Skip to main content
ACS Medicinal Chemistry Letters logoLink to ACS Medicinal Chemistry Letters
. 2019 Nov 6;10(12):1614–1619. doi: 10.1021/acsmedchemlett.9b00337

Novel Quinoline-based Ir(III) Complexes Exhibit High Antitumor Activity in Vitro and in Vivo

Yan Yang †,, Yi-Dong Bin †,, Qi-Pin Qin †,∥,*, Xu-Jian Luo , Bi-Qun Zou §,∥,*, Hua-Xin Zhang ‡,*
PMCID: PMC6912864  PMID: 31857836

Abstract

graphic file with name ml9b00337_0007.jpg

Eight novel Ir(III) complexes listed as [Ir(H–P)2(P)]PF6 (PyP-Ir), [Ir(H–P)2(dMP)]PF6 (PydMP-Ir), [Ir(H–P)2(MP)]PF6 (PyMP-Ir), [Ir(H–P)2(tMP)]PF6 (PytMP-Ir), [Ir(MPy)2(P)]PF6 (MPyP-Ir), [Ir(MPy)2(dMP)]PF6 (MPydMP-Ir), [Ir(MPy)2(MP)]PF6 (MPyMP-Ir), [Ir(MPy)2((tMP)]PF6 (MPytMP-Ir) with 2-phenylpyri-dine (H–P) and 3-methyl-2-phenylpyridine (MPy) as ancillary ligands and pyrido-[3,2-a]-pyrido[1′,2′:1,2]imidazo[4,5-c]phenazine (P), 12,13-dimethyl pyrido-[3,2-a]-pyrido[1′,2′:1,2]-imidazo-[4,5-c]-phenazine (dMP), 2-methylpyrido [3,2-a]-pyrido-[1′,2′:1,2]-imidazo-[4,5-c]-phenazine (MP), and 2,12,13-trimethylpyrido-[3,2-a]-pyrido-[1′,2′:1,2]-imidazo-[4,5-c]-phenazine (tMP) as main ligands, respectively, were designed and synthesized to fully characterize and explore the effect of their toxicity on cancer cells. Cytotoxic mechanism studies demonstrated that the eight Ir(III) complexes exhibited highly potent antitumor activity selectively against cancer cell lines NCI-H460, T-24, and HeLa, and no activity against HL-7702, a noncancerous cell line. Among the eight Ir(III) complexes, MPytMP-Ir exhibited the highest cytotoxicity with an IC50 = 5.05 ± 0.22 nM against NCI-H460 cells. The antitumor activity of MPytMP-Irin vitro could be contributed to the steric or electronic effect of the methyl groups, which induced telomerase inhibition and damaged mitochondria in NCI-H460 cells. More importantly, MPytMP-Ir displayed a superior inhibitory effect on NCI-H460 xenograft in vivo than cisplatin. Our work demonstrates that MPytMP-Ir could potentially be developed as a novel potent Ir-based antitumor drug.

Keywords: Ir(III) complexes, telomerase inhibition, antitumor activity, damaging mitochondria


The capacity of tumor cells to grow, invade, and metastasize to other organs is the driving forces in cancer development.13 Identifying and developing new anticancer drugs and exploring their putative antitumor mechanisms is an urgent need. Since the discovery of cisplatin, platinum compounds were the most successful representative drugs in clinical treatment.4 However, due to their undesired side effects, considerable efforts have been made to develop nonplatinum compounds.5,6 Recently, RuII/III, IrIII, RhIII, PdII, and AuIII, and other complexes have received significant attention because of their various cellular targets and mechanisms of action.713 The octahedral polypyridyl Ir(III) cyclometalated complexes could induce apoptosis via regulating protein kinases interactions,1417 mitochondrial membrane disruption,18,19 or DNA binding.2022

Heterocyclic compounds have been widely studied and developed as potent biological compounds.23 The 5,8-quinolinediones derived from 8-hydroxyquinoline have demonstrable anticancer activity23 and are used as anticancer, antifungal, and antimalarial agents.2428 Additionally, several 7-aminoquinoline quinones, Streptonigrin, and clioquinol derivatives,2931 and their Ni(II),32 Yb(III),33 Sm(III),34 and La(III)35 complexes have shown activity against senile dementia, intestinal amebiasis, and cancer.2936

Inspired by the previous research and the high anticancer activity of quinoline derivatives, here we used easily acquired 8-hydroxylquinoline derivative 6,7- dichloro-5,8-quinolinequinone with an AI50 = 1.3 ± 0.9 μM and MIC = 6.3–12.5 μg/mL37 to modify and synthesize four quinoline derivatives as main ligands: pyrido-[3,2-a]-pyrido[1′,2′:1,2]imidazo[4,5-c]phenazine (P), 12,13-dimethyl pyrido-[3,2-a]-pyrido[1′,2′:1,2]-imidazo-[4,5-c]-phenazine (dMP), 2-methylpyrido [3,2-a]-pyrido-[1′,2′:1,2]-imidazo-[4,5-c]-phenazine (MP), and 2,12,13-trimethylpyrido-[3,2-a]-pyrido-[1′,2′:1,2]-imidazo-[4,5-c]-phenazine (tMP) (Chart S1). We studied and characterized their antineoplastic activity and explored the underlying mechanisms. Based on previously reported efficacy of [Ir(C^N)2(N^N)]+,3841 we synthesized eight novel quinoline based organoiridium(III) complexes and fully characterized them (Figures S1–S48, structures shown in Chart 1). Furthermore, we also noted through HPLC experiments that MPydMP-Ir and MPytMP-Ir were stable for 48 h in Tris-HCl buffer (Figures S47 and S48).

