Skip to main content
Nature Communications logoLink to Nature Communications
. 2020 Jan 17;11:366. doi: 10.1038/s41467-019-13820-z

Plasmon–emitter interactions at the nanoscale

P A D Gonçalves 1,2,3,4,, Thomas Christensen 1,, Nicholas Rivera 1, Antti-Pekka Jauho 3,5, N Asger Mortensen 3,4,6,, Marin Soljačić 1
PMCID: PMC6969188  PMID: 31953379

Abstract

Plasmon–emitter interactions are of central importance in modern nanoplasmonics and are generally maximal at short emitter–surface separations. However, when the separation falls below 10–20 nm, the classical theory deteriorates progressively due to its neglect of quantum effects such as nonlocality, electronic spill-out, and Landau damping. Here we show how this neglect can be remedied in a unified theoretical treatment of mesoscopic electrodynamics incorporating Feibelman d-parameters. Our approach incorporates nonclassical resonance shifts and surface-enabled Landau damping—a nonlocal damping effect—which have a dramatic impact on the amplitude and spectral distribution of plasmon–emitter interactions. We consider a broad array of plasmon–emitter interactions ranging from dipolar and multipolar spontaneous emission enhancement, to plasmon-assisted energy transfer and enhancement of two-photon transitions. The formalism gives a complete account of both plasmons and plasmon–emitter interactions at the nanoscale, constituting a simple yet rigorous platform to include nonclassical effects in plasmon-enabled nanophotonic phenomena.

Subject terms: Materials for optics, Nanoscale materials, Nanoscale devices, Nanophotonics and plasmonics


Plasmonic enhancements of light–matter interactions are generally maximal at short emitter–surface separations. Here, the authors investigate the impact of nonlocality, spill-out, and surface-assisted Landau damping at nanoscale separations using a mesoscopic electrodynamic framework.

Introduction

The interaction between light and matter in free-space is an intrinsically weak process. Strikingly, the interaction strength can be enormously enhanced near material interfaces. This is especially true in plasmonics16: for an emitter separated from an interface by a subwavelength distance h, the decay rate is increased by a factor ~h3 in the classical, macroscopic theory. However, as the separation—or the characteristic dimension of the plasmonic system itself—is reduced to the nanoscale (1020nm), the classical theory is rendered invalid due to its neglect of all intrinsic quantum mechanical length scales in the plasmonic material. Thus, to ascertain the ultimate limits of plasmon-mediated light–matter interactions, the classical theory must be augmented.

In principle, time-dependent density functional theory (TDDFT)7 may be used to describe plasmon excitations in a quantum mechanical setting. Unfortunately, its application imparts very substantial demands on the associated computational cost, effectively restricting applications of TDDFT in plasmonics to few-atom clusters811 or highly symmetric few-nanometer-scale systems1215. In fact, the vast majority of plasmonic designs—particularly those of relevance for enhancing light–matter interactions, where it is often the separation and not the system itself that is nanoscopic—fall outside this space. As such, neither a classical (macroscopic) nor a purely quantum mechanical (microscopic) approach can satisfactorily treat light–matter interactions in the multiscale yet nanoscopic systems of experimental relevance.

To overcome this, a mesoscopic treatment of light–matter interactions in nanoplasmonics can be developed whose applicability encompasses a wide range of length scales, and, in particular, bridges the gap between microscopic and macroscopic descriptions (Fig. 1). This framework, which is based on the so-called Feibelman d-parameters16,17, facilitates a simultaneous incorporation of electronic spill-out, nonlocality, and surface-assisted Landau damping—all intrinsically quantum mechanical mechanisms—through a simple modification of the macroscopic framework, thereby enabling the calculation of plasmon-mediated light–matter interactions in the mesoscopic regime.

Fig. 1. Nonclassical mesoscopic electrodynamics via d-parameters.

Fig. 1

The nonclassical surface-response functions—the Feibelman d-parameters—rigorously incorporate quantum mechanical effects in mesoscopic electrodynamics, bridging the gap between the purely quantum (microscopic) and classical (macroscopic) domains. Inset: d-parameter of an rs=4 jellium computed from TDDFT17; the corresponding d-parameter vanishes (due to charge-neutrality33).

Here we report the impact of nonclassical corrections in a broad range of prominent plasmon-mediated light–matter interaction phenomena, namely, the Purcell—or, equivalently, local density of states (LDOS)—enhancement1821, the enhancement of dipole-forbidden (i.e., multipolar) transitions2224, plasmon-mediated energy transfer between two emitters2527, and finally the enhancement of two-photon processes for an emitter near a metal surface2830. In all cases, we find substantial deviations from classicality when the emitter–metal separation or the intrinsic geometric parameters, like a sphere’s radius, fall below ~10nm. We identify two key mechanisms that produce these deviations: (i) surface-enhanced Landau damping, which broadens the plasmonic response; and (ii) nonclassical frequency shifts, toward the red in jellium and blue in noble metals. Intriguingly, these deviations become nonnegligible well-before a completely nonretarded regime is reached, demonstrating the existence of a multiscale competition between retardation and nonclassical corrections even at mesoscopic scales.

Results

Nonclassical optical response

The optical response of any structure is encoded by a set of scattering coefficients: e.g., for a planar system, they are the reflection coefficients {rTM,rTE}—whose mesoscopic generalizations Feibelman introduced16—and for a spherical system, they are the Mie coefficients {alTM,alTE}—whose mesoscopic generalization we introduce here. These coefficients constitute the fundamental building blocks from which the optical response to all external stimuli—and associated nanophotonic phenomena such as plasmonic enhancements of light–matter interactions—can be inferred.

For concreteness, we take a jellium metal with a Wigner–Seitz radius of rs=4 (ωp5.9eV; representative of Na31,32) throughout our calculations: the associated d-parameters are shown in Fig. 1. The corresponding classical response, ϵm(ω)=1ωp2(ω2+iωγ), is of the Drude-type and we assume a damping rate corresponding to γ=0.1eV. Additional results for the cases of an rs=2 jellium (representative of Al31,32) and Ag are given in Supplementary Notes 4 and 5. For a succinct description of the d-parameter formalism, see Methods (and Supplementary Note 1).

We first consider the simplest case, that of a planar dielectric–metal interface onto which a transverse magnetic (TM) or a transverse electric (TE) polarized plane-wave impinges from the dielectric side. The mesoscopic, Feibelman-d-parameter-corrected generalizations of the associated Fresnel reflection coefficients rTM and rTE are (Supplementary Note 3)16,33,34

rTM=ϵmkz,dϵdkz,m+(ϵmϵd)iq2dikz,dkz,mdϵmkz,d+ϵdkz,m(ϵmϵd)iq2d+ikz,dkz,md, 1a
rTE=kz,dkz,m+(ϵmϵd)ik02dkz,d+kz,m(ϵmϵd)ik02d, 1b

with in-plane, free-space, and bulk wavevectors q, k0ωc, kjϵjk0, respectively, and where kz,jkj2q2 (for j{d,m}). Here, ϵdϵd(ω) and ϵmϵm(ω) denote the local bulk permittivities of the dielectric and metallic media, respectively. Importantly, all quantum mechanical contributions in Eqs. (1a) and (1b) are completely captured by the microscopic surface response functions d and d; the classical limit is naturally recovered when d,0. The retarded surface plasmon-polariton (SPP) dispersion can be determined from the poles of the associated reflection coefficient for TM polarized waves [cf. Eq. (1a)], and thus follows from the solution of the implicit equation:

ϵdκd+ϵmκm(ϵmϵd)q2κmκddd=0, 2

where κjq2kj2=ikz,j. In the nonretarded limit (where κd,mq), this reduces to the simpler condition:

ϵm+ϵd(ϵmϵd)q(dd)=0. 3

Naturally, the well-known retarded and nonretarded classical plasmon conditions, ϵdκd+ϵmκm=0 and ϵm=ϵd, respectively, are recovered in the limit of vanishing d-parameters.

