 0.89 29.9 NR [209]
microencapsulated ammonium polyphosphate/regenerated cotton cellulose (mAPP/RCC) 10 30 1055 40.5 0.89 24.1 NR [209]
microencapsulated ammonium polyphosphate/oxidized regenerated cotton cellulose (mAPP/ORCC) 10 29 554 20.9 3.17 29.5 V-0 [209]
0 21 490 103 18.3 NR [210]
2,6,7-trioxa-1-phosphabicyclo-[2.2.2]-octane-4-methanol-trimellitic anhydride/melamine cyanurate (PEPA–TMA/MCA) 18 17 378 90.4 1.20 28.9 V-1 [210]
2,6,7-trioxa-1-phosphabicyclo-[2.2.2]-octane-4-methanol-trimellitic anhydride/melamine cyanurate (PEPA–TMA/MCA) 24 15 221 57.6 2.84 29.8 V-0 [210]
2,6,7-trioxa-1-phosphabicyclo-[2.2.2]-octane-4-methanol-trimellitic anhydride/melamine cyanurate (PEPA–TMA/MCA) 30 12 296 74.8 1.31 29.1 V-1 [210]
0 71 1146 56 21.2 NR [170]
zeolitic imidazolate framework8/MgAl-layered double hydroxide (ZIF8/MgAl-LDH) 2 64 742 42 1.86 24 NR [170]
zeolitic imidazolate framework67/MgAl-layered double hydroxide (ZIF67/MgAl-LDH) 2 65 719 41 1.99 24.2 NR [170]
0 61 1208 77.3 22.5 NR [52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO) 20 44 849 74.3 1.07 29.5 NR [52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO) 20 44 682 64.5 1.53 34 V-1 [52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO) 20 47 558 56.3 2.29 36 V-0 [52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO) 20 41 500 48.5 2.59 38.6 V-0 [52]
triazine-based flame retardant/hexa-phenoxy-cyclotriphosphazene (TAT/HPCP) 20 46 774 72.3 1.26 30.1 NR [52]
triazine-based flame retardant/hexa-phenoxy-cyclotriphosphazene (TAT/HPCP) 20 43 598 59.3 1.86 33.5 V-1 [52]
triazine-based flame retardant/hexa-phenoxy-cyclotriphosphazene (TAT/HPCP) 20 48 484 52.6 2.89 37.3 V-0 [52]
triazine-based flame retardant/hexa-phenoxy-cyclotriphosphazene (TAT/HPCP) 20 48 437 47.8 3.52 39.6 V-0 [52]
53 1121 102 20 NR [55]
ethanediamine-modified ammonium polyphosphate/Cuprous oxide (EDA-APP/Cu2O) 21 62 364 64 5.74 33.5 V-0 [55]
45 1091 83 22.8 NR [56]
hexakis(4-boronic acid-phenoxy)-cyclophosphazene/magnesium hydroxide (CP-6B/MH) 3.5 49 535 67 2.75 31.9 V-0 [56]
93.6 851 91.7 19.7 NR [211]
IFR:ammonium polyphosphate & pentaerythritol(APP & PER/3:1) (IFR) 20 42.8 266 89.7 1.50 27.3 V-1 [211]
IFR:ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/Hollow glass microsphere (IFR/HGM) 20 55.4 246 59.7 3.15 28.8 V-1 [211]
IFR:ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/Hollow glass microsphere (IFR/HGM) 20 50.6 210 59.6 3.36 29.1 V-1 [211]
IFR:ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/Hollow glass microsphere (IFR/HGM) 20 74.9 178 44.8 7.85 34.7 V-0 [211]
IFR:ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/Hollow glass microsphere (IFR/HGM) 20 51.2 215 54.3 3.67 31.4 V-0 [211]
43 469 66.2 24.7 NR [58]
Ammonium polyphosphate/poly(4,40-diamino diphenyl sulfone 2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol-substituted phosphoramide) (APP/PSA) 10 34 132 21.3 8.73 32 V-0 [58]
29 1340 36.3 22.5 NR [212]
microencapsulated ammonium polyphosphate/pentaerythritol (MFAPP/PER) 12.5 24 422 20.6 4.63 24.9 NR [212]
microencapsulated ammonium polyphosphate/corn starch (MFAPP/ST) 12.5 24 457 15.2 5.80 30.1 V-0 [212]
microencapsulated ammonium polyphosphate/oxidized corn starch (MFAPP/OST) 12.5 22 400 13.4 6.88 29.5 V-0 [212]
58 1208 80.6 22.5 NR [66]
expandable graphite/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (EG/DOPO) 20 48 236 48.4 7.05 35 V-1 [66]
expandable graphite/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (EG/DOPO) 20 48 296 48.8 5.58 38 V-0 [66]
expandable graphite/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (EG/DOPO) 20 48 405 50 3.98 42 V-0 [66]
expandable graphite/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (EG/DOPO) 20 48 442 51.4 3.55 41.5 V-0 [66]
expandable graphite/hexa-phenoxy-cyclotriphosphazene (EG/HPCP) 20 48 259 49.7 6.26 33.5 V-1 [66]
expandable graphite/hexa-phenoxy-cyclotriphosphazene (EG/HPCP) 20 48 340 48 4.94 36 V-0 [66]
expandable graphite/hexa-phenoxy-cyclotriphosphazene (EG/HPCP) 20 48 809 50.6 1.97 40.5 V-0 [66]
expandable graphite/hexa-phenoxy-cyclotriphosphazene (EG/HPCP) 20 48 760 42.2 2.51 39 V-0 [66]
57 1557 94.5 24.5 NR [67]
nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleimide & cyanuric chloride/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TMT/DOPO) 11 45 1210 74.7 1.29 34 V-1 [67]
nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleimide & cyanuric chloride/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TMT/DOPO) 12.3 46 1085 70.3 1.56 36.5 V-0 [67]
nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleimide & cyanuric chloride/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TMT/DOPO) 13.7 47 1105 70.8 1.55 38 V-0 [67]
nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleimide & cyanuric chloride/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TMT/DOPO) 15 44 980 61 1.90 40.3 V-0 [67]
56 1420 116 26.2 NR [75]
9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide/aluminum poly-hexamethylenephosphinate (DOPO/APHP) 6 50 539 63 4.33 39.3 V-1 [75]
9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide/aluminum poly-hexamethylenephosphinate (DOPO/APHP) 6 46 510 58 4.57 39.5 V-0 [75]
56 1420 140 26 NR [77]
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/organically modified montmorillonite (TAD/OMMT) 5 41 961 108 1.40 36.9 V-0 [77]
82 685 145 21.3 NR [213]
flame retardant containing phosphorus & 4-tert-butylcalix[4]arene/ammonium polyphosphate (FR/APP) 30 92 332 108 3.11 27.4 V-1 [213]
flame retardant containing phosphorus & 4-tert-butylcalix[4]arene/ammonium polyphosphate (FR/APP) 30 91 361 82 3.73 28.6 V-1 [213]
flame retardant containing phosphorus & 4-tert-butylcalix[4]arene/ammonium polyphosphate (FR/APP) 30 115 229 74 8.22 29.3 V-0 [213]
flame retardant containing phosphorus & 4-tert-butylcalix[4]arene/ammonium polyphosphate (FR/APP) 30 100 203 74 8.07 30.8 V-0 [213]
62 840 84 23 V-1 [89]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA) 16 56 542 56 2.10 44 V-0 [89]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA) 18 69 427 42 4.38 51 V-0 [89]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA) 20 77 340 30 8.59 62 V-0 [89]
57 713 64 [90]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA) 16 48 435 51 1.73 39 V-0 [90]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA) 18 45 374 43 2.24 45 V-0 [90]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA) 20 40 289 31 3.57 51 V-0 [90]
50 860 112 23 NR [93]
Ammonium polyphosphate/montmorillonite (APP/MMT) 10 53 524 50 3.90 28 V-0 [93]
50 860 133 23 NR [94]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Montmorillonite (DOPO/MMT) 6 52 473 76 3.31 33 V-1 [94]
65 966 96 22.5 NR [95]
bisphenol-A bis(diphenyl phosphate)/aluminum poly-hexamethylenephosphinate (BDP/PHP) 10 51 672 86 1.26 35 V-0 [95]
45 855 112 3 3.2 [102]
octaphenyl polyhedral oligomeric silsesquioxane/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO) 5 54 603 89 2.14 29 V-1 [102]
45 855 112 25 NR [103]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Octaphenyl silsesquioxane (DOPO/OPS) 5.2 51 557 95 2.05 31.1 V-0 [103]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Polyphenyl silsesquioxane (DOPO/PPSQ) 5.2 49 895 100 1.17 31.2 NR [103]
45 855 112 25 NR [104]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Octaphenyl silsesquioxane (DOPO/OPS) 5.2 51 557 95 2.05 31.1 V-0 [104]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Octaaminophenylsilsesquioxane (DOPO/OAPS) 5.4 53 645 102 1.71 33.8 V-1 [104]
50 860 112 3 3.2 [105]
octaphenyl polyhedral oligomeric silsesquioxane/ 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO) 5 58 540 82 2.52 31 V-0 [105]
50 860 112 [106]
Octaphenyl polyhedral oligomeric silsesquioxane/1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2] octane (OPS/PEPA) 4.7 52 524 84 2.28 25.5 NR [106]
Octaphenyl polyhedral oligomeric silsesquioxane/Ammonium polyphosphate (OPS/APP) 3.5 63 584 101 2.06 24.6 NR [106]
Octaphenyl polyhedral oligomeric silsesquioxane/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO) 5.2 55 548 83 2.33 30.8 V-1 [106]
64 821 94 23.2 NR [115]
polyhedral oligomeric octadiphenylsulfonylsilsesquioxane/9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (ODPSS/DOPO) 5 57 438 69 2.27 29.8 V-0 [115]
20 662 88.6 20.5 NR [214]
bis(diphenyl phosphate) oligomer/polyphosphoric acid (BBO/PPA) 20 30 224 63.2 6.21 26 V-0 [214]
108 1634 78 19.8 NR [174]
Trisilanolisobutyl Polyhedral oligomeric silsesquioxane/triglycidyl isocyanurate (T8POSS/TGIC) 10 88 944 58 1.90 20.9 NR [174]
64 939 179 19.6 NR [117]
ammonium polyphosphate/metal compounds (APP/CoSA) 5 65 310 95 5.80 29.4 V-0 [117]
53 1262 84.7 25 NR [118]
cardanol derived benzoxazine monomer/boron-doped graphene (CBz/BGN) 10 49 870 75.9 1.50 30 V-0 [118]
cardanol derived benzoxazine monomer/boron-doped graphene (CBz/BGN) 15 52 650 74.4 2.17 33 V-0 [118]
cardanol derived benzoxazine monomer/boron-doped graphene (CBz/BGN) 20 56 716 78.7 2.00 33 V-0 [118]
21 1910 84.4 22.1 NR [120]
melamine coated ammonium polyphosphate/layered double hydroxide (Mel-APP/LDH) 20 20 240 30.3 21.10 33.2 V-0 [120]
melamine coated ammonium polyphosphate/halloysite nano-tube (Mel-APP/HNT) 20 20 246 26.2 23.90 32.7 V-0 [120]
epoxy novolac resin 0 51 682 110 NR [124]
oligo[DOPAc-2-tris(acryloyloxy)ethyl isocyanurate] /melamine polyphosphate (oDOPI/MPP) 32.8 48 341 85 2.44 V-0 [124]
boehmite/oligo[DOPAc-2-tris(acryloyloxy)ethyl isocyanurate] (AlO(OH)/oDOPI) 41.1 71 319 74 4.42 V-0 [124]
melamine polyphosphate/phosphazene (MPP/PZ) 16.5 50 310 82 2.89 V-0 [124]
boehmite/phosphazene (AlO(OH)/PZ) 33.1 66 435 79 2.83 V-0 [124]
0 50 986 91 NR [125]
aluminum hypophosphite/activated carbon spheres@SnO2@NiO hybrid (AHP/ACS@SnO2@NiO) 5 54 714 76 1.78 V-0 [125]
23 1910 61 NR [126]
Melamine coated ammonium polyphosphate/Talc (Mel-APP/Talc) 29.7 28 357 24 16.60 V-0 [126]
54 1068 75.8 HB [127]
melamine polyphosphate/melamine poly(zinc phosphate) (MPP/MPZnP) 20 38 207 51.1 5.39 V-1 [127]
diethyl aluminum phosphinate/melamine poly(zinc phosphate) (AlPi-Et/MPZnP) 20 43 405 51.2 3.11 HB [127]
6H-dibenz[c,e][1,2] oxaphosphorin-6-propanoic acid, butyl ester, 6-oxide/melamine poly(zinc phosphate) (DOPAc-Bu/MPZnP) 20 42 329 57.6 3.32 V-1 [127]
boehmite/melamine poly(zinc phosphate) (AlO(OH)/MPZnP) 20 43 438 57.2 2.57 HB [127]
amorphous silicon dioxide/melamine poly(zinc phosphate) (MPZnP/SiO2) 20 37 525 62.4 1.69 HB [127]
melamine polyphosphate/melamine poly(zinc phosphate) (MPP/MPZnP) 20 41 211 32.5 8.96 V-0 [127]
diethyl aluminum phosphinate/melamine poly(zinc phosphate) (AlPi-Et/MPZnP) 20 41 435 53.8 2.63 V-1 [127]
6H-dibenz[c,e][1,2] oxaphosphorin-6-propanoic acid, butyl ester, 6-oxide/melamine poly(zinc phosphate) (DOPAc-Bu/MPZnP) 20 41 412 52.1 2.86 HB [127]
boehmite/melamine poly(zinc phosphate) (AlO(OH)/MPZnP) 20 43 575 57.9 1.94 HB [127]
amorphous silicon dioxide/melamine poly(zinc phosphate) (SiO2/MPZnP) 20 37 681 65.6 1.24 HB [127]
63 1321 157 NR [129]
hexaphenoxycyclotriphosphazene/octapropylglycidylether polyhedral oligomeric silsesquioxane (HPCTP/OGPOSS) 15 58 707 123 2.20 V-0 [129]
hexaphenoxycyclotriphosphazene/octapropylglycidylether polyhedral oligomeric silsesquioxane (HPCTP/OGPOSS) 15 56 581 110 2.88 V-0 [129]
hexaphenoxycyclotriphosphazene/octapropylglycidylether polyhedral oligomeric silsesquioxane (HPCTP/OGPOSS) 15 56 560 105 3.14 V-0 [129]
100 733 141 21 HB [130]
Tetraphenylphosphonium modified montmorillonite/Silicate glass (CP/TPP-MMT) 15 101 353 131 2.26 25 HB [130]
47 891 151 21 HB [130]
Tetraphenylphosphonium modified montmorillonite/Silicate glass (CP/TPP-MMT) 15 48 474 130 2.23 25 HB [130]
22 1196 147 21 HB [130]
Tetraphenylphosphonium modified montmorillonite/Silicate glass (CP/TPP-MMT) 15 22 617 130 2.19 25 HB [130]
0 69 1150 54.7 22 [176]
molybdenum disulfide/titanium dioxide nanotube (MoS2/TNT) 2 56 742 38.6 1.78 26 [176]
24 1002 104 18 [215]
Ammonium polyphosphate/Pentaerythritol modified halloysite tube (APP/PER-HNT) 25 33 562 51.8 4.93 24.8 [215]
54 1068 76 21 [147]
melamine poly(magnesium phosphate)/aluminium diethylphosphinate (S600/AlPi) 20 44 479 46 3.00 30.4 [147]
melamine poly(magnesium phosphate)/boehmite (S600/AlO(OH)) 20 38 437 55 2.38 28.9 [147]
melamine poly(magnesium phosphate)/melamine polyphosphate (S600/MPP) 20 39 208 54 5.22 28.4 [147]
86 1650 213 20.2 [136]
3-((Methoxydiphenylsilyl) oxy)-9-methyl-2, 4, 8, 10-tetraoxa-3, 9-diphosphaspiro [5. 5] undecane 3, 9-dioxide/Mono (4, 6-diamino-1, 3, 5-triazin-2-aminium) (2, 4, 8, 10-tetraoxa-3, 9-diphosphaspiro [5. 5] undecane-3, 9-bis (olate) 3, 9-dioxide) (SDPS/SPDM) 10.4 62 1122 207 1.09 30.8 [136]
0 70 1491 81 19 NR [47]
aluminum diethyl phosphinate/Melamine polyphosphate (AlPi/MPP) 7 61 505 48 4.34 [47]
aluminum diethyl phosphinate/Melamine polyphosphate/aluminum oxide (AlPi/MPP/Al2O3) 7 66 533 58 3.68 [47]
0 25 1113 223 [139]
ammonium polyphosphate/char sulfonic acid (APP/CSA) 10 24 672 127 2.78 [139]
ammonium polyphosphate/char sulfonic acid (APP/CSA) 10 23 665 107 3.21 [139]
ammonium polyphosphate/char sulfonic acid (APP/CSA) 10 27 698 137 2.81 [139]
0 117 1184 95.3 [182]
Boron Nitride with D50 = 12 μm/Boron Nitride with D50 = 2 μm (BN 12 μm/BN 2 μm) 45 164 918 75.7 2.28 [182]
Boron Nitride with D50 = 12 μm/Boehmite with D50 = 2 μm (BN 12 μm/BT 2 μm) 45 163 729 65.1 3.31 [182]
60 923 124 [216]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1) (IFR) 30 64 285 64.1 6.69 [216]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/ferric phosphate (IFR/FeP) 30 46 170 56 9.23 [216]
IFR:ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/ferric phosphate (IFR/FeP) 30 42 185 49.3 8.80 [216]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/ferric phosphate (IFR/FeP) 30 39 167 39.7 11.20 [216]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/ferric phosphate (IFR/FeP) 30 41 180 44.6 9.76 [216]
62 913 155 [217]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1) (IFR) 30 49 260 56 7.68 [217]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/ferrite yellow: goethite (IFR/αFeOOH) 30 46 172 47 13.00 [217]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/ferrite yellow: goethite (IFR/αFeOOH) 30 53 166 36 20.20 [217]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/ferrite yellow: goethite (IFR/αFeOOH) 30 50 196 40 14.60 [217]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/ferrite yellow: goethite (IFR/αFeOOH) 30 52 217 74 7.39 [217]
60 923 124 [218]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1) (IFR) 30 49 285 64.1 5.12 [218]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/iron oxide brown (IFR/iron oxide brown) 30 34 167 38.3 10.20 [218]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/iron oxide brown (IFR/iron oxide brown) 30 45 126 31 22.00 [218]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/iron oxide brown (IFR/iron oxide brown) 30 48 124 29.3 25.20 [218]
IFR: ammonium polyphosphate & pentaerythritol(APP & PER/3:1)/iron oxide brown (IFR/iron oxide brown) 30 53 163 43.2 14.40 [218]
68 1730 113 [193]
Ni–Fe layered double hydroxide/graphene nanosheets (Ni–Fe LDH/GN) 2 89 678 44.2 8.55 [193]
Epoxy acrylic 32 223 30.8 [152]
ammonium polyphosphate/pentaerythritol (APP/PER) 30 61 188 25.2 2.77 [152]
70 934 124 [219]
IFR: ammonium polyphosphate & pentaerythrite(APP & PER/3:1) (IFR) 30 70 282 64 6.42 [219]
IFR: ammonium polyphosphate & pentaerythrite(APP & PER/3:1)/organic-modified iron–montmorillonite (IFR/Fe-OMMT) 30 20 243 70 1.95 [219]
IFR: ammonium polyphosphate & pentaerythrite(APP & PER/3:1)/organic-modified iron–montmorillonite (IFR/Fe-OMMT) 30 15 153 54 3.00 [219]
IFR: ammonium polyphosphate & pentaerythrite(APP & PER/3:1)/organic-modified iron–montmorillonite (IFR/Fe-OMMT) 30 30 154 68 4.74 [219]
IFR: ammonium polyphosphate & pentaerythrite(APP & PER/3:1)/organic-modified iron–montmorillonite (IFR/Fe-OMMT) 30 15 194 65 1.97 [219]
41 1222 159 [160]
ammonium polyphosphate/onium ion modified nanoclay (APP/I.30E) 23 149 363 92 21.10 [160]
0 21 454 36.2 22.1 NR [120]
melamine coated ammonium polyphosphate/layered double hydroxide (Mel-APP/LDH) a 9.55 21 259 22.6 2.81 31.7 V-1 [120]
melamine coated ammonium polyphosphate/halloysite nano-tube (Mel-APP/HNT) a 9.61 22 262 18.4 3.57 31.4 V-1 [120]
24 451 37 NR [126]
Melamine coated ammonium polyphosphate/Talc (Mel-APP/Talc) b 14.8 21 169 16 5.40 NR [126]
42 385 21.8 27.5 [163,164]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) c 10 38 262 17.9 1.62 36.2 [163,164]
IFR contains melamine phosphate/phenol–formaldehyde fibers (Ky/IFR) c 10 55 354 23.2 1.34 30.2 [163,164]
0 33 520 29.4 [205]
Zinc borate/magnesium hydroxide (ZB/Mg(OH)2) d 1 32 552 41.8 0.64 [205]
Zinc borate/magnesium hydroxide (ZB/Mg(OH)2) d 7.5 37 483 37.4 0.95 [205]
Zinc borate/magnesium hydroxide (ZB/Mg(OH)2) d 15 38 439 35.4 1.13 [205]
Zinc borate/magnesium hydroxide (ZB/Mg(OH)2) d 25 40 380 27.2 1.79 [205]
Zinc borate/aluminum hydroxide (ZB/Al(OH)3) d 1 33 525 35 0.83 [205]
Zinc borate/aluminum hydroxide (ZB/Al(OH)3) d 7.5 36 480 37.4 0.93 [205]
Zinc borate/aluminum hydroxide (ZB/Al(OH)3) d 15 27 439 37.2 0.77 [205]
Zinc borate/aluminum hydroxide (ZB/Al(OH)3) d 25 30 409 37.7 0.90 [205]
44 853 51.9 [166]
melamine phosphate/Graphene (MP/GN) e 5 36 483 47.9 1.57 [166]
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Graphene (DOPO/GN) e 5 32 538 36.5 1.64 [166]
119 294 114 [220]
organic phosphinate/Zinc borate (PFR/ZB) f 30 116 209 123 1.27 [220]
0 39 456 38 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 5 49 391 20.3 2.74 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 7.5 45 433 34 1.36 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 10 52 488 33.2 1.43 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 12.5 54 488 31.3 1.57 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 15 66 451 28.4 2.29 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 7.5 39 379 32.2 1.42 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 10 80 408 25.5 3.42 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 12.5 59 379 24.5 2.82 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 15 77 434 22.9 3.44 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 10 76 346 24.3 4.02 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 12.5 89 342 23 5.03 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 15 90 442 20.6 4.39 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 12.5 67 277 22.8 4.71 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 15 89 339 20.3 5.75 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 15 97 226 15.9 12.00 [167]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) g 17.5 100 236 23.4 8.05 [167]
125 857 50 [174]
Trisilanolisobutyl Polyhedral oligomeric silsesquioxane/triglycidyl isocyanurate (T8POSS/TGIC) h 5 114 385 32 3.17 [174]
40 525 62 [221]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) i 5 24 365 67 0.80 [221]
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) i 7.5 31 290 41 2.12 [221]
IFR contains melamine phosphate/cellulosic fiber containing polysilicic acid (IFR/Vis) i 10 28 242 36 2.62 [221]

