Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Nov 15;75(Pt 12):1861–1865. doi: 10.1107/S2056989019015081

Synthesis, crystal structure and Hirshfeld surface analysis of diethyl 2,6-dimethyl-4-(thio­phen-3-yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

Trung Vu Quoc a,*, Duong Tran Thi Thuy a,b, Thanh Phung Ngoc a,c, Manh Vu Quoc d, Hien Nguyen a, Linh Duong Khanh a, Anh Tu Quang a, Luc Van Meervelt e,*
PMCID: PMC6895956  PMID: 31871746

In the title 1,4-di­hydro­pyridine derivative, the 1,4-di­hydro­pyridine ring makes an angle of 82.19 (13)° with the thio­phene ring. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds as well as C—H⋯π inter­actions link the mol­ecules into a three-dimensional network.

Keywords: crystal structure; hydrogen bonding; Hirshfeld analysis; 1,4-di­hydro­pyridine

Abstract

In the title compound, C17H21NO4S, the 1,4-di­hydro­pyridine ring has an envelope conformation with the Csp 3 atom at the flap. The thio­phene ring is nearly perpendicular to the best plane through the 1,4-di­hydro­pyridine ring, the dihedral angle being 82.19 (13)°. In the crystal, chains running along the b-axis direction are formed through N—H⋯O inter­actions between the 1,4-di­hydro­pyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π inter­actions. A Hirshfeld surface analysis shows that the most prominent contributuion to the surface contacts are H⋯H contacts (55.1%).

Chemical context  

1,4-Di­hydro­pyridine derivatives exhibit a large range of biological activities (Stout & Meyers, 1982; Wei et al., 1989; Bossert & Vater, 1989; Mauzerall & Westheimer, 1955). They have been used as anti­convulsant, anti­depressive, anti­anxiety, analgesic, anti­tumoral, vasodilator and anti-inflammatory agents (Sausins & Duburs, 1988; Boecker & Guenguerich, 1986; Godfraind et al., 1986). Some of them, such as amlodipine, felodipine and isradipine are drugs effective as calcium-channel blockers for the treatment of cardiovascular diseases and hypertension (Bossert et al., 1981; Nakayama & Kanoaka, 1996; Gordeev et al., 1996). 1,4-Di­hydro­pyridines are also good precursors of the corresponding substituted pyridine derivatives and constitute useful reducing agents for imines in the presence of a catalytic amount of Lewis acid (Xia & Wang, 2005; Heravi et al., 2005; Bagley & Lubinu, 2006).graphic file with name e-75-01861-scheme1.jpg

As a continuation of our research on the chemical and physical properties of novel polythio­phenes (Nguyen et al., 2016; Vu et al., 2016), some new thio­phene monomers have been prepared (Vu et al., 2017, 2018, 2019; Nguyen et al., 2017). In this study, the synthesis and crystal structure of diethyl 2,6-dimethyl-4-(thio­phen-3-yl)-1,4-di­hydro­pyridine-3,5-di­carb­ox­y­l­ate are presented together with a Hirshfeld surface analysis and non-covalent inter­action plots.

Structural commentary  

The title compound crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1). The 1,4-di­hydro­pyridine ring (N6,C7–C11) has an envelope conformation with atom C9 at the flap [puckering parameters: Q = 0.300 (3) Å, θ = 73.9 (6)°, φ = 182.0 (5)°]. The best plane through the 1,4-di­hydro­pyridine ring makes an angle of 82.19 (13)° with the plane through the thio­phene ring (S1/C2–C5; r.m.s. deviation = 0.001 Å). Both methyl C atoms are closer to the best plane through the 1,4-di­hydro­pyridine [deviations: C12 − 0.164 (3) Å, C23 − 0.162 (3) Å] than the C atoms of the two ester substituents [deviations: C13 − 0.363 (3) Å, C18 − 0.446 (2) Å]. All four of these C atoms are at the opposite sides with respect to the thio­phene substituent which is in an axial position. Atoms O15, O19 and O20 are involved in intra­molecular short contacts (Table 1). Both ester groups have a different conformation as illustrated by torsion angles C13—O15—C16—C17 [177.2 (3)°, +ap] and C18—O20—C21—C22 [85.3 (8)°, +sc].