Chart 1. Chemical Structures of the Eight IrIII Complexes.

Chart 1

We studied the cytotoxic effects of the eight novel Ir(III) complexes and the free ancillary ligands against NCI-H460 (nonsmall lung), T-24 (bladder), HeLa (cervical), and HL-7702 (hepatocyte) using the MTT assay.4244 The results are shown in Table S1. We found that the IC50 values of the free ancillary ligands against cancer cells were >50 μM except in HeLa cells. In contrast, the novel Ir(III) complexes exhibited much superior cytotoxic activities against all the tested human cancer cell lines except HL-7702 (noncancerous cells) compared to the free ancillary ligands and cisplatin (positive control). Significantly, their cytotoxic activity decreased in the following order: MPytMP-Ir, MPydMP-Ir, PytMP-Ir, PydMP-Ir, MPyMP-Ir, PyMP-Ir, MPyP-Ir, and PyP-Ir against all tested cancer cells except the noncancerous HL-7702. Furthermore, among the eight novel Ir(III) complexes, MPytMP-Ir exhibited significantly superior and sensitive cytotoxic activity with a much lower IC50 (5.05 ± 0.22 nM) against NCI-H460 cells. Of course, the methyl electron-donating group does enhance the cytotoxic activity via a combination of steric and electronic effects, such as polypyridyl, pyrazine, and pyrazole ring.4,16,40,45,46 Owing to its highly efficient and selective cytotoxic activity against the NCI-H460 cancer cells compared to cisplatin, we performed further in-depth studies using MPytMP-Ir.16,40 We also compared its effectiveness to another synthesized compound MPydMP-Ir and used the sensitive NCI-H460 cell line to further study the potential interactive mechanisms of its biological cytotoxic influences.4051

Following the treatment of NCI-H460 cells with MPydMP-Ir and MPytMP-Ir at the corresponding IC50 concentration for 24 h (Figure 1), apoptosis induction was seen in 38.7% of the MPydMP-Ir treated cells, while 92.6% cells were apoptotic following treatment with MPytMP-Ir. These results underscore the greatly superior apoptosis induction capacity of MPytMP-Ir.

Figure 1.

Figure 1

MPydMP-Ir (125 nM) and MPytMP-Ir (5 nM) induced NCI-H460 cell apoptosis after 24 h treatment.

A 24-h treatment of NCI-H460 cells with MPydMP-Ir and MPytMP-Ir resulted in 19.75% and 49.40% inhibition of telomerase activity, respectively (Figure 2). This clearly demonstrates that MPytMP-Ir could induce much stronger telomerase inhibition than MPydMP-Ir. This provides more evidence that increasing the methyl electron-donating groups could enhance the telomerase inhibition via a combination of steric and electronic effects.45,5258 As expected, c-myc and/or hTERT proteins were effectively downregulated in MPydMP-Ir and MPytMP-Ir treated cells (Figure S1) and led to telomerase inhibition.5258

Figure 2.

Figure 2

Telomerase inhibition in NCI-H460 cells treated with MPydMP-Ir (125 nM) and MPytMP-Ir (5 nM).

Previous studies have shown that telomerase inhibition was related to cell cycle arrest in cancer cells.43,5966 We observed that 68.70% of the untreated NCI-H460 tumor cells were in the G1 phase, while this increased to 84.09% after treatment with MPytMP-Ir (Figure 3). However, MPydMP-Ir treatment resulted in a 1.38% decrease in cells at the G1 phase. We could conclude that the antineoplastic activity of MPytMP-Ir was at least partly due to decreased proliferation as the cells were arrested in G1 phase.43,5966 The expression level of CDK2, a key player in cell cycle progression, decreased slightly after treatment with MPydMP-Ir, while a slight increase in Cyclin D1 was observed due to G1 arrest (Figure S2). Of note, treatment with MPytMP-Ir resulted in a significant decrease in cyclin D1-CDK2 complex.66 These results are consistent with our previous expectations and investigation.

Figure 3.

Figure 3

NCI-H460 cell cycle analysis following MPydMP-Ir (125 nM) and MPytMP-Ir (5 nM) treatment.

We next assessed the effect of MPytMP-Ir treatment on mitochondria using the JC-1 fluorescent mitochondrial probe. We saw that the green JC-1 fluorescence (damaged mitochondria, decrease in mitochondrial membrane potential [MMP]) was observed in 13.3% of NCI-H460 cells treated with MPydMP-Ir. Strikingly, 92.2% of the cells treated with MPytMP-Ir showed green fluorescence, i.e., damaged mitochondria (Figure 4). Thus, the high methyl electron-donating levels in MPytMP-Ir could dramatically increase the effectiveness of this compound on MMP and, in turn, on apoptosis induction.6770

Figure 4.

Figure 4

Degradation of MMP in MPydMP-Ir (125 nM) and MPytMP-Ir (5 nM) treated cells.