a Matrix: eight layers of woven E-glass fabric reinforced epoxy; b Matrix: eight layers of woven E-glass fabric reinforced epoxy; c Matrix: eight layers of woven E-glass reinforced film of multifunctional epoxy resin; d Matrix: eight plies of carbon fiber reinforced system HexFlow RTM6 (matrix) and HexForce G0939 (fabric); e Matrix: eight layers of woven roving glass fabric reinforced epoxy phenol novolak resin blend; f Matrix: epoxy fiber S2-glass panels; g Matrix: eight layers of woven E-glass reinforced epoxy; h Matrix: eight layers of woven glass Fiber Reinforced epoxy; i Matrix: eight ply woven roving E-glass fiber-reinforced epoxy.

To give a more meaningful overview of the effect of combined P and NP additives on flame retardancy performance of epoxy, FRI values are calculated by using calorimetric data given in Table 3 and plotted in Figure 7. In this figure, the vertical axis shows the amount of additive system used in preparation of epoxy composites. The plot also reveals that three types of flame retardancy performances are observed, depending on the type of combinatorial systems as well as the amount of FR additives used. Attention should be paid to the fact that even at lower loading levels, careful coupling of one or more P and NP additives could lead to superiority of the FR system used, and there was a possibility for attaining higher performances compared to highly-filled systems (FR content ≥ 40). Thus, careful selection of complementary additives with disciplined loading can result in high flame retardancy performance.

Figure 7.