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the thio­phene S1/C2–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O14i 0.82 (4) 2.19 (4) 3.010 (3) 176 (3)
C5—H5⋯O19ii 0.93 2.52 3.220 (4) 133
C9—H9⋯O20 0.98 2.36 2.739 (3) 102
C12—H12B⋯O15 0.96 2.33 2.768 (3) 107
C23—H23C⋯O19 0.96 2.42 2.826 (4) 105
C17—H17CCg1iii 0.96 2.79 3.720 (4) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, the 1,4-di­hydro­pyridine N6 atom acts as a hydrogen-bond donor to the O14 atom of one of the ester groups, resulting in chain formation along the b-axis direction (Fig. 2, Table 1). Parallel chains are linked by C—H⋯O hydrogen bonds between the thio­phene H5 atom and the carbonyl O19 atom of the second ester group (Fig. 2, Table 1). In addition, inversion dimers are formed by C—H⋯π inter­actions (Fig. 3, Table 1). No voids are observed in the crystal packing of the title compound.

Figure 2.

Figure 2

Partial crystal packing of the title compound, showing the chain formation along the b axis by N—H⋯O inter­actions (blue dashed lines). Parallel chains are linked by C—H⋯O inter­actions (red dashed lines; see Table 1 for symmetry codes).

Figure 3.

Figure 3

Partial crystal packing of the title compound, showing the inversion dimer formation through C—H⋯π inter­actions (grey dashed lines; Cg1 is the centroid of the S1/C2–C5 ring; see Table 1 for symmetry code).

In order to gain further insight into the packing, the Hirshfeld surface and fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017). The Hirshfeld surface (Spackman & Jayatilaka, 2009) mapped over d norm in Fig. 4 shows bright-red spots near the atoms participating in the already discussed inter­molecular inter­actions. In addition a faint-red spot is present near atoms H9 and H23A indicating a short H9⋯H23A iv contact distance of 2.276 Å [symmetry code: (iv) x, y + 1, z]. The associated two-dimensional fingerprint plots (McKinnon et al., 2007) are shown in Fig. 5 and give additional information about the inter­molecular contacts. H⋯H Van der Waals contacts dominate (55.1%) and appear in the middle of the scattered points in the fingerprint plot (Fig. 5 b). The contribution (16.4%) from the O⋯H/H⋯O contacts shows a pair of sharp spikes corresponding to the N—H⋯O inter­actions (Fig. 5 c). In addition, C⋯H/H⋯C and S⋯H/H⋯S contacts contribute 15.7 and 9.6%, respectively, to the Hirshfeld surface. A further small contribution is from N⋯H/H⋯N contacts (1.5%, Fig. 5 f). The percentage contributions of the other contact types are negligible.

Figure 4.

Figure 4

Two views of the Hirshfeld surface mapped over d norm for the title compound in the range −0.4662 to +1.2830 arbitrary units.

Figure 5.

Figure 5

Full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) S⋯H/H⋯S, (f) N⋯H/H⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

Enrichment ratios (Table 2) were calculated according to the method described by Jelsch et al. (2014). A ratio EXY greater than unity for a pair of elements X and Y indicates a high likelihood of forming XY contacts in the crystal packing. The favourable O⋯H and H⋯π contacts in the crystal packing are reflected in the enrichment ratios E OH of 1.24 and E CH of 1.23 for these contacts. The slight E SH enrichment (1.11) refers to the multiple S⋯H contacts between S1 and neighbouring methyl groups (S⋯H distances ranging from 3.01 to 3.50 Å). However, the high enrichment ratio E NH must be inter­preted with caution as it results from the quotient of two small numbers (Jelsch et al., 2014).

Table 2. Enrichment ratios for the title compound.