In addition, we observed that MPytMP-Ir resulted in a much more significant (Figure S2) accumulation of apaf-1 and cytochrome than MPydMP-Ir. Taken together, these results demonstrate that MPytMP-Ir could cause apoptosis in NCI-H460 cells by inducing mitochondrial dysfunction.6478

Treatment with MPytMP-Ir (10.0 mg/kg per 2 days) led to a 47.1% tumor growth inhibition on day 12.0, significantly higher than that reported for cisplatin (25.5%) (Figure 5 and Tables S2–S4).7177 Moreover, MPytMP-Ir treatment did not adversely affect body weight (average body weight pre- and post-treatment; control group, 18.47 ± 1.08 and 20.37 ± 0.52 g; treated group, 18.03 ± 1.28 and 20.28 ± 0.47g). Thus, MPytMP-Ir exhibited less toxicity and better safety profile than that reported for cisplatin.64,7177 In summary, MPytMP-Ir displayed effective inhibition of tumor growth in NCI-H460 models.

Figure 5.

Figure 5

Tumor volumes (A, mm3 ± SD), tumor weights (B, g ± SD), body weights (C, g ± SD), and photograph (D) of NCI-H460 xenograft following MPytMP-Ir treatment (n = 6). **p < 0.05 relative to control.

In conclusion, we first synthesized eight novel quinoline-based Ir(III) complexes and demonstrated their high cytotoxic activity. Based on the first set of cytotoxicity experiments, we chose two representative complexes to further explore the effect of their toxicity in selected cancer cell lines. MPytMP-Ir exhibited the most potent in vitro cytotoxicity against human cancer cells. MPytMP-Ir also showed the highest selective cytotoxic against NCI-H460 cancer cells and was most potent in inhibiting telomerase activity. MPytMP-Ir-induced cytotoxicity in the NCI-H460 tumor cells was exerted via G1 cell cycle arrest, leading to inhibition of cell proliferation. Additionally, MPytMP-Ir could induce cellular apoptosis by activating the mitochondrial dysfunction pathway in the NCI-H460 tumor cells. Last but not least, MPytMP-Ir displayed effective inhibition of tumor growth in NCI-H460 xenograft models and exhibited less toxicity and even better safety profile than cisplatin. Through this study, we have identified a novel potent antitumor drug, MPytMP-Ir and have demonstrated its superior efficacy compared to cisplatin.

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmedchemlett.9b00337.

  • Experimental procedures for the quinoline-based Ir(III) complexes (PDF)

Author Contributions

These authors made an equal contribution to this work.

We thank the National Natural Science Foundation of China (Nos. 51463023, 51962035, 21867017, and 21461028), Guangxi Natural Science Foundation (No. 2018GXNSFBA138021), Yulin Normal University for High-level Talents (No. G2019ZK04), and the Innovative Team and Outstanding Talent Program of Colleges and Universities in Guangxi (2014-49 and 2017-38) for funding this work.

The authors declare no competing financial interest.

Supplementary Material

ml9b00337_si_002.pdf (2.6MB, pdf)

