Skip to main content
Canadian Journal of Public Health = Revue Canadienne de Santé Publique logoLink to Canadian Journal of Public Health = Revue Canadienne de Santé Publique
. 2007 Sep 1;98(5):407–411. doi: 10.1007/BF03405429

Is There a Need to Revise Health Canada’s Human PCB Guidelines?

Eric N Liberda 112, Leonard J S Tsuji 112,, Bruce C Wainman 212
PMCID: PMC6975777  PMID: 17985685

Abstract

Background

This article assesses if there is a need to revise Health Canada’s polychlorinated biphenyl (PCB) guidelines for whole blood given that plasma is typically favoured over whole blood for analysis, technological advancements in analytical methods have occurred, and the congener profiles of PCBs in the environment continue to change due to degradation and re-compartmentalization.

Methods

Canadian epidemiological and exposure studies within the last 11 years were examined in order to determine the dominant method of PCB reporting and the human tissues or fluids analyzed.

Findings

In all but one study, PCBs were analyzed on a congener basis. In the cases where an Aroclor™ equivalency was reported, the result was calculated using an Aroclor™ estimation equation based on several PCB congeners. To date, a wide variety of tissues and fluids are still being analyzed; however, only one study performed the analysis using whole blood, the basis of Health Canada’s guidelines. Additionally, congener profiles in the environment are changing due to degradation and re-compartmentalization; therefore, guidelines should reflect this change.

Conclusion

The reporting of whole blood PCB levels in Canada is a rare practice, and reporting PCBs solely as an Aroclor™ mixture can result in false non-detection; however, the Health Canada guidelines are based on Aroclor™ 1260 levels in whole blood. PCB congener analysis by gas chromatography/mass spectroscopy results in greater accuracy with greater sensitivity and limit of detection for the samples when compared to gas chromatography alone. Further, Aroclor™ equivalency can be estimated from congener analysis results. No other nation has yet prescribed PCB guidelines in human fluids or tissues; this is likely due to the uncertainty associated with PCB health risk assessment. Given the findings, whole blood PCB guidelines must be revised in order to reflect advances in the medical sciences.

MeSH terms: Polychlorinated biphenyls, Aroclor™, guideline

Footnotes

Acknowledgements: We acknowledge support from the Canadian Institutes of Health Research and the University of Toronto/McMaster University Indigenous Health Research Development Program Graduate Scholarship to E. Liberda and the Ontario Ministry of Research and Innovation.

References

  • 1.Van Oostdam JC, Dewailly E, Gilman A, Hansen JC, Odland JO, Chashchin V, et al. Circumpolar maternal blood contaminant survey, 1994–1997 organochlorine compounds. Sci Total Environ. 2004;330:55–70. doi: 10.1016/j.scitotenv.2004.02.028. [DOI] [PubMed] [Google Scholar]
  • 2.Schecter A, Ryan JJ, Päpke O. Decrease in levels and body burden of dioxins, dibenzofurans, PCBs, DDE, and HCB in blood and milk in a mother nursing twins over a thirty-eight month period. Chemosphere. 1998;37:9–12. doi: 10.1016/s0045-6535(98)00246-x. [DOI] [PubMed] [Google Scholar]
  • 3.McCready D, Aronson KJ, Chu W, Fan W, Vesprini D, Narod SA, et al. Breast tissue organochlorine levels and metabolic genotypes in relation to breast cancer risk Canada. Cancer Causes and Control. 2004;15:399–418. doi: 10.1023/B:CACO.0000027505.32564.c2. [DOI] [PubMed] [Google Scholar]
  • 4.Younglai EV, Foster WG, Hughes EG, Trim K, Jarrell JF. Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization. Arch Environ Contam Toxicol. 2002;43:121–26. doi: 10.1007/s00244-001-0048-8. [DOI] [PubMed] [Google Scholar]
  • 5.AMAP. AMAP Assessment Report: Artic Pollution Issues. Artic Monitoring and Assessment Program (AMAP). Oslo, Norway, xii+859pp.
  • 6.Position Paper of the American Council on ScienceHealth: Public Health Concerns about Environmental Polychlorinated Biphenyls PCBs. Ecotoxicology and Environmental Safety. 1997;38:71–84. doi: 10.1006/eesa.1997.1565. [DOI] [PubMed] [Google Scholar]
  • 7.Health Protection Branch. Information Letter, Polychlorinated Biphenyls, Department of National Health and Welfare — Committee Report. 1978. [Google Scholar]
  • 8.Health Canada. The Health and Environment Handbook for Health Professionals: Health and the Environment. Ottawa: Health Canada; 1998. [Google Scholar]
  • 9.Health Canada. Assessment of PCBs among 17 Fort Albany First Nation Community Members. First Nations and Inuit Health Branch. 2001. [Google Scholar]
  • 10.Health Canada. Assessment of PCBs among 18 Moose Factory First Nation Community Members. First Nations and Inuit Health Branch. 2001. [Google Scholar]
  • 11.Health Canada. Assessment of PCBs among 21 Cochrane First Nation Community Members. First Nations and Inuit Health Branch. 2001. [Google Scholar]
  • 12.Walker JB, Seddon L, McMullen E, Houseman J, Tofflemire K, Corriveau A, et al. Organochlorine levels in maternal and umbilical cord blood plasma in Arctic Canada. Sci Total Environ. 2003;302:27–52. doi: 10.1016/S0048-9697(02)00319-4. [DOI] [PubMed] [Google Scholar]
  • 13.Woolcott CG, Aronson KJ, Hanna WM, SenGupta SK, McCready DR, Sterns EE, et al. Organochlorines and breast cancer risk by receptor status, tumor size, and grade (Canada). Cancer Causes and Control. 2001;12:395–404. doi: 10.1023/A:1011289905751. [DOI] [PubMed] [Google Scholar]
  • 14.Tsuji LJ, Wainman BC, Martin ID, Weber JP, Sutherland C, Elliott JR, et al. The Mid-Canada Radar Line and First Nations’ People of the James Bay region, Canada: An evaluation using log-linear contingency modeling to analyze organochlorine frequency data. J Environmental Monitoring. 2005;7:1–12. doi: 10.1039/b500524h. [DOI] [PubMed] [Google Scholar]
  • 15.Tsuji LJ, Wainman BC, Weber JP, Sutherland C, Katapatuk B, Nieboer E. Protecting the health of First Nation personnel at contaminated sites: A case study of mid-Canada Radar Line Site 050 in Northern Canada. Arctic. 2005;58(3):233–40. [Google Scholar]
  • 16.Am J Public Health. 1996.
  • 17.Martin M, Richardson JB, Lam KP. Harmonisation of polychlorinated biphenyl (PCB) analyses for ecotoxicological interpretations of southeast Asian environmental media: What’s the problem? Marine Pollution Bull. 2003;46:159–70. doi: 10.1016/S0025-326X(02)00422-8. [DOI] [PubMed] [Google Scholar]
  • 18.Fort Albany First NationWeenusk First Nations, Final Report. Mid Canada Radar Line and Contaminants Project (HQ0600227) 2006. [Google Scholar]
  • 19.Ryan JJ, Dewailly E, Gilman A, Laliberte C, Ayotte P, Rodrigue J. Dioxin-like compounds in fishing people from the Lower North Shore of the St. Lawrence River, Quebec, Canada. Arch Environ Health. 1997;52(4):309–16. doi: 10.1080/00039899709602204. [DOI] [PubMed] [Google Scholar]
  • 20.Saint-Amour D, Roy MS, Bastien C, Ayotte P, Dewailly E, Despres C, et al. Alterations of visual evoked potentials in preschool Inuit children exposed to methylmercury and polychlorinated biphenyls from a marine diet. Neurotoxicology. 2006;27(4):567–78. doi: 10.1016/j.neuro.2006.02.008. [DOI] [PubMed] [Google Scholar]
  • 21.Dallaire F, Dewailly E, Muckle G, Vézina C, Jacobson SW, Jacobson JL, et al. Acute infections and environmental exposure to organochlorines in Inuit infants from Nunavik. Environ Health Perspect. 2004;112(14):1359–64. doi: 10.1289/ehp.7255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E. Plasma concentrations of polychlorinated biphenyls and the risk of breast cancer: A congener-specific analysis. Am J Epidemiol. 2002;155(7):629–35. doi: 10.1093/aje/155.7.629. [DOI] [PubMed] [Google Scholar]
  • 23.Pereg D, Dewailly E, Poirier GG, Ayotte P. Environmental exposure to polychlorinated biphenyl and placental CYP1A1 activity in Inuit women from Northern Quebec. Environ Health Perspect. 2002;110(6):607–12. doi: 10.1289/ehp.02110607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Aronson KJ, Miller AB, Woolcott CG, Sterns EE, McCready DR, Lickley LA, et al. Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk. Cancer Epidemiol Biomarkers Prevent. 2000;9(1):55–63. [PubMed] [Google Scholar]
  • 25.Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E. Risk and aggressiveness of breast cancer in relation to plasma organochlorine concentrations. Cancer Epidemiol Biomarkers & Prevent. 2000;9:161–66. [PubMed] [Google Scholar]
  • 26.Dewailly E, Ayotte P, Bruneau S, Gingras S, Belles-Isles M, Roy R. Susceptibility to infections and immune status in Inuit exposed to organochlorines. Environ Health Perspect. 2000;108(3):205–11. doi: 10.1289/ehp.00108205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lebel G, Dodin S, Ayotte P, Marcoux S, Ferron L, Dewailly E. Organochlorine exposure and the risk of endometriosis. Fertility and Sterility. 1998;69(2):221–28. doi: 10.1016/S0015-0282(97)00479-2. [DOI] [PubMed] [Google Scholar]
  • 28.Ayotte P, Dewailly E, Lambert GH, Perkins SL, Poon R, Feeley M, et al. Biomarker measurements in a coastal fish-eating population environmentally exposed to organochlorines. Environ Health Perspect. 2005;113(10):1318–24. doi: 10.1289/ehp.7970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Jarrell J, Chan S, Hauser R, Hu H. Longitudinal assessment of PCBs and chlorinated pesticides in pregnant women from Western Canada. Environ Health. 2005;4:10. doi: 10.1186/1476-069X-4-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Ayotte P, Muckle G, Jacobson JL, Jacobson SW, Dewailly E. Assessment of pre- and postnatal exposure to polychlorinated biphenyls: Lessons from the Inuit Cohort Study. Environ Health Perspect. 2003;111(9):1253–58. doi: 10.1289/ehp.6054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Cole DC, Sheeshka J, Murkin EJ, Kearney J, Scott F, Ferron LA, Webber JP. Dietary intakes and plasma organochlorine contaminant levels among Great Lakes fish eaters. Arch Environ Health. 2002;57(5):496–509. doi: 10.1080/00039890209601443. [DOI] [PubMed] [Google Scholar]
  • 32.Dallaire F, Dewailly E, Laliberté C, Muckle G, Ayotte P. Temporal trends of organochlorine concentrations in umbilical cord blood of newborns from the Lower North Shore of the St. Lawrence River (Quebec, Canada) Environ Health Perspect. 2002;110(8):835–38. doi: 10.1289/ehp.02110835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Nadon S, Kosatsky T, Przybysz R. Contaminant exposure among women of childbearing age who eat St. Lawrence River sport fish. Arch Environ Health. 2002;57(5):473–81. doi: 10.1080/00039890209601440. [DOI] [PubMed] [Google Scholar]
  • 34.Sandau CD, Ayotte P, Dewailly E, Duffe J, Norstrom RJ. Pentachlorophenol and hydroxylated polychlorinated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Quebec. Environ Health Perspect. 2002;110(4):411–17. doi: 10.1289/ehp.02110411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Muckle G, Ayotte P, Dewailly E, Jacobson SW, Joseph JL. Determinants of polychlorinated biphenyls and methylmercury exposure in Inuit women of childbearing age. Environ Health Perspect. 2001;109(9):957–63. doi: 10.1289/ehp.01109957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Muckle G, Ayotte P, Dewailly E, Jacobson SW, Jacobson JL. Prenatal exposure of the Northern Quebec Inuit infants to environmental contaminants. Environ Health Perspect. 2001;109(12):1291–99. doi: 10.1289/ehp.011091291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Longnecker M, Ryan JJ, Gladen BC, Schecter AJ. Correlations among human plasma levels of dioxin-like compounds and polychlorinated biphenyls (PCBs) and implications for epidemiologic studies. Arch Environ Health. 2000;55(3):195–200. doi: 10.1080/00039890009603406. [DOI] [PubMed] [Google Scholar]
  • 38.Sandau CD, Ayotte P, Dewailly E, Duffe J, Norstrom RJ. Analysis of hydroxylated metabolites of PCBs (OH-PCBs) and other chlorinated phenolic compounds in whole blood from Canadian Inuit. Environ Health Perspect. 2000;108(7):611–16. doi: 10.1289/ehp.00108611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Kearney JP, Cole DC, Ferron LA, Weber JP. Blood PCB, p,p’-DDE, and mirex levels in Great Lakes fish and waterfowl consumers in two Ontario communities. Environ Res. 1999;80(2Pt2):S138–S149. doi: 10.1006/enrs.1998.3927. [DOI] [PubMed] [Google Scholar]
  • 40.Newsome WH, Ryan JJ. Toxaphene and other chlorinated compounds in human milk from northern and southern Canada: A comparison. Chemosphere. 1999;39(3):519–26. doi: 10.1016/S0045-6535(98)00600-6. [DOI] [PubMed] [Google Scholar]
  • 41.Can J Public Health. 1998.
  • 42.Ayotte P, Dewailly E, Ryan JJ, Bruneau S, Lebel G. PCB and dioxin-like compounds in plasma of adult Inuit living in Nunavik (Arctic Quebec). Chemosphere. 1997;34(5–7):1459–68. doi: 10.1016/S0045-6535(97)00442-6. [DOI] [PubMed] [Google Scholar]
  • 43.Newsome WH, Darvies D, Dourcet J. PCB and organochlorine pesticides in Canadian human milk–1992. Chemosphere. 1995;30(11):2143–53. doi: 10.1016/0045-6535(95)00086-N. [DOI] [PubMed] [Google Scholar]
  • 44.Health Canada. Q’s & A’s on PCBs in salmon and food safety. 2004. [Google Scholar]
  • 45.Frame GM, Cochran JW, Boewadt SS. Complete PCB congener distributions for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congenerspecific analysis. J High Resolution Chromatography. 1996;19:657–68. doi: 10.1002/jhrc.1240191202. [DOI] [Google Scholar]

Articles from Canadian Journal of Public Health = Revue Canadienne de Santé Publique are provided here courtesy of Springer

RESOURCES