Figure 7

Flame retardancy analysis of epoxy resins containing combinatorial flame retardant systems in terms of the FRI values as a function of combinatorial flame retardants systems retardant type and content. Symbols are indicative of different types of combinatorial flame retardants systems used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as notes a to i. Here: Inline graphic DiDOPO-1.5/GN-1.5 [28], Inline graphic DiDOPO-10/MWCNT-0.8 [29], Inline graphic DiDOPO-3.5/OMMT-3.5 [30], Inline graphic DiDOPO-0.5/OLDH-0.5, DiDOPO-2.5/OLDH-2.5, DiDOPO-5/OLDH-5 [31], Inline graphic IFR-40, IFR-39/CES-1, IFR-38/CES-2, IFR-37/CES-3, IFR-35/CES-5 [208], Inline graphic DOPO-15/P-KC-15, DOPO-20/P-KC-10, DOPO-25/P-KC-5 [41], Inline graphic mAPP-5/PER-5, mAPP-5/RCC-5, mAPP-5/ORCC-5 [209], Inline graphic PEPA–TMA-12/MCA-6, PEPA–TMA-16/MCA-8, PEPA–TMA-20/MCA-10 [210], Inline graphic ZIF8-1/MgAl-LDH-1, ZIF67-1/MgAl-LDH-1 [170], Inline graphic TAT-18/DOPO-2, TAT-16/DOPO-4, TAT-14/DOPO-6, TAT-12/DOPO-8, TAT-18/HPCP-2, TAT-16/HPCP-4, TAT-14/HPCP-6, TAT-12/HPCP-8 [52], Inline graphic EDA-APP-19/Cu2O-2 [55], Inline graphic CP-6B-3/MH-0.5 [56], Inline graphic IFR-20, IFR-19.5/HGM-0.5, IFR-19/HGM-1, IFR-18/HGM-2, IFR-16/HGM-4 [211], Inline graphic APP-5/PSA-5 [58], Inline graphic MFAPP-6.25/PER-6.25, MFAPP-6.25/ST-6.25, MFAPP-6.25/OST-6.25 [212], Inline graphic EG-16/DOPO-4, EG-14/DOPO-6, EG-12/DOPO-8, EG-10/DOPO-10, EG-16/HPCP-4, EG-14/HPCP-6, EG-12/HPCP-8, EG-10/HPCP-10 [66], Inline graphic TMT-8.3/DOPO-2.7, TMT-8.2/DOPO-4.1, TMT-8.1/DOPO-5.6, TMT-8/DOPO-7 [67], Inline graphic DOPO-3/APHP-3, DOPO-4/APHP-2 [75], Inline graphic TAD-4/OMMT-1 [77], Inline graphic FR-20/APP-10, FR-15/APP-15, FR-12/APP-18, FR-10/APP-20 [213], Inline graphic ATCP-15/FRHA-1, ATCP-15/FRHA-3, ATCP-15/FRHA-5 [89], Inline graphic ATCP-15/FRHA-1, ATCP-15/FRHA-3, ATCP-15/FRHA-5 [90], Inline graphic APP-4/MMT-6 [93], Inline graphic DOPO-5/MMT-1 [94], Inline graphic BDP-6.7/PHP-3.3 [95], Inline graphic OPS-2.5/DOPO-2.5 [102], Inline graphic DOPO-3.1/OPS-2.1, DOPO-3.1/PPSQ-2.1 [103], Inline graphic DOPO-3.1/OPS-2.1, DOPO-3.1/OAPS-2.3 [104], Inline graphic OPS-2.5/DOPO-2.5 [105], Inline graphic OPS-2.1/PEPA-2.6, OPS-2.1/APP-1.4, OPS-2.1/DOPO-3.1 [106], Inline graphic ODPSS-2.5/DOPO-2.5 [115], Inline graphic BBO-10/PPA-10 [214], Inline graphic T8POSS-5/TGIC-5 [174], Inline graphic APP-4.83/CoSA-0.17 [117], Inline graphic CBz-8/BGN-2, CBz-13/BGN-2, CBz-18/BGN-2 [118], Inline graphic Mel-APP-18/LDH-2, Mel-APP-18/HNT-2 [120], Inline graphic oDOPI-17.76/MPP-15, AlO(OH)-30/oDOPI-11.05, MPP-15/PZ-1.54, AlO(OH)-30/PZ-3.08 [124], Inline graphic AHP-4.5/ACS@SnO2@NiO-0.5 [125], Inline graphic Mel-APP-19.97/Talc-9.73 [126], Inline graphic MPP-10/MPZnP-10, AlPi-Et-10/MPZnP-10, DOPAc-Bu-10/MPZnP-10, AlO(OH)-10/MPZnP-10, MPZnP-10/SiO2-10, MPP-13.4/MPZnP-6.6, AlPi-Et-13.4/MPZnP-6.6, DOPAc-Bu-13.4/MPZnP-6.6, AlO(OH)-13.4/MPZnP-6.6, SiO2-13.4/MPZnP-6.6 [127], Inline graphic HPCTP-10/OGPOSS-5, HPCTP-7.5/OGPOSS-7.5, HPCTP-5/OGPOSS-10 [129], Inline graphic CP-10/TPP-MMT-5 [130], Inline graphic CP-10/TPP-MMT-5 [130], Inline graphic CP-10/TPP-MMT-5 [130], Inline graphic MoS2-1/TNT-1 [176], Inline graphic APP-15/PER-HNT-10 [215], Inline graphic S600-10/AlPi-10, S600-10/AlO(OH)-10, S600-10/MPP-10 [147], Inline graphic SDPS-5.2/SPDM-5.2 [136], Inline graphic AlPi-4.7/MPP-2.3, AlPi-4.5/MPP-2.25/Al2O3-0.25 [47], Inline graphic APP-8/CSA-2, APP-7.5/CSA-2.5, APP-6.7/CSA-3.3 [139], Inline graphic BN 12 μm-33.75/BN 2 μm-11.25, BN 12 μm-33.75/BT 2 μm-11.25 [182], Inline graphic IFR-30, IFR-29.5/FeP-0.5, IFR-29/FeP-1, IFR-28/FeP-2, IFR-27/FeP-3 [216], Inline graphic IFR-30, IFR-29.5/αFeOOH-0.5, IFR-29/αFeOOH-1, IFR-28/αFeOOH-2, IFR-27/αFeOOH-3 [217], Inline graphic IFR-30, IFR-29.5/iron oxide brown-0.5, IFR-29/iron oxide brown-1, IFR-28/iron oxide brown-2, IFR-27/iron oxide brown-3 [218], Inline graphic Ni–Fe LDH-2/GN-2 [193], Inline graphic APP-22.5/PER-7.5 [152], Inline graphic IFR-30, IFR29.5/Fe-OMMT-0.5, IFR-29/Fe-OMMT-1, IFR-28/Fe-OMMT-2, IFR-27/Fe-OMMT-3 [219], Inline graphic APP-20/I.30E-3 [160], Inline graphic Mel-APP-8.59/LDH-0.96, Mel-APP-8.65/HNT-0.96 [120], Inline graphic Mel-APP-9.93/Talc-4.84 [126], Inline graphic, IFR-5/Vis-5, Ky-5/IFR-5 [163,164], Inline graphic ZB-0.5/Mg(OH)2-0.5, ZB-3.75/Mg(OH)2-3.75, ZB-7.5/Mg(OH)2-7.5, ZB-12.5/Mg(OH)2-12.5, ZB-0.5/Al(OH)3-0.5, ZB-3.75/Al(OH)3-3.75, ZB-7.5/Al(OH)3-7.5, ZB-12.5/Al(OH)3-12.5 [205], Inline graphic MP-4.5/GN-0.5, DOPO-4.5/GN-0.5 [166], Inline graphic PFR-25/ZB-5 [220], Inline graphic IFR-2.5/Vis-2.5, IFR-2.5/Vis-5, IFR-2.5/Vis-7.5, IFR-2.5/Vis-10, IFR-2.5/Vis-12.5, IFR-5/Vis-2.5, IFR-5/Vis-5, IFR-5/Vis-7.5, IFR-5/Vis-10, IFR-7.5/Vis-2.5, IFR-7.5/Vis-5, IFR-7.5/Vis-7.5, IFR-10/Vis-2.5, IFR-10/Vis-5, IFR-12.5/Vis-2.5, IFR-15/Vis-2.5 [167], Inline graphic T8POSS-2.5/TGIC-2.5 [174], Inline graphic IFR-2.5/Vis-2.5, IFR-3.75/Vis-3.75, IFR-7.5/Vis-2.5 [221].

When looking at the UL-94 test results (considering the fact that there were some data in Table 3 for some systems to be plotted and discussed in Figure 8), it can be seen that, except for some data, the whole systems take Poor and Good labels based on FRI values. It is also interesting to note that for a given category, e.g., V-0, the amount of additive changes the FRI, and UL-94 testing does not make sense of such variations.

Figure 8.

Figure 8

Flame retardancy analysis of epoxy resins containing combinatorial flame retardants in terms of the FRI values as a function of UL-94 test results. Symbols are indicative of different types of combinatorial flame retardants used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 1 as a to i notes. The vertical variation in each category, i.e., V-0, V-1, and NR, is schematically representative of the amount of additive used. For example, two data distinguished by different symbols have the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), but higher V-1 behavior in UL-94 testing means the FR was used in greater quantity.

The more interesting outcome of this work is that LOI percent similarly detects Poor and Good behaviors, not principally Excellent performance (Figure 9). This suggests that development of innovative FR additives by combination of P and NP and using highly efficient synthesis routes is the essential step to be taken in the near future for developing flame retardant epoxy composites.

Figure 9.

Figure 9

Flame retardancy analysis of epoxy resins containing combinatorial flame-retardant systems in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of combinatorial flame-retardant systems used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 1 as notes a to i.

5. Concluding Remarks and Future Perspective

In previous sections, we categorized the flame-retardant properties of epoxy resins in terms of the universal FRI criterion and the content of flame retardants of three families. We also attempted to find possible correlations between cone calorimetry (reflected in FRI variations), UL-94, and LOI analyses. Since cone calorimetry is the best way to simulate real state combustion of polymers, here, we give a general picture of flame retardancy of epoxy resins (Figure 10). The Poor, Good, or Excellent flame retardancy cases are the result of the P, NP, or P/NP types of flame retardants used in preparation of epoxy composites as well as the FR loading. Each kind of behavior can be visualized by providing a full snapshot of the Poor, Good, and Excellent regions of the FRI to see how closely the data are collected in each zone. Overall, it can be seen that Poor and Good are the cases for majority of data, while the Excellent zone contains limited data. This highlights the difficulty of achieving high flame-retardant efficiency in epoxy composites when merely using flame retardants. Thus, development of innovative flame retardants through blending different FR families and making them reactive towards epoxy may result in a fully cured 3D network with high flame resistance. This requires the knowledge and experience of chemists and engineers who can adjust the performance of the system in a very disciplined manner. Moreover, using bio-based epoxy resins with limited environmental threats would be another solution to the question of “which FR additive(s) meet the requirements of highly flame-retardant epoxy composites?”.

Figure 10.

Figure 10

Overall flame retardancy behavior of epoxy resins regardless of the type of flame retardant. Poor, Good, and Excellent efficiencies are magnified to give a close-up of the data distribution.