References

  1. Huang M.; Wang Y.; Xu L.; You M. Anti-tumor Properties of Prunella vulgaris. Curr. Pharmacol. Rep. 2015, 1, 401–419. 10.1007/s40495-015-0038-6. [DOI] [Google Scholar]
  2. Aragon-Ching B. J.; Dahut W. L. Anti-angiogenes is approach to genitourinary cancer treatment. Update. Cancer. Ther. 2009, 3, 3182–3188. 10.1016/j.uct.2009.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fidler I. J. Critical determinants of metastasis. Semin. Cancer Biol. 2002, 12, 89–96. 10.1006/scbi.2001.0416. [DOI] [PubMed] [Google Scholar]
  4. Mou Z. D.; Deng N.; Zhang F.; Zhang J. Y.; Cen J.; Zhang X. Half-sandwich” Schiff-base Ir(III) complexes as anticancer agents. Eur. J. Med. Chem. 2017, 138, 72–82. 10.1016/j.ejmech.2017.06.027. [DOI] [PubMed] [Google Scholar]
  5. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. 10.1038/nrc2167. [DOI] [PubMed] [Google Scholar]
  6. Galluzzi L.; Senovilla L.; Vitale I.; Michels J.; Martins I.; Kepp O.; Castedo M.; Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012, 31, 1869–1883. 10.1038/onc.2011.384. [DOI] [PubMed] [Google Scholar]
  7. Cutillas N.; Yellol G. S.; De Haro C.; Vicente C.; Rodriguez V.; Ruiz J. Anticancer cyclometalated complexes of platinum group metals and gold. Coord. Chem. Rev. 2013, 257, 2784–2797. 10.1016/j.ccr.2013.03.024. [DOI] [Google Scholar]
  8. Bruijnincx P. C.; Sadler P. J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol. 2008, 12, 197–206. 10.1016/j.cbpa.2007.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Muhammad N.; Guo Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol. 2014, 19, 144–153. 10.1016/j.cbpa.2014.02.003. [DOI] [PubMed] [Google Scholar]
  10. Romero-Canelon I.; Sadler P. J. Next-generation metal anticancer complexes: multitargeting via redox modulation. Inorg. Chem. 2013, 52, 12276–12291. 10.1021/ic400835n. [DOI] [PubMed] [Google Scholar]
  11. Geldmacher Y.; Oleszak M.; Sheldrick W. S. Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg. Chim. Acta 2012, 393, 84–102. 10.1016/j.ica.2012.06.046. [DOI] [Google Scholar]
  12. Liu Z.; Habtemariam A.; Pizarro A. M.; Fletcher S. A.; Kisova A.; Vrana O.; Salassa L.; Bruijnincx P. C. A.; Clarkson G. J.; Brabec V.; Sadler P. J. Organometallic half-sandwich iridium anticancer complexes. J. Med. Chem. 2011, 54, 3011–3026. 10.1021/jm2000932. [DOI] [PubMed] [Google Scholar]
  13. Wilbuer A.; Vlecken D. H.; Schmitz D. J.; Kraling K.; Harms K.; Bagowski C. P.; Meggers E. Which is the actual catalyst: chiral phosphoric acid or chiral calcium phosphate?. Angew. Chem., Int. Ed. 2010, 49, 3839–3842. 10.1002/anie.201000682. [DOI] [PubMed] [Google Scholar]
  14. Kastl A.; Wilbuer A.; Merkel A. L.; Feng L.; Di Fazio P.; Ocker M.; Meggers E. Dual anticancer activity in a single compound: visible-light-induced apoptosis by an antiangiogenic iridium complex. Chem. Commun. 2012, 48, 1863–1865. 10.1039/C1CC15378A. [DOI] [PubMed] [Google Scholar]
  15. Leung C. H.; Zhong H. J.; Yang H.; Cheng Z.; Chan D. S.; Ma V. P.; Abagyan R.; Wong C. Y.; Ma D. L. A Metal-Based Inhibitor of Tumor Necrosis Factor-α. Angew. Chem., Int. Ed. 2012, 51, 9010–9014. 10.1002/anie.201202937. [DOI] [PubMed] [Google Scholar]
  16. Cao R.; Jia J. L.; Ma X. C.; Zhou M.; Fei H. Membrane Localized Iridium(III) Complex Induces Endoplasmic Reticulum Stress and Mitochondria-Mediated Apoptosis in Human Cancer Cells. J. Med. Chem. 2013, 56, 3636–3644. 10.1021/jm4001665. [DOI] [PubMed] [Google Scholar]
  17. Cao J. J.; Tan C. P.; Chen M. H.; Wu N.; Yao D. Y.; Liu X. G.; Ji L. N.; Mao Z. W. Targeting cancer cell metabolism with mitochondria-immobilized phosphorescent cyclometalated iridium(III) complexes. Chem. Sci. 2017, 8, 631–640. 10.1039/C6SC02901A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gamba I.; Salvado I.; Brissos R. F.; Gamez P.; Brea J.; Loza M. I.; Vazquez M. E.; Lopez M. V. High-affinity sequence-selective DNA binding by iridium(III) polypyridylorganometallopeptides. Chem. Commun. 2016, 52, 1234–1237. 10.1039/C5CC07619F. [DOI] [PubMed] [Google Scholar]
  19. Ye R. R.; Tan C. P.; Ji L. N.; Mao Z. W. Coumarin-appended phosphorescent cyclometalated iridium(III) complexes as mitochondria-targeted theranostic anticancer agents. Dalton. Trans. 2016, 54, 13042–13051. 10.1039/C6DT00601A. [DOI] [PubMed] [Google Scholar]