While the mesoscopic reflection coefficients of the planar system were determined by Feibelman16, the corresponding scattering coefficients of the spherically symmetric system—the so-called Mie coefficients alTM and alTE ref. 35—have remained unknown, despite their significant practical utility. Here, we derive the mesoscopic generalization of Mie’s theory by incorporating the Feibelman d-parameters through a generalization of the usual electromagnetic boundary conditions36 (Supplementary Note 5). For a metallic sphere of radius R, we find that the generalized, nonclassical TM and TE Mie coefficients are

alTM=ϵmjl(xm)Ψl(xd)ϵdjl(xd)Ψl(xm)+(ϵmϵd)jl(xd)jl(xm)l(l+1)d+Ψl(xd)Ψl(xm)dR1ϵmjl(xm)ξl(xd)ϵdhl(1)(xd)Ψl(xm)+(ϵmϵd)hl(1)(xd)jl(xm)l(l+1)d+ξl(xd)Ψl(xm)dR1, 4a
alTE=jl(xm)Ψl(xd)jl(xd)Ψl(xm)+xm2xd2jl(xd)jl(xm)dR1jl(xm)ξl(xd)hl(1)(xd)Ψl(xm)+xm2xd2hl(1)(xd)jl(xm)dR1, 4b

with dimensionless wavevectors xjkjR, spherical Bessel and Hankel functions of the first kind jl(x) and hl(1)(x), and the Riccati–Bessel functions Ψl(x)xjl(x) and ξl(x)xhl(1)(x); primed functions denote their derivatives. Equations (4a) and (4b) constitute the spherical counterparts to the reflection coefficients of the planar interface. Like them, they directly determine the response of the scattering object, here a metallic sphere, to any external perturbation (in a basis of spherical vector waves; see Supplementary Note 5). For instance, the extinction cross-section is simply σext=2πkd2l=1(2l+1)RealTM+alTE ref. 35 with resonances determined by the poles of the nonclassical Mie coefficients. For subwavelength metal spheres, the optical response is primarily embodied in alTM, which has a series of peaks that correspond to the excitation of localized surface plasmons (LSPs) of dipole, quadrupole, etc., character (for l{1,2,}, respectively)35,37. In the small-radius limit, xj1, a small-argument expansion of spherical Bessel and Hankel functions produces the nonretarded equivalent of the TM Mie coefficient, the mesoscopic multipolar polarizability38 (Supplementary Note 5)

αl=4πR2l+1(ϵmϵd)1+lRd+l+1ldϵm+l+1lϵd(ϵmϵd)l+1R(dd). 5

In the nonretarded limit, the extinction cross-section σextσabs+σsca is dominated by l=1 dipole contributions so that σabskdImα1 and σscakd4α126π, peaking around the dipole LSP frequency35. More generally, the lth nonretarded LSP condition is set by the poles of αl:

ϵm+l+1lϵdϵmϵdl+1R(dd)=0. 6

Once again, Eqs. (4)–(6) reduce to their well-known classical counterparts when d,0. It is interesting to note that the incorporation of quantum mechanical effects breaks the scale-invariance that usually characterizes the nonretarded classical limit, wherein plasmon resonances ωcl are scale-independent (e.g., ωcl=ωp1+ϵd and ωcl=ωp1+2ϵd for the surface and dipole plasmon of a planar and spherical jellium interface, respectively). Here, the introduction of the length scale(s) associated with d, breaks this scale-invariance, producing finite-size corrections parameterized by either qd, or d,R, cf.  Eqs. (3) and (6).

In this context, it is instructive to seek a perturbative solution that incorporates the first-order spectral corrections in the nonretarded limit. Expanding Eqs. (3) and (6) around ωcl, one finds (for a low-loss jellium in free-space)

ωωcl112ϒd(0)+ϒd(0), 7a

where ϒ, are geometry- and mode-dependent parameters17. For the planar interface and sphere, they equal

ϒ=ϒ=qplanarinterface,(l+1)Rsphere. 7b

In the above, d,(0)d,(Reωcl) is the result of a pole-like approximation. Four points are worth making: (i) the nonclassical correction is directly proportional to an effective d-parameter deffdd; (ii) the nonclassical frequency shift is approximately proportional to Redeff(0); (iii) the sign of Redeff dictates the frequency shift’s direction (towards the blue if negative, and towards the red if positive); and (iv) nonclassical broadening due to Landau damping is approximately proportional to Imdeff(0).

The results outlined in this section form the basis for understanding the optical response in the mesoscopic regime, beyond the validity of the classical electrodynamics formulation.

Nonclassical corrections to the plasmon dispersion

 Figure 2 shows the nonclassical spectral properties of plasmons in a planar (Fig. 2a–d) and spherical (Fig. 2e–h) metallic jellium, contrasting the retarded and nonretarded regimes, as well as the classical and nonclassical behaviors. Figure 2 can thus be regarded as a corollary of the equations presented in the preceding section. Three (inverse) length scales characterize the plasmonic dispersion in the planar system: the free-space wavevector k0, the plasmon wavevector q, and the inverse centroid of induced charge d1. The plasmon dispersion, consequently, spans up to three distinct regimes, namely a classical, retarded regime q~k0d1, a deeply nonclassical, nonretarded regime q~d1k0, and an intermediate regime. Figure 2a–d demonstrate that each of these regimes are well-realized in the planar rs=4 jellium: (i) at small wavevectors, nonclassical effects are negligible; (ii) at large wavevectors, they substantially redshift and broaden the plasmonic dispersion, manifesting the “spill-out” characteristic of simple metals (i.e., Red>0) and surface-enhanced Landau damping, respectively, consistent with earlier findings12,33,3941; and (iii) at intermediate wavevectors, both retardation and nonclassical corrections are nonnegligible, and therefore need to be taken into account simultaneously. Intriguingly, the existence of a well-defined intermediate regime demonstrates that the transition from classical to nonclassical response is intrinsically multiscale.

Fig. 2. Nonclassical corrections to plasmonic spectral properties.

Fig. 2

a Dispersion relation of the surface plasmon frequency and b resonance width at a planar semi-infinite air–metal interface. cd ImrTM in the classical and nonclassical treatments. Horizontal white dashed lines mark the nonretarded classical surface plasmon at ωp2. e Radius-dependent dispersion of the dipole LSP frequency and f resonance width in metal spheres. g Classical and h nonclassical normalized extinction cross-sections [QextσextπR2] for plasmonic spheres. White dashed lines mark the nonretarded classical dipole resonance at ωp3. Material parameters: jellium metal (rs=4 and γ=0.1eV) and ϵd=1.

Figure 2e–h outline the plasmonic features of metal spheres as a function of their radii. In most respects, they mirror the qualitative conclusions drawn for the planar case, but with the inverse radius R1 playing the role of an effective wavevector (increased losses at large radii are due to radiation damping) (see also Supplementary Note 6). Concretely, and focusing on the dipole LSP, Fig. 2e–f show the shortcomings of the classical theory for jellium spheres with dimensions below 2R~20nm. For extremely small spheres, the nonretarded limit reproduces the nonclassical redshift and broadening well. Again, we observe an intermediate region where both retardation and nonclassical effects are of comparable magnitude. Notably, this regime has been probed by several experiments that investigated nonclassical plasmons4245. Finally, in Fig. 2g–h we present the normalized extinction cross-sections of jellium spheres under plane-wave illumination. Besides reproducing the main features already observed in Fig. 2e–f, they also exhibit extra resonances due to higher-order LSP modes (Supplementary Fig. S7). The cross-sections associated with these higher-order LSPs, however, fall off rapidly with decreasing radii owing to the realization of the dipole limit. In the nonclassical case this reduction is amplified further, as higher-order LSPs are progressively impacted by surface-induced Landau damping [cf.  Eqs. (7a) and (7b)]. These observations are in accord with recent experimental data42.

The formalism and results presented in the preceding sections establish the fundamentals governing plasmon-enhanced nanophotonic phenomena in the mesoscopic regime. In the following, we exploit this understanding to assess plasmon–emitter interactions at the nanoscale.

Nonclassical LDOS: Purcell enhancement

A hallmark of plasmonics is its ability to support extreme field enhancements and correspondingly large Purcell factors3,19,21, enabling control over the emission properties of emitters. At its core, this is a manifestation of the reshaping of the LDOS spectrum, which is enhanced near plasmon resonances4649. Importantly, the Purcell enhancement is generally maximized at short emitter–surface separations, i.e., exactly where nonlocality and quantum effects become important. Thus, as we show in what follows, a rigorous description of the governing electrodynamics that incorporates nonclassical effects is not only necessary, but essential.

The LDOS, ρn^E, experienced by an emitter with orientation n^ (and incorporating both radiative and nonradiative contributions) is proportional to the imaginary part of the system’s Green’s dyadic50, which in turn is expandable in the previously introduced scattering coefficients (see Methods section). We exploit this fact to directly incorporate nonclassical surface corrections into the LDOS, by simply adopting the mesoscopic scattering coefficients, Eqs. (1a) and (1b) or (4a) and (4b), instead of their classical equivalents. In Fig. 3a–b we show the classical and quantum LDOS, normalized to the free-space LDOS, ρ0E, near a planar metal interface as a function of the emitter–metal separation h, for a normally-oriented emitter (see Supplementary Note 7 for the parallel and orientation-averaged cases). The enhancement of the LDOS near the surface plasmon frequency is markedly sharper in the classical case and less pronounced in the nonclassical one at shorter separations. This observation is particularly evident in Fig. 3b, which shows the plasmon-enhanced LDOS for different emitter–metal separations. In the classical formulation, the peak in the LDOS remains relatively sharp, approaching the nonretarded plasmon frequency ωp2 at small separations. Contrasting this, in the nonclassical framework the LDOS peak redshifts (consistent with the spill-out characteristic of jellium metals) with decreasing h, and evolves into a broad spectral feature at very small emitter–metal distances. This behavior simply reflects the nonclassical corrections to the plasmonic spectrum outlined in the previous section. Evidently, the most significant impact of nonclassicality here is the substantial reduction (notice the logarithmic scale) of the maximum attainable LDOS in the nonclassical case, particularly for h10nm. Lastly, it is interesting to observe the emergence of a broad spectral peak at frequencies above ωp2 that is absent in the classical setting. This feature is a manifestation of the so-called surface-multipole plasmon or Bennet mode51 that originates due to the finite-size of the inhomogeneous surface region33; mathematically, it corresponds to a pole in d(ω); physically, it represents an out-of-plane oscillation confined to the surface region.

Fig. 3. Plasmon-mediated Purcell enhancement at the nanoscale.

Fig. 3

Normalized LDOS, ρEρ0E, of a normally-oriented emitter near ab a planar metal surface and ce a metal sphere. a Normalized LDOS as a function of the emitterʼs frequency and separation from the jellium surface. The horizontal line marks ωp2. b LDOS enhancement at different emitter–surface separations. The vertical line marks ωp2. c Normalized LDOS near an R=5nm jellium sphere as a function of the emitterʼs frequency and hR ratio. Horizontal lines mark the nonretarded classical LSP frequencies ωp1+(l+1)l for l{1,2}. d LDOS enhancement near an R=5nm sphere for different emitter–surface distances. Vertical lines mark the l=1, l=2, and l= nonretarded classical LSPs. e Normalized LDOS for plasmonic spheres of differing radii at a fixed h=10nm emitter–surface separation. Material parameters as in Fig. 2.

Figure 3c–d show the LDOS of a radially-oriented emitter placed at a distance h from the surface of an R=5nm metal sphere (see Methods section). The LDOS enhancement in the spherical geometry is richer in features, partly because the sphere, unlike the plane, has an intrinsic length scale (its radius R), and partly because it hosts a series of l-dependent multipolar LSPs. The LDOS enhancement is centered around these LSP frequencies. In the nonclassical case, we again observe redshifted and broadened spectral features relative to their classical counterparts. The impact of Landau damping is amplified by the order of the LSP mode, cf. Eq. (7b); as a result, only the dipole and quadrupole modes are discernible in the nonclassical case (in the classical case, a faint l=3 LSP remains identifiable). Next, in Fig. 3e we investigate the LDOS enhancement’s dependence on the sphere’s radius R for a fixed emitter–sphere separation of h=10nm. In particular, the impact of nonclassical effects—particularly its reduction of the maximum LDOS—is more pronounced at smaller radii, in agreement with the approximate (l+1)R1 scaling previously derived in Eq. (7b). In fact, for very small metal spheres, only the LDOS enhancement associated with the dipole plasmon remains identifiable in the nonclassical case, due to surface-enabled Landau damping. Crucially, although deviations from classicality are most pronounced for spheres with radii 1nm, even relatively large spheres (that are otherwise usually considered within the classical regime, e.g., 2R=50nm) exhibit significant nonclassical corrections at small emitter–metal separations. Indeed, this constitutes an example of a multiscale regime where both retardation (a classical effect) and quantum effects must be addressed simultaneously.

Enhancement of dipole-forbidden multipolar transitions

The set of optical transitions associated with the emission of radiation by atoms is in practice limited due to the mismatch between the atom’s size and the wavelength of the radiation emitted by it. This fact leads to the selection rules for dipole-allowed transitions that originate from the so-called dipole approximation52. Such transitions, however, constitute only a fraction of a much richer spectrum. Nevertheless, transition rates other than the dipole-allowed are simply too slow (by several orders of magnitude) to be accessible in practice and are consequently termed “forbidden”. Previous works24,53 have shown that it is possible to increase the effective light–matter coupling strength for such transitions by exploiting, for instance, the shrinkage of the wavelength of light brought about by surface plasmons. Notwithstanding this, a satisfactory framework for describing the impact of nonclassical effects in the plasmonic enhancement of forbidden transitions remains elusive. Below, we remedy this by extending our formalism to the class of dipole-forbidden transitions of electric multipolar character, which can be exploited to probe even larger plasmon momenta. These are transitions in which the orbital angular momentum of the emitter changes by more than one; hereafter denoted En with n=2,3,4, (thus, E1 denotes a dipole transition, E2 a quadrupole transition, etc). It should be emphasized that while we consider hydrogenic systems for definiteness in the following, the theory presented here can be readily applied to any point-like emitter (e.g., atoms, quantum dots, nitrogen-vacancy centers, or dyes).

We consider an emitter at a distance h from a planar metal surface (Fig. 4a), and treat the light–matter interaction in its vicinity using a formulation of macroscopic quantum electrodynamics which enables a rigorous account of the quantum nature of the emitter and of the plasmon, and the inherent presence of loss54,55. Within this framework, the multipolar decay rates, ΓEn, can be evaluated as24 (Supplementary Note 8)

ΓEn=2α3ω0(k0aB)n1(n1)!2Ξ0u2ne2uk0hImrTMdu, 8

where uqk0, aB denotes the Bohr radius, α is the fine-structure constant, and the dimensionless quantity Ξ is related to the matrix element associated with the transition (Supplementary Note 8). In the previous expression, the nonretarded limit is assumed, valid for k0h1. Nonetheless, in our calculations we use the retarded reflection coefficient to accurately incorporate the plasmon pole’s spectral position. Moreover, in this limit ΓEntot=ΓEn0+ΓEnΓEn since the free-space contribution ΓEn0 is many orders of magnitude smaller.

Fig. 4. Enhancement of dipole-forbidden electric multipole transitions.

Fig. 4

a Transition frequencies considered in be (dashed blue) and fi (dashed green) relative to the plasmon (red) and light-line (dotted black) dispersion. b Multipolar transition rates, ΓEn, associated with the 6{p, d, f, g, h} 2s series of transitions in hydrogen (ω0=3.02eV). The dashed gray horizontal line marks the free-space E1 rate. The inset shows the relative rates, ΓEnΓEncl. ce Differential rates dΓEndu [integrand of Eq. (8)] for various atom–surface separations: h1=10nm, h2=5nm, and h3=2.5nm. fi Equivalents of be but at the transition frequency ω0=0.97ωp2. Dotted lines indicate regions where our nonclassical framework is pushed beyond its range of validity (identified heuristically as cases where contributions to ΓEn from qthRed13 exceeds 10%).

In Fig. 4b we plot the En decay rates associated with the 6{p, d, f, g, h} 2s transition series in hydrogen (δ-transitions of the Balmer series). While at relatively large distances from the metal the spontaneous emission rates of higher-order multipolar transitions are several orders of magnitude slower than E1, this difference is dramatically reduced at smaller emitter–metal separations. Interestingly, at nanometric separations the higher-order multipolar rates can exceed the E1 free-space rate, signaling a breakdown of traditional dipole-allowed selection rules. More interesting still, the inclusion of nonclassical effects via d-parameters increases the multipolar decay rates relative to the classical predictions (Fig. 4b, inset), by roughly one order of magnitude at the smallest separations. To understand the physical mechanism for this additional enhancement, we show in Fig. 4c–e the integrand of Eq. (8) for the first three multipolar orders, each evaluated at three distinct atom-metal separations. Two main contributions can be readily identified: (i) a sharp, resonant contribution corresponding to the plasmon pole embodied in ImrTM at the transition frequency (i.e., at the intersection of the blue and red lines in Fig. 4a), associated with emission into plasmons; and (ii) a broad, nonresonant contribution associated with quenching by lossy channels in the metal, e.g., Landau damping, disorder, phonons, etc. The relative contribution of (i) and (ii) to the overall decay rate depends strongly on the emitter–metal separation (due to the u2ne2uk0h scaling of the integrand), with loss-related quenching dominating over plasmon emission at very small emitter–metal separations. This effect is more pronounced for higher-order multipolar transitions since the integrand of Eq. (8) initially grows with u2n. The additional nonclassical enhancement is thus readily understood: it is a direct result of an increased nonresonant, loss-related contribution due to surface-enabled Landau damping. Finally, the dotted lines in Fig. 4b, f indicate regions in which a significant fraction of ΓEn is accumulated at very large wavevectors where the condition qRed1 is only approximately valid; evidently, at the smallest separations and at large transitions orders n, our mesoscopic framework is pushed beyond its range of validity.

Figure 4f considers a similar transition in a hydrogen-like atom, but now occurring at a higher frequency—i.e., closer to ωp2—and thus probing larger plasmon wavevectors. We assume, for simplicity, that the magnitude of the matrix elements in Eq. (8) still equal those in the 6{p, d, f, g, h} 2s hydrogen series. The enhancement of the En rates is qualitatively similar to the previous case, albeit with some quantitative differences: for instance, as shown in Fig. 4g–i, the resonant plasmon contribution now peaks at larger u; a simple consequence of the increased plasmon momentum at this higher transition frequency. This is in principle beneficial because even a small increase in confinement can result in a huge increase of the decay rates due to the u2n scaling of dΓEndu. However, plasmon losses tend to increase concomitantly with increasing confinement, resulting in broader plasmon peaks (cf.  Fig. 4g–i). Lastly, we observe that the nonclassical multipolar decay rates no longer consistently exceed the classical predictions at this higher frequency, contrasting our findings in Fig. 4b. This difference reflects a more complicated and substantial nonclassical modification of the plasmonic response at such frequency (see Fig. 2d). The overall impact on ΓEn ultimately results from an nontrivial interplay between the modified scattering response ImrTM and the scaling u2ne2uk0h.

Our calculations demonstrate that quantum surface corrections substantially modify the multipolar decay rates from those predicted in classical electrodynamics; especially off-resonance, where the discrepancy increases with the multipolar transition order. Radiation from these multipolar transitions can be delivered to the far-field by outcoupling the SPPs via gratings or antennas. Moreover, even in the regime dominated by nonresonant enhancement, the breakage of the conventional selection rules should still have clear experimental signatures, with potential implications for photovoltaic devices56 or hot-electron catalysis56,57.

Energy transfer between two emitters

The interaction between emitters in optical cavities or near plasmonic structures is instrumental to many scientific disciplines, ranging from quantum optics58 to chemical physics and the life sciences59,60. A prominent example is energy transfer (ET) between two fluorophores: the fundamental process by which an excited flourophore (the donor, D) lowers its energy by transferring it to another flourophore (the acceptor, A). The signature of this mechanism is the observation of fluorescence emitted by the acceptor. In free-space, the ET between the two emitters takes place primarily via dipole–dipole interaction and is typically short-ranged; in this limit, it is commonly referred to as Förster resonant energy transfer (FRET). Here too, the integration of emitters with plasmonic nanostructures can enhance the emitter–emitter ET rate, ΓET, through the introduction of a new, plasmonic near-field channel between the donor (D) and the acceptor (A)6163.

With this in mind, we investigate the impact of nonclassical corrections to plasmon-mediated ET between two emitters near a planar metal surface (Fig. 5a). The calculation of ΓET involves the system’s Green’s function G (Supplementary Note 9), which in turn depends on the system’s scattering coefficients. Concretely, for two emitters above a metal surface, the ET rate from a donor located at rD to an acceptor placed at rA can be determined via2527,47,50

ΓET=0wET(rD,rA;ω)fDem(ω)fAabs(ω)dω, 9

where wET(rD,rA;ω)2π2ω2ϵ0c22μA*G(rD,rA;ω)μD2 is the ET amplitude, which governs the medium-assisted interaction. Here, fDem (fAabs) is the donor’s emission (acceptor’s absorption) spectrum, and μD (μA) the corresponding dipole moment.

Fig. 5. Nonclassical corrections to plasmon-mediated energy transfer near a planar metal.

Fig. 5

a Two emitters transfer energy through free-space and metal-mediated channels (mutual separation RrArD, metal-interface offset h=zD=zA, and normally orientated, i.e., μAμDz^). b Spectral dependence of the (normalized) ET amplitude, wETwET0, for varying emitter–emitter distances. cd Normalized transfer amplitude as a function of R (h), for fixed h (R) (see labels). e Contours of the classical and nonclassical energy transfer amplitudes at ω0=0.97ωp2. f Plasmonic enhancement of ET rates (h=5nm and R=50nm) for broadband emitters of varying Q=ω0Δ as a function of (joint) emitter frequency ω0 (inset: finite-Q emitters only).

Figure 5b–e show the ET amplitude wET(R,ω) (evaluated at zA=zDh with a donor–acceptor separation rArDR) normalized to its value in free-space wET0(R,ω). The advantage of such procedure is that this ratio is emitter-independent, facilitating a discussion on the impact of the plasmonic response (also, for spectrally aligned narrowband emitters where fDem(ω)fAabs(ω)~δ(ωω0), this simply amounts to the total ET rate enhancement ΓETΓET0; we shall return to this point below). Our results demonstrate that the omission of quantum mechanical effects leads to a significant overestimation of the normalized ET amplitudes, across a broad parameter space. This discrepancy is particularly pronounced for emitter–metal separations of about h1015nm, and spans a wide range of donor–acceptor separations, R. The ET dependence on R is particularly interesting and spans several distinct regimes: (i) for large R relative to the SPP’s propagation length, Lp, the metal’s impact is negligible [the emitters are simply too far away for the ET to be mediated by surface plasmons (i.e., a SPP excited by the donor will be dissipated long before it reaches the acceptor)]; (ii) for R~Lp, the ET enhancement reaches its maximum, whose position and value are dictated by the spectral properties of the SPP, and therefore is affected both by the nonclassical spectral shift and broadening; and (iii) for Rh, the interaction is dominated by the free-space channel, rendering the metal’s impact negligible again.

For emitters of sufficient spectral width, ET can assume a broadband aspect: we explore this in Fig. 5f by computing ΓETΓET0 for a Gaussian donor–acceptor overlap fDem(ω)fAabs(ω)=e(ωω0)22Δ22πΔ, centered at ω0 and with a (joint) width Δ and quality factor Qω0Δ. Figure 5f shows the normalized classical and nonclassical broadband integrated ET rates for several Q as a function of the center frequency ω0. Clearly, the maximum of ΓETΓET0 decreases with Q, with a concomitant broadening and redshifting of the central peak. Interestingly, though the highest ET rate enhancements are obtained at large Q, and for ω0 near the SPP’s resonance, this shows that spectrally misaligned emitters can benefit from small Q factors, as this extends their spectral tails into the resonant region. More importantly, our results show that nonclassicality remains important even in the case of broadband emitters, and that nonclassical deviations persist (after being broadband integrated) even when the joint spectral width is larger than the nonclassical plasmon resonance shift.

Lastly, Fig. 5 demonstrates the importance of accounting for nonclassical effects in ET, which impose limits to the maximum attainable plasmon-enhanced ET rate between emitters.

Plasmon-enhanced two-photon emission

The emission of light by an excited emitter is generally very well-described by first-order perturbation theory in the light–matter interaction described by quantum electrodynamics (including every process considered so far), reflecting its intrinsic weakness. At higher order in the interaction, the possibility of two- and multi-photon spontaneous emission emerges. While two-photon spontaneous emission was predicted as early as 1931 by Göppert-Mayer64, it eluded observation for decades in both atomic and solid-state systems28,29, due to the exacerbated weakness of the interaction at second order. Despite this, two-photon emission is an attractive process due to the correlated nature of the emitted photons (entangled in e.g., energy and angular momentum). The extreme nanoscale confinement of plasmons in metals provides new opportunities to enhance two-photon emission dramatically30 (in the guise of two-plasmon emission), with recent work identifying opportunities to enhance two-photon emission to be as strong24, or even far stronger65, than single-photon emission. However, with these possibilities being enabled essentially by extreme nanoscale confinement, it is natural to anticipate a sizable impact of nonclassical effects.

A minimal model of two-photon spontaneous emission is shown in Fig. 6a, where we illustrate an emitter at a distance h from a semi-infinite metallic interface. To isolate the parts of two-photon emission that depend on the metallic interface, as opposed to the detailed atomic level structure, we consider two-photon transitions between the s-states of a simple hydrogenic atom. This subgrouping includes the most prominent example of two-photon emission: the 2s1s transition in hydrogen, with level separation ω0=ω2sω1s10.2eV. The level separation ω0 restricts the frequencies of the two emitted photons to ω0,ω0 and ωω0ω (reflecting energy conservation) but otherwise leaves their difference unconstrained. The emission process is consequently broadband, with the total rate ΓTPE a summation of all energy-allowed (ω,ω)-pairs: ΓTPE=0ω0(dΓTPEdω)dω, where dΓTPEdω is the differential decay rate for two-photon emission into frequencies ω and ω0ω. As an example, for the 2s1s transition of hydrogen in free-space, dΓTPE0dω exhibits a broad peak around the equal ω=ω=ω02 splitting, as shown in Fig. 6b. Its integral, corresponding to the decay rate, is about 8.3 s−1, nearly eight orders of magnitude slower than the 2p1s dipole-allowed single-photon transition (6.3 × 108 s−1)66.

Fig. 6. Nonclassical corrections to two-photon emission enhancement.

Fig. 6

a Two-photon emission (ss transition) of a hydrogenic atom above a planar air–metal interface. b Differential decay rate in free-space for the 2s1s two-photon transition in hydrogen. c, d Enhancement of the differential decay rate dΓTPEdω, Eq. (10), as a function of frequency for different emitter–interface separations at a transition frequency of ω0=1.2ωp (1.4ωp). e Enhancement of the integrated two-photon decay rate ΓTPE, as a function of transition frequency and emitter–surface separation.

In the presence of a metallic interface, the situation changes drastically, due to a strongly enhanced LDOS. In fact, two-photon emission benefits twice from an enhanced LDOS, encoded by the following nonretarded expression65 for the enhancement of the differential decay rate dΓTPEdω for an ss transition in a hydrogenic atom, relative to its free-space value dΓTPE0dω (Supplementary Note 9):

dΓTPEdωdΓTPE0dω=12ρE(ω)ρ0E(ω)ρE(ω0ω)ρ0E(ω0ω). 10

Each fraction is a Purcell factor; thus, the order of magnitude two-photon differential enhancement is roughly the square of the one-photon enhancement (Fig. 3). More precisely, the differential two-photon enhancement is directly and simply related to the one-photon enhancement: it is (half) the Purcell enhancement at ω multiplied by its reflection about ω02.

We note that the computation of ΓTPE=0ω0dΓTPEdωdω for ω0>ωp in a nonclassical setting requires knowledge of d(ω) above the plasma frequency (similarly so for ET when fDem(ω)fAabs(ω) extends above ωp, see Eq. (9)). Direct calculation of d(ω) via TDDFT is cumbersome above ωp, since the induced potential extends into the bulk; instead, following refs. 67, 68, we extrapolate d(ω) to ω>ωp by enforcing exact sum rules and asymptotic limits on a fit of d(ω) over frequencies below ωp (Supplementary Note S9).

Figure 6c–d contrast the classical and nonclassical predictions of the differential two-photon emission enhancement near a metal surface for different values of the (hydrogen-like emitter’s) transition frequency, its separation from the surface, and emission frequency. For separations 10nm nonclassical effects modify the physics quantitatively, but not qualitatively. Deviations from classicality substantially increase at the separation of 5 nm, with clear hallmarks of nonclassical broadening in particular. At a 1 nm separation, the classical and nonclassical predictions differ qualitatively: at the transition frequency ω0=1.2ωp (Fig. 6c) the peak-structure and position is mostly dissimilar (as can be understood and expected from Fig. 3b, where the LDOS peak is similarly displaced from the classical prediction); at ω0=1.4ωp (Fig. 6d), the classical and nonclassical peak positions still coincide but the nonclassical spectrum is far broader.

Finally, the impact of nonclassicality on the enhancement of the total (i.e., integrated) two-photon decay rate is shown in Fig. 6e. For small separations, the classical prediction can be quantitatively inaccurate by an order of magnitude. However, as also seen in the case of the LDOS, the classical prediction does not necessarily lead to an overestimation of the decay rates: for some transition frequencies, the nonclassical decay rate is higher, due to a redistribution of LDOS into regions in which the classical LDOS was low. Due to the quadratic dependence of two-photon emission enhancement on the LDOS, this process is much more sensitive to deviations from classicality. The considerations of two-photon emission in this section provides yet another example of the substantial impact of nonclassical effects to nanoscale plasmon–emitter interactions.

Discussion

In this article, we have considered the impact of nonclassical corrections in a varied range of plasmon-enhanced light–matter interaction processes using a scattering framework that incorporates nonclassical effects via Feibelman d-parameters. These plasmon-empowered processes include spontaneous dipole and multipole emission, ET between emitters, and spontaneous two-photon emission. Our findings elucidate and contextualize the main physical mechanisms responsible for deviations from the classical response in light–matter interactions at the nanoscale: spectral shifting and surface-enabled Landau damping, manifesting the joint impact of spill-out and nonlocality. For deeply nanoscale emitter–surface separations, e.g., below ~5nm, the deviations can be order-of-magnitude, thus completely invalidating any quantitative aspect of the classical approach.

There are several interesting opportunities and open questions arising from this work. First, our approach can be readily extended to other prominent light–matter interaction processes, such as near-field radiative heat transfer69, electron energy loss spectroscopy42,45, or van der Waals70 and Casimir–Polder interactions71. Second, the d-parameter framework is agnostic of the model employed to calculate the d-parameters. Here, we have employed jellium TDDFT, but other models, such as hydrodynamic response (within the hydrodynamical model (HDM), the d-parameters of a homogeneous electron gas adjacent to vacuum are dHDM(ω)=β(ωp2ω2)12 and dHDM(ω)=0, with β2=3vF25)16, can be readily treated by d-parameters as well. Similarly, the jellium approximation can be relaxed in atomic TDDFT, posing new, fundamental questions—particularly pertinent in noble metals—on the role of atomic structure and valence-band bound screening. Third, recent experiments have demonstrated that the d-parameters can be directly inferred from far-field optical measurements36: comparison between measurements of plasmon-enhanced light–matter interaction at the nanoscale and theoretical predictions, such as those detailed here, could open a complementary avenue for experimental characterization of d-parameters. We emphasize that the nanometer-scale emitter–surface separations that lead to substantial quantum corrections in light–matter interactions are well-within the reach of current experimental capabilities3,19,36,72. Indeed, several earlier experiments18,73 have probed the requisite parameter regimes; their observations of deviations from classical predictions may already suggest evidence of the corrections described here. Fourth, the formalism presented here can be readily applied in arbitrary geometries via d-parameter-modified mesoscopic boundary conditions (Supplementary Note 2)36. Fifth and lastly, while we have restricted our focus to quantum corrections due to the plasmonic surface-response, a separate class of corrections exist with origin in the emitter, emerging beyond the point-emitter approximation7477. Our framework can be readily adapted to include these emitter-centric corrections (Supplementary Note 8); that prospect is particularly interesting in “large” emitters, such as quantum dots or molecules, where their magnitude can be substantial.

Realizing the promise of plasmon-enhanced light–matter interactions inevitably involves multiscale plasmonic architectures, combining both wavelength- and nanoscale features in synergy. The development of the next generation of nanoscale optical devices consequently requires new theoretical tools that incorporate the salient features of both the classical and quantum domains in a tractable manner: the mesoscopic framework developed here constitutes such a tool.

Methods

Feibelman d-parameters

The complex-valued Feibelman d-parameters, d and d, can be defined from the quantum mechanical induced charge density, ρ(r)ρ(z)eiqx, and associated induced current density, J(r)J(z)eiqx (frequency-dependence suppressed, but implicit)16,17,33:

d=zρ(z)dzρ(z)dzandd=zzJx(z)dzzJx(z)dz, 11

here, for an interface spanning the xy-plane at z=0. It is apparent from Eq. (11) that d corresponds to the centroid of the induced charge density (cf.  Fig. 1), while d corresponds to the centroid of the normal derivative of the tangential current (which is identically zero for charge-neutral interfaces)33. Unlike the bulk permittivity that characterizes a single material, the d-parameters are surface response functions that depend on the two materials that make up the interface (including, in principle, their surface terminations). Here, we restricted our focus to the vacuum–jellium interface.

In short, the essential appeal of d-parameters is their facilitation of a practical introduction of the important electronic length scales associated with the dynamics of the electron gas at an interface (Supplementary Note 1).

LDOS calculations

The LDOS experienced by a point-like dipole emitter embedded in a dielectric medium with dielectric constant ϵd and located at a distance h above a metal half-space is given by (see also Supplementary Note 7)50

ρEρ0E=1+32Re0u31u2rTMe2ikdh1u2du, 12a
ρEρ0E=1+34Re0u1u2rTE1u2rTMe2ikdh1u2du, 12b

for an emitter with its dipole moment oriented perpendicular () or parallel (), respectively, to the dielectric–metal interface (here, the z=0 plane). The perpendicularly oriented dipole only couples to TM modes, whereas the dipole in the parallel configuration couples to both TM and TE modes. At short emitter–metal separations, however, the TM contribution dominates, regardless of orientation. Moreover, since plasmonic excitations are TM polarized, the TM contribution is the main quantity of interest for plasmon-enhanced LDOS.

For an emitter at a distance h from the surface of a metallic sphere of radius R, the LDOS can be evaluated via (Supplementary Note 7)37,78

ρEρ0E=1+321y2l=1(2l+1)l(l+1)RealTM[hl(1)(y)]2, 13a
ρEρ0E=1+341y2l=1(2l+1)RealTMξl(y)2alTEξl(y)2, 13b

for an emitter with its dipole oriented along the radial () or tangential () directions, respectively. In addition, we have introduced the dimensionless radial emitter position ykd(R+h) for brevity of notation.

The above expressions also highlight a key feature exploited in all our calculations: conveniently, in order to calculate the quantum mechanically corrected LDOS within the d-parameters framework one only needs to replace the standard Mie coefficients by their generalized nonclassical counterparts, Eqs. (4a) and (4b). The same also holds for the standard Fresnel reflection coefficients and their nonclassical counterparts, Eqs. (1a) and (1b).

Supplementary information

Peer Review File (239KB, pdf)

Acknowledgements

P.A.D.G. acknowledges fruitful discussions with Martijn Wubs on Förster-type energy transfer. The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation (Project No. DNRF103). T.C. acknowledges support from the Danish Council for Independent Research (Grant No. DFF–6108-00667). N.R. recognizes the support of the DOE Computational Science Graduate Fellowship (CSGF) fellowship No. DE-FG02-97ER25308. N.A.M. is a VILLUM Investigator supported by VILLUM FONDEN (Grant No. 16498) and Independent Research Fund Denmark (Grant No. 7079-00043B). Center for Nano Optics is financially supported by the University of Southern Denmark (SDU 2020 funding). This work was partly supported by the Army Research Office through the Institute for Soldier Nanotechnologies under contract No. W911NF-18-2-0048, as well as in part by the MRSEC Program of the National Science Foundation under Grant No. DMR-1419807.

Author contributions

All authors contributed to all aspects of this work.

Data availability

The data that underlie the findings of this study are available from the corresponding authors upon reasonable request.

Competing interests

The authors declare no competing interests.

Footnotes

Peer review information  Nature Communications thanks Georgios Veronis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

P. A. D. Gonçalves, Email: pa@mci.sdu.dk

Thomas Christensen, Email: tchr@mit.edu.

N. Asger Mortensen, Email: asger@mailaps.org.

Supplementary information

Supplementary information is available for this paper at 10.1038/s41467-019-13820-z.

References

  • 1.Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat. Photonics. 2010;4:83. doi: 10.1038/nphoton.2009.282. [DOI] [Google Scholar]
  • 2.Fernández-Domínguez AI, García-Vidal FJ, Martín-Moreno L. Unrelenting plasmons. Nat. Photonics. 2017;11:8. doi: 10.1038/nphoton.2016.258. [DOI] [Google Scholar]
  • 3.Chikkaraddy R, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535:127. doi: 10.1038/nature17974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Vasa P, et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates. Nat. Photonics. 2013;7:128. doi: 10.1038/nphoton.2012.340. [DOI] [Google Scholar]
  • 5.Flick J, Rivera N, Narang P. Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics. 2018;7:1479–1501. doi: 10.1515/nanoph-2018-0067. [DOI] [Google Scholar]
  • 6.Fernández-Domínguez AI, Bozhevolnyi SI, Mortensen NA. Plasmon-enhanced generation of nonclassical light. ACS Photonics. 2018;5:3447–3451. doi: 10.1021/acsphotonics.8b00852. [DOI] [Google Scholar]
  • 7.Marques, M. A. et al. Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer, New York, 2006).
  • 8.Serra L, Rubio A. Core polarization in the optical response of metal clusters: generalized time-dependent density-functional theory. Phys. Rev. Lett. 1997;78:1428–1431. doi: 10.1103/PhysRevLett.78.1428. [DOI] [Google Scholar]
  • 9.Weissker H-Ch, Mottet C. Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: the influence of the atomic structure. Phys. Rev. B. 2011;84:165443. doi: 10.1103/PhysRevB.84.165443. [DOI] [Google Scholar]
  • 10.Zhang P, Feist J, Rubio A, García-González P, García-Vidal FJ. Ab initio nanoplasmonics: the impact of atomic structure. Phys. Rev. B. 2014;90:161407. doi: 10.1103/PhysRevB.90.161407. [DOI] [Google Scholar]
  • 11.Weissker H-C, López-Lozano X. Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations. Phys. Chem. Chem. Phys. 2015;17:28379. doi: 10.1039/C5CP01177A. [DOI] [PubMed] [Google Scholar]
  • 12.Teperik TV, Nordlander P, Aizpurua J, Borisov AG. Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys. Rev. Lett. 2013;110:263901. doi: 10.1103/PhysRevLett.110.263901. [DOI] [PubMed] [Google Scholar]
  • 13.Varas A, García-González P, Feist J, García-Vidal F, Rubio A. Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics. 2016;5:409–426. doi: 10.1515/nanoph-2015-0141. [DOI] [Google Scholar]
  • 14.Townsend E, Bryant GW. Plasmonic properties of metallic nanoparticles: the effects of size quantization. Nano Lett. 2011;12:429–434. doi: 10.1021/nl2037613. [DOI] [PubMed] [Google Scholar]
  • 15.Townsend E, Bryant GW. Which resonances in small metallic nanoparticles are plasmonic? J. Opt. 2014;16:114022. doi: 10.1088/2040-8978/16/11/114022. [DOI] [Google Scholar]
  • 16.Feibelman PJ. Surface electromagnetic fields. Prog. Surf. Sci. 1982;12:287–407. doi: 10.1016/0079-6816(82)90001-6. [DOI] [Google Scholar]
  • 17.Christensen T, Yan W, Jauho A-P, Soljačić M, Mortensen NA. Quantum corrections in nanoplasmonics: shape, scale, and material. Phys. Rev. Lett. 2017;118:157402. doi: 10.1103/PhysRevLett.118.157402. [DOI] [PubMed] [Google Scholar]
  • 18.Russell KJ, Liu T-L, Cui S, Hu EL. Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photonics. 2012;6:459–462. doi: 10.1038/nphoton.2012.112. [DOI] [Google Scholar]
  • 19.Akselrod GM, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics. 2014;8:835–840. doi: 10.1038/nphoton.2014.228. [DOI] [Google Scholar]
  • 20.Koenderink AF. On the use of Purcell factors for plasmon antennas. Opt. Lett. 2010;35:4208–4210. doi: 10.1364/OL.35.004208. [DOI] [PubMed] [Google Scholar]
  • 21.Pelton M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics. 2015;9:427–435. doi: 10.1038/nphoton.2015.103. [DOI] [Google Scholar]
  • 22.Kern AM, Martin OJF. Strong enhancement of forbidden atomic transitions using plasmonic nanostructures. Phys. Rev. A. 2012;85:022501. doi: 10.1103/PhysRevA.85.022501. [DOI] [Google Scholar]
  • 23.Filter R, Mühlig S, Eichelkraut T, Rockstuhl C, Lederer F. Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas. Phys. Rev. B. 2012;86:035404. doi: 10.1103/PhysRevB.86.035404. [DOI] [Google Scholar]
  • 24.Rivera N, Kaminer I, Zhen B, Joannopoulos JD, Soljačić M. Shrinking light to allow forbidden transitions on the atomic scale. Science. 2016;353:263–269. doi: 10.1126/science.aaf6308. [DOI] [PubMed] [Google Scholar]
  • 25.Dung HT, Knöll L, Welsch D-G. Intermolecular energy transfer in the presence of dispersing and absorbing media. Phys. Rev. A. 2002;65:043813. doi: 10.1103/PhysRevA.65.043813. [DOI] [Google Scholar]
  • 26.Wubs M, Vos WL. Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion. New J. Phys. 2016;18:053037. doi: 10.1088/1367-2630/18/5/053037. [DOI] [Google Scholar]
  • 27.Ren J, Wu T, Yang B, Zhang X. Simultaneously giant enhancement of Förster resonance energy transfer rate and efficiency based on plasmonic excitations. Phys. Rev. B. 2016;94:125416. doi: 10.1103/PhysRevB.94.125416. [DOI] [Google Scholar]
  • 28.Cesar CL, et al. Two-photon spectroscopy of trapped atomic hydrogen. Phys. Rev. Lett. 1996;77:255–258. doi: 10.1103/PhysRevLett.77.255. [DOI] [PubMed] [Google Scholar]
  • 29.Hayat A, Ginzburg P, Orenstein M. Observation of two-photon emission from semiconductors. Nat. Photonics. 2008;2:238. doi: 10.1038/nphoton.2008.28. [DOI] [Google Scholar]
  • 30.Nevet A, et al. Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors. Nano Lett. 2010;10:1848–1852. doi: 10.1021/nl1005806. [DOI] [PubMed] [Google Scholar]
  • 31.Ashcroft NW, Mermin ND. Solid State Physics. New York: Harcourt College Publishers; 1976. [Google Scholar]
  • 32.Tsuei K-D, et al. The normal modes at the surface of simple metals. Surf. Sci. 1991;247:302–326. doi: 10.1016/0039-6028(91)90142-F. [DOI] [Google Scholar]
  • 33.Liebsch A. Electronic Excitations at Metal Surfaces. New York: Springer; 1997. [Google Scholar]
  • 34.Jin D, et al. Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics. Phys. Rev. Lett. 2015;115:193901. doi: 10.1103/PhysRevLett.115.193901. [DOI] [PubMed] [Google Scholar]
  • 35.Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. New York: Wiley; 1983. [Google Scholar]
  • 36.Yang, Y. et al. A general theoretical and experimental framework for nanoscale electromagnetism. Nature576, 248–252 (2019). [DOI] [PubMed]
  • 37.Christensen T, et al. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano. 2014;8:1745–1758. doi: 10.1021/nn406153k. [DOI] [PubMed] [Google Scholar]
  • 38.Apell P, Ljungbert A. A general non-local theory for the electromagnetic response of a small metal particle. Phys. Scr. 1982;26:113. doi: 10.1088/0031-8949/26/2/010. [DOI] [Google Scholar]
  • 39.Reiners T, Ellert C, Schmidt M, Haberland H. Size dependence of the optical response of spherical sodium clusters. Phys. Rev. Lett. 1995;74:1558–1561. doi: 10.1103/PhysRevLett.74.1558. [DOI] [PubMed] [Google Scholar]
  • 40.Mandal S, Wang J, Winans RE, Jensen L, Sen A. Quantum size effects in the optical properties of ligand stabilized aluminum nanoclusters. J. Phys. Chem. C. 2013;117:6741–6746. doi: 10.1021/jp310514z. [DOI] [Google Scholar]
  • 41.Liebsch A. Surface-plasmon dispersion and size dependence of mie resonance: silver versus simple metals. Phys. Rev. B. 1993;48:11317–11328. doi: 10.1103/PhysRevB.48.11317. [DOI] [PubMed] [Google Scholar]
  • 42.Raza S, et al. Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nat. Commun. 2015;6:8788. doi: 10.1038/ncomms9788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Genzel L, Martin TP, Kreibig U. Dielectric function and plasma resonances of small metal particles. Z. Phys. B. 1975;21:339–346. doi: 10.1007/BF01325393. [DOI] [Google Scholar]
  • 44.Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012;483:421. doi: 10.1038/nature10904. [DOI] [PubMed] [Google Scholar]
  • 45.Campos A, et al. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nat. Phys. 2018;15:275–280. doi: 10.1038/s41567-018-0345-z. [DOI] [Google Scholar]
  • 46.Barnett SM, Loudon R. Sum rule for modified spontaneous emission rates. Phys. Rev. Lett. 1996;77:2444–2446. doi: 10.1103/PhysRevLett.77.2444. [DOI] [PubMed] [Google Scholar]
  • 47.Blum C, et al. Nanophotonic control of the Förster resonance energy transfer efficiency. Phys. Rev. Lett. 2012;109:203601. doi: 10.1103/PhysRevLett.109.203601. [DOI] [PubMed] [Google Scholar]
  • 48.Sanders S, Manjavacas A. Analysis of the limits of the local density of photonic states near nanostructures. ACS Photonics. 2018;5:2437. doi: 10.1021/acsphotonics.8b00225. [DOI] [Google Scholar]
  • 49.Shim H, Fan L, Johnson SG, Miller OD. Fundamental limits to near-field optical response over any bandwidth. Phys. Rev. X. 2019;9:011043. [Google Scholar]
  • 50.Novotny, L., Hecht, B. Principles of Nano-Optics, 2nd edn (Cambridge University Press, 2012).
  • 51.Bennett AJ. Influence of the electron charge distribution on surface-plasmon dispersion. Phys. Rev. B. 1970;1:203–207. doi: 10.1103/PhysRevB.1.203. [DOI] [Google Scholar]
  • 52.Cohen-Tannoudji, C., Diu, B., Laloe, F. Quantum Mechanics, Vol. 2, (Wiley, 1978).
  • 53.Andersen ML, Stobbe S, Sørensen AS, Lodahl P. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters. Nat. Phys. 2011;7:215. doi: 10.1038/nphys1870. [DOI] [Google Scholar]
  • 54.Peřina, J. (ed.) Coherence and Statistics of Photons and Atoms (Wiley, 2001).
  • 55.Scheel S, Buhmann S. Macroscopic quantum electrodynamics - concepts and applications. Acta Phys. Slovaca. 2008;58:675–809. doi: 10.2478/v10155-010-0092-x. [DOI] [Google Scholar]
  • 56.Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015;10:25. doi: 10.1038/nnano.2014.311. [DOI] [PubMed] [Google Scholar]
  • 57.Zhou L, et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science. 2018;362:69–72. doi: 10.1126/science.aat6967. [DOI] [PubMed] [Google Scholar]
  • 58.Brandes T. Coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep. 2005;408:315–474. doi: 10.1016/j.physrep.2004.12.002. [DOI] [Google Scholar]
  • 59.Selvin PR. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 2000;7:730–734. doi: 10.1038/78948. [DOI] [PubMed] [Google Scholar]
  • 60.Lakowicz JR, editor. Principles of Fluorescence Spectroscopy. 3rd edn. New York: Springer; 2000. [Google Scholar]
  • 61.Andrew P, Barnes WL. Energy transfer across a metal film mediated by surface plasmon polaritons. Science. 2004;306:1002–1005. doi: 10.1126/science.1102992. [DOI] [PubMed] [Google Scholar]
  • 62.Lunz M, et al. Surface plasmon enhanced energy transfer between donor and acceptor cdte nanocrystal quantum dot monolayers. Nano Lett. 2011;11:3341–3345. doi: 10.1021/nl201714y. [DOI] [PubMed] [Google Scholar]
  • 63.Govorov AO, Lee J, Kotov NA. Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys. Rev. B. 2007;76:125308. doi: 10.1103/PhysRevB.76.125308. [DOI] [Google Scholar]
  • 64.Göppert-Mayer M. Über elementarakte mit zwei quantensprüngen. Ann. Phys. 1931;401:273–294. doi: 10.1002/andp.19314010303. [DOI] [Google Scholar]
  • 65.Rivera N, Rosolen G, Joannopoulos JD, Kaminer I, Soljačić M. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA. 2017;114:13607–13612. doi: 10.1073/pnas.1713538114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Wiese, W. L., Smith, M. W., Glennon, B. M. Atomic Transition Probabilities, Vol. 1 (NIST, 1966).
  • 67.Persson BNJ, Apell P. Sum rules for surface response functions with application to the van der Waals interaction between an atom and a metal. Phys. Rev. B. 1983;27:6058–6065. doi: 10.1103/PhysRevB.27.6058. [DOI] [Google Scholar]
  • 68.Persson BNJ, Zaremba E. Reference-plane position for the atom-surface van der waals interaction. Phys. Rev. B. 1984;40:5669. doi: 10.1103/PhysRevB.30.5669. [DOI] [PubMed] [Google Scholar]
  • 69.Cuevas JC, García-Vidal FJ. Radiative heat transfer. ACS Photonics. 2018;5:3896–3915. doi: 10.1021/acsphotonics.8b01031. [DOI] [Google Scholar]
  • 70.Luo Y, Zhao R, Pendry JB. van der waals interactions at the nanoscale: the effects of nonlocality. Proc. Natl Acad. Sci. USA. 2014;111:18422–18427. doi: 10.1073/pnas.1420551111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Bordag M, Klimchitskaya GL, Mohideen U, Mostepanenko VM. Advances in the Casimir Effect. New York: Oxford University Press; 2009. [Google Scholar]
  • 72.Benz F, et al. Single-molecule optomechanics in “picocavities”. Science. 2016;354:726–729. doi: 10.1126/science.aah5243. [DOI] [PubMed] [Google Scholar]
  • 73.Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006;96:113002. doi: 10.1103/PhysRevLett.96.113002. [DOI] [PubMed] [Google Scholar]
  • 74.Tighineanu, P., Sørensen, A. S., Stobbe, S. and Lodahl, P. The mesoscopic nature of quantum dots in photon emission, in Quantum Dots for Quantum Information Technologies, 165–198 (Springer, 2017).
  • 75.Stobbe S, et al. Spontaneous emission from large quantum dots in nanostructures: exciton-photon interaction beyond the dipole approximation. Phys. Rev. B. 2012;86:085304. doi: 10.1103/PhysRevB.86.085304. [DOI] [Google Scholar]
  • 76.Van Vlack C, Kristensen PT, Hughes S. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system. Phys. Rev. B. 2012;85:075303. doi: 10.1103/PhysRevB.85.075303. [DOI] [Google Scholar]
  • 77.Jun Ahn K, Knorr A. Radiative lifetime of quantum confined excitons near interfaces. Phys. Rev. B. 2003;68:161307. doi: 10.1103/PhysRevB.68.161307. [DOI] [Google Scholar]
  • 78.Chew H. Transition rates of atoms near spherical surfaces. J. Chem. Phys. 1987;87:1355–1360. doi: 10.1063/1.453317. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Peer Review File (239KB, pdf)

Data Availability Statement

The data that underlie the findings of this study are available from the corresponding authors upon reasonable request.


Articles from Nature Communications are provided here courtesy of Nature Publishing Group

RESOURCES