Author Contributions

Conceptualization, H.V. and M.R.S.; methodology, H.V. and M.R.S.; validation, H.V. and M.R.S.; investigation, E.M., H.V. and M.R.S.; data curation, E.M.; writing—original draft preparation, H.V. and M.R.S.; writing—review and editing H.V., S.T. and M.R.S.; visualization, H.V., S.T. and M.R.S.; supervision, H.V., S.T. and M.R.S.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Jin F.-L., Li X., Park S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015;29:1–11. doi: 10.1016/j.jiec.2015.03.026. [DOI] [Google Scholar]
  • 2.Tan S., Chow W. Biobased epoxidized vegetable oils and its greener epoxy blends: A review. Polym. Plast. Technol. Eng. 2010;49:1581–1590. doi: 10.1080/03602559.2010.512338. [DOI] [Google Scholar]
  • 3.Wang X., Hu Y., Song L., Xing W., Lu H., Lv P., Jie G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51:2435–2445. doi: 10.1016/j.polymer.2010.03.053. [DOI] [Google Scholar]
  • 4.Ahmadi Z. Epoxy in nanotechnology: A short review. Prog. Org. Coat. 2019;132:445–448. doi: 10.1016/j.porgcoat.2019.04.003. [DOI] [Google Scholar]
  • 5.Ahmadi Z. Nanostructured epoxy adhesives: A review. Prog. Org. Coat. 2019;135:449–453. doi: 10.1016/j.porgcoat.2019.06.028. [DOI] [Google Scholar]
  • 6.Manouchehri S., Bagheri B., Rad S.H., Nezhad M.N., Kim Y.C., Park O.O., Farokhi M., Jouyandeh M., Ganjali M.R., Yazdi M.K., et al. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog. Org. Coat. 2019;131:389–396. doi: 10.1016/j.porgcoat.2019.03.022. [DOI] [Google Scholar]
  • 7.Wu K., Song L., Hu Y., Lu H., Kandola B.K., Kandare E. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog. Org. Coat. 2009;65:490–497. doi: 10.1016/j.porgcoat.2009.04.008. [DOI] [Google Scholar]
  • 8.Levchik S.V., Weil E.D. Thermal decomposition, combustion and flame-retardancy of epoxy resins—A review of the recent literature. Polym. Int. 2004;53:1901–1929. doi: 10.1002/pi.1473. [DOI] [Google Scholar]
  • 9.Liu S., Yu B., Feng Y., Yang Z., Yin B. Synthesis of a multifunctional bisphosphate and its flame retardant application in epoxy resin. Polym. Degrad. Stab. 2019;165:92–100. doi: 10.1016/j.polymdegradstab.2019.04.022. [DOI] [Google Scholar]
  • 10.Weil E.D., Levchik S. A review of current flame retardant systems for epoxy resins. J. Fire Sci. 2004;22:25–40. doi: 10.1177/0734904104038107. [DOI] [Google Scholar]
  • 11.Rad E.R., Vahabi H., de Anda A.R., Saeb M.R., Thomas S. Bio-epoxy resins with inherent flame retardancy. Prog. Org. Coat. 2019;135:608–612. doi: 10.1016/j.porgcoat.2019.05.046. [DOI] [Google Scholar]
  • 12.Wang X., Xing W., Song L., Yu B., Shi Y., Yang W., Hu Y. Flame retardancy and thermal properties of novel UV-curing epoxy acrylate coatings modified by phosphorus-containing hyperbranched macromonomer. J. Polym. Res. 2013;20:165. doi: 10.1007/s10965-013-0165-x. [DOI] [Google Scholar]
  • 13.Vahabi H., Saeb M.R., Formela K., Cuesta J.-M.L. Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Prog. Org. Coat. 2018;119:8–14. doi: 10.1016/j.porgcoat.2018.02.005. [DOI] [Google Scholar]
  • 14.Vahabi H., Raveshtian A., Fasihi M., Sonnier R., Saeb M.R., Dumazert L., Kandola B.K. Competitiveness and synergy between three flame retardants in poly (ethylene-co-vinyl acetate) Polym. Degrad. Stab. 2017;143:164–175. doi: 10.1016/j.polymdegradstab.2017.07.005. [DOI] [Google Scholar]
  • 15.Battig A., Markwart J.C., Wurm F.R., Schartel B. Hyperbranched phosphorus flame retardants: Multifunctional additives for epoxy resins. Polym. Chem. 2019;10:4346–4358. doi: 10.1039/C9PY00737G. [DOI] [Google Scholar]
  • 16.Zou B., Qiu S., Ren X., Zhou Y., Zhou F., Xu Z., Zhao Z., Song L., Hu Y., Gong X. Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. J. Hazard. Mater. 2019;383:121069. doi: 10.1016/j.jhazmat.2019.121069. [DOI] [PubMed] [Google Scholar]
  • 17.Mu X., Wang D., Pan Y., Cai W., Song L., Hu Y. A facile approach to prepare phosphorus and nitrogen containing macromolecular covalent organic nanosheets for enhancing flame retardancy and mechanical property of epoxy resin. Compos. Part B Eng. 2019;164:390–399. doi: 10.1016/j.compositesb.2018.12.036. [DOI] [Google Scholar]
  • 18.Duan H., Chen Y., Ji S., Hu R., Ma H. A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties. Chem. Eng. J. 2019;375:121916. doi: 10.1016/j.cej.2019.121916. [DOI] [Google Scholar]
  • 19.Li S., Zhao X., Liu X., Yang X., Yu R., Zhang Y., Huang W., Deng K. Cage–ladder-structure, phosphorus-containing polyhedral oligomeric silsesquinoxanes as promising reactive-type flame retardants for epoxy resin. J. Appl. Polym. Sci. 2019;136:47607. doi: 10.1002/app.47607. [DOI] [Google Scholar]
  • 20.Jouyandeh M., Rahmati N., Movahedifar E., Hadavand B.S., Karami Z., Ghaffari M., Taheri P., Bakhshandeh E., Vahabi H., Ganjali M.R., et al. Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective. Prog. Org. Coat. 2019;133:220–228. doi: 10.1016/j.porgcoat.2019.04.034. [DOI] [Google Scholar]
  • 21.Jouyandeh M., Paran S.M.R., Jannesari A., Saeb M.R. ‘Cure Index’ for thermoset composites. Prog. Org. Coat. 2019;127:429–434. doi: 10.1016/j.porgcoat.2018.11.025. [DOI] [Google Scholar]
  • 22.Vahabi H., Kandola B.K., Saeb M.R. Flame retardancy index for thermoplastic composites. Polymers. 2019;11:407. doi: 10.3390/polym11030407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Vahabi H., Laoutid F., Movahedifar E., Khalili R., Rahmati N., Vagner C., Cochez M., Brison L., Ducos F., Ganjali M.R. Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index. Polym. Adv. Technol. 2019;30:2056–2066. doi: 10.1002/pat.4638. [DOI] [Google Scholar]
  • 24.Zhao X., Zhang L., Alonso J.P., Delgado S., Martínez-Miranda M., Wang D.-Y. Influence of phenylphosphonic amide on rheological, mechanical and flammable properties of carbon fiber/RTM6 composites. Compos. Part B Eng. 2018;149:74–81. doi: 10.1016/j.compositesb.2018.05.018. [DOI] [Google Scholar]
  • 25.Zhao J., Dong X., Huang S., Tian X., Song L., Yu Q., Wang Z. Performance comparison of flame retardant epoxy resins modified by DPO–PHE and DOPO–PHE. Polym. Degrad. Stab. 2018;156:89–99. doi: 10.1016/j.polymdegradstab.2018.08.007. [DOI] [Google Scholar]
  • 26.Yang S., Hu Y., Zhang Q. Synthesis of a phosphorus–nitrogen-containing flame retardant and its application in epoxy resin. High Perform. Polym. 2019;31:186–196. doi: 10.1177/0954008318756496. [DOI] [Google Scholar]
  • 27.Yang J.W., Wang Z.Z. Synthesis of aluminum ethylphenylphosphinate flame retardant and its application in epoxy resin. Fire Mater. 2018;42:638–644. doi: 10.1002/fam.2518. [DOI] [Google Scholar]
  • 28.Yan W., Zhang M.-Q., Yu J., Nie S.-Q., Zhang D.-Q., Qin S.-H. Synergistic flame-retardant effect of epoxy resin combined with phenethyl-bridged DOPO derivative and graphene nanosheets. Chin. J. Polym. Sci. 2019;37:79–88. doi: 10.1007/s10118-019-2175-6. [DOI] [Google Scholar]
  • 29.Yan W., Yu J., Zhang M., Wang T., Wen C., Qin S., Huang W. Effect of multiwalled carbon nanotubes and phenethyl-bridged DOPO derivative on flame retardancy of epoxy resin. J. Polym. Res. 2018;25:72. doi: 10.1007/s10965-018-1472-z. [DOI] [Google Scholar]
  • 30.Yan W., Yu J., Zhang M., Wang T., Li W., Qin S., Long L. Enhanced flame retardancy of epoxy resin containing a phenethyl-bridged DOPO derivative/montmorillonite compound. J. Fire Sci. 2018;36:47–62. doi: 10.1177/0734904117740820. [DOI] [Google Scholar]
  • 31.Yan W., Yu J., Zhang M., Qin S., Wang T., Huang W., Long L. Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. RSC Adv. 2017;7:46236–46245. doi: 10.1039/C7RA08173A. [DOI] [Google Scholar]
  • 32.Yan W., Yu J., Zhang M., Long L., Wang T., Qin S., Huang W. Novel flame retardancy effect of phenethyl-bridged DOPO derivative on epoxy resin. High Perform. Polym. 2018;30:667–676. doi: 10.1177/0954008317716525. [DOI] [Google Scholar]
  • 33.Yan L., Xu Z., Wang X., Deng N., Chu Z. Preparation of a novel mono-component intumescent flame retardant for enhancing the flame retardancy and smoke suppression properties of epoxy resin. J. Therm. Anal. Calorim. 2018;134:1505–1519. doi: 10.1007/s10973-018-7810-x. [DOI] [Google Scholar]
  • 34.Xu Z., Deng N., Yan L., Chu Z. Functionalized multiwalled carbon nanotubes with monocomponent intumescent flame retardant for reducing the flammability and smoke emission characteristics of epoxy resins. Polym. Adv. Technol. 2018;29:3002–3013. doi: 10.1002/pat.4420. [DOI] [Google Scholar]
  • 35.Xu Y.-J., Wang J., Tan Y., Qi M., Chen L., Wang Y.-Z. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chem. Eng. J. 2018;337:30–39. doi: 10.1016/j.cej.2017.12.086. [DOI] [Google Scholar]
  • 36.Xu Y.-J., Chen L., Rao W.-H., Qi M., Guo D.-M., Liao W., Wang Y.-Z. Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chem. Eng. J. 2018;347:223–232. doi: 10.1016/j.cej.2018.04.097. [DOI] [Google Scholar]
  • 37.Xu M.-J., Xia S.-Y., Liu C., Li B. Preparation of poly (phosphoric acid piperazine) and its application as an effective flame retardant for epoxy resin. Chin. J. Polym. Sci. 2018;36:655–664. doi: 10.1007/s10118-018-2036-8. [DOI] [Google Scholar]
  • 38.Xiang Y., Wang L., Yang Z., Gao P., Qin S., Yu J. Effect of aluminum phosphinate on the flame-retardant properties of epoxy syntactic foams. J. Therm. Anal. Calorim. 2019;137:1645–1656. doi: 10.1007/s10973-019-08051-9. [DOI] [Google Scholar]
  • 39.Wang P., Fu X., Kan Y., Wang X., Hu Y. Two high-efficient DOPO-based phosphonamidate flame retardants for transparent epoxy resin. High Perform. Polym. 2019;31:249–260. doi: 10.1177/0954008318762037. [DOI] [Google Scholar]
  • 40.Wang P., Chen L., Xiao H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin. J. Anal. Appl. Pyrolysis. 2019;139:104–113. doi: 10.1016/j.jaap.2019.01.015. [DOI] [Google Scholar]
  • 41.Wang N., Teng H., Li L., Zhang J., Kang P. Synthesis of phosphated K-carrageenan and Its application for flame-retardant waterborne epoxy. Polymers. 2018;10:1268. doi: 10.3390/polym10111268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Tian L., Li X., Wang L., Zhang Y., Cui J., Guo J., Yang B. Synthesis and characterization of an efficient flame retardant based on aromatic ring and phosphate ester for epoxy resin. Polym. Eng. Sci. 2019;59:E406–E413. doi: 10.1002/pen.25072. [DOI] [Google Scholar]
  • 43.Sun Z., Hou Y., Hu Y., Hu W. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater. Chem. Phys. 2018;214:154–164. doi: 10.1016/j.matchemphys.2018.04.065. [DOI] [Google Scholar]
  • 44.Shi Y.-Q., Fu T., Xu Y.-J., Li D.-F., Wang X.-L., Wang Y.-Z. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem. Eng. J. 2018;354:208–219. doi: 10.1016/j.cej.2018.08.023. [DOI] [Google Scholar]
  • 45.Shi Y., Wang Z., Zhou J.-a. Facile synthesis of a flame retardant melamine phenylphosphate and its epoxy resin composites with simultaneously improved flame retardancy, smoke suppression and water resistance. RSC Adv. 2018;8:39214–39221. doi: 10.1039/C8RA08696F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Shen D., Xu Y.-J., Long J.-W., Shi X.-H., Chen L., Wang Y.-Z. Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: Thermal stability, flame retardance and pyrolysis behavior. J. Anal. Appl. Pyrolysis. 2017;128:54–63. doi: 10.1016/j.jaap.2017.10.025. [DOI] [Google Scholar]
  • 47.Zhong L., Zhang K.-X., Wang X., Chen M.-J., Xin F., Liu Z.-G. Synergistic effects and flame-retardant mechanism of aluminum diethyl phosphinate in combination with melamine polyphosphate and aluminum oxide in epoxy resin. J. Therm. Anal. Calorim. 2018;134:1637–1646. doi: 10.1007/s10973-018-7699-4. [DOI] [Google Scholar]
  • 48.Liang W.-J., Zhao B., Zhang C.-Y., Jian R.-K., Liu D.-Y., Liu Y.-Q. Enhanced flame retardancy of DGEBA epoxy resin with a novel bisphenol-A bridged cyclotriphosphazene. Polym. Degrad. Stab. 2017;144:292–303. doi: 10.1016/j.polymdegradstab.2017.08.027. [DOI] [Google Scholar]
  • 49.Kong Q., Wu T., Zhang J., Wang D.-Y. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos. Sci. Technol. 2018;154:136–144. doi: 10.1016/j.compscitech.2017.10.013. [DOI] [Google Scholar]
  • 50.Jian R.-K., Ai Y.-F., Xia L., Zhao L.-J., Zhao H.-B. Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. J. Hazard. Mater. 2019;371:529–539. doi: 10.1016/j.jhazmat.2019.03.045. [DOI] [PubMed] [Google Scholar]
  • 51.Huo S., Wang J., Yang S., Chen X., Zhang B., Wu Q., Zhang B. Flame-retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur. Polym. Adv. Technol. 2018;29:497–506. doi: 10.1002/pat.4145. [DOI] [Google Scholar]
  • 52.Huo S., Wang J., Yang S., Cai H., Zhang B., Chen X., Wu Q., Yang L. Synergistic effect between a novel triazine-based flame retardant and DOPO/HPCP on epoxy resin. Polym. Adv. Technol. 2018;29:2774–2783. doi: 10.1002/pat.4400. [DOI] [Google Scholar]
  • 53.Gangireddy C.S.R., Wang X., Kan Y., Song L., Hu Y. Synthesis of a novel DOPO-based polyphosphoramide with high char yield and its application in flame-retardant epoxy resins. Polym. Int. 2019;68:936–945. doi: 10.1002/pi.5784. [DOI] [Google Scholar]
  • 54.Dong C., Wirasaputra A., Luo Q., Liu S., Yuan Y., Zhao J., Fu Y. Intrinsic flame-retardant and thermally stable epoxy endowed by a highly efficient, multifunctional curing agent. Materials. 2016;9:1008. doi: 10.3390/ma9121008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Chen M.-J., Wang X., Li X.-L., Liu X.-Y., Zhong L., Wang H.-Z., Liu Z.-G. The synergistic effect of cuprous oxide on an intumescent flame-retardant epoxy resin system. RSC Adv. 2017;7:35619–35628. doi: 10.1039/C7RA05482C. [DOI] [Google Scholar]
  • 56.Ai L., Chen S., Zeng J., Yang L., Liu P. Synergistic flame retardant effect of an intumescent flame retardant containing boron and magnesium hydroxide. ACS Omega. 2019;4:3314–3321. doi: 10.1021/acsomega.8b03333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Zhao X., Xiao D., Alonso J.P., Wang D.-Y. Inclusion complex between beta-cyclodextrin and phenylphosphonicdiamide as novel bio-based flame retardant to epoxy: Inclusion behavior, characterization and flammability. Mater. Des. 2017;114:623–632. doi: 10.1016/j.matdes.2016.11.093. [DOI] [Google Scholar]
  • 58.Zhao W., Liu J., Peng H., Liao J., Wang X. Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins. Polym. Degrad. Stab. 2015;118:120–129. doi: 10.1016/j.polymdegradstab.2015.04.023. [DOI] [Google Scholar]
  • 59.Zhao B., Liang W.-J., Wang J.-S., Li F., Liu Y.-Q. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 2016;133:162–173. doi: 10.1016/j.polymdegradstab.2016.08.013. [DOI] [Google Scholar]
  • 60.Zhang Y., Yu B., Wang B., Liew K.M., Song L., Wang C., Hu Y. Highly effective P–P synergy of a novel DOPO-based flame retardant for epoxy resin. Ind. Eng. Chem. Res. 2017;56:1245–1255. doi: 10.1021/acs.iecr.6b04292. [DOI] [Google Scholar]
  • 61.Zhang W., Fina A., Cuttica F., Camino G., Yang R. Blowing-out effect in flame retarding epoxy resins: Insight by temperature measurements during forced combustion. Polym. Degrad. Stab. 2016;131:82–90. doi: 10.1016/j.polymdegradstab.2016.07.002. [DOI] [Google Scholar]
  • 62.Zhang C., Pan M., Qu L., Sun G. Effect of phosphorus-containing flame retardants on flame retardancy and thermal stability of tetrafunctional epoxy resin. Polym. Adv. Technol. 2015;26:1531–1536. doi: 10.1002/pat.3576. [DOI] [Google Scholar]
  • 63.You G., Cheng Z., Tang Y., He H. Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate–triazine-based compound as flame retardant in epoxy resin. Ind. Eng. Chem. Res. 2015;54:7309–7319. doi: 10.1021/acs.iecr.5b00315. [DOI] [Google Scholar]
  • 64.Yang S., Zhang Q., Hu Y. Preparation and investigation of flame-retardant epoxy resin modified with a novel halogen-free flame retardant containing phosphaphenanthrene, triazine-trione, and organoboron units. J. Appl. Polym. Sci. 2017;134:45291. doi: 10.1002/app.45291. [DOI] [Google Scholar]
  • 65.Yang S., Zhang Q., Hu Y. Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin. Polym. Degrad. Stab. 2016;133:358–366. doi: 10.1016/j.polymdegradstab.2016.09.023. [DOI] [Google Scholar]
  • 66.Yang S., Wang J., Huo S., Wang M., Wang J., Zhang B. Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: Strong bonding of different carbon residues. Polym. Degrad. Stab. 2016;128:89–98. doi: 10.1016/j.polymdegradstab.2016.03.017. [DOI] [Google Scholar]
  • 67.Yang S., Wang J., Huo S., Wang M., Wang J. Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polym. Degrad. Stab. 2015;121:398–406. doi: 10.1016/j.polymdegradstab.2015.10.006. [DOI] [Google Scholar]
  • 68.Yang S., Wang J., Huo S., Wang M., Cheng L. Synthesis of a phosphorus/nitrogen-containing additive with multifunctional groups and its flame-retardant effect in epoxy resin. Ind. Eng. Chem. Res. 2015;54:7777–7786. doi: 10.1021/acs.iecr.5b02026. [DOI] [Google Scholar]
  • 69.Yang S., Wang J., Huo S., Wang J., Tang Y. Synthesis of a phosphorus/nitrogen-containing compound based on maleimide and cyclotriphosphazene and its flame-retardant mechanism on epoxy resin. Polym. Degrad. Stab. 2016;126:9–16. doi: 10.1016/j.polymdegradstab.2016.01.011. [DOI] [Google Scholar]
  • 70.Xu W., Wirasaputra A., Liu S., Yuan Y., Zhao J. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 2015;122:44–51. doi: 10.1016/j.polymdegradstab.2015.10.012. [DOI] [Google Scholar]
  • 71.Xu M.-J., Xu G.-R., Leng Y., Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polym. Degrad. Stab. 2016;123:105–114. doi: 10.1016/j.polymdegradstab.2015.11.018. [DOI] [Google Scholar]
  • 72.Xu M.-J., Ma Y., Hou M.-J., Li B. Synthesis of a cross-linked triazine phosphine polymer and its effect on fire retardancy, thermal degradation and moisture resistance of epoxy resins. Polym. Degrad. Stab. 2015;119:14–22. doi: 10.1016/j.polymdegradstab.2015.04.027. [DOI] [Google Scholar]
  • 73.Xu M., Li X., Li B. Synthesis of a novel cross-linked organophosphorus-nitrogen containing polymer and its application in flame retardant epoxy resins. Fire Mater. 2016;40:848–860. doi: 10.1002/fam.2349. [DOI] [Google Scholar]
  • 74.Wang J., Qian L., Xu B., Xi W., Liu X. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polym. Degrad. Stab. 2015;122:8–17. doi: 10.1016/j.polymdegradstab.2015.10.011. [DOI] [Google Scholar]
  • 75.Wang J., Qian L., Huang Z., Fang Y., Qiu Y. Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym. Degrad. Stab. 2016;130:173–181. doi: 10.1016/j.polymdegradstab.2016.06.010. [DOI] [Google Scholar]
  • 76.Wang G., Nie Z. Synthesis of a novel phosphorus-containing epoxy curing agent and the thermal, mechanical and flame-retardant properties of the cured products. Polym. Degrad. Stab. 2016;130:143–154. doi: 10.1016/j.polymdegradstab.2016.06.002. [DOI] [Google Scholar]
  • 77.Tang S., Wachtendorf V., Klack P., Qian L., Dong Y., Schartel B. Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset. RSC Adv. 2017;7:720–728. doi: 10.1039/C6RA25070J. [DOI] [Google Scholar]
  • 78.Tang S., Qian L., Liu X., Dong Y. Gas-phase flame-retardant effects of a bi-group compound based on phosphaphenanthrene and triazine-trione groups in epoxy resin. Polym. Degrad. Stab. 2016;133:350–357. doi: 10.1016/j.polymdegradstab.2016.09.014. [DOI] [Google Scholar]
  • 79.Tan Y., Shao Z.-B., Yu L.-X., Long J.-W., Qi M., Chen L., Wang Y.-Z. Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: Flame retardance, curing behavior and mechanical property. Polym. Chem. 2016;7:3003–3012. doi: 10.1039/C6PY00434B. [DOI] [Google Scholar]
  • 80.Tan Y., Shao Z.-B., Chen X.-F., Long J.-W., Chen L., Wang Y.-Z. Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl. Mater. Interfaces. 2015;7:17919–17928. doi: 10.1021/acsami.5b04570. [DOI] [PubMed] [Google Scholar]
  • 81.Qian L., Qiu Y., Liu J., Xin F., Chen Y. The flame retardant group-synergistic-effect of a phosphaphenanthrene and triazine double-group compound in epoxy resin. J. Appl. Polym. Sci. 2014;131:39709. doi: 10.1002/app.39709. [DOI] [Google Scholar]
  • 82.Qiu Y., Qian L., Xi W. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Adv. 2016;6:56018–56027. doi: 10.1039/C6RA10752D. [DOI] [Google Scholar]
  • 83.Qian X., Song L., Hu Y., Jiang S. Novel DOPO-based epoxy curing agents. J. Therm. Anal. Calorim. 2016;126:1339–1348. doi: 10.1007/s10973-016-5604-6. [DOI] [Google Scholar]
  • 84.Qi Z., Zhang W., He X., Yang R. High-efficiency flame retardency of epoxy resin composites with perfect T8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs) Compos. Sci. Technol. 2016;127:8–19. doi: 10.1016/j.compscitech.2016.02.026. [DOI] [Google Scholar]
  • 85.Pan Y.-T., Zhang L., Zhao X., Wang D.-Y. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity. Chem. Sci. 2017;8:3399–3409. doi: 10.1039/C6SC05695D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Liang W.-j., Zhao B., Zhao P.-h., Zhang C.-y., Liu Y.-q. Bisphenol-S bridged penta (anilino) cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy. Polym. Degrad. Stab. 2017;135:140–151. doi: 10.1016/j.polymdegradstab.2016.11.023. [DOI] [Google Scholar]
  • 87.Li Z., Song T., Liu J., Yan Y. Thermal and combustion behavior of phosphorus–nitrogen and phosphorus–silicon retarded epoxy. Iran. Polym. J. 2017;26:21–30. doi: 10.1007/s13726-016-0495-8. [DOI] [Google Scholar]
  • 88.Li Y., Zheng H., Xu M., Li B., Lai T. Synthesis of a novel phosphonate flame retardant and its application in epoxy resins. J. Appl. Polym. Sci. 2015;132:42765. doi: 10.1002/app.42765. [DOI] [Google Scholar]
  • 89.Krishnadevi K., Selvaraj V. Development of cyclophosphazene and rice husk ash incorporated epoxy composites for high performance applications. Polym. Bull. 2017;74:1791–1815. doi: 10.1007/s00289-016-1805-1. [DOI] [Google Scholar]
  • 90.Krishnadevi K., Selvaraj V. Development of halogen-free flame retardant phosphazene and rice husk ash incorporated benzoxazine blended epoxy composites for microelectronic applications. New J. Chem. 2015;39:6555–6567. doi: 10.1039/C5NJ00364D. [DOI] [Google Scholar]