  20. Li S. P.; Lau C. T.; Louie M. W.; Lam Y. W.; Cheng S. H.; Lo K. K. Mitochondria-targeting cyclometalatediridium(III)-PEG complexes with tunable photodynamic activity. Biomaterials 2013, 34, 7519–7532. 10.1016/j.biomaterials.2013.06.028. [DOI] [PubMed] [Google Scholar]
  21. Li G. Y.; Lin Q.; Sun L. L.; Feng C. S.; Zhang P. Y.; Yu B.; Chen Y.; Wen Y.; Wang H.; Ji L. N.; Chao H. A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and in vivo. Biomaterials 2015, 53, 285–295. 10.1016/j.biomaterials.2015.02.106. [DOI] [PubMed] [Google Scholar]
  22. Perez-Arnaiz C.; Acuna M. I.; Busto N.; Echevarria I.; Martinez-Alonso M.; Espino G.; Garcia B.; Dominguez F. Thiabendazole-based Rh(III) and Ir(III) biscyclometallated complexes with mitochondria-targeted anticancer activity and metalsensitive photodynamic activity. Eur. J. Med. Chem. 2018, 157, 279–293. 10.1016/j.ejmech.2018.07.065. [DOI] [PubMed] [Google Scholar]
  23. Mao X.; Li X.; Sprangers R.; Wang X.; Venugopal A.; Wood T.; Zhang Y.; Kuntz D. A.; Coe E.; Trudel S.; Rose D.; Batey R. A.; Kay L. E.; Schimmer A. D. Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma. Leukemia 2009, 23, 585–590. 10.1038/leu.2008.232. [DOI] [PubMed] [Google Scholar]
  24. Lee H. J.; Park S. Y.; Kim J. S.; Song H. M.; Suh M. E.; Lee C. O. Synthesis and cytotoxicity evaluation of pyridin [2,3-f] indole-2,4,9-trione and benz [f] indole-2,4,9-trione derivatives. Bioorg. Med. Chem. 2003, 11, 4791–4796. 10.1016/j.bmc.2003.08.005. [DOI] [PubMed] [Google Scholar]
  25. Campiglia P.; Aquino C.; Bertamino A.; De Simone N.; Sala M.; Castellano S.; Gomez-Monterrey I. M. Unprecedented synthesis of a novel amino quinone ring system via oxidative decarboxylation of quinone-based α, α-amino esters. Org. Biomol. Chem. 2010, 8, 622–627. 10.1039/B918898C. [DOI] [PubMed] [Google Scholar]
  26. Batenko N.; Popova O.; Belyakov S.; Valters R. Synthesis of aminovinyl derivatives of quinoline- and isoquinoline-5,8-diones. Chem. Heterocycl. Compd. 2012, 48, 888–891. 10.1007/s10593-012-1071-6. [DOI] [Google Scholar]
  27. Jastrzebska M.; Boryczka S.; Kadela M.; Wrzalik R.; Kusz J.; Nowak M. Synthesis, crystal structure and infrared spectra of new 6-and 7-propylamine-5,8-quinolinediones. J. Mol. Struct. 2014, 1067, 160–168. 10.1016/j.molstruc.2014.03.031. [DOI] [Google Scholar]
  28. Kadela-Tomanek M.; Jastrzebska M.; Pawełczak B.; Bebenek E.; Chrobak E.; Latocha M.; Ksiazek M.; Kusz J.; Boryczka S. Alkynyloxy derivatives of 5,8-quinolinedione: Synthesis, invitro cytotoxicity studies and computational molecular modeling with NAD(P)H: quinone oxidoreductase1. Eur. J. Med. Chem. 2017, 126, 969–982. 10.1016/j.ejmech.2016.12.031. [DOI] [PubMed] [Google Scholar]
  29. Cheng Y.; An L. K.; Wu N.; Wang X. D.; Bu X. Z.; Huang Z. S.; Gu L. Q. Synthesis, cytotoxic activities and structure-activity relationships of topoisomerase I inhibitors: Indolizinoquinoline-5,12-dione derivatives. Bioorg. Med. Chem. 2008, 16, 4617–4625. 10.1016/j.bmc.2008.02.036. [DOI] [PubMed] [Google Scholar]
  30. Regland B.; Lehmann W.; Abedini I.; Blennow K.; Jonsson M.; Karlsson I. Treatment of Alzheimer’s disease with clioquinol. Dementia Geriatr. Cognit. Disord. 2001, 12, 408–414. 10.1159/000051288. [DOI] [PubMed] [Google Scholar]
  31. Chen D.; Cui Q. C.; Yang H.; Barrea R. A.; Sarkar F. H.; Sheng S.; Yan B.; Reddy G. P. V.; Dou Q. P. Cliquinol, a Therapeutic Agent for Alzheimer’s Disease, Has Proteasome-inhibitory, Apoptosis-inducing and Anti-tumor Activities in Human Prostate Cancer Cells and Xenografts. Cancer Res. 2007, 67, 1636–1644. 10.1158/0008-5472.CAN-06-3546. [DOI] [PubMed] [Google Scholar]
  32. Liu Y. C.; Song X. Y.; Chen Z. F.; Gu Y. Q.; Peng Y.; Liang H. Synthesis, crystal structure, DNA interaction and cytotoxicity of a dinuclear nickel(II) complex with 5,7-dichloro-8-hydroxylquinoline. Inorg. Chim. Acta 2012, 382, 52–58. 10.1016/j.ica.2011.10.002. [DOI] [Google Scholar]
  33. Baranov E. V.; Fukin G. K.; Balashova T. V.; Pushkarev A. P.; Grishin I. D.; Bochkarev M. N. 8-Quinolinolate complexes of yttrium and ytterbium: molecular arrangement and fragmentation under laser impact. Dalton. Trans. 2013, 42, 15699–15705. 10.1039/c3dt51706c. [DOI] [PubMed] [Google Scholar]
  34. Yuan F. G.; Liu Q. S.; Weng L. H. X-Ray Structure of 8-Quinolinolato Lanthanide Complex: (8-Quinolinolato) bis(2,6-di-tert-butyl-4-methylphenoxo) samarium. Chin. J. Chem. 2002, 20, 1612–1615. 10.1002/cjoc.20020201227. [DOI] [Google Scholar]
  35. Chen Z. F.; Song X. Y.; Peng Y.; Hong X.; Liu Y. C.; Liang H. High cytotoxicity of dihalo-substituted 8-quinolinolato-lanthanides. Dalton. Trans. 2011, 40, 1684–1686. 10.1039/c0dt01310b. [DOI] [PubMed] [Google Scholar]
  36. Shaikh I. A.; Johnson F.; Grollmann A. P. Streptonigrin. 1. Structure-activity relationships among simple bicyclic analogs. Rate dependence of DNA degradation on quinone reduction potential. J. Med. Chem. 1986, 29, 1329–1331. 10.1021/jm00158a002. [DOI] [PubMed] [Google Scholar]
  37. Mulchin B. J.; Newton C. G.; Baty J. W.; Grasso C. H.; Martin W. J.; Walton M. C.; Stocker B. L. The anti-cancer, anti-inflammatory and tuberculostatic activities of a series of 6,7-substituted-5,8-quinolinequinones. Bioorg. Med. Chem. 2010, 18, 3238–3251. 10.1016/j.bmc.2010.03.021. [DOI] [PubMed] [Google Scholar]
  38. Wang F. X.; Chen M. H.; Hu X. Y.; Ye R. R.; Tan C. P.; Ji L. N.; Mao Z. W. Ester-Modified Cyclometalated Iridium(III) Complexes as Mitochondria-Targeting Anticancer Agents. Sci. Rep. 2016, 6, 38954. 10.1038/srep38954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Xiong K.; Chen Y.; Ouyang C.; Guan R. L.; Ji L. N.; Chao H. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer agents. Biochimie 2016, 125, 186–194. 10.1016/j.biochi.2016.03.013. [DOI] [PubMed] [Google Scholar]
  40. Guan R.; Chen Y.; Zeng L.; Rees T. W.; Jin C.; Huang J.; Chen Z. S.; Ji L. N.; Chao H. Oncosis-inducing cyclometalated iridium(III) complexes. Chem. Sci. 2018, 9, 5183–5190. 10.1039/C8SC01142G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lo K. K. W.; Zhang K. Y. Iridium(III) complexes as therapeutic and bioimaging reagents for cellular applications. RSC Adv. 2012, 2, 12069–12083. 10.1039/c2ra20967e. [DOI] [Google Scholar]
  42. Benkli K.; Tunali Y.; Cantürk Z.; Artagan Ö.; Alanyali F. Cytotoxic and genotoxic effects of [Ru(phi)3]2+ evaluated by Ames/Salmonella and MTT methods. Eur. J. Med. Chem. 2009, 44, 2601–2605. 10.1016/j.ejmech.2008.09.017. [DOI] [PubMed] [Google Scholar]
  43. Qin Q. P.; Chen Z. F.; Qin J. L.; He X. J.; Li Y. L.; Liu Y. C.; Huang K. B.; Liang H. Studies on antitumor mechanism of two planar platinum(II) complexes with 8-hydroxyquinoline:synthesis, characterization, cytotoxicity, cell cycle and apoptosis. Eur. J. Med. Chem. 2015, 92, 302–313. 10.1016/j.ejmech.2014.12.052. [DOI] [PubMed] [Google Scholar]
  44. Requena R.; Vargas M.; Chiralt A. Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay. LWT-Food. Sci. Technol. 2019, 101, 183–190. 10.1016/j.lwt.2018.10.093. [DOI] [Google Scholar]
  45. Madonna S.; Marcowycz A.; Lamoralp-Theys D.; Van Goietsenoven G.; Dessolin J.; Pirker C.; Spiegl-Kreinecker S.; Biraboneye C. A.; Berger W.; Kiss R.; Kraus J. L. Bis-8-hydroxyquinoline and bis-hydroxyquinaldine N-substituted amines: A single methyl group structural difference between two heterocycles, which modulates the antiproliferativeeffects. J. Heterocycl. Chem. 2010, 47, 719–723. 10.1002/jhet.304. [DOI] [Google Scholar]
  46. Mori T.; Okamoto K.; Endo H.; Hill J. P.; Shinoda S.; Matsukura M.; Ariga K. Mechanical Tuning of Molecular Recognition To Discriminate the Single-Methyl-Group Difference between Thymine and Uracil. J. Am. Chem. Soc. 2010, 132, 12868–12870. 10.1021/ja106653a. [DOI] [PubMed] [Google Scholar]
  47. Qin Q. P.; Qin J. L.; Meng T.; Lin W. H.; Zhang C. H.; Wei Z. Z.; Chen J. N.; Liu Y. C.; Liang H.; Chen Z. F. High in vivo antitumor activity of cobalt oxoisoaporphine complexes by targeting G-quadruplex DNA, telomerase and disrupting mitochondrial functions. Eur. J. Med. Chem. 2016, 124, 380–392. 10.1016/j.ejmech.2016.08.063. [DOI] [PubMed] [Google Scholar]
  48. Yi Q. Y.; Wan D.; Tang B.; Wang Y. J.; Zhang W. Y.; Du F.; He M.; Liu Y. J. Synthesis, characterization and anticancer activity in vitro and in vivo evaluation of an iridium(III) polypyridyl complex. Eur. J. Med. Chem. 2018, 145, 338–349. 10.1016/j.ejmech.2017.11.091. [DOI] [PubMed] [Google Scholar]
  49. Hickman J. A. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev. 1992, 11, 121–139. 10.1007/BF00048059. [DOI] [PubMed] [Google Scholar]
  50. Suntharalingam K.; Wilson J. J.; Lin W.; Lippard S. J. A dual-targeting, p53-independent, apoptosis-inducing platinum(II) anticancer complex, [Pt(BDIQQ)]Cl. Metallomics 2014, 6, 437–443. 10.1039/C3MT00364G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Gornowicz A.; Kałuza Z.; Bielawska A.; Gabryel-Porowska H.; Czarnomysy R.; Bielawski K. Cytotoxic efficacy of a novel dinuclear platinum(II) complex used with anti-MUC1 in human breast cancer cells. Mol. Cell. Biochem. 2014, 392, 161–174. 10.1007/s11010-014-2018-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Poole J. C.; Andrews L. G.; Tollefsbol T. O. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 2001, 269, 1–12. 10.1016/S0378-1119(01)00440-1. [DOI] [PubMed] [Google Scholar]
  53. Qin Q. P.; Meng T.; Tan M. X.; Liu Y. C.; Luo X. J.; Zou B. Q.; Liang H. Synthesis and in vitro biological evaluation of three 4’-(4-methoxyphenyl)-2,2’:6’,2″-terpyridine iridium(III) complexes as new telomerase inhibitors. Eur. J. Med. Chem. 2018, 143, 1387–1395. 10.1016/j.ejmech.2017.10.035. [DOI] [PubMed] [Google Scholar]
  54. Huang H. S.; Chiou J. F.; Fong Y.; Hou C. C.; Lu Y. C.; Wang J. Y.; Shih J. W.; Pan Y. R.; Lin J. J. Activation of human telomerase reverse transcriptase expression by some new symmetrical bis-substituted derivatives of the anthraquinone. J. Med. Chem. 2003, 46, 3300–3307. 10.1021/jm020492l. [DOI] [PubMed] [Google Scholar]
  55. Biffi G.; Tannahill D.; McCafferty J.; Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013, 5, 182–186. 10.1038/nchem.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rhodes D.; Lipps H. J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015, 43, 8627–8637. 10.1093/nar/gkv862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zheng C.; Liu Y.; Liu Y.; Qin X.; Zhou Y.; Liu J. Dinuclear ruthenium complexes display loop isomer selectivity to c-MYC DNA G-quadriplex and exhibit anti-tumour activity. J. Inorg. Biochem. 2016, 156, 122–132. 10.1016/j.jinorgbio.2016.01.001. [DOI] [PubMed] [Google Scholar]
  58. Fukazwa T.; Maeda Y.; Matsuoka J.; Yamatsuji T.; Shigemitsu K.; Morita I.; Faiola F.; Durbin M. L.; Soucek L.; Naomoto Y. Inhibition of Myc effectively targets KRAS mutation-positive lung cancer expressing high levels of Myc. Anticancer Res. 2010, 30, 4193–4200. [PubMed] [Google Scholar]
  59. Trejo-Solis C.; Palencia G.; Zuniga S.; Rodriguez-Ropon A.; Osorio-Rico L.; Luvia S. T.; Gracia-Mora I.; Marquez-Rosado L.; Sanchez A.; Moreno-Garcia M. E.; Cruz A.; Bravo-Gomez M. E.; Ruiz-Ramirez L.; Rodriguez-Enriquez S.; Sotelo J. Casilgly induces apoptosis in glioma C6 cells in vitro and in vivo through caspase-dependent and caspase-independent mechanisms. Neoplasia 2005, 7, 563–574. 10.1593/neo.04607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Chou C. C.; Yang J. S.; Lu H. S.; Ip S. W.; Lo C.; Wu C. C.; Lin J. P.; Tang N. Y.; Chung J. G.; Chou M. J.; Teng Y. H.; Chen D. R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharmacal Res. 2010, 33, 1181–1191. 10.1007/s12272-010-0808-y. [DOI] [PubMed] [Google Scholar]
  61. Chen Z. F.; Qin Q. P.; Qin J. L.; Zhou J.; Li Y. L.; Li N.; Liu Y. C.; Liang H. Water-soluble ruthenium(II) complexes with chiral 4-(2,3-dihydroxypropyl)-formamideoxoaporphine (FOA): in vitro and in vivo anticancer activity by stabilization of G-Quadruplex DNA, inhibition of telomerase activity, and induction of tumor cell apoptosis. J. Med. Chem. 2015, 58, 4771–4789. 10.1021/acs.jmedchem.5b00444. [DOI] [PubMed] [Google Scholar]
  62. Zhu X.; Kumar R.; Mandal M.; Sharma N.; Sharma H. W.; Dhingra U.; Sokoloski J. A.; Hsiao R.; Narayanan R. Cell cycle-dependent modulation of telomerase activity in tumor cells. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 6091–6095. 10.1073/pnas.93.12.6091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Li T.; Kon N.; Jiang L.; Tan M.; Ludwig T.; Zhao Y.; Baer R.; Gu W. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis and senescence. Cell 2012, 149, 1269–1283. 10.1016/j.cell.2012.04.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Qin Q. P.; Wang S. L.; Tan M. X.; Wang Z. F.; Luo D. M.; Zou B. Q.; Liang H. Novel tacrine platinum(II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur. J. Med. Chem. 2018, 158, 106–122. 10.1016/j.ejmech.2018.09.008. [DOI] [PubMed] [Google Scholar]
  65. Xie Y. Y.; Huang H. L.; Yao J. H.; Lin G. J.; Jiang G. B.; Liu Y. J. DNA-binding, photocleavage, cytotoxicity in vitro, apoptosis and cell cycle arrest studies of symmetric ruthenium(II) complexes. Eur. J. Med. Chem. 2013, 63, 603–610. 10.1016/j.ejmech.2013.03.015. [DOI] [PubMed] [Google Scholar]
  66. Chen Y. Y.; Li Z. Z.; Ye Y. Y.; Xu F.; Niu R. J.; Zhang H. C.; Han B. S. Knockdown of SALL4 inhibits the proliferation and reverses the resistance of MCF-7/ADR cells to doxorubicin hydrochloride. BMC Mol. Biol. 2016, 7, 6–10. 10.1186/s12867-016-0055-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Elkamhawy A.; Park J. E.; Hassand A. H. E.; Ra H.; Pae A. N.; Lee J.; Park B. G.; Moon B.; Park H. M.; Roh E. J. Discovery of 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl) ethyl) urea: A new modulator for amyloid beta-induced mitochondrial dysfunction. Eur. J. Med. Chem. 2017, 128, 56–69. 10.1016/j.ejmech.2016.12.057. [DOI] [PubMed] [Google Scholar]
  68. Chandel N. S. Mitochondria as signaling organelles. BMC Biol. 2014, 12, 34–37. 10.1186/1741-7007-12-34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Krainz T.; Lamade A. M.; Du L.; Maskrey T. S.; Calderon M. J.; Watkins S. C.; Epperly M. W.; Greenberger J. S.; Bayñr H.; Wipf P.; Clark R. S. B. Synthesis and Evaluation of a Mitochondria-Targeting Poly(ADP-ribose) Polymerase-1 Inhibitor. ACS Chem. Biol. 2018, 13, 2868–2879. 10.1021/acschembio.8b00423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Smiley S. T.; Reers M.; Mottola-Hartshorn C.; Lin M.; Chen A.; Smith T. W.; Steele Jr G. D.; Chen L. B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 3671–3675. 10.1073/pnas.88.9.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Chen Z. F.; Qin Q. P.; Qin J. L.; Liu Y. C.; Huang K. B.; Li Y.-L.; Liang H. Stabilization of G-Quadruplex DNA, Inhibition of Telomerase Activity, and Tumor Cell Apoptosis by Organoplatinum(II) Complexes with Oxoisoaporphine. J. Med. Chem. 2015, 58, 2159–2179. 10.1021/jm5012484. [DOI] [PubMed] [Google Scholar]
  72. Yi Q. Y.; Wan D.; Tang B.; Wang Y. J.; Zhang W. Y.; Du F.; He M.; Liu Y. J. Synthesis, characterization and anticancer activity in vitro and in vivo evaluation of an iridium(III) polypyridyl complex. Eur. J. Med. Chem. 2018, 145, 338–349. 10.1016/j.ejmech.2017.11.091. [DOI] [PubMed] [Google Scholar]
  73. Qin Q. P.; Wang Z. F.; Wang S. L.; Luo D. M.; Zou B. Q.; Yao P. F.; Tan M. X.; Liang H. In vitro and in vivo antitumor activities of three novel binuclear platinum(II) complexes with 4’-substituted-2, 2’: 6’, 2″-terpyridine ligands. Eur. J. Med. Chem. 2019, 170, 195–202. 10.1016/j.ejmech.2019.03.014. [DOI] [PubMed] [Google Scholar]
  74. Meng T.; Qin Q. P.; Chen Z. L.; Zou H. H.; Wang K.; Liang F. P. High in vitro and in vivo antitumor activities of Ln(III) complexes with mixed 5,7-dichloro-2-methyl-8-quinolinol and 4,4’-dimethyl-2,2’-bipyridyl chelating ligands. Eur. J. Med. Chem. 2019, 169, 103–110. 10.1016/j.ejmech.2019.02.066. [DOI] [PubMed] [Google Scholar]
  75. Huang G. B.; Chen S.; Qin Q. P.; Luo J. R.; Tan M. X.; Wang Z. F.; Zou B. Q.; Liang H. In vitro and in vivo activity of novel platinum(II) complexes with naphthalene imide derivatives inhibiting human non-small cell lung cancer cells. New J. Chem. 2019, 43, 8146–8152. 10.1039/C9NJ01076A. [DOI] [Google Scholar]
  76. Qin Q. P.; Wang Z. F.; Huang X. L.; Tan M. X.; Shi B. B.; Liang H. High in Vitro and in Vivo Tumor-Selective Novel Ruthenium(II) Complexes with 3-(2’-Benzimidazolyl)-7-fluoro-coumarin. ACS Med. Chem. Lett. 2019, 10, 936–940. 10.1021/acsmedchemlett.9b00098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Messori L.; Casini A.; Gabbiani C.; Michelucci E.; Cubo L.; Ríos-Luci C.; Padrón J. M.; Navarro-Ranninger C.; Quiroga A. G. Cytotoxic profile and peculiar reactivity with biomolecules of a novel “rule-breaker” iodidoplatinum(II) complex. ACS Med. Chem. Lett. 2010, 1, 381–385. 10.1021/ml100081e. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Qin Q.-P.; Zou B.-Q.; Wang Z.-F.; Huang X.-L.; Zhang Y.; Tan M.-X.; Wang S.-L.; Liang H. High in vitro and in vivo antitumor activities of luminescent platinum(II) complexes with jatrorrhizine derivatives. Eur. J. Med. Chem. 2019, 183, 111727. 10.1016/j.ejmech.2019.111727. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ml9b00337_si_002.pdf (2.6MB, pdf)

Articles from ACS Medicinal Chemistry Letters are provided here courtesy of American Chemical Society

RESOURCES