Abstract
We present a new approach to the electromagnetic inverse problem that explicitly addresses the ambiguity associated with its ill‐posed character. Rather than calculating a single “best” solution according to some criterion, our approach produces a large number of likely solutions that both fit the data and any prior information that is used. Whereas the range of the different likely results is representative of the ambiguity in the inverse problem even with prior information present, features that are common across a large number of the different solutions can be identified and are associated with a high degree of probability. This approach is implemented and quantified within the formalism of Bayesian inference, which combines prior information with that of measurement in a common framework using a single measure. To demonstrate this approach, a general neural activation model is constructed that includes a variable number of extended regions of activation and can incorporate a great deal of prior information on neural current such as information on location, orientation, strength, and spatial smoothness. Taken together, this activation model and the Bayesian inferential approach yield estimates of the probability distributions for the number, location, and extent of active regions. Both simulated MEG data and data from a visual evoked response experiment are used to demonstrate the capabilities of this approach. Hum. Brain Mapping 7:195–212, 1999 Published 1999 Wiley‐Liss, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.
Keywords: MRI, MEG, EEG, brain mapping, inverse problem, Monte Carlo, biomagnetic
Full Text
The Full Text of this article is available as a PDF (410.8 KB).
REFERENCES
- Ahonen AI, Hämäläinen MS, Kajola MJ, Knuutila JET, Laine PP, Lounasmaa OV, Parkkonen LT, Simola JT, Tesche CD. 1993. 122‐channel SQUID instrument for investigating the magnetic signals from the human brain. Physica Scripta T49A:198–205. [Google Scholar]
- Aine CJ. 1995. A conceptual overview and critique of functional neuroimaging techniques in humans: I. MRI/fMRI and PET. Critical Reviews Neurobiol 9:229–309. [PubMed] [Google Scholar]
- Aine C, Supek S, George J, Ranken D, Lewine J, Sanders J, Best E, Tiee W, Flynn E, Wood C. 1996. Retinotopic organization of human visual cortex: departures from the classical model. Cerebral Cortex 6:354–361. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96324291&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Aine C, Chen HW, Ranken D, Mosher J, Best E, George J, Lewine J, Paulson K. 1997a. An examination of chromatic/achromatic stimuli presented to central/peripheral visual fields: an MEG study. Neuroimage 5:153. [Google Scholar]
- Aine C, Schlitt H, Shah J, Ranken D, Krause B, George J, Müller‐Gärtner HW. 1997b. MEG/fMRI differentiates between ventral/dorsal processing streams. Soc Neurosci 23:1312. [Google Scholar]
- Allison T, Wood CC, McCarthy G. 1986. The central nervous system In: Donchin E, Porges S, Coles M, editors. Psychophysiology: systems, processes and applications: a handbook. New York: Guilford; p 5–25. [Google Scholar]
- Baillet S, Garnero L. 1997. A bayesian approach to introducing anatomo‐functional priors in the EEG/MEG inverse problem. IEEE Trans Biomed Eng 44:374–385. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97270808&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Belliveau J. 1997. Dynamic human brain mapping using combined fMRI, EEG and MEG. Presentation to the symposium on approaches to cognitive neuroscience by means of functional brain imaging, Caen, France.
- Bernardo JM, Smith AFM. 1994. Bayesian theory. New York: John Wiley & Sons. [Google Scholar]
- Dale AM, Sereno MI. 1993. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cognitive Neurosci 5:162–176. [DOI] [PubMed] [Google Scholar]
- Dale AM. 1997. Strategies and limitations in integrating brain imaging and electromagnetic recording. Soc Neurosci Abstr, 23:1. [Google Scholar]
- Efron B. 1986. Why isn't everyone a Bayesian? Am Statistician 40:1–5; commentary 5–11. [Google Scholar]
- Gelman A, Carlin JB, Stern HS, Rubin DB. 1995. Bayesian data analysis. London: Chapman & Hall. [Google Scholar]
- George JS, Aine CJ, Mosher JC, Schmidt DM, Ranken DM, Schlitt HA, Wood CC, Lewine JD, Sanders JA, Belliveau JW. 1995. Mapping function in the human brain with MEG, anatomical MRI, and functional MRI. J Clin Neurophys 12:406–431. [DOI] [PubMed] [Google Scholar]
- Gorodnitsky IF, George JS, Rao BD. 1995. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroenceph Clin Neurophysiol 95:231–251. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96067111&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Hämäläinen M, Ilmoniemi R. 1984. Interpreting measured magnetic fields of the brain: estimates of current distributions. Technical Report TKK‐F‐A559, Helsinki University of Technology, Finland.
- Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. 1993. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497. [Google Scholar]
- Horton JC, Hoyt WF. 1991. The representation of the visual field in human striate cortex. Proc Roy Soc London 132:348–361. [DOI] [PubMed] [Google Scholar]
- Kavanaugh RN, Darcey TM, Lehmanh D, Fender DH. 1978. Evaluation of methods for three‐dimensional localization of electrical sources in the human brain. IEEE Trans Biomed Eng 25:421–429. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=79026110&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Mitzdorf U. 1985. Current source‐density method and application in cat cerebral‐cortex: investigation of evoked‐potentials and EEG phenomena. Physiological Rev 65:37–100. [DOI] [PubMed] [Google Scholar]
- Mosher JC, Lewis PS, Leahy RM. 1992. Multiple dipole modeling and localization from spatio‐temporal MEG data. IEEE Trans Biomed Eng 39:541–557. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92290494&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Nunez P. 1981. Electrical fields of the brain: neurophysics of the EEG. Oxford: Oxford University Press. [Google Scholar]
- Okada YC, Papuashvili N, Xu C. 1998. Maximum current dipole moment density as an important physiological constraint in MEG inverse solutions. Proceedings of the Tenth International Conference on Biomagnetism. [Google Scholar]
- Pascual‐Marqui RD, Michel CM, Lehmann D. 1994. Low resolution electromagnetic tomography: a new method for localizing electrical activity of the brain. Int J Psychophysiol 18:49–65. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95181233&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Phillips JW, Leahy RM, Mosher JC. 1997. MEG‐based imaging of focal neuronal current sources. IEEE Trans Med Imag 16:338–348. [DOI] [PubMed] [Google Scholar]
- Ranken DM, George JS. 1993. MRIVIEW: an interactive computational tool for investigation of brain structure and function. Visualization '93, p. 324–331, IEEE Computer Society. [Google Scholar]
- Sarvas J. 1987. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=87147412&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Scherg M, von Cramon D. 1986. Evoked dipole source potentials of the human auditory cortex. Electroenceph Clin Neurophysiol 65:344–360. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=86300569&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH. 1995. Borders of multiple visual areas in human revealed by functional magnetic resonance imaging. Science 268:889–893. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95273966&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Shah NJ, Aine C, Schlitt H, Krause BJ, Ranken D, George J, Müller‐Gärtner HW. 1998. Activation of the ventral stream in humans: an fMRI study In: Gulyas B, Müller‐Gärtner HW, editors. Positron emission tomography: a critical assessment of recent trends. Dordrecht: Kluwer. [Google Scholar]
- Toga AW, Mazziotta JC. 1996. Brain mapping: the methods. New York: Academic Press. [Google Scholar]
- von Helmholtz H. 1853. Ueber einige gesetze der vertheilung elektrischer strome in korperlichen leitern, mit anwendung auf die thierisch‐elektrischen versuche. Ann Phys Chem 89:211–233, 353–377. [Google Scholar]
- Wang JZ, Williamson SJ, Kaufman L. 1992. Magnetic source images determined by a lead‐field analysis: the unique minimum‐norm. IEEE Trans Biomed Eng 39:665–675. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92387710&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]