Parameter Ratio
H⋯H 0.94
C⋯H 1.23
O⋯H 1.24
N⋯H 1.30
S⋯H 1.11
S⋯C 0.96
S⋯O 0.82

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016) for diethyl 2,6-dimethyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate derivatives with a ring substituent at C4 results in 70 hits for which coordinates are available. Most similar to the title compound is the 4-(2-thien­yl) derivative (refcode QIWWEY; Caignan et al., 2000; refcode QIWWEY01; Huang & Cui, 2016). In these compounds the thienyl group is disordered over two sets of sites with an occupancy ratio of 0.51:0.49. An overlay between the title compound and QIWWEY excluding the thio­phene ring gives an r.m.s. deviation of 0.318 Å. In QIWWEY, the 1,4-di­hydro­pyridine and thio­phene rings make an angle of 83.19 (17)°. Fig. 6 shows the four possible orientations of the two C=O substituents on the 1,4-di­hydro­pyridine ring. Most popular are the s-trans/s-cis (35%), the s-cis/s-cis (31%) and the s-cis/s-trans conformation (29%). The s-trans/s-trans conformation occurs only for 5% of the deriv­atives. In the title compound, both C=O substituents are present in an s-trans/s-cis conformation.

Figure 6.

Figure 6

Four possible orientations of the C=O groups for diethyl 2,6-dimethyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate derivatives with a ring substituent (R) at C4.

Synthesis and crystallization  

The reaction scheme for the synthesis of the title compound is given in Fig. 7.

Figure 7.

Figure 7

Reaction scheme for the synthesis of the title compound.

Synthesis of diethyl 2,6-dimethyl-4-(thio­phen-3-yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate :

A mixture of thio­phene-3-carbaldehyde (3 mmol), ethyl aceto­acetate (6 mmol) and NH4OAc (3 mmol) in ethanol (10 mL) was exposed to microwave radiation for 3 min. at a power of 450W. The reaction mixture was cooled down and the solid product was separated by filtration and purified by recrystallization in ethanol to give the compound as yellowish transparent crystals (yield 82%), m.p. 423 K. IR (KBr, cm−1): 3346, 3244 (NH), 3099, 2979 (C–H), 1699 (C=O), 1490 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d 6-CDCl3, δ (ppm), J (Hz), see Fig. 7 for numbering scheme]: 7.12 (m, 1H, J = 4.5, H4), 6.99 (m, 1H, J = 4.5, H5), 6.91 (d, 1H,, J = 2.5, H2), 5.93 (s, 1H, H9), 5.14 (s, 1H, H6), 4.13 (m, 4H, J = 7.5Hz, H13,13′), 2.30 (s, 6H, H10,10′), 1.25 (m, 6H, J = 7.25 H14,14′). 13C NMR [Bruker XL-500, 125 MHz, d 6-CDCl3, (ppm)]: 19.4 (C10,10′), 14.3 (C14,14′), 34.6 (C6), 59.7 (C13,13′), 103.4 (C7,7′), 120.3 (C2), 124.6 (C4), 127.6 (C5), 144.4 (C3), 147.9 (C8,C8′), 167.7 (C11,11′). Calculated for C17H21NO4S: M [+H] = 335.4 au.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atom H6 was found in a difference electron-density map and refined freely. The other H atoms were placed in idealized positions and included as riding contributions with U iso(H) values of 1.2U eq or 1.5U eq of the parent atoms, with C—H distances of 0.93 (aromatic), 0.98 (CH), 0.97 (CH2) and 0.96 Å (CH3). In the final cycles of refinement, four outlying reflections were omitted.

Table 3. Experimental details.

Crystal data
Chemical formula C17H21NO4S
M r 335.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 15.6801 (8), 7.4311 (3), 15.5968 (8)
β (°) 111.424 (6)
V3) 1691.77 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.5 × 0.2 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.555, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19775, 3446, 2805
R int 0.027
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.061, 0.187, 1.05
No. of reflections 3446
No. of parameters 216
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.47

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019015081/sj5585sup1.cif

e-75-01861-sup1.cif (513KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015081/sj5585Isup2.hkl

e-75-01861-Isup2.hkl (189.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019015081/sj5585Isup3.cml

CCDC references: 1964486, 1964486

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H21NO4S F(000) = 712
Mr = 335.41 Dx = 1.317 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.6801 (8) Å Cell parameters from 8195 reflections
b = 7.4311 (3) Å θ = 3.1–27.9°
c = 15.5968 (8) Å µ = 0.21 mm1
β = 111.424 (6)° T = 293 K
V = 1691.77 (16) Å3 Block, colourless
Z = 4 0.5 × 0.2 × 0.05 mm

Data collection

Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos diffractometer 3446 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 2805 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 15.9631 pixels mm-1 θmax = 26.4°, θmin = 2.6°
ω scans h = −19→19
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) k = −9→9
Tmin = 0.555, Tmax = 1.000 l = −19→19
19775 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0981P)2 + 1.416P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3446 reflections Δρmax = 0.53 e Å3
216 parameters Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.23846 (6) 0.68160 (12) 0.53767 (5) 0.0587 (3)
C2 0.28608 (18) 0.6398 (4) 0.45764 (17) 0.0407 (6)
H2 0.340156 0.575481 0.470126 0.049*
C3 0.23681 (15) 0.7104 (3) 0.37324 (15) 0.0293 (5)
C4 0.15812 (17) 0.8010 (4) 0.37597 (18) 0.0405 (6)
H4 0.115977 0.858331 0.325101 0.049*
C5 0.14966 (17) 0.7959 (4) 0.46445 (18) 0.0393 (6)
H5 0.102525 0.847582 0.478796 0.047*
N6 0.32530 (15) 0.3391 (3) 0.28906 (16) 0.0406 (5)
H6 0.346 (2) 0.236 (5) 0.297 (2) 0.053 (9)*
C7 0.39001 (16) 0.4737 (3) 0.31863 (17) 0.0351 (5)
C8 0.36158 (15) 0.6465 (3) 0.31363 (16) 0.0302 (5)
C9 0.26034 (14) 0.6872 (3) 0.28729 (15) 0.0273 (5)
H9 0.246735 0.800269 0.252562 0.033*
C10 0.20195 (15) 0.5392 (3) 0.22653 (15) 0.0303 (5)
C11 0.23455 (16) 0.3689 (3) 0.23509 (17) 0.0359 (5)
C12 0.48666 (18) 0.4023 (4) 0.3531 (2) 0.0533 (8)
H12A 0.509780 0.397134 0.419186 0.080*
H12B 0.524659 0.480463 0.333367 0.080*
H12C 0.487105 0.283768 0.328792 0.080*
C13 0.42150 (16) 0.8049 (3) 0.33895 (17) 0.0348 (5)
O14 0.39447 (13) 0.9578 (2) 0.32155 (16) 0.0545 (6)
O15 0.50981 (12) 0.7683 (2) 0.38631 (16) 0.0516 (5)
C16 0.57344 (18) 0.9188 (4) 0.4152 (2) 0.0532 (7)
H16A 0.553963 1.002135 0.452336 0.064*
H16B 0.575719 0.982674 0.361883 0.064*
C17 0.6646 (2) 0.8441 (5) 0.4697 (3) 0.0831 (13)
H17A 0.683923 0.764533 0.431803 0.125*
H17B 0.661164 0.778721 0.521443 0.125*
H17C 0.707965 0.940521 0.491285 0.125*
C18 0.10811 (16) 0.5808 (4) 0.16274 (16) 0.0363 (5)
O19 0.05131 (14) 0.4733 (3) 0.11903 (16) 0.0646 (7)
O20 0.09182 (12) 0.7592 (2) 0.15614 (12) 0.0410 (4)
C21 0.00100 (19) 0.8172 (5) 0.0952 (2) 0.0525 (7)
H21A −0.020354 0.738253 0.042024 0.063*
H21B 0.005081 0.938003 0.073416 0.063*
C22 −0.0661 (3) 0.8156 (6) 0.1416 (3) 0.0767 (11)
H22A −0.124239 0.858116 0.099750 0.115*
H22B −0.044950 0.892617 0.194641 0.115*
H22C −0.072715 0.695134 0.160476 0.115*
C23 0.1849 (2) 0.2020 (4) 0.1900 (2) 0.0542 (8)
H23A 0.218986 0.098199 0.220459 0.081*
H23B 0.178354 0.200892 0.126401 0.081*
H23C 0.125325 0.199968 0.194332 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0677 (5) 0.0662 (6) 0.0442 (4) 0.0079 (4) 0.0228 (4) 0.0059 (3)
C2 0.0385 (13) 0.0430 (14) 0.0386 (13) 0.0084 (11) 0.0117 (10) 0.0040 (11)
C3 0.0288 (10) 0.0250 (11) 0.0327 (11) −0.0019 (8) 0.0094 (9) −0.0028 (8)
C4 0.0339 (12) 0.0462 (14) 0.0391 (13) 0.0080 (11) 0.0104 (10) −0.0014 (11)
C5 0.0313 (12) 0.0424 (14) 0.0466 (14) 0.0033 (10) 0.0169 (11) −0.0069 (11)
N6 0.0372 (11) 0.0225 (10) 0.0547 (13) 0.0035 (8) 0.0082 (10) 0.0007 (9)
C7 0.0298 (11) 0.0306 (12) 0.0422 (13) 0.0026 (9) 0.0101 (10) 0.0014 (10)
C8 0.0266 (11) 0.0267 (11) 0.0362 (11) 0.0012 (8) 0.0100 (9) 0.0014 (9)
C9 0.0269 (10) 0.0209 (10) 0.0333 (11) 0.0021 (8) 0.0098 (9) 0.0024 (8)
C10 0.0289 (11) 0.0289 (11) 0.0314 (11) −0.0019 (9) 0.0091 (9) 0.0004 (9)
C11 0.0350 (12) 0.0312 (12) 0.0399 (12) −0.0025 (10) 0.0116 (10) −0.0027 (10)
C12 0.0359 (14) 0.0342 (14) 0.080 (2) 0.0093 (11) 0.0095 (13) −0.0009 (14)
C13 0.0295 (11) 0.0292 (12) 0.0465 (13) 0.0007 (9) 0.0146 (10) 0.0007 (10)
O14 0.0375 (10) 0.0254 (9) 0.0918 (15) 0.0001 (7) 0.0134 (10) 0.0048 (9)
O15 0.0300 (9) 0.0301 (9) 0.0830 (15) −0.0027 (7) 0.0068 (9) 0.0011 (9)
C16 0.0378 (14) 0.0339 (14) 0.081 (2) −0.0091 (11) 0.0137 (13) 0.0000 (14)
C17 0.0435 (17) 0.056 (2) 0.124 (3) −0.0095 (15) 0.0001 (19) 0.009 (2)
C18 0.0321 (11) 0.0432 (14) 0.0312 (11) 0.0001 (10) 0.0084 (9) −0.0009 (10)
O19 0.0429 (11) 0.0552 (13) 0.0715 (14) −0.0041 (10) −0.0079 (10) −0.0129 (11)
O20 0.0338 (9) 0.0420 (10) 0.0395 (9) 0.0080 (7) 0.0043 (7) 0.0042 (7)
C21 0.0391 (14) 0.0634 (19) 0.0449 (15) 0.0146 (13) 0.0035 (12) 0.0102 (13)
C22 0.055 (2) 0.091 (3) 0.084 (3) 0.0277 (19) 0.0258 (18) 0.005 (2)
C23 0.0489 (16) 0.0326 (14) 0.073 (2) −0.0062 (12) 0.0128 (14) −0.0139 (13)

Geometric parameters (Å, º)

S1—C2 1.701 (3) C12—H12C 0.9600
S1—C5 1.674 (3) C13—O14 1.208 (3)
C2—H2 0.9300 C13—O15 1.338 (3)
C2—C3 1.364 (3) O15—C16 1.456 (3)
C3—C4 1.420 (3) C16—H16A 0.9700
C3—C9 1.525 (3) C16—H16B 0.9700
C4—H4 0.9300 C16—C17 1.479 (4)
C4—C5 1.434 (4) C17—H17A 0.9600
C5—H5 0.9300 C17—H17B 0.9600
N6—H6 0.82 (4) C17—H17C 0.9600
N6—C7 1.379 (3) C18—O19 1.205 (3)
N6—C11 1.381 (3) C18—O20 1.347 (3)
C7—C8 1.352 (3) O20—C21 1.459 (3)
C7—C12 1.507 (3) C21—H21A 0.9700
C8—C9 1.518 (3) C21—H21B 0.9700
C8—C13 1.468 (3) C21—C22 1.479 (5)
C9—H9 0.9800 C22—H22A 0.9600
C9—C10 1.521 (3) C22—H22B 0.9600
C10—C11 1.353 (3) C22—H22C 0.9600
C10—C18 1.477 (3) C23—H23A 0.9600
C11—C23 1.496 (3) C23—H23B 0.9600
C12—H12A 0.9600 C23—H23C 0.9600
C12—H12B 0.9600
C5—S1—C2 94.05 (12) H12B—C12—H12C 109.5
S1—C2—H2 123.5 O14—C13—C8 123.8 (2)
C3—C2—S1 113.10 (19) O14—C13—O15 121.5 (2)
C3—C2—H2 123.5 O15—C13—C8 114.7 (2)
C2—C3—C4 110.2 (2) C13—O15—C16 118.0 (2)
C2—C3—C9 124.8 (2) O15—C16—H16A 110.2
C4—C3—C9 124.9 (2) O15—C16—H16B 110.2
C3—C4—H4 123.1 O15—C16—C17 107.4 (2)
C3—C4—C5 113.8 (2) H16A—C16—H16B 108.5
C5—C4—H4 123.1 C17—C16—H16A 110.2
S1—C5—H5 125.6 C17—C16—H16B 110.2
C4—C5—S1 108.88 (18) C16—C17—H17A 109.5
C4—C5—H5 125.6 C16—C17—H17B 109.5
C7—N6—H6 115 (2) C16—C17—H17C 109.5
C7—N6—C11 123.8 (2) H17A—C17—H17B 109.5
C11—N6—H6 120 (2) H17A—C17—H17C 109.5
N6—C7—C12 112.6 (2) H17B—C17—H17C 109.5
C8—C7—N6 118.9 (2) O19—C18—C10 126.2 (2)
C8—C7—C12 128.5 (2) O19—C18—O20 121.9 (2)
C7—C8—C9 119.7 (2) O20—C18—C10 111.8 (2)
C7—C8—C13 125.5 (2) C18—O20—C21 117.0 (2)
C13—C8—C9 114.60 (19) O20—C21—H21A 109.2
C3—C9—H9 108.4 O20—C21—H21B 109.2
C8—C9—C3 110.47 (18) O20—C21—C22 112.2 (3)
C8—C9—H9 108.4 H21A—C21—H21B 107.9
C8—C9—C10 110.90 (18) C22—C21—H21A 109.2
C10—C9—C3 110.21 (18) C22—C21—H21B 109.2
C10—C9—H9 108.4 C21—C22—H22A 109.5
C11—C10—C9 119.68 (19) C21—C22—H22B 109.5
C11—C10—C18 120.6 (2) C21—C22—H22C 109.5
C18—C10—C9 119.6 (2) H22A—C22—H22B 109.5
N6—C11—C23 113.4 (2) H22A—C22—H22C 109.5
C10—C11—N6 118.6 (2) H22B—C22—H22C 109.5
C10—C11—C23 128.0 (2) C11—C23—H23A 109.5
C7—C12—H12A 109.5 C11—C23—H23B 109.5
C7—C12—H12B 109.5 C11—C23—H23C 109.5
C7—C12—H12C 109.5 H23A—C23—H23B 109.5
H12A—C12—H12B 109.5 H23A—C23—H23C 109.5
H12A—C12—H12C 109.5 H23B—C23—H23C 109.5
S1—C2—C3—C4 0.1 (3) C9—C3—C4—C5 177.0 (2)
S1—C2—C3—C9 −177.09 (17) C9—C8—C13—O14 −16.0 (4)
C2—S1—C5—C4 −0.1 (2) C9—C8—C13—O15 161.9 (2)
C2—C3—C4—C5 −0.2 (3) C9—C10—C11—N6 −9.6 (4)
C2—C3—C9—C8 −23.5 (3) C9—C10—C11—C23 172.7 (3)
C2—C3—C9—C10 99.4 (3) C9—C10—C18—O19 −170.8 (3)
C3—C4—C5—S1 0.2 (3) C9—C10—C18—O20 10.6 (3)
C3—C9—C10—C11 −93.6 (3) C10—C18—O20—C21 −179.8 (2)
C3—C9—C10—C18 82.7 (2) C11—N6—C7—C8 15.7 (4)
C4—C3—C9—C8 159.7 (2) C11—N6—C7—C12 −164.1 (3)
C4—C3—C9—C10 −77.4 (3) C11—C10—C18—O19 5.5 (4)
C5—S1—C2—C3 0.0 (2) C11—C10—C18—O20 −173.1 (2)
N6—C7—C8—C9 7.6 (4) C12—C7—C8—C9 −172.6 (3)
N6—C7—C8—C13 −177.6 (2) C12—C7—C8—C13 2.2 (4)
C7—N6—C11—C10 −14.7 (4) C13—C8—C9—C3 −80.8 (2)
C7—N6—C11—C23 163.4 (3) C13—C8—C9—C10 156.7 (2)
C7—C8—C9—C3 94.5 (3) C13—O15—C16—C17 177.2 (3)
C7—C8—C9—C10 −28.0 (3) O14—C13—O15—C16 −1.1 (4)
C7—C8—C13—O14 169.0 (3) C18—C10—C11—N6 174.1 (2)
C7—C8—C13—O15 −13.1 (4) C18—C10—C11—C23 −3.6 (4)
C8—C9—C10—C11 29.0 (3) C18—O20—C21—C22 85.3 (3)
C8—C9—C10—C18 −154.6 (2) O19—C18—O20—C21 1.5 (4)
C8—C13—O15—C16 −179.1 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the thiophene S1/C2–C5 ring.

D—H···A D—H H···A D···A D—H···A
N6—H6···O14i 0.82 (4) 2.19 (4) 3.010 (3) 176 (3)
C5—H5···O19ii 0.93 2.52 3.220 (4) 133
C9—H9···O20 0.98 2.36 2.739 (3) 102
C12—H12B···O15 0.96 2.33 2.768 (3) 107
C23—H23C···O19 0.96 2.42 2.826 (4) 105
C17—H17C···Cg1iii 0.96 2.79 3.720 (4) 162

Symmetry codes: (i) x, y−1, z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y+2, −z+1.

Funding Statement

This work was funded by Ministry of Education and Training Vietnam grant B2019-SPH.562–05. Hercules Foundation grant AKUL/09/ 0035.

References

  1. Bagley, M. C. & Lubinu, M. C. (2006). Synthesis, pp. 1283–1288.
  2. Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603. [DOI] [PubMed]
  3. Bossert, F., Meyer, H. & Wehinger, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–769.
  4. Bossert, F. & Vater, W. (1989). Med. Res. Rev. 9, 291–324. [DOI] [PubMed]
  5. Caignan, G. A., Metcalf, S. K. & Holt, E. M. (2000). J. Chem. Cryst. 30, 415–422.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Godfraind, T., Miller, R. & Wibo, M. (1986). Pharmacol. Rev. 38, 321–416. [PubMed]
  8. Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Heravi, M. M., Behbahani, F. K., Oskooie, H. A. & Shoar, R. H. (2005). Tetrahedron Lett. 46, 2775–2777.
  11. Huang, X. & Cui, C. (2016). Private Communication (refcode QIWWEY). CCDC, Cambridge, England.
  12. Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. [DOI] [PMC free article] [PubMed]
  13. Mauzerall, D. & Westheimer, F. H. (1955). J. Am. Chem. Soc. 77, 2261–2264.
  14. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
  15. Nakayama, H. & Kanaoka, Y. (1996). Heterocycles, 42, 901–909.
  16. Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263.
  17. Nguyen Ngoc, L., Vu Quoc, T., Duong Quoc, H., Vu Quoc, M., Truong Minh, L., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 1647–1651. [DOI] [PMC free article] [PubMed]
  18. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  19. Sausins, A. & Duburs, G. (1988). Heterocycles, 27, 269–272.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  23. Stout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223–243.
  24. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  25. Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735.
  26. Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812–815. [DOI] [PMC free article] [PubMed]
  27. Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904. [DOI] [PMC free article] [PubMed]
  28. Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). Acta Cryst. E75, 957–963. [DOI] [PMC free article] [PubMed]
  29. Wei, X. Y., Rutledge, A. & Triggle, D. J. (1989). Mol. Pharmacol. 35, 541–552. [PubMed]
  30. Xia, J. J. & Wang, G. W. (2005). Synthesis, pp. 2379–2383.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019015081/sj5585sup1.cif

e-75-01861-sup1.cif (513KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015081/sj5585Isup2.hkl

e-75-01861-Isup2.hkl (189.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019015081/sj5585Isup3.cml

CCDC references: 1964486, 1964486

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES