In the title 1,4-dihydropyridine derivative, the 1,4-dihydropyridine ring makes an angle of 82.19 (13)° with the thiophene ring. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds as well as C—H⋯π interactions link the molecules into a three-dimensional network.
Keywords: crystal structure; hydrogen bonding; Hirshfeld analysis; 1,4-dihydropyridine
Abstract
In the title compound, C17H21NO4S, the 1,4-dihydropyridine ring has an envelope conformation with the Csp 3 atom at the flap. The thiophene ring is nearly perpendicular to the best plane through the 1,4-dihydropyridine ring, the dihedral angle being 82.19 (13)°. In the crystal, chains running along the b-axis direction are formed through N—H⋯O interactions between the 1,4-dihydropyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π interactions. A Hirshfeld surface analysis shows that the most prominent contributuion to the surface contacts are H⋯H contacts (55.1%).
Chemical context
1,4-Dihydropyridine derivatives exhibit a large range of biological activities (Stout & Meyers, 1982 ▸; Wei et al., 1989 ▸; Bossert & Vater, 1989 ▸; Mauzerall & Westheimer, 1955 ▸). They have been used as anticonvulsant, antidepressive, antianxiety, analgesic, antitumoral, vasodilator and anti-inflammatory agents (Sausins & Duburs, 1988 ▸; Boecker & Guenguerich, 1986 ▸; Godfraind et al., 1986 ▸). Some of them, such as amlodipine, felodipine and isradipine are drugs effective as calcium-channel blockers for the treatment of cardiovascular diseases and hypertension (Bossert et al., 1981 ▸; Nakayama & Kanoaka, 1996 ▸; Gordeev et al., 1996 ▸). 1,4-Dihydropyridines are also good precursors of the corresponding substituted pyridine derivatives and constitute useful reducing agents for imines in the presence of a catalytic amount of Lewis acid (Xia & Wang, 2005 ▸; Heravi et al., 2005 ▸; Bagley & Lubinu, 2006 ▸).
As a continuation of our research on the chemical and physical properties of novel polythiophenes (Nguyen et al., 2016 ▸; Vu et al., 2016 ▸), some new thiophene monomers have been prepared (Vu et al., 2017 ▸, 2018 ▸, 2019 ▸; Nguyen et al., 2017 ▸). In this study, the synthesis and crystal structure of diethyl 2,6-dimethyl-4-(thiophen-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate are presented together with a Hirshfeld surface analysis and non-covalent interaction plots.
Structural commentary
The title compound crystallizes in the monoclinic space group P21/c with one molecule in the asymmetric unit (Fig. 1 ▸). The 1,4-dihydropyridine ring (N6,C7–C11) has an envelope conformation with atom C9 at the flap [puckering parameters: Q = 0.300 (3) Å, θ = 73.9 (6)°, φ = 182.0 (5)°]. The best plane through the 1,4-dihydropyridine ring makes an angle of 82.19 (13)° with the plane through the thiophene ring (S1/C2–C5; r.m.s. deviation = 0.001 Å). Both methyl C atoms are closer to the best plane through the 1,4-dihydropyridine [deviations: C12 − 0.164 (3) Å, C23 − 0.162 (3) Å] than the C atoms of the two ester substituents [deviations: C13 − 0.363 (3) Å, C18 − 0.446 (2) Å]. All four of these C atoms are at the opposite sides with respect to the thiophene substituent which is in an axial position. Atoms O15, O19 and O20 are involved in intramolecular short contacts (Table 1 ▸). Both ester groups have a different conformation as illustrated by torsion angles C13—O15—C16—C17 [177.2 (3)°, +ap] and C18—O20—C21—C22 [85.3 (8)°, +sc].
Figure 1.
A view of the molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the thiophene S1/C2–C5 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N6—H6⋯O14i | 0.82 (4) | 2.19 (4) | 3.010 (3) | 176 (3) |
| C5—H5⋯O19ii | 0.93 | 2.52 | 3.220 (4) | 133 |
| C9—H9⋯O20 | 0.98 | 2.36 | 2.739 (3) | 102 |
| C12—H12B⋯O15 | 0.96 | 2.33 | 2.768 (3) | 107 |
| C23—H23C⋯O19 | 0.96 | 2.42 | 2.826 (4) | 105 |
| C17—H17C⋯Cg1iii | 0.96 | 2.79 | 3.720 (4) | 162 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Supramolecular features and Hirshfeld surface analysis
In the crystal, the 1,4-dihydropyridine N6 atom acts as a hydrogen-bond donor to the O14 atom of one of the ester groups, resulting in chain formation along the b-axis direction (Fig. 2 ▸, Table 1 ▸). Parallel chains are linked by C—H⋯O hydrogen bonds between the thiophene H5 atom and the carbonyl O19 atom of the second ester group (Fig. 2 ▸, Table 1 ▸). In addition, inversion dimers are formed by C—H⋯π interactions (Fig. 3 ▸, Table 1 ▸). No voids are observed in the crystal packing of the title compound.
Figure 2.
Partial crystal packing of the title compound, showing the chain formation along the b axis by N—H⋯O interactions (blue dashed lines). Parallel chains are linked by C—H⋯O interactions (red dashed lines; see Table 1 ▸ for symmetry codes).
Figure 3.
Partial crystal packing of the title compound, showing the inversion dimer formation through C—H⋯π interactions (grey dashed lines; Cg1 is the centroid of the S1/C2–C5 ring; see Table 1 ▸ for symmetry code).
In order to gain further insight into the packing, the Hirshfeld surface and fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017 ▸). The Hirshfeld surface (Spackman & Jayatilaka, 2009 ▸) mapped over d norm in Fig. 4 ▸ shows bright-red spots near the atoms participating in the already discussed intermolecular interactions. In addition a faint-red spot is present near atoms H9 and H23A indicating a short H9⋯H23A iv contact distance of 2.276 Å [symmetry code: (iv) x, y + 1, z]. The associated two-dimensional fingerprint plots (McKinnon et al., 2007 ▸) are shown in Fig. 5 ▸ and give additional information about the intermolecular contacts. H⋯H Van der Waals contacts dominate (55.1%) and appear in the middle of the scattered points in the fingerprint plot (Fig. 5 ▸ b). The contribution (16.4%) from the O⋯H/H⋯O contacts shows a pair of sharp spikes corresponding to the N—H⋯O interactions (Fig. 5 ▸ c). In addition, C⋯H/H⋯C and S⋯H/H⋯S contacts contribute 15.7 and 9.6%, respectively, to the Hirshfeld surface. A further small contribution is from N⋯H/H⋯N contacts (1.5%, Fig. 5 ▸ f). The percentage contributions of the other contact types are negligible.
Figure 4.
Two views of the Hirshfeld surface mapped over d norm for the title compound in the range −0.4662 to +1.2830 arbitrary units.
Figure 5.
Full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) S⋯H/H⋯S, (f) N⋯H/H⋯N interactions. The d i and d e values are the closest internal and external distances (in Å) from a given point on the Hirshfeld surface.
Enrichment ratios (Table 2 ▸) were calculated according to the method described by Jelsch et al. (2014 ▸). A ratio EXY greater than unity for a pair of elements X and Y indicates a high likelihood of forming X⋯Y contacts in the crystal packing. The favourable O⋯H and H⋯π contacts in the crystal packing are reflected in the enrichment ratios E OH of 1.24 and E CH of 1.23 for these contacts. The slight E SH enrichment (1.11) refers to the multiple S⋯H contacts between S1 and neighbouring methyl groups (S⋯H distances ranging from 3.01 to 3.50 Å). However, the high enrichment ratio E NH must be interpreted with caution as it results from the quotient of two small numbers (Jelsch et al., 2014 ▸).
Table 2. Enrichment ratios for the title compound.
| Parameter | Ratio |
|---|---|
| H⋯H | 0.94 |
| C⋯H | 1.23 |
| O⋯H | 1.24 |
| N⋯H | 1.30 |
| S⋯H | 1.11 |
| S⋯C | 0.96 |
| S⋯O | 0.82 |
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016 ▸) for diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate derivatives with a ring substituent at C4 results in 70 hits for which coordinates are available. Most similar to the title compound is the 4-(2-thienyl) derivative (refcode QIWWEY; Caignan et al., 2000 ▸; refcode QIWWEY01; Huang & Cui, 2016 ▸). In these compounds the thienyl group is disordered over two sets of sites with an occupancy ratio of 0.51:0.49. An overlay between the title compound and QIWWEY excluding the thiophene ring gives an r.m.s. deviation of 0.318 Å. In QIWWEY, the 1,4-dihydropyridine and thiophene rings make an angle of 83.19 (17)°. Fig. 6 ▸ shows the four possible orientations of the two C=O substituents on the 1,4-dihydropyridine ring. Most popular are the s-trans/s-cis (35%), the s-cis/s-cis (31%) and the s-cis/s-trans conformation (29%). The s-trans/s-trans conformation occurs only for 5% of the derivatives. In the title compound, both C=O substituents are present in an s-trans/s-cis conformation.
Figure 6.
Four possible orientations of the C=O groups for diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate derivatives with a ring substituent (R) at C4.
Synthesis and crystallization
The reaction scheme for the synthesis of the title compound is given in Fig. 7 ▸.
Figure 7.
Reaction scheme for the synthesis of the title compound.
Synthesis of diethyl 2,6-dimethyl-4-(thiophen-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate :
A mixture of thiophene-3-carbaldehyde (3 mmol), ethyl acetoacetate (6 mmol) and NH4OAc (3 mmol) in ethanol (10 mL) was exposed to microwave radiation for 3 min. at a power of 450W. The reaction mixture was cooled down and the solid product was separated by filtration and purified by recrystallization in ethanol to give the compound as yellowish transparent crystals (yield 82%), m.p. 423 K. IR (KBr, cm−1): 3346, 3244 (NH), 3099, 2979 (C–H), 1699 (C=O), 1490 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d 6-CDCl3, δ (ppm), J (Hz), see Fig. 7 ▸ for numbering scheme]: 7.12 (m, 1H, J = 4.5, H4), 6.99 (m, 1H, J = 4.5, H5), 6.91 (d, 1H,, J = 2.5, H2), 5.93 (s, 1H, H9), 5.14 (s, 1H, H6), 4.13 (m, 4H, J = 7.5Hz, H13,13′), 2.30 (s, 6H, H10,10′), 1.25 (m, 6H, J = 7.25 H14,14′). 13C NMR [Bruker XL-500, 125 MHz, d 6-CDCl3, (ppm)]: 19.4 (C10,10′), 14.3 (C14,14′), 34.6 (C6), 59.7 (C13,13′), 103.4 (C7,7′), 120.3 (C2), 124.6 (C4), 127.6 (C5), 144.4 (C3), 147.9 (C8,C8′), 167.7 (C11,11′). Calculated for C17H21NO4S: M [+H] = 335.4 au.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. H atom H6 was found in a difference electron-density map and refined freely. The other H atoms were placed in idealized positions and included as riding contributions with U iso(H) values of 1.2U eq or 1.5U eq of the parent atoms, with C—H distances of 0.93 (aromatic), 0.98 (CH), 0.97 (CH2) and 0.96 Å (CH3). In the final cycles of refinement, four outlying reflections were omitted.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C17H21NO4S |
| M r | 335.41 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 293 |
| a, b, c (Å) | 15.6801 (8), 7.4311 (3), 15.5968 (8) |
| β (°) | 111.424 (6) |
| V (Å3) | 1691.77 (16) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.21 |
| Crystal size (mm) | 0.5 × 0.2 × 0.05 |
| Data collection | |
| Diffractometer | Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) |
| T min, T max | 0.555, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 19775, 3446, 2805 |
| R int | 0.027 |
| (sin θ/λ)max (Å−1) | 0.625 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.061, 0.187, 1.05 |
| No. of reflections | 3446 |
| No. of parameters | 216 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.53, −0.47 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019015081/sj5585sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015081/sj5585Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019015081/sj5585Isup3.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C17H21NO4S | F(000) = 712 |
| Mr = 335.41 | Dx = 1.317 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 15.6801 (8) Å | Cell parameters from 8195 reflections |
| b = 7.4311 (3) Å | θ = 3.1–27.9° |
| c = 15.5968 (8) Å | µ = 0.21 mm−1 |
| β = 111.424 (6)° | T = 293 K |
| V = 1691.77 (16) Å3 | Block, colourless |
| Z = 4 | 0.5 × 0.2 × 0.05 mm |
Data collection
| Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos diffractometer | 3446 independent reflections |
| Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2805 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.027 |
| Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.6° |
| ω scans | h = −19→19 |
| Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −9→9 |
| Tmin = 0.555, Tmax = 1.000 | l = −19→19 |
| 19775 measured reflections |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.187 | w = 1/[σ2(Fo2) + (0.0981P)2 + 1.416P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max < 0.001 |
| 3446 reflections | Δρmax = 0.53 e Å−3 |
| 216 parameters | Δρmin = −0.46 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.23846 (6) | 0.68160 (12) | 0.53767 (5) | 0.0587 (3) | |
| C2 | 0.28608 (18) | 0.6398 (4) | 0.45764 (17) | 0.0407 (6) | |
| H2 | 0.340156 | 0.575481 | 0.470126 | 0.049* | |
| C3 | 0.23681 (15) | 0.7104 (3) | 0.37324 (15) | 0.0293 (5) | |
| C4 | 0.15812 (17) | 0.8010 (4) | 0.37597 (18) | 0.0405 (6) | |
| H4 | 0.115977 | 0.858331 | 0.325101 | 0.049* | |
| C5 | 0.14966 (17) | 0.7959 (4) | 0.46445 (18) | 0.0393 (6) | |
| H5 | 0.102525 | 0.847582 | 0.478796 | 0.047* | |
| N6 | 0.32530 (15) | 0.3391 (3) | 0.28906 (16) | 0.0406 (5) | |
| H6 | 0.346 (2) | 0.236 (5) | 0.297 (2) | 0.053 (9)* | |
| C7 | 0.39001 (16) | 0.4737 (3) | 0.31863 (17) | 0.0351 (5) | |
| C8 | 0.36158 (15) | 0.6465 (3) | 0.31363 (16) | 0.0302 (5) | |
| C9 | 0.26034 (14) | 0.6872 (3) | 0.28729 (15) | 0.0273 (5) | |
| H9 | 0.246735 | 0.800269 | 0.252562 | 0.033* | |
| C10 | 0.20195 (15) | 0.5392 (3) | 0.22653 (15) | 0.0303 (5) | |
| C11 | 0.23455 (16) | 0.3689 (3) | 0.23509 (17) | 0.0359 (5) | |
| C12 | 0.48666 (18) | 0.4023 (4) | 0.3531 (2) | 0.0533 (8) | |
| H12A | 0.509780 | 0.397134 | 0.419186 | 0.080* | |
| H12B | 0.524659 | 0.480463 | 0.333367 | 0.080* | |
| H12C | 0.487105 | 0.283768 | 0.328792 | 0.080* | |
| C13 | 0.42150 (16) | 0.8049 (3) | 0.33895 (17) | 0.0348 (5) | |
| O14 | 0.39447 (13) | 0.9578 (2) | 0.32155 (16) | 0.0545 (6) | |
| O15 | 0.50981 (12) | 0.7683 (2) | 0.38631 (16) | 0.0516 (5) | |
| C16 | 0.57344 (18) | 0.9188 (4) | 0.4152 (2) | 0.0532 (7) | |
| H16A | 0.553963 | 1.002135 | 0.452336 | 0.064* | |
| H16B | 0.575719 | 0.982674 | 0.361883 | 0.064* | |
| C17 | 0.6646 (2) | 0.8441 (5) | 0.4697 (3) | 0.0831 (13) | |
| H17A | 0.683923 | 0.764533 | 0.431803 | 0.125* | |
| H17B | 0.661164 | 0.778721 | 0.521443 | 0.125* | |
| H17C | 0.707965 | 0.940521 | 0.491285 | 0.125* | |
| C18 | 0.10811 (16) | 0.5808 (4) | 0.16274 (16) | 0.0363 (5) | |
| O19 | 0.05131 (14) | 0.4733 (3) | 0.11903 (16) | 0.0646 (7) | |
| O20 | 0.09182 (12) | 0.7592 (2) | 0.15614 (12) | 0.0410 (4) | |
| C21 | 0.00100 (19) | 0.8172 (5) | 0.0952 (2) | 0.0525 (7) | |
| H21A | −0.020354 | 0.738253 | 0.042024 | 0.063* | |
| H21B | 0.005081 | 0.938003 | 0.073416 | 0.063* | |
| C22 | −0.0661 (3) | 0.8156 (6) | 0.1416 (3) | 0.0767 (11) | |
| H22A | −0.124239 | 0.858116 | 0.099750 | 0.115* | |
| H22B | −0.044950 | 0.892617 | 0.194641 | 0.115* | |
| H22C | −0.072715 | 0.695134 | 0.160476 | 0.115* | |
| C23 | 0.1849 (2) | 0.2020 (4) | 0.1900 (2) | 0.0542 (8) | |
| H23A | 0.218986 | 0.098199 | 0.220459 | 0.081* | |
| H23B | 0.178354 | 0.200892 | 0.126401 | 0.081* | |
| H23C | 0.125325 | 0.199968 | 0.194332 | 0.081* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0677 (5) | 0.0662 (6) | 0.0442 (4) | 0.0079 (4) | 0.0228 (4) | 0.0059 (3) |
| C2 | 0.0385 (13) | 0.0430 (14) | 0.0386 (13) | 0.0084 (11) | 0.0117 (10) | 0.0040 (11) |
| C3 | 0.0288 (10) | 0.0250 (11) | 0.0327 (11) | −0.0019 (8) | 0.0094 (9) | −0.0028 (8) |
| C4 | 0.0339 (12) | 0.0462 (14) | 0.0391 (13) | 0.0080 (11) | 0.0104 (10) | −0.0014 (11) |
| C5 | 0.0313 (12) | 0.0424 (14) | 0.0466 (14) | 0.0033 (10) | 0.0169 (11) | −0.0069 (11) |
| N6 | 0.0372 (11) | 0.0225 (10) | 0.0547 (13) | 0.0035 (8) | 0.0082 (10) | 0.0007 (9) |
| C7 | 0.0298 (11) | 0.0306 (12) | 0.0422 (13) | 0.0026 (9) | 0.0101 (10) | 0.0014 (10) |
| C8 | 0.0266 (11) | 0.0267 (11) | 0.0362 (11) | 0.0012 (8) | 0.0100 (9) | 0.0014 (9) |
| C9 | 0.0269 (10) | 0.0209 (10) | 0.0333 (11) | 0.0021 (8) | 0.0098 (9) | 0.0024 (8) |
| C10 | 0.0289 (11) | 0.0289 (11) | 0.0314 (11) | −0.0019 (9) | 0.0091 (9) | 0.0004 (9) |
| C11 | 0.0350 (12) | 0.0312 (12) | 0.0399 (12) | −0.0025 (10) | 0.0116 (10) | −0.0027 (10) |
| C12 | 0.0359 (14) | 0.0342 (14) | 0.080 (2) | 0.0093 (11) | 0.0095 (13) | −0.0009 (14) |
| C13 | 0.0295 (11) | 0.0292 (12) | 0.0465 (13) | 0.0007 (9) | 0.0146 (10) | 0.0007 (10) |
| O14 | 0.0375 (10) | 0.0254 (9) | 0.0918 (15) | 0.0001 (7) | 0.0134 (10) | 0.0048 (9) |
| O15 | 0.0300 (9) | 0.0301 (9) | 0.0830 (15) | −0.0027 (7) | 0.0068 (9) | 0.0011 (9) |
| C16 | 0.0378 (14) | 0.0339 (14) | 0.081 (2) | −0.0091 (11) | 0.0137 (13) | 0.0000 (14) |
| C17 | 0.0435 (17) | 0.056 (2) | 0.124 (3) | −0.0095 (15) | 0.0001 (19) | 0.009 (2) |
| C18 | 0.0321 (11) | 0.0432 (14) | 0.0312 (11) | 0.0001 (10) | 0.0084 (9) | −0.0009 (10) |
| O19 | 0.0429 (11) | 0.0552 (13) | 0.0715 (14) | −0.0041 (10) | −0.0079 (10) | −0.0129 (11) |
| O20 | 0.0338 (9) | 0.0420 (10) | 0.0395 (9) | 0.0080 (7) | 0.0043 (7) | 0.0042 (7) |
| C21 | 0.0391 (14) | 0.0634 (19) | 0.0449 (15) | 0.0146 (13) | 0.0035 (12) | 0.0102 (13) |
| C22 | 0.055 (2) | 0.091 (3) | 0.084 (3) | 0.0277 (19) | 0.0258 (18) | 0.005 (2) |
| C23 | 0.0489 (16) | 0.0326 (14) | 0.073 (2) | −0.0062 (12) | 0.0128 (14) | −0.0139 (13) |
Geometric parameters (Å, º)
| S1—C2 | 1.701 (3) | C12—H12C | 0.9600 |
| S1—C5 | 1.674 (3) | C13—O14 | 1.208 (3) |
| C2—H2 | 0.9300 | C13—O15 | 1.338 (3) |
| C2—C3 | 1.364 (3) | O15—C16 | 1.456 (3) |
| C3—C4 | 1.420 (3) | C16—H16A | 0.9700 |
| C3—C9 | 1.525 (3) | C16—H16B | 0.9700 |
| C4—H4 | 0.9300 | C16—C17 | 1.479 (4) |
| C4—C5 | 1.434 (4) | C17—H17A | 0.9600 |
| C5—H5 | 0.9300 | C17—H17B | 0.9600 |
| N6—H6 | 0.82 (4) | C17—H17C | 0.9600 |
| N6—C7 | 1.379 (3) | C18—O19 | 1.205 (3) |
| N6—C11 | 1.381 (3) | C18—O20 | 1.347 (3) |
| C7—C8 | 1.352 (3) | O20—C21 | 1.459 (3) |
| C7—C12 | 1.507 (3) | C21—H21A | 0.9700 |
| C8—C9 | 1.518 (3) | C21—H21B | 0.9700 |
| C8—C13 | 1.468 (3) | C21—C22 | 1.479 (5) |
| C9—H9 | 0.9800 | C22—H22A | 0.9600 |
| C9—C10 | 1.521 (3) | C22—H22B | 0.9600 |
| C10—C11 | 1.353 (3) | C22—H22C | 0.9600 |
| C10—C18 | 1.477 (3) | C23—H23A | 0.9600 |
| C11—C23 | 1.496 (3) | C23—H23B | 0.9600 |
| C12—H12A | 0.9600 | C23—H23C | 0.9600 |
| C12—H12B | 0.9600 | ||
| C5—S1—C2 | 94.05 (12) | H12B—C12—H12C | 109.5 |
| S1—C2—H2 | 123.5 | O14—C13—C8 | 123.8 (2) |
| C3—C2—S1 | 113.10 (19) | O14—C13—O15 | 121.5 (2) |
| C3—C2—H2 | 123.5 | O15—C13—C8 | 114.7 (2) |
| C2—C3—C4 | 110.2 (2) | C13—O15—C16 | 118.0 (2) |
| C2—C3—C9 | 124.8 (2) | O15—C16—H16A | 110.2 |
| C4—C3—C9 | 124.9 (2) | O15—C16—H16B | 110.2 |
| C3—C4—H4 | 123.1 | O15—C16—C17 | 107.4 (2) |
| C3—C4—C5 | 113.8 (2) | H16A—C16—H16B | 108.5 |
| C5—C4—H4 | 123.1 | C17—C16—H16A | 110.2 |
| S1—C5—H5 | 125.6 | C17—C16—H16B | 110.2 |
| C4—C5—S1 | 108.88 (18) | C16—C17—H17A | 109.5 |
| C4—C5—H5 | 125.6 | C16—C17—H17B | 109.5 |
| C7—N6—H6 | 115 (2) | C16—C17—H17C | 109.5 |
| C7—N6—C11 | 123.8 (2) | H17A—C17—H17B | 109.5 |
| C11—N6—H6 | 120 (2) | H17A—C17—H17C | 109.5 |
| N6—C7—C12 | 112.6 (2) | H17B—C17—H17C | 109.5 |
| C8—C7—N6 | 118.9 (2) | O19—C18—C10 | 126.2 (2) |
| C8—C7—C12 | 128.5 (2) | O19—C18—O20 | 121.9 (2) |
| C7—C8—C9 | 119.7 (2) | O20—C18—C10 | 111.8 (2) |
| C7—C8—C13 | 125.5 (2) | C18—O20—C21 | 117.0 (2) |
| C13—C8—C9 | 114.60 (19) | O20—C21—H21A | 109.2 |
| C3—C9—H9 | 108.4 | O20—C21—H21B | 109.2 |
| C8—C9—C3 | 110.47 (18) | O20—C21—C22 | 112.2 (3) |
| C8—C9—H9 | 108.4 | H21A—C21—H21B | 107.9 |
| C8—C9—C10 | 110.90 (18) | C22—C21—H21A | 109.2 |
| C10—C9—C3 | 110.21 (18) | C22—C21—H21B | 109.2 |
| C10—C9—H9 | 108.4 | C21—C22—H22A | 109.5 |
| C11—C10—C9 | 119.68 (19) | C21—C22—H22B | 109.5 |
| C11—C10—C18 | 120.6 (2) | C21—C22—H22C | 109.5 |
| C18—C10—C9 | 119.6 (2) | H22A—C22—H22B | 109.5 |
| N6—C11—C23 | 113.4 (2) | H22A—C22—H22C | 109.5 |
| C10—C11—N6 | 118.6 (2) | H22B—C22—H22C | 109.5 |
| C10—C11—C23 | 128.0 (2) | C11—C23—H23A | 109.5 |
| C7—C12—H12A | 109.5 | C11—C23—H23B | 109.5 |
| C7—C12—H12B | 109.5 | C11—C23—H23C | 109.5 |
| C7—C12—H12C | 109.5 | H23A—C23—H23B | 109.5 |
| H12A—C12—H12B | 109.5 | H23A—C23—H23C | 109.5 |
| H12A—C12—H12C | 109.5 | H23B—C23—H23C | 109.5 |
| S1—C2—C3—C4 | 0.1 (3) | C9—C3—C4—C5 | 177.0 (2) |
| S1—C2—C3—C9 | −177.09 (17) | C9—C8—C13—O14 | −16.0 (4) |
| C2—S1—C5—C4 | −0.1 (2) | C9—C8—C13—O15 | 161.9 (2) |
| C2—C3—C4—C5 | −0.2 (3) | C9—C10—C11—N6 | −9.6 (4) |
| C2—C3—C9—C8 | −23.5 (3) | C9—C10—C11—C23 | 172.7 (3) |
| C2—C3—C9—C10 | 99.4 (3) | C9—C10—C18—O19 | −170.8 (3) |
| C3—C4—C5—S1 | 0.2 (3) | C9—C10—C18—O20 | 10.6 (3) |
| C3—C9—C10—C11 | −93.6 (3) | C10—C18—O20—C21 | −179.8 (2) |
| C3—C9—C10—C18 | 82.7 (2) | C11—N6—C7—C8 | 15.7 (4) |
| C4—C3—C9—C8 | 159.7 (2) | C11—N6—C7—C12 | −164.1 (3) |
| C4—C3—C9—C10 | −77.4 (3) | C11—C10—C18—O19 | 5.5 (4) |
| C5—S1—C2—C3 | 0.0 (2) | C11—C10—C18—O20 | −173.1 (2) |
| N6—C7—C8—C9 | 7.6 (4) | C12—C7—C8—C9 | −172.6 (3) |
| N6—C7—C8—C13 | −177.6 (2) | C12—C7—C8—C13 | 2.2 (4) |
| C7—N6—C11—C10 | −14.7 (4) | C13—C8—C9—C3 | −80.8 (2) |
| C7—N6—C11—C23 | 163.4 (3) | C13—C8—C9—C10 | 156.7 (2) |
| C7—C8—C9—C3 | 94.5 (3) | C13—O15—C16—C17 | 177.2 (3) |
| C7—C8—C9—C10 | −28.0 (3) | O14—C13—O15—C16 | −1.1 (4) |
| C7—C8—C13—O14 | 169.0 (3) | C18—C10—C11—N6 | 174.1 (2) |
| C7—C8—C13—O15 | −13.1 (4) | C18—C10—C11—C23 | −3.6 (4) |
| C8—C9—C10—C11 | 29.0 (3) | C18—O20—C21—C22 | 85.3 (3) |
| C8—C9—C10—C18 | −154.6 (2) | O19—C18—O20—C21 | 1.5 (4) |
| C8—C13—O15—C16 | −179.1 (2) |
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the thiophene S1/C2–C5 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| N6—H6···O14i | 0.82 (4) | 2.19 (4) | 3.010 (3) | 176 (3) |
| C5—H5···O19ii | 0.93 | 2.52 | 3.220 (4) | 133 |
| C9—H9···O20 | 0.98 | 2.36 | 2.739 (3) | 102 |
| C12—H12B···O15 | 0.96 | 2.33 | 2.768 (3) | 107 |
| C23—H23C···O19 | 0.96 | 2.42 | 2.826 (4) | 105 |
| C17—H17C···Cg1iii | 0.96 | 2.79 | 3.720 (4) | 162 |
Symmetry codes: (i) x, y−1, z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y+2, −z+1.
Funding Statement
This work was funded by Ministry of Education and Training Vietnam grant B2019-SPH.562–05. Hercules Foundation grant AKUL/09/ 0035.
References
- Bagley, M. C. & Lubinu, M. C. (2006). Synthesis, pp. 1283–1288.
- Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603. [DOI] [PubMed]
- Bossert, F., Meyer, H. & Wehinger, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–769.
- Bossert, F. & Vater, W. (1989). Med. Res. Rev. 9, 291–324. [DOI] [PubMed]
- Caignan, G. A., Metcalf, S. K. & Holt, E. M. (2000). J. Chem. Cryst. 30, 415–422.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Godfraind, T., Miller, R. & Wibo, M. (1986). Pharmacol. Rev. 38, 321–416. [PubMed]
- Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Heravi, M. M., Behbahani, F. K., Oskooie, H. A. & Shoar, R. H. (2005). Tetrahedron Lett. 46, 2775–2777.
- Huang, X. & Cui, C. (2016). Private Communication (refcode QIWWEY). CCDC, Cambridge, England.
- Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. [DOI] [PMC free article] [PubMed]
- Mauzerall, D. & Westheimer, F. H. (1955). J. Am. Chem. Soc. 77, 2261–2264.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
- Nakayama, H. & Kanaoka, Y. (1996). Heterocycles, 42, 901–909.
- Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263.
- Nguyen Ngoc, L., Vu Quoc, T., Duong Quoc, H., Vu Quoc, M., Truong Minh, L., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 1647–1651. [DOI] [PMC free article] [PubMed]
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sausins, A. & Duburs, G. (1988). Heterocycles, 27, 269–272.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Stout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223–243.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
- Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735.
- Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812–815. [DOI] [PMC free article] [PubMed]
- Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904. [DOI] [PMC free article] [PubMed]
- Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). Acta Cryst. E75, 957–963. [DOI] [PMC free article] [PubMed]
- Wei, X. Y., Rutledge, A. & Triggle, D. J. (1989). Mol. Pharmacol. 35, 541–552. [PubMed]
- Xia, J. J. & Wang, G. W. (2005). Synthesis, pp. 2379–2383.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019015081/sj5585sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015081/sj5585Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019015081/sj5585Isup3.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report