  • 91.Jian R., Wang P., Duan W., Wang J., Zheng X., Weng J. Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: Thermal property, flame retardance, and pyrolysis behavior. Ind. Eng. Chem. Res. 2016;55:11520–11527. doi: 10.1021/acs.iecr.6b03416. [DOI] [Google Scholar]
  • 92.Huo S., Wang J., Yang S., Wang J., Zhang B., Zhang B., Chen X., Tang Y. Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin. Polym. Degrad. Stab. 2016;131:106–113. doi: 10.1016/j.polymdegradstab.2016.07.013. [DOI] [Google Scholar]
  • 93.He X., Zhang W., Yi D., Yang R. Flame retardancy of ammonium polyphosphate–montmorillonite nanocompounds on epoxy resin. J. Fire Sci. 2016;34:212–225. doi: 10.1177/0734904116637213. [DOI] [Google Scholar]
  • 94.He X., Zhang W., Yang R. The characterization of DOPO/MMT nanocompound and its effect on flame retardancy of epoxy resin. Compos. Part A Appl. Sci. Manuf. 2017;98:124–135. doi: 10.1016/j.compositesa.2017.03.020. [DOI] [Google Scholar]
  • 95.Fang Y., Qian L., Huang Z. Synergistic barrier flame-retardant effect of aluminium poly-hexamethylenephosphinate and bisphenol-A bis (diphenyl phosphate) in epoxy resin. Polym. Int. 2017;66:719–725. doi: 10.1002/pi.5320. [DOI] [Google Scholar]
  • 96.Bereska A., Kafarski P., Bereska B., Tkacz B., Iłowska J., Lenża J. The application of organophosphorus flame-retardants in epoxy resin. J. Vinyl Addit. Technol. 2017;23:142–151. doi: 10.1002/vnl.21492. [DOI] [Google Scholar]
  • 97.Jian R., Wang P., Duan W., Xia L., Zheng X. A facile method to flame-retard epoxy resin with maintained mechanical properties through a novel P/N/S-containing flame retardant of tautomerization. Mater. Lett. 2017;204:77–80. doi: 10.1016/j.matlet.2017.05.135. [DOI] [Google Scholar]
  • 98.Zhou Y., Feng J., Peng H., Qu H., Hao J. Catalytic pyrolysis and flame retardancy of epoxy resins with solid acid boron phosphate. Polym. Degrad. Stab. 2014;110:395–404. doi: 10.1016/j.polymdegradstab.2014.10.009. [DOI] [Google Scholar]
  • 99.Zhao C., Li Y., Xing Y., He D., Yue J. Flame retardant and mechanical properties of epoxy composites containing APP− PSt core− shell microspheres. J. Appl. Polym. Sci. 2014;131:40218. doi: 10.1002/app.40218. [DOI] [Google Scholar]
  • 100.Zhang W., Li X., Yang R. Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym. Degrad. Stab. 2012;97:1314–1324. doi: 10.1016/j.polymdegradstab.2012.05.020. [DOI] [Google Scholar]
  • 101.Zhang W., Li X., Yang R. Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polym. Degrad. Stab. 2011;96:2167–2173. doi: 10.1016/j.polymdegradstab.2011.09.016. [DOI] [Google Scholar]
  • 102.Zhang W., Li X., Li L., Yang R. Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym. Degrad. Stab. 2012;97:1041–1048. doi: 10.1016/j.polymdegradstab.2012.03.008. [DOI] [Google Scholar]
  • 103.Zhang W., Li X., Jiang Y., Yang R. Investigations of epoxy resins flame-retarded by phenyl silsesquioxanes of cage and ladder structures. Polym. Degrad. Stab. 2013;98:246–254. doi: 10.1016/j.polymdegradstab.2012.10.005. [DOI] [Google Scholar]
  • 104.Zhang W., Li X., Fan H., Yang R. Study on mechanism of phosphorus–silicon synergistic flame retardancy on epoxy resins. Polym. Degrad. Stab. 2012;97:2241–2248. doi: 10.1016/j.polymdegradstab.2012.08.002. [DOI] [Google Scholar]
  • 105.Zhang W., He X., Song T., Jiao Q., Yang R. Comparison of intumescence mechanism and blowing-out effect in flame-retarded epoxy resins. Polym. Degrad. Stab. 2015;112:43–51. doi: 10.1016/j.polymdegradstab.2014.11.017. [DOI] [Google Scholar]
  • 106.Zhang W., He X., Song T., Jiao Q., Yang R. The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polym. Degrad. Stab. 2014;109:209–217. doi: 10.1016/j.polymdegradstab.2014.07.023. [DOI] [Google Scholar]
  • 107.Tian N., Gong J., Wen X., Yao K., Tang T. Synthesis and characterization of a novel organophosphorus oligomer and its application in improving flame retardancy of epoxy resin. RSC Adv. 2014;4:17607–17614. doi: 10.1039/C4RA01525H. [DOI] [Google Scholar]
  • 108.Tang Q., Wang B., Shi Y., Song L., Hu Y. Microencapsulated ammonium polyphosphate with glycidyl methacrylate shell: Application to flame retardant epoxy resin. Ind. Eng. Chem. Res. 2013;52:5640–5647. doi: 10.1021/ie302591r. [DOI] [Google Scholar]
  • 109.Qu H., Wu W., Hao J., Wang C., Xu J. Inorganic–organic hybrid coating-encapsulated ammonium polyphosphate and its flame retardancy and water resistance in epoxy resin. Fire Mater. 2014;38:312–322. doi: 10.1002/fam.2182. [DOI] [Google Scholar]
  • 110.Hongqiang Q., Weihong W., Jianwei H., Jianhong S., Jianzhong X. Intumescent flame retardancy and thermal degradation of epoxy resin filled with ammonium polyphosphate using thermogravimetric analysis–fourier transform infrared spectroscopy and thermogravimetric analysis–mass spectrometry. J. Macromol. Sci. Part B. 2014;53:278–295. doi: 10.1080/00222348.2013.810101. [DOI] [Google Scholar]
  • 111.Qian L.-J., Ye L.-J., Xu G.-Z., Liu J., Guo J.-Q. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym. Degrad. Stab. 2011;96:1118–1124. doi: 10.1016/j.polymdegradstab.2011.03.001. [DOI] [Google Scholar]
  • 112.Qian L., Qiu Y., Sun N., Xu M., Xu G., Xin F., Chen Y. Pyrolysis route of a novel flame retardant constructed by phosphaphenanthrene and triazine-trione groups and its flame-retardant effect on epoxy resin. Polym. Degrad. Stab. 2014;107:98–105. doi: 10.1016/j.polymdegradstab.2014.05.007. [DOI] [Google Scholar]
  • 113.Perret B., Schartel B., Stöß K., Ciesielski M., Diederichs J., Döring M., Krämer J., Altstädt V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur. Polym. J. 2011;47:1081–1089. doi: 10.1016/j.eurpolymj.2011.02.008. [DOI] [Google Scholar]
  • 114.Lv Q., Huang J.-Q., Chen M.-J., Zhao J., Tan Y., Chen L., Wang Y.-Z. An effective flame retardant and smoke suppression oligomer for epoxy resin. Ind. Eng. Chem. Res. 2013;52:9397–9404. doi: 10.1021/ie400911r. [DOI] [Google Scholar]
  • 115.Li Z., Yang R. Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polym. Degrad. Stab. 2014;109:233–239. doi: 10.1016/j.polymdegradstab.2014.07.024. [DOI] [Google Scholar]
  • 116.Li C., Wan J., Kalali E.N., Fan H., Wang D.-Y. Synthesis and characterization of functional eugenol derivative based layered double hydroxide and its use as a nanoflame-retardant in epoxy resin. J. Mater. Chem. A. 2015;3:3471–3479. doi: 10.1039/C4TA05740F. [DOI] [Google Scholar]
  • 117.Wang J.-S., Liu Y., Zhao H.-B., Liu J., Wang D.-Y., Song Y.-P., Wang Y.-Z. Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym. Degrad. Stab. 2009;94:625–631. doi: 10.1016/j.polymdegradstab.2009.01.006. [DOI] [Google Scholar]
  • 118.Guo W., Wang X., Gangireddy C.S.R., Wang J., Pan Y., Xing W., Song L., Hu Y. Cardanol derived benzoxazine in combination with boron-doped graphene toward simultaneously improved toughening and flame retardant epoxy composites. Compos. Part A Appl. Sci. Manuf. 2019;116:13–23. doi: 10.1016/j.compositesa.2018.10.010. [DOI] [Google Scholar]
  • 119.Chen R., Hu K., Tang H., Wang J., Zhu F., Zhou H. A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: Flame retardance, thermal stability and pyrolysis behavior. Polym. Degrad. Stab. 2019;166:334–343. doi: 10.1016/j.polymdegradstab.2019.06.011. [DOI] [Google Scholar]
  • 120.Rajaei M., Kim N., Bickerton S., Bhattacharyya D. A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites. Compos. Part B Eng. 2019;165:65–74. doi: 10.1016/j.compositesb.2018.11.089. [DOI] [Google Scholar]
  • 121.Yu B., Shi Y., Yuan B., Qiu S., Xing W., Hu W., Song L., Lo S., Hu Y. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J. Mater. Chem. A. 2015;3:8034–8044. doi: 10.1039/C4TA06613H. [DOI] [Google Scholar]
  • 122.Zhao W., Li Y., Li Q., Wang Y., Wang G. Investigation of the structure-property effect of phosphorus-containing polysulfone on decomposition and flame retardant epoxy resin composites. Polymers. 2019;11:380. doi: 10.3390/polym11020380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Xiao F., Wu K., Luo F., Yao S., Lv M., Zou H., Lu M. Influence of ionic liquid-based metal–organic hybrid on thermal degradation, flame retardancy, and smoke suppression properties of epoxy resin composites. J. Mater. Sci. 2018;53:10135–10146. doi: 10.1007/s10853-018-2318-0. [DOI] [Google Scholar]
  • 124.Schmidt C., Ciesielski M., Greiner L., Döring M. Novel organophosphorus flame retardants and their synergistic application in novolac epoxy resin. Polym. Degrad. Stab. 2018;158:190–201. doi: 10.1016/j.polymdegradstab.2018.09.001. [DOI] [Google Scholar]
  • 125.Liu H., Wu W., He S., Song Q., Li W., Zhang J., Qu H., Xu J. Activated carbon spheres (ACS)@ SnO2@ NiO with a 3D nanospherical structure and its synergistic effect with AHP on improving the flame retardancy of epoxy resin. Polym. Adv. Technol. 2019;30:951–962. doi: 10.1002/pat.4529. [DOI] [Google Scholar]
  • 126.Rajaei M., Wang D.-Y., Bhattacharyya D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Compos. Part B Eng. 2017;113:381–390. doi: 10.1016/j.compositesb.2017.01.039. [DOI] [Google Scholar]
  • 127.Müller P., Schartel B. Melamine poly (metal phosphates) as flame retardant in epoxy resin: Performance, modes of action, and synergy. J. Appl. Polym. Sci. 2016;133:43549. doi: 10.1002/app.43549. [DOI] [Google Scholar]
  • 128.Pan M., Huang R., Wang T., Huang D., Mu J., Zhang C. Preparation and properties of epoxy resin composites containing hexaphenoxycyclotriphosphazene. High Perform. Polym. 2014;26:114–121. doi: 10.1177/0954008313501008. [DOI] [Google Scholar]
  • 129.Pan M., Zhang C., Zhai X., Qu L., Mu J. Effect of hexaphenoxycyclotriphosphazene combined with octapropylglycidylether polyhedral oligomeric silsesquioxane on thermal stability and flame retardancy of epoxy resin. High Perform. Polym. 2014;26:744–752. doi: 10.1177/0954008314528227. [DOI] [Google Scholar]
  • 130.Wu G.M., Schartel B., Kleemeier M., Hartwig A. Flammability of layered silicate epoxy nanocomposites combined with low-melting inorganic ceepree glass. Polym. Eng. Sci. 2012;52:507–517. doi: 10.1002/pen.22111. [DOI] [Google Scholar]
  • 131.Täuber K., Marsico F., Wurm F.R., Schartel B. Hyperbranched poly (phosphoester) s as flame retardants for technical and high performance polymers. Polym. Chem. 2014;5:7042–7053. doi: 10.1039/C4PY00830H. [DOI] [Google Scholar]
  • 132.Zhang C., Guo X., Ma S., Liu X., Xu J., Ma H. Synthesis of an organic-inorganic hybrid strontium hydroxystannate nanorod and application as novel flame retardant. Mater. Lett. 2018;229:297–300. doi: 10.1016/j.matlet.2018.07.047. [DOI] [Google Scholar]
  • 133.Ma T., Li L., Liu T., Guo C. Synthesis of a caged bicyclic phosphates derived anhydride and its performance as a flame-retardant curing agent for epoxy resins. Polym. Adv. Technol. 2019;30:1314–1324. doi: 10.1002/pat.4565. [DOI] [Google Scholar]
  • 134.Guo X., Wang X., Liu X., Zheng Y., Xu J., Ma H. Synthesis and application of a dual functional P/N/S-containing microsphere with enhanced flame retardancy and mechanical strength on EP resin. Polym. Adv. Technol. 2018;29:2665–2673. doi: 10.1002/pat.4380. [DOI] [Google Scholar]
  • 135.Li Y.-Y., Wang Y.-L., Yang X.-M., Liu X., Yang Y.-G., Hao J.-W. Acidity regulation of boron phosphate flame retardant and its catalyzing carbonization mechanism in epoxy resin. J. Therm. Anal. Calorim. 2017;129:1481–1494. doi: 10.1007/s10973-017-6311-7. [DOI] [Google Scholar]
  • 136.Song S., Ma J., Cao K., Chang G., Huang Y., Yang J. Synthesis of a novel dicyclic silicon-/phosphorus hybrid and its performance on flame retardancy of epoxy resin. Polym. Degrad. Stab. 2014;99:43–52. doi: 10.1016/j.polymdegradstab.2013.12.013. [DOI] [Google Scholar]
  • 137.Jiajun M., Junxiao Y., Yawen H., Ke C. Aluminum–organophosphorus hybrid nanorods for simultaneously enhancing the flame retardancy and mechanical properties of epoxy resin. J. Mater. Chem. 2012;22:2007–2017. doi: 10.1039/C1JM13332B. [DOI] [Google Scholar]
  • 138.Jiang S., Shi Y., Qian X., Zhou K., Xu H., Lo S., Gui Z., Hu Y. Synthesis of a novel phosphorus-and nitrogen-containing acrylate and its performance as an intumescent flame retardant for epoxy acrylate. Ind. Eng. Chem. Res. 2013;52:17442–17450. doi: 10.1021/ie4028439. [DOI] [Google Scholar]
  • 139.Yuan L., Feng S., Hu Y., Fan Y. Effect of char sulfonic acid and ammonium polyphosphate on flame retardancy and thermal properties of epoxy resin and polyamide composites. J. Fire Sci. 2017;35:521–534. doi: 10.1177/0734904117720121. [DOI] [Google Scholar]
  • 140.Zhou X., Qiu S., Xing W., Gangireddy C.S.R., Gui Z., Hu Y. Hierarchical polyphosphazene@ molybdenum disulfide hybrid structure for enhancing the flame retardancy and mechanical property of epoxy resins. ACS Appl. Mater. Interfaces. 2017;9:29147–29156. doi: 10.1021/acsami.7b08878. [DOI] [PubMed] [Google Scholar]
  • 141.Shan X., Jiang K., Li J., Song Y., Han J., Hu Y. Preparation of β-cyclodextrin inclusion complex and its application as an intumescent flame retardant for epoxy. Polymers. 2019;11:71. doi: 10.3390/polym11010071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Qiu S., Zhou Y., Zhou X., Zhang T., Wang C., Yuen R.K., Hu W., Hu Y. Air-stable polyphosphazene-functionalized few-layer black phosphorene for flame retardancy of epoxy resins. Small. 2019;15:1805175. doi: 10.1002/smll.201805175. [DOI] [PubMed] [Google Scholar]
  • 143.Huang Z., Wang D., Zhu Y., Zeng W., Hu Y. The influence of mesoporous silica modified with phosphorus and nitrogen-containing hyperbranched molecules on thermal stability, combustion behavior, and toxic volatiles of epoxy resin. Polym. Adv. Technol. 2018;29:372–383. doi: 10.1002/pat.4124. [DOI] [Google Scholar]
  • 144.Hou Y., Hu W., Gui Z., Hu Y. A novel Co (Ⅱ)–based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol. 2017;152:231–242. doi: 10.1016/j.compscitech.2017.08.032. [DOI] [Google Scholar]
  • 145.Fu X.-L., Wang X., Xing W., Zhang P., Song L., Hu Y. Two-dimensional cardanol-derived zirconium phosphate hybrid as flame retardant and smoke suppressant for epoxy resin. Polym. Degrad. Stab. 2018;151:172–180. doi: 10.1016/j.polymdegradstab.2018.03.006. [DOI] [Google Scholar]
  • 146.Zheng T., Ni X. Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV-curable epoxy resin. RSC Adv. 2016;6:57122–57130. doi: 10.1039/C6RA08178A. [DOI] [Google Scholar]
  • 147.Sut A., Greiser S., Jäger C., Schartel B. Synergy in flame-retarded epoxy resin: Identification of chemical interactions by solid-state NMR. J. Therm. Anal. Calorim. 2016;128:141–153. doi: 10.1007/s10973-016-5934-4. [DOI] [Google Scholar]
  • 148.Qiu S., Xing W., Feng X., Yu B., Mu X., Yuen R.K., Hu Y. Self-standing cuprous oxide nanoparticles on silica@ polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chem. Eng. J. 2017;309:802–814. doi: 10.1016/j.cej.2016.10.100. [DOI] [Google Scholar]
  • 149.Qiu S., Wang X., Yu B., Feng X., Mu X., Yuen R.K., Hu Y. Flame-retardant-wrapped polyphosphazene nanotubes: A novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins. J. Hazard. Mater. 2017;325:327–339. doi: 10.1016/j.jhazmat.2016.11.057. [DOI] [PubMed] [Google Scholar]
  • 150.Martins M.S., Schartel B., Magalhães F.D., Pereira C. The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater. 2017;41:111–130. doi: 10.1002/fam.2370. [DOI] [Google Scholar]
  • 151.Zhang W., Li X., Yang R. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS) Polym. Degrad. Stab. 2011;96:1821–1832. doi: 10.1016/j.polymdegradstab.2011.07.014. [DOI] [Google Scholar]
  • 152.Sun L., Qu Y., Li S. Co-microencapsulate of ammonium polyphosphate and pentaerythritol in intumescent flame-retardant coatings. J. Therm. Anal. Calorim. 2013;111:1099–1106. doi: 10.1007/s10973-012-2494-0. [DOI] [Google Scholar]
  • 153.Mariappan T., Zhou Y., Hao J., Wilkie C.A. Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin. Eur. Polym. J. 2013;49:3171–3180. doi: 10.1016/j.eurpolymj.2013.06.009. [DOI] [Google Scholar]
  • 154.Mariappan T., Wilkie C.A. Flame retardant epoxy resin for electrical and electronic applications. Fire Mater. 2014;38:588–598. doi: 10.1002/fam.2199. [DOI] [Google Scholar]
  • 155.Jiao C., Dong J., Yu J., Chen X. Effect of toughener on combustion and thermal degradation of flame retardant epoxy composites. Plast. Rubber Compos. 2014;43:105–110. doi: 10.1179/1743289814Y.0000000078. [DOI] [Google Scholar]
  • 156.Jiao C., Dong J., Zhang C., Zhuo J., Chen X. Synthesis and properties of a phosphate ester as curing agent in an epoxy resin system. Iran. Polym. J. 2014;23:591–598. doi: 10.1007/s13726-014-0253-8. [DOI] [Google Scholar]
  • 157.Jiao C., Dong J., Chen X., Li S. Influence of T31 content on combustion and thermal degradation behaviors on flame-retardant epoxy composites. J. Therm. Anal. Calorim. 2013;114:1201–1206. doi: 10.1007/s10973-013-3057-8. [DOI] [Google Scholar]
  • 158.Jiao C., Zhang C., Dong J., Chen X., Qian Y., Li S. Combustion behavior and thermal pyrolysis kinetics of flame-retardant epoxy composites based on organic–inorganic intumescent flame retardant. J. Therm. Anal. Calorim. 2015;119:1759–1767. doi: 10.1007/s10973-014-4379-x. [DOI] [Google Scholar]
  • 159.Kong Q., Zhang Y., Zhang X., Xiang B., Yi Y., Zhu J., Zhang F., Zhu J., Zhang J. Functionalized montmorillonite intercalation iron compounds for improving flame retardancy of epoxy resin nanocomposites. J. Nanosci. Nanotechnol. 2019;19:5803–5809. doi: 10.1166/jnn.2019.16540. [DOI] [PubMed] [Google Scholar]
  • 160.Suihkonen R., Nevalainen K., Vuorinen J. The effect of ammonium polyphosphate and nanoclay on the rheological, thermal, and flame retardant properties of epoxy. Annu. Trans. Nord. Rheol. Soc. 2009;17:263–268. [Google Scholar]
  • 161.Shi Y., Yu B., Zheng Y., Yang J., Duan Z., Hu Y. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J. Colloid Interface Sci. 2018;521:160–171. doi: 10.1016/j.jcis.2018.02.054. [DOI] [PubMed] [Google Scholar]
  • 162.Shi X.-H., Chen L., Liu B.-W., Long J.-W., Xu Y.-J., Wang Y.-Z. Carbon fibers decorated by polyelectrolyte complexes toward their epoxy resin composites with high fire safety. Chin. J. Polym. Sci. 2018;36:1375–1384. doi: 10.1007/s10118-018-2164-1. [DOI] [Google Scholar]
  • 163.Kandola B.K., Horrocks A.R., Myler P., Blair D. New developments in flame retardancy of glass-reinforced epoxy composites. J. Appl. Polym. Sci. 2003;88:2511–2521. doi: 10.1002/app.11909. [DOI] [Google Scholar]
  • 164.Kandola B., Horrocks A., Myler P., Blair D. Mechanical performance of heat/fire damaged novel flame retardant glass-reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2003;34:863–873. doi: 10.1016/S1359-835X(03)00156-8. [DOI] [Google Scholar]
  • 165.Boccarusso L., Carrino L., Durante M., Formisano A., Langella A., Minutolo F.M.C. Hemp fabric/epoxy composites manufactured by infusion process: Improvement of fire properties promoted by ammonium polyphosphate. Compos. Part B Eng. 2016;89:117–126. doi: 10.1016/j.compositesb.2015.10.045. [DOI] [Google Scholar]
  • 166.Wang X., Song L., Pornwannchai W., Hu Y., Kandola B. The effect of graphene presence in flame retarded epoxy resin matrix on the mechanical and flammability properties of glass fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2013;53:88–96. doi: 10.1016/j.compositesa.2013.05.017. [DOI] [Google Scholar]
  • 167.Kandola B., Myler P., Horrocks A., El-Hadidi M., Blair D. Empirical and numerical approach for optimisation of fire and mechanical performance in fire-retardant glass-reinforced epoxy composites. Fire Saf. J. 2008;43:11–23. doi: 10.1016/j.firesaf.2007.04.001. [DOI] [Google Scholar]
  • 168.Branda F., Malucelli G., Durante M., Piccolo A., Mazzei P., Costantini A., Silvestri B., Pennetta M., Bifulco A. Silica treatments: A fire retardant strategy for hemp fabric/epoxy composites. Polymers. 2016;8:313. doi: 10.3390/polym8080313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Zhang T., Liu W., Wang M., Liu P., Pan Y., Liu D. Synthesis of a boron/nitrogen-containing compound based on triazine and boronic acid and its flame retardant effect on epoxy resin. High Perform. Polym. 2017;29:513–523. doi: 10.1177/0954008316650929. [DOI] [Google Scholar]
  • 170.Li A., Xu W., Chen R., Liu Y., Li W. Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos. Part A Appl. Sci. Manuf. 2018;112:558–571. doi: 10.1016/j.compositesa.2018.07.001. [DOI] [Google Scholar]
  • 171.Chen S., Ai L., Zhang T., Liu P., Liu W., Pan Y., Liu D. Synthesis and application of a triazine derivative containing boron as flame retardant in epoxy resins. Arab. J. Chem. 2018 doi: 10.1016/j.arabjc.2018.08.007. [DOI] [Google Scholar]
  • 172.Li Z., Liu L., González A.J., Wang D.-Y. Bioinspired polydopamine-induced assembly of ultrafine Fe (OH) 3 nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis. Polym. Chem. 2017;8:3926–3936. doi: 10.1039/C7PY00660H. [DOI] [Google Scholar]
  • 173.Unlu S.M., Dogan S.D., Dogan M. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polym. Adv. Technol. 2014;25:769–776. doi: 10.1002/pat.3274. [DOI] [Google Scholar]
  • 174.Wu K., Kandola B.K., Kandare E., Hu Y. Flame retardant effect of polyhedral oligomeric silsesquioxane and triglycidyl isocyanurate on glass fibre-reinforced epoxy composites. Polym. Compos. 2011;32:378–389. doi: 10.1002/pc.21052. [DOI] [Google Scholar]
  • 175.Xu W., Wang G., Liu Y., Chen R., Li W. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin. RSC Adv. 2018;8:2575–2585. doi: 10.1039/C7RA12816A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Li A., Xu W., Wang G., Wang X. Novel strategy for molybdenum disulfide nanosheets grown on titanate nanotubes for enhancing the flame retardancy and smoke suppression of epoxy resin. J. Appl. Polym. Sci. 2018;135:46064. doi: 10.1002/app.46064. [DOI] [Google Scholar]
  • 177.Liu Y., Kong Q.H., Zhao X.M., Zhu P., Zhao J., Esteban-Cubillo A., Santarén J., Wang D.Y. Effect of Fe3O4-doped sepiolite on the flammability and thermal degradation properties of epoxy composites. Polym. Adv. Technol. 2017;28:971–978. doi: 10.1002/pat.3715. [DOI] [Google Scholar]
  • 178.Liu Y., Babu H.V., Zhao J., Goñi-Urtiaga A., Sainz R., Ferritto R., Pita M., Wang D.-Y. Effect of Cu-doped graphene on the flammability and thermal properties of epoxy composites. Compos. Part B Eng. 2016;89:108–116. doi: 10.1016/j.compositesb.2015.11.035. [DOI] [Google Scholar]
  • 179.Wang W., Kan Y., Liew K.M., Song L., Hu Y. Comparative investigation on combustion property and smoke toxicity of epoxy resin filled with α-and δ-MnO2 nanosheets. Compos. Part A Appl. Sci. Manuf. 2018;107:39–46. doi: 10.1016/j.compositesa.2017.12.021. [DOI] [Google Scholar]
  • 180.Sharma A.K., Sloan R., Ramakrishnan R., Nazarenko S.I., Wiggins J.S. Structure-property relationships in epoxy hybrid networks based on high mass fraction pendant POSS incorporated at molecular level. Polymer. 2018;139:201–212. doi: 10.1016/j.polymer.2018.02.014. [DOI] [Google Scholar]
  • 181.Saeb M., Vahabi H., Jouyandeh M., Movahedifar E., Khalili R. Epoxy-based flame retardant nanocomposite coatings: Comparison between functions of expandable graphite and halloysite nanotubes. Prog. Color Colorants Coat. 2017;10:245–252. [Google Scholar]
  • 182.Pawelski C., Kang E., Bakis G., Altstädt V. Effect of filler type and particle size distribution on thermal properties of bimodal and hybrid–BN/Boehmite-filled EP-Novolac composites. AIP Conference Proceedings. 2019;2055:050007. doi: 10.1063/1.5084826. [DOI] [Google Scholar]
  • 183.Liu L., Wang W., Shi Y., Fu L., Xu L., Yu B. Electrostatic-interaction-driven assembly of binary hybrids towards fire-safe epoxy resin nanocomposites. Polymers. 2019;11:229. doi: 10.3390/polym11020229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Li X., Feng Y., Chen C., Ye Y., Zeng H., Qu H., Liu J., Zhou X., Long S., Xie X. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J. Mater. Chem. A. 2018;6:20500–20512. doi: 10.1039/C8TA08008A. [DOI] [Google Scholar]
  • 185.Chai G.-q., Wang Z., Zhang X. Study of the flame retardant properties of short carbon fiber–reinforced epoxy composites. High Perform. Polym. 2018;30:1027–1035. doi: 10.1177/0954008317736374. [DOI] [Google Scholar]
  • 186.Zabihi O., Ahmadi M., Khayyam H., Naebe M. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance. Sci. Rep. 2016;6:38194. doi: 10.1038/srep38194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Wang W., Pan H., Shi Y., Pan Y., Yang W., Liew K., Song L., Hu Y. Fabrication of LDH nanosheets on β-FeOOH rods and applications for improving the fire safety of epoxy resin. Compos. Part A Appl. Sci. Manuf. 2016;80:259–269. doi: 10.1016/j.compositesa.2015.10.031. [DOI] [Google Scholar]
  • 188.Wang W., Kan Y., Pan Y., Yuan Y., Liew K.M., Hu Y. Urchinlike shells of TiO2 hollow spheres for improving the fire safety of epoxy resin. Ind. Eng. Chem. Res. 2017;56:1341–1348. doi: 10.1021/acs.iecr.6b03979. [DOI] [Google Scholar]
  • 189.Wang D., Song L., Zhou K., Yu X., Hu Y., Wang J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A. 2015;3:14307–14317. doi: 10.1039/C5TA01720C. [DOI] [Google Scholar]
  • 190.Laachachi A., Burger N., Apaydin K., Sonnier R., Ferriol M. Is expanded graphite acting as flame retardant in epoxy resin? Polym. Degrad. Stab. 2015;117:22–29. doi: 10.1016/j.polymdegradstab.2015.03.016. [DOI] [Google Scholar]
  • 191.Benelli T., Mazzocchetti L., D’Angelo E., Lanzi M., Saraga F., Sambri L., Franchini M.C., Giorgini L. New nitrogen-rich heterocycles for organo-modified bentonites as flame retardant fillers in epoxy resin nanocomposites. Polym. Eng. Sci. 2017;57:621–630. doi: 10.1002/pen.24565. [DOI] [Google Scholar]
  • 192.Benelli T., D’Angelo E., Mazzocchetti L., Saraga F., Sambri L., Franchini M.C., Giorgini L. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites. Aip Conf. Proc. 2016;1736:020142. doi: 10.1063/1.4949717. [DOI] [Google Scholar]
  • 193.Wang X., Zhou S., Xing W., Yu B., Feng X., Song L., Hu Y. Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A. 2013;1:4383–4390. doi: 10.1039/c3ta00035d. [DOI] [Google Scholar]
  • 194.Pan M., Guan D., Wang T., Huang R., Mu J., Zhang C. Morphology, thermal properties, and fire behavior of epoxy resin nanocomposites containing octaammonium polyhedral oligomeric silsesquioxane-modified montmorillonite. High Perform. Polym. 2013;25:992–999. doi: 10.1177/0954008313493101. [DOI] [Google Scholar]
  • 195.Mariappan T., Yi D., Chakraborty A., Singha N.K., Wilkie C.A. Thermal stability and fire retardancy of polyurea and epoxy nanocomposites using organically modified magadiite. J. Fire Sci. 2014;32:346–361. doi: 10.1177/0734904113516268. [DOI] [Google Scholar]
  • 196.Jiang S.-D., Bai Z.-M., Tang G., Song L., Stec A.A., Hull T.R., Zhan J., Hu Y. Fabrication of Ce-doped MnO 2 decorated graphene sheets for fire safety applications of epoxy composites: Flame retardancy, smoke suppression and mechanism. J. Mater. Chem. A. 2014;2:17341–17351. doi: 10.1039/C4TA02882A. [DOI] [Google Scholar]
  • 197.Jiang S.-D., Bai Z.-M., Tang G., Song L., Stec A.A., Hull T.R., Hu Y., Hu W.-Z. Synthesis of mesoporous silica@ Co–Al layered double hydroxide spheres: Layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl. Mater. Interfaces. 2014;6:14076–14086. doi: 10.1021/am503412y. [DOI] [PubMed] [Google Scholar]
  • 198.Jiang S.-D., Bai Z.-M., Tang G., Hu Y., Song L. Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites. Ind. Eng. Chem. Res. 2014;53:6708–6717. doi: 10.1021/ie500023w. [DOI] [Google Scholar]
  • 199.Zotti A., Borriello A., Ricciardi M., Antonucci V., Giordano M., Zarrelli M. Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy. Compos. Part B Eng. 2015;73:139–148. doi: 10.1016/j.compositesb.2014.12.019. [DOI] [Google Scholar]
  • 200.Wladyka-Przybylak M., Wesolek D., Gieparda W., Boczkowska A., Ciecierska E. Functionalization effect on physico-mechanical properties of multi-walled carbon nanotubes/epoxy composites. Polym. Adv. Technol. 2011;22:48–59. doi: 10.1002/pat.1768. [DOI] [Google Scholar]
  • 201.Wang Z., Tang X.-Z., Yu Z.-Z., Guo P., Song H.-H., Duc X.-S. Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chin. J. Polym. Sci. 2011;29:368–376. doi: 10.1007/s10118-011-1037-7. [DOI] [Google Scholar]
  • 202.Wang D., Zhou K., Yang W., Xing W., Hu Y., Gong X. Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res. 2013;52:17882–17890. doi: 10.1021/ie402441g. [DOI] [Google Scholar]
  • 203.Yu B., Xing W., Guo W., Qiu S., Wang X., Lo S., Hu Y. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol–gel process. J. Mater. Chem. A. 2016;4:7330–7340. doi: 10.1039/C6TA01565D. [DOI] [Google Scholar]
  • 204.Ngo T., Nguyen Q., Nguyen T., Tran P. Effect of nanoclay on thermomechanical properties of epoxy/glass fibre composites. Arab. J. Sci. Eng. 2016;41:1251–1261. doi: 10.1007/s13369-015-1898-0. [DOI] [Google Scholar]
  • 205.Eibl S. Potential for the formation of respirable fibers in carbon fiber reinforced plastic materials after combustion. Fire Mater. 2017;41:808–816. doi: 10.1002/fam.2423. [DOI] [Google Scholar]
  • 206.Wu Q., Zhu W., Zhang C., Liang Z., Wang B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon. 2010;48:1799–1806. doi: 10.1016/j.carbon.2010.01.023. [DOI] [Google Scholar]
  • 207.Wu Q., Bao J., Zhang C., Liang R., Wang B. The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. J. Therm. Anal. Calorim. 2010;103:237–242. doi: 10.1007/s10973-010-0960-0. [DOI] [Google Scholar]
  • 208.Xu Z., Chu Z., Yan L., Chen H., Jia H., Tang W. Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system. Polym. Compos. 2019;40:2712–2723. doi: 10.1002/pc.25077. [DOI] [Google Scholar]
  • 209.Peng H., Zhang S., Yin Y., Jiang S., Mo W. Fabrication of c-6 position carboxyl regenerated cotton cellulose by H2O2 and its promotion in flame retardency of epoxy resin. Polym. Degrad. Stab. 2017;142:150–159. doi: 10.1016/j.polymdegradstab.2017.05.026. [DOI] [Google Scholar]
  • 210.Ma T., Li L., Wang Q., Guo C. High-performance flame retarded paraffin/epoxy resin form-stable phase change material. J. Mater. Sci. 2019;54:875–885. doi: 10.1007/s10853-018-2846-7. [DOI] [Google Scholar]
  • 211.Zhuo J., Xie L., Liu G., Chen X., Wang Y. The synergistic effect of hollow glass microsphere in intumescent flame-retardant epoxy resin. J. Therm. Anal. Calorim. 2017;129:357–366. doi: 10.1007/s10973-017-6142-6. [DOI] [Google Scholar]
  • 212.Zhang S., Liu F., Peng H., Peng X., Jiang S., Wang J. Preparation of novel C-6 position carboxyl corn starch by a green method and its application in flame retardance of epoxy resin. Ind. Eng. Chem. Res. 2015;54:11944–11952. doi: 10.1021/acs.iecr.5b03266. [DOI] [Google Scholar]
  • 213.Lu L., Qian X., Zeng Z., Yang S., Shao G., Wang H., Jin J., Xu X. Novel phosphorus-based flame retardants containing 4-tert-butylcalix [4] arene: Preparation and application for the fire safety of epoxy resins. J. Appl. Polym. Sci. 2017;134:45105. doi: 10.1002/app.45105. [DOI] [Google Scholar]
  • 214.Gao M., Sun Y. Flame retardancy and thermal degradation behaviors of epoxy resins containing bisphenol a bis (diphenyl phosphate) oligomer. Polym. Eng. Sci. 2013;53:1125–1130. doi: 10.1002/pen.23360. [DOI] [Google Scholar]
  • 215.Zheng T., Ni X. Loading the polyol carbonization agent into clay nanotubes for the preparation of environmentally stable UV-cured epoxy materials. J. Appl. Polym. Sci. 2017;134:45045. doi: 10.1002/app.45045. [DOI] [Google Scholar]
  • 216.Liu L., Chen X., Jiao C. Influence of ferric phosphate on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites. Iran. Polym. J. 2015;24:337–347. doi: 10.1007/s13726-015-0327-2. [DOI] [Google Scholar]
  • 217.Chen X., Liu L., Jiao C., Qian Y., Li S. Influence of ferrite yellow on combustion and smoke suppression properties in intumescent flame-retardant epoxy composites. High Perform. Polym. 2015;27:412–425. doi: 10.1177/0954008314553644. [DOI] [Google Scholar]
  • 218.Chen X., Liu L., Jiao C. Influence of iron oxide brown on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. Adv. Polym. Technol. 2015;34:21516. doi: 10.1002/adv.21516. [DOI] [Google Scholar]
  • 219.Chen X., Liu L., Zhuo J., Jiao C., Qian Y. Influence of organic-modified iron–montmorillonite on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. High Perform. Polym. 2015;27:233–246. doi: 10.1177/0954008314544341. [DOI] [Google Scholar]
  • 220.Morgan A.B., Galaska M. Microcombustion calorimetry as a tool for screening flame retardancy in epoxy. Polym. Adv. Technol. 2008;19:530–546. doi: 10.1002/pat.1100. [DOI] [Google Scholar]
  • 221.Kandare E., Kandola B.K., Myler P., Edwards G. Thermo-mechanical responses of fiber-reinforced epoxy composites exposed to high temperature environments. Part I: Experimental data acquisition. J. Compos. Mater. 2010;44:3093–3114. doi: 10.1177/0021998310373511. [DOI] [Google Scholar]

Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES