Abstract
The incidence of fungal infections has been steadily increasing in recent years. Systemic mycoses are characterized by the highest mortality. At the same time, the frequency of infections caused by drug-resistant strains and new pathogens e.g., Candida auris increases. An alternative to medicines may be essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are plants from the Lamiaceae family. In this review are presented antifungal activities of essential oils from 72 Lamiaceae plants. More than half of these have good activity (minimum inhibitory concentrations (MICs) < 1000 µg/mL) against fungi. The best activity (MICs < 100) have essential oils from some species of the genera Clinopodium, Lavandula, Mentha, Thymbra, and Thymus. In some cases were observed significant discrepancies between different studies. In the review are also shown the most important compounds of described essential oils. To the chemical components most commonly found as the main ingredients include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20).
Keywords: Labiatae, fungi, Aspergillus, Cryptococcus, Penicillium, dermatophytes, β-caryophyllene, sesquiterpene, monoterpenes, minimal inhibitory concentration (MIC)
1. Introduction
Fungal infections belong to the most often diseases of humans. It is estimated that about 1.7 billion people (25% of the population) have skin, nail, and hair fungal infections [1]. The development of most of these infections is affected by dermatophytes, namely Trichophyton spp., Microsporum spp., and Epidermophyton spp. [2]. Simultaneously, mucosal infections of the oral and genital tracts caused by Candida spp. are very common. About 0.13 billion of women suffer from vulvovaginal candidiasis. On the other hand, oral candidiases are common in babies and denture wearers. Fungi also cause life-threatening systemic infections, with mortality reaching >1.6 million, which is >3-fold more than malaria [3]. Among life-threatening fungal infections prevail cryptococcosis (Cryptococcus neoformans) with >1,000,000 cases and mortality rate 20–70%, candidiasis (Candida albicans) with >400,000 cases and mortality rate 46–75%, pneumocystosis (Pneumocystis jirovecii) with >400,000 cases and mortality rate 20–80%, and aspergillosis (Aspergillus fumigatus) with >200,000 cases and mortality rate 30–95% [1,4,5]. In Table 1 are presented diseases caused by some of the most often fungal pathogens among people.
Table 1.
Superficial mycoses |
|
Cutaneous and subcutaneous mycoses |
|
Endemic mycoses |
|
Opportunistic mycoses |
|
The big problem is growing drug-resistance amid fungi. Among Candida and Aspergillus species is observed resistance to azoles, e.g., to fluconazole, voriconazole, and posaconazole. Some Candida species, especially C. glabrata and C. parapsilosis, can be echinocandin- and multidrug-resistant [8,9]. Acquired resistance to echinocandins has also been reported for yeasts C. albicans, C. tropicalis, C. krusei, C. kefyr, C. lusitaniae, and C. dubliniensis [10]. More than 3% of Aspergillus fumigatus isolates are resistant to one or more azoles [11]. Polyene resistance mainly concerns amphotericin B. Resistance to this drug is observed in Fusarium spp., Trichosporon spp., Aspergillus spp., and Sporothrix schenckii [12,13]. Resistance to amphotericin B has also been reported for C. albicans, C. glabrata, and C. tropicalis [14,15,16]. Cultures of some Candida species and Cryptococcus neoformans are presented in Figure 1.
The new epidemiological problem is C. auris, a multidrug-resistant organism first described in Japan in 2009 [17]. Recently, C. auris has been reported from 36 countries from six continents [18]. About 30% of isolates demonstrate reduced susceptibility to amphotericin B, and 5% can be resistant to the echinocandins [19,20]. The estimated mortality from C. auris fungemia range from 28% to 60% [21].
Fundamental issues are also the costs of treatment and hospitalization of patients with invasive fungal diseases. According to Drgona et al., all costs range from around €26,000 up to over €80,000 per patient [5].
Therefore, all time, new treatments for fungal infections are being sought. One option may be to apply natural products having antifungal activity. Among these, significant importances have essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are among other plants from the Lamiaceae family.
In this review are presented antifungal activities of essential oils from seventy-two (72) plants of the Lamiaceae family. Moreover, are shown the most important compounds of these essential oils. For objective comparison of results, in this paper were included only antifungal studies specifying the minimum inhibitory concentrations (MICs) for essential oils. The MIC (expressed in µg/mL) is the lowest concentration of an antimicrobial agent in which no growth of a microorganism is observed in an agar or broth dilution susceptibility test [22,23,24].
2. Components of Essential Oils of Lamiaceae Family
The family Lamiaceae or Labiatae contains many valuable medicinal plants. In the family are 236 genera and between 6900 and 7200 species. To the most abundant genera belong Salvia (900 species), Scutellaria (360), Stachys (300), Plectranthus (300), Hyptis (280), Teucrium (250), Vitex (250), Thymus (220), and Nepeta (200). Lamiaceae plants rich in essential oils have great worth in natural medicine, pharmacology, cosmetology, and aromatherapy [25]. The essential oils are mostly present in leaves, however, they can be found in flowers, buds, fruits, seeds, rind, wood, or roots [26]. Essential oils are mixtures of volatile compounds, which are secondary plant metabolites. They play a role in the defense system of higher plants [27]. Essential oils may contain over 300 different compounds, mainly of molecular weight below 300 [28]. Some oils, e.g., obtained from Lavandula, Geranium, or Rosmarinus, contain 450 to 500 chemicals [29]. Among the active compounds of essential oils are various chemical classes, e.g., alcohols, ethers, aldehydes, ketones, esters, phenols, terpenes (monoterpenes, sesquiterpenes), and coumarins [30,31].
In Table 2 are presented the main chemical components of essential oils of selected Lamiaceae family plants. Plant names were unified according to The Plant List [32], however synonyms used in the literature were also left. Chemical component names were unified, according to PubChem [33].
Table 2.
Essential Oil | Main Chemical Components | References |
---|---|---|
Aeollanthus suaveolens Mart. ex Spreng. = A. heliotropioides Oliv. | Linalool (38.5%), α-Farnesene (25.1%), Massoialactone (4.5%), β-Caryophyllene (3.6%), Germacrene D (2.0%) | [34] |
Agastache rugosa (Fisch. and C.A.Mey.) Kuntze | Methyl chavicol (93.45%), Methyl eugenol (2.48–50.51%), Estragole (8.55%), Eugenol (0.15–7.54%), Thymol (3.62%), Pulegone (2.56%), Limonene (2.49%), β-Caryophyllene (1.19–2.38%), | [35,36] |
Ballota nigra subsp. foetida (Vis.) Hayek | β-Caryophyllene (21.8–22.6%), Caryophyllene oxide (18.0–20.5%), Germacrene D (13.1–16.5%), 2-Hexenal (6.5–11.2%), 1-Octen-3-ol (3.5–5.5%), β-Pinene (1.6–4.4%), Limonene (2.2–4.1%), Linalool (1.2–3.5%), β-Bourbonene (1.5–2.7%), α-Humulene (2.2–2.6%), α-Copaene (1.5–2.2%) | [37] |
Clinopodium dalmaticum (Benth.) Bräuchler and Heubl = Micromeria dalmatica Benth. | Piperitenone oxide (41.77%), Pulegone (15.94%), Piperitenone (10.19%), Limonene (5.77%), Piperitone (3.39%), α-Pinene (2.9%), β-Pinene (2.16%), | [38] |
Clinopodium nepeta subsp. glandulosum (Req.) Govaerts = Calamintha glandulosa (Req.) Bentham = Calamintha officinalis Moench | Piperitenone (trace–42.6%), Piperitone (0.0–40.3%), Carvone (1–38.7%), Pulegone (0.6–9.7%), Shisofuran (0.1–9.7%), Menthone (trace–8.3%), Dihydrocarveol acetate (0.1–7.6%), Dihydrocarveol (0–6.9%),1,8-Cineole (0.0–6.4%), cis-Carvyl acetate (0.0–6.1%), | [39,40] |
Clinopodium nepeta (L.) Kuntze = Calamintha nepeta (L.) Savi | Pulegone (2.4–84.7%), Isomenthone (1.9–51.3%), Menthone (0.0–35.4%), Crysanthenone (1.3–33.9%), 1,8-Cineole (0.3–21.4%), Piperitenone oxide (0.0–19.1%), Limonene (0.0–13.6%), Isopulegone (0.0–9.4%), Piperitenone (0.0–7.7%), Cinerolone (0.0–5.8%), Isopulegol (0.0–4.1%), Isomenthol (0.0–3.9%), β-Caryophyllene (0.0–3.8%), 3-Octanol (0.0–3.0%), β-Pinene (0.0–2.3%), cis-Piperitone oxide (0.0–2.2%) | [41,42] |
Clinopodium thymifolium (Scop.) Kuntze = Micromeria thymifolia (Scop.) Fritsch | Pulegone (32.81%), Piperitenone (25.7%), Piperitone (11.71%), Isomenthone (4.98%), Limonene (2.4%), β-Caryophyllene (2.39%) | [38] |
Clinopodium umbrosum (M.Bieb.) Kuntze = Calamintha umbrosa Benth. | β-Caryophyllene (13.9%), Germacrene D (11.6%), Spathulenol (10.6%) | [43] |
Dracocephalum heterophyllum Benth. | Citronellol (74.2%), Geraniol (2.8%), cis-Rose oxide (2.2%), Citronellyl acetate (1.7%) | [44] |
Hymenocrater longiflorus Benth. | δ-Cadinol (18.49%), α-Pinene (10.16%), p-Menth-1-en-8-ol (9.82%), Hedycaryol (6.42%), β-Eudesmol (4.56%), Spathulenol (4.14%), δ-Cadenene (3.02%), Linalool (2.98%), Caryophyllene oxide (2.81%), β-Bourbonene (2.72%), β-Caryophyllene (2.29%) | [45] |
Hyptis ovalifolia Benth. | (R)-6-[(Z)-1-Heptenyl]-5,6-dihydro-2H-pyran-2-one (60.0%), γ-Cadinene (6.6%), Viridiflorol (6.08%), Caryophyllene oxide (4.98%), γ-Elemene (4.38%) | [46] |
Hyssopus officinalis L. | Pinocamphone (5.78–50.77%), 1,8-Cineole (0.47–36.43%), Pinocarvone (0.44–23.4%), β-Pinene (13.38–19.55%), Isopinocamphone (15.32%), α-Phellandrene (trace–3.74%), Sabinene (1.7–2.9%), Myrtenol (1.39–2.7%), α-Pinene (1.01–2.57%), cis-Sabinene hydrate (0.0–2.5%), Myrtenyl methyl ether (1.64–2.1%) | [44,47,48] |
Lavandula angustifolia Mill. | Linalool (20.18–45.8%), Linalyl acetate (4.6–43.13%), Lavandulyl acetate (0–16.01%), 1,8-Cineole (0.6–13.1%), Camphor (0.52–11.2%), Borneol (0.76–7.5%), Terpinen-4-ol (1.05–5.8%), β-Caryophyllene (0.6–4.95%), Lavandulol (0–3.09%), β-Ocimene (1.5–2.84%), Myrcene (0.4–2.41%) | [49,50,51] |
Lavandula multifida L. | Carvacrol (41.5–42.8%), β-Ocimene (27.0–27.4%), Myrcene (5.5–5.7%), β-Bisabolene (5.0–5.6%), Terpinolene (2.1–3.1%), α-Farnesene (2.6–2.8%) | [52] |
Lavandula pedunculata (Mill.) Cav. | Fenchone (6.2–44.5%), 1,8-Cineole (5.1–34.3%), Camphor (8.7–34.0%), β-Pinene (1.4–9.0%), α-Pinene (2.5–8.0%), Camphene (0.8–6.1%), Linalool (0.5–3.8%), Bornyl acetate (0.9–3.5%), Borneol (0.6–3.4%), α-Cadinol (0.2–3.1%), cis-Verbenol (0.2–2.8%), Myrtenal (0.8–2.4%), trans-Verbenol (1.1–2.0%) | [53] |
Lavandula stoechas L. | Fenchone (0.0–36.2%), 1,8-Cineole (0–33.9%), Camphor (2.2–18%), α-trans-Necrodyl acetate (0.0–17.4%), Lavandulyl acetate (0.0–7.6%), α-trans-Necrodol (0.0–7.1%), Linalool (0.0–6.2%), α-Copaene-8-ol (0.7–4.7%), Viridiflorol (1.4–3.6%), α-Pinene (1.1–3.2%), 2,3,4,4-Tetramethyl-5-methylene-cyclopenten-1-one (0.0–2.8%), Lyratyl acetate (0–2.4%), Myrtenyl acetate (1.0–2.0%), 1,1,2,3-Tetramethyl-4-hidroximethyl-2-cyclopentene (0.0–2.0%) | [51,54] |
Lavandula viridis L’Her. | 1,8-Cineole (34.5–42.2%), Camphor (13.4%), α-Pinene (9.0%), Linalool (6.7–7.9%) | [55] |
Lepechinia mutica (Benth.) Epling | Δ3-Carene (8.69–24.23%), Thujopsan-2-α-ol (0.0–11.9%), Shyobunol (0.0–10.8%), β-Pinene (3.78–7.96%), δ-Cadinene (0.0–6.96%), Globulol (0.0–5.91%), Valerianol (0.0–5.19%), epi-Cubebol (0.0–4.62%), β-Caryophyllene (0.0–4.55%), Limonene (3.79–4.47%), α-Eudesmol (0.0–4.47%), α-Phellandrene (0.34–3.8%), β-Phellandrene (3.79%), γ-Cadinene (0.0–2.86%), α-Pinene (1.23–2.68%), o-Cymene (0.0–2.04%), Isobornyl acetate (0.0–2.2%) | [56,57] |
Marrubium vulgare L. | γ-Eudesmol (11.93%), β-Citronellol (9.9%), Citronellyl formate (9.5%), Germacrene-D (9.37%), Geranyl formate (6.25%), Geranyl tiglate (5.53%), Ledene (5.35%), 1,8-Cineole (3.72%), Neryl acetate (3.41%), δ-Cadinene (3.3%), Cyclononasiloxane octadecamethyl (3.08%), Geraniol (2.74%), N-trimethylsilyl trifluoroacetamide (2.35%), Eicosamethylcyclodecasiloxane (2.29%), α-Thujone (2.29%), trans-Caryophyllene (2.15%) | [58] |
Melissa officinalis L. | Geranial (23.4%), Neral (16.5%), Citronellal (13.7%), β-Caryophyllene (4.6%), Geraniol (3.4%), Isomenthone (3.0%), Menthol (2.9%), Methyl citronellate (2.7%), Germacrene D (2.4%), Limonene (2.2%) | [59] |
Mentha cervina L. | Isomenthone (8.7–77%), Pulegone (12.9–75.1%), Menthone (0.8–4.4%), Limonene (0.8–4.3%) | [60] |
Mentha × piperita L. | Menthol (34.82–43.85%), Menthone (9.1–31.68%), Carvone (0.0–19.54%), Menthyl acetate (1.64–17.4%), Anethole (0.0–9.54%), Isomenthone (4.71–8.08%), Limonene (0.86–6.9%), Menthofuran (6.8%), Eucalyptol (4.36–6.21%), 1,8-Cineole (5.6%), Pulegone (0.47–5.15%), Isomenthol acetate (4.56–4.91%), Isomenthol (0.68–3.58%), Sabinene (0.0–2.5%) | [61,62,63,64] |
Mentha pulegium L. | Pulegone (2.3–70.66%), Piperitone (0.24–38.0%), Piperitenone (1.58–33.0%), Neomenthol (11.21%), α-Terpineol (0.0–4.7%), 1,8-Cineole (0.11–4.0%), Piperitenone oxide (0.0–3.4%), Menthone (2.63–3.0%), Borneol (0.0–2.9%), Isopulegone (2.33%) | [65,66] |
Mentha requienii Benth. | Pulegone (77.6%), Isomenthone (18.2%), Limonene (1.76%) | [67] |
Mentha spicata L. | Pulegone (0.0–78.7%), Carvone (0.0–59.12%), Menthol (0.0–39%), Menthone (5.1–21.9%), Neomenthol (11.2%), Menthyl acetate (0.0–6.9%), Dihydrocarveol (0.0–6.27%), Limonene (1.0–5.8%), 1,8-Cineole (3.0–5.42%), cis-Dihydrocarvone (0.0–4.9%), cis-Carveol (0.0–3.9%), β-Caryophyllene (0.7–2.8%), β-Myrcene (0.3–2.3%) | [49,51,61,68] |
Mentha suaveolens Ehrh. | Piperitenone oxide (0.0–87.25%), Carvone (0.0–50.59%), Pulegone (0.0–50.0%), Demelverine (0.0–43.46%), Cinerolone (0.0–38.79%), p-Cymenene (0.0–35.22%), Limonene (0.0–31.25%), Piperitone oxide (0.0–26.0%), p-Cymenol-8 (0.0–20.6%), Spathulenol (0.0–18.35%), β-Caryophyllene oxide (0.3–17.25%), α-Pharnesene (0.0–16.54%), α-Cadinol (0.09–10.69%), Calamenene (0.44–10.63%), α-Cubenene (0.0–10.08%), α-Caryophyllene (2.0–9.8%), Veridiflorol (0.0–7.59%), Cubenol (0.0–7.46%), Verbenone (0.0–6.56%), δ-Fenchol (0.3–5.9%), Menthone (0.0–5.7%), Borneol (0.12–5.6%), Citronellyl acetate (0.0–5.45%), δ-Cadinene (0.0–4.89), Eucalyptol (0.0–4.21%), cis-8-Menthene (0.3–4.2%), Fenchone (0.1–3.6%), Geraniol (1.0–3.4%), τ-Muurolol (0.0–3.29%), α-Pinene (0.1–2.7%), β-Caryophyllene (2.56%), cis-Carveol (2.31%), Germacrene D (0.0–2.04%) | [69,70,71] |
Micromeria albanica (K. Maly) Silic | Piperitenone oxide (38.73%), Pulegone (13.43%), Piperitenone (9.72%), Piperitone (5.62%), Limonene (3.2%), α-Copaene (2.12%) | [38] |
Moluccella spinosa L. | α-Pinene (26.6%), Caryophyllene oxide (16.8%), β-Caryophyllene (8.6%), α-Thujene (5.9%), Nonacosane (5.5%), Heptacosane (5.3%), Ethylbenzaldehyde (3.4%), Pentacosane (2.5%), Tetracosane (2.3%), Sabinene (2.2%) | [72] |
Nepeta ciliaris Benth. = Nepeta leucophylla Benth. | Caryophyllene oxide (14.8–26.3%), β-Caryophyllene (18.0%), β-Sesquiphellandrene (15.0%), Iridodial b-monoenol acetate (9.8%) | [43] |
Nepeta clarkei Hook. f. | β-Sesquiphellandrene (22.0%), Actinidine (10.0%), Germacrene D (8.0%) | [43] |
Ocimum basilicum L. | Linalool (18.0–68.0%), Methyl chavicol (0.0–57.3%), Geraniol (0.0–16.5%), 1,8-Cineole (1.4–15.1%), p-Allylanisole (0.2–13.8%), Eugenol (0.0–12.32%), Limonene (0.2–10.4%), β-Farnesene (0.0–6.3%), τ-Cadinol (trace–5.8%), β-Caryophyllene (0.0–4.5%), α-Bergamotene (0.0–4.34%), α-Cadinol (0.0–4.05%), β-Elemene (0.0–3.62%), δ-Cadinene (0.0–3.6%), Germacrene D (0.0–3.5%), γ-Cadinene (0.0–2.8%), Camphor (0.0–2.4%), β-Myrcene (0.2–2.3%), Terpinen-4-ol (0.0–2.2%), Guaiene (0.0–2.1%), Estragole (0.0–2.03%), Isolimonene (0.0–2.0%), α-Bulnesene (0.0–2.0%), γ-Terpinene (0.0–2.0%) | [64,68,73,74,75,76] |
Ocimum × africanum Lour. = Ocimum × citriodorum | Nerol (23.0%), Geranial (15.77%), Methyl chavicol (9.45%), Linalool (9.42%), β-Bisabolenene (8.31%), β-Caryophyllene (7.8%), Geraniol (5.2%), Neral (4.93%), α-Bergamotene (3.52%), α-Bisabolene (2.29%), β-Cubebene (2.26%) | [76] |
Ocimum campechianum Mill. = Ocimum micranthum Willd. | Eugenol (46.55%), β-Caryophyllene (11.94%), β-Elemene (9.06%), 1,8-Cineole (5.35%), δ-Elemene (4.17%), Bicyclogermacrene (2.9%), cis-Ocimene (2.69%), allo-Ocimene (2.42%), α-Humulene (2.4%) | [73] |
Ocimum forskolei Benth. | endo-Fenchol (31.1%), τ-Cadinol (12.2%), Fenchone (12.2%), Camphor (6.2%), Linalool (5.7%), Methyl(E)-cinnamate (5.1%), α-Bergamotene (3.1%), γ-Cadinene (2.9%), endo-Fenchyl acetate (2.8%), Limonene (2.5%) | [77] |
Ocimum gratissimum L. | Eugenol (7.42–57.82%), Ethyl cinnamate (0.0–34.0%), Linalool (30.0–32.95%), 1,8-Cineole (6.5–21.91%), α-Bisabolene (0.0–17.19%), Camphor (3.8–11.97%), Thymol (0.0–9.8%), α-Cadinol (5.18%), Germacrene D (0.79–4.76%), α-Terpineol (3.36%), γ-Terpinene (0.0–3.06%), β-Caryophyllene (1.68–3.03%), p-Cymene (0.0–2.11%) | [78,79,80] |
Ocimum tenuiflorum L. = Ocimum sanctum L. | Eugenol (0.0–61.3%), Methyl chavicol (0.0–44.63%), Linalool (0.26–21.84%), α-Caryophyllene (3.3–11.89%), Germacrene D (0.37–9.14%), Carvone (0.0–6.31%), Limonene (0.71–4.39%), β-Caryophyllene (1.4–3.3%), α-Cubebene (0.0–2.54%), Carvacrol (0.0–2.04%) | [81,82,83] |
Origanum compactum Benth. | Carvacrol (43.26%), Thymol (21.64%), p-Cymene (13.95%), γ-Terpinene (11.28%) | [84] |
Origanum majorana L. | Terpinen-4-ol (6.66–33.84%), Sabinene hydrate (2.31–28.33%), 1,8-Cineole (0.0–20.9%), Carvacrol (0.0–20.8%), γ-Terpinene (7.59–19.5%), Thymol (0.0–12.18%), α-Terpinene (3.03–10.08%), β-Phellandrene (1.96–8.0%), p-Cymene (2.45–7.84%), Sabinene (3.2–6.7%), Limonene (0.0–5.3%), α-Terpineol (2.7–4.7%), Linalool (0.0–4.4%), Terpinolene (0.98–3.76%), Linalool acetate (1.82–3.2%), Geraniol (2.7%), β-Caryophyllene (1.7–2.38%), α-Pinene (0.0–2.0%) | [62,68,85,86,87] |
Origanum vulgare L. | Pulegone (0.0–77.45%), Carvacrol (0.21–65.9%), Cymenol (0.0–58.6%), Thymol (3.7–45.22%), o-Cymene (0.0–14.33%), Terpinen-4-ol (0.03–12.55%), β-Terpineol (0.0–10.46%), p-Cymene (0.5–9.3%), γ-Terpinene (3.1–9.12%), Borneol (0.0–6.1%), α-Pinene (0.0–5.1%), Menthone (0.0–4.86%), Linalool (0.0–4.8%), β-Bisabolene (0.0–4.5%), Caryophyllene oxide (0.0–4.5%), Sabinene (0.0–3.91%), β-Phellandrene (0.0–3.74%), β-Caryophyllene (00–3.7%), α-Terpineol (0.0–3.35%), Sabinene hydrate (0.0–3.31%), α-Cadinol (0.0–3.3%), α-Terpinene (1.63–3.1%), Eucalyptol (0.0–2.8%), β-Ocimene (0.0–2.77%), cis-Isopulegone (2.22%), β-Myrcene (0.0–2.2%), Anisole (0.0–2.13%), Piperitenone (0.0–2.13%), Germacrene D (0.0–1.23%) | [49,62,64,68,74,88,89,90,91] |
Pogostemon cablin (Blanco) Benth. | Patchouli alcohol (38.3–44.52%), α-Bulnesene (0.0–13.3%), δ-Guaiene (12.64%), α-Guaiene (8.89–9.6%), Pogostol (0.0–6.2%), Seychellene (5.8%), α-Bergamotene (5.76%), Eremophilene (4.34%), β-Guaiene (3.54%), β-Caryophyllene (1.93–3.0%), β-Patchoulene (1.8–2.77%) | [92,93] |
Pogostemon heyneanus Benth. | Acetophenone (51.0%), Patchouli alcohol (14.0%), Nerolidol (5.4%), β-Pinene (5.3%), Limonene (4.0%), Benzoyl acetone (3.1%), α-Pinene (2.4%), β-Caryophyllene (2.0%) | [93] |
Premna microphylla Turcz. | Blumenol C (49.7%), β-Cedrene (6.1%), Limonene (3.8%), α-Guaiene (3.3%), Cryptone (3.1%), α-Cyperone (2.7%), cis-14-nor-Muurol-5-en-4-one (2.4%) | [94] |
Rosmarinus officinalis L. | α-Pinene (5.4–37.9%), 1,8-Cineole (0.88–26.54%), Eucalyptol (0.0–24.34%), Limonene (0.0–21.7%), Camphor (2.45–21.6%), Myrcene (0.9–20.18%), Borneol (0.0–18.08%), Bornyl acetete (0.92–14.9%), Verbenone (1.36–12.0%)Camphene (1.7–11.38%), Linalool oxide (0.0–10.8%), β-Pinene (0.0–6.95%), β-Caryophyllene (0.0–6.3%), Linalool (00–5.32%), o-Cymene (0.0–4.43%), p-Cymene (0.0–4.34%), β-Phellandrene (0.0–3.9%), Sabinene (0.0–3.72%), α-Terpineol (1.19–3.36%), Isobornyl acetate (0.0–3.3%), Carvacrol (0.0–3.15%), Verbenol (0.7–3.03%), α-Humulene (0.0–2.6%), α-Terpinene (0.21–2.4%), Terpinen-4-ol (0.34–2.15%) | [51,62,68,87,91,95,96,97,98] |
Salvia fruticosa Miller | 1,8-Cineole (16.9–54.4%), Camphor (0.6–18.34%), Manool (0–11.2%), β-Thujone (0.6–9.0%), β-Pinene (0.0–9.0%), Sabinene (0.0–8.6%), Viridiflorol (0.0–8.4%)β-Caryophyllene (1.53–8.3%), α-Thujone (trace–8.1%), Borneol (0.0–8.0%), Camphene (0.0–7.0%), α-Pinene (1.5–6.85%), Bornyl acetate (0.0–6.8%), α-Terpineol (trace–6.7%), Myrcene (1.3–5.2%), Caryophyllene oxide (0.0–3.9%), α-Terpinyl acetate (0.0–2.2%), α-Humulene (0.16–1.5%) | [49,51,99] |
Salvia mirzayanii Rech. f. and Esfand | 1,8-Cineole (41.2%), Linalool acetate (10.7%), α-Terpinyl acetate (5.7%), Myrcene (4.7%), Geranyl acetate (3.7%), γ-Cadinene (3.3%), Linalool (2.5%), Neryl acetate (2.3%) | [100] |
Salvia officinalis L. | 1,8-Cineole (4.2–50.3%), Camphor (8.8–25.0%), α-Thujone (1.2–19.9%), Viridiflorol (0.5–17.5%), β-Thujone (0.1–9.9%), β-Pinene (0.8–7.3%), β-Caryophyllene (1.4–5.5%), Borneol (1.5–5.4%), α-Pinene (0.5–4.8%), Camphene (0.2–3.9%), Bornyl acetate (0.2–3.3%), α-Terpineol (0.0–3.1%), α-Terpenyl acetate (1.4–2.9%), α-Humulene (0.4–2.6%),α-Farnesene (0.0–2.5%), Eicosane (0.0–2.0%) | [96,101] |
Salvia sclarea L. | Linalyl acetate (84%), Caryophyllene oxide (24.1%), Linalool (13.6%), 1H-Naphtho(2,1,6)pyran (8.6%), Sclareol (11.5%), Spathulenol (11.4%), β-Caryophyllene (5.1%) | [85,102] |
Satureja hortensis L. | Thymol (23.12–29.0%), Carvacrol (24.5–26.5%), γ-Terpinene (20.72–22.6%), p-Cymene (6.3–9.3%), α-Terpinene (2.2–2.93%), α-Pinene (2.6–2.91%), β-Pinene (0.92–2.7%), Limonene (0.0–2.55%), β-Bisabolene (0.2–2.2%) | [103,104] |
Satureja montana L. | Carvacrol (47.1%), p-Cymene (9.0%), γ-Terpinene (6.1%), β-Caryophyllene (3.6%), Linalool (3.1%), Thymol (2.6%), Borneol (2.1%) | [68] |
Satureja thymbra L. | Thymol (25.16–44.5%), γ-Terpinene (11.1–39.23%), p-Cymene (7.17–21.7%), Carvacrol (4.18–5.3%), Carvacrol methyl ether (0.1–3.33%), α-Terpinene (1.0–3.26%), β-Caryophyllene (1.2–2.76%), Caryophyllene oxide (0.32–2.0%) | [51,105] |
Stachys cretica L. | Germacrene D (12.9–20.3%), β-Caryophyllene (0.9–9.5%), α-Pinene (0.7–8.6%), Octacosane (0.0–7.2%), β-Pinene (1.5–6.2%), Linalyl acetate (0.0–5.2%), Nonacosane (0.4–4.9%), 9-Geranyl-p-cymene (0.0–4.9%), Heptacosane (0.3–4.8%), cis-Chrysanthenyl acetate (0.0–4.8%), β-Farnesene (3.1–4.0%), Hexadecanoic acid (1.3–3.5%), Caryophyllene oxide (0.5–2.9%), β-Bisabolene (1.6–2.8%), Linalool (0.0–2.6%), Pentacosane (0.0–2.5%), Sesquisabinene (2.1%), Geranyl acetate (0.0–2.1%) | [106] |
Stachys officinalis (L.) Trevis | Germacrene D (19.9%), β-Caryophyllene (14.1%), α-Humulene (7.5%), δ-Cadinene (4.0%), β-Bourbonene (3.8%), α-Selinene (3.4%), γ-Muurolene (3.2%), Oct-1-en-3-ol (2.9%), Caryophyllene oxide (2.5%), Hexadecanoic acid (2.4%), β-Selinene (2.1%), γ-Cadinene (2.0%), τ-Muurolol (2.0%) | [107] |
Stachys pubescens Ten. | Germacrene (22.4%), δ-Cadinene (19.7%), 2,6-Octadien (11.5%), Linalool (9.7%), Limonene (6.3%), δ-Elemene (5.4%), β-Ocimene (2.8%), α-Terpinene (2.7%), 2,6-Octadienal (2.1%) | [108] |
Teucrium sauvagei Le Houerou | β-Eudesmol (28.8%), τ-Cadinol (17.5%), α-Thujene (8.7%), γ-Cadinene (5.6%), Sabinene (4.8%), β-Selinene (4.2%), Limonene (2.8%), γ-Selinene (2.8%), α-Selinene (2.8%), δ-Cadinene (2.2%), Terpinen-4-ol (2.2%), p-Cymene (2.0%), | [109] |
Teucrium yemense Deflers. | Caryophyllene oxide (4.3–20.1%), 7-epi-α-Selinene (1.3–20.1%), β-Caryophyllene (11.2–19.1%), α-Cadinol (2.0–9.5%), α-Pinene (2.3–6.6%), δ-Cadinene (0.4–6.5%), α-Humulene (4.0–6.4%), τ-Cadinol (2.0–5.7%), γ-Selinene (0.4–5.5%), τ-Muurolol (0.6–4.9%), Shyobunol (0.0–4.6%), Valencene (0.0–3.7%), Ledol (0.5–3.6%), cis-Sesquisabinene hydrate (0.9–3.4%), β-Pinene (1.1–3.1%), Germacrene D-4-ol (0.0–3.1%), γ-Cadinene (0.0–2.7%), β-Selinene (0.3–2.5%), Alloaromadendrene (trace–2.2%) | [77] |
Thymbra capitata (L.) Cav. = Thymus capitatus (L.) Hoffmanns. and Link = Coridothymus capitatus (L.) Rchb.f. Solms | Carvacrol (35.6–75.0%), Thymol (0.1–29.3%), p-Cymene (5.0–21.0%), γ-Terpinene (4.0–12.3%), α-Terpinene (1.0–3.0%), β-Myrcene (0.8–3.0%), Linalool (0.5–2.9%), β-Caryophyllene (0.2–2.5%) | [51,110,111,112] |
Thymbra spicata L. | Carvacrol (20.1–64.0%), γ-Terpinene (11.6–31.2%), p-Cymene (9.6–26.0%), α-Terpinene (1.2–10.1%), β-Myrcene (0.9–7.7%), Thujene (trace–5.2%), β-Caryophyllene (0.5–5.1%) | [51,113,114] |
Thymus bovei Benth. | Geraniol (35.38%), α-Citral (20.37%), β-Citral (14.76%), Nerol (7.38%), 3-Octanol (4.38%) | [115] |
Thymus daenensis Celak. | Carvacrol (31.46%), α-Terpineol (22.95%), Thymol (20.2%), Camphene (6.27%), 2,6-Octadien (2.22%), Borneol (2.17%), Cyclohexanone (2.1%) | [108] |
Thymus kotschyanus Boiss. and Hohen. | Thymol (46.72%), Benzene (6.88%), Carvacrol (3.73%), γ-Terpinene (3.58%), β-Caryophyllene (3.39%), Linalool (2.88%), Phenol (2.61%), Borneol (2.51%), Isopropyl (2.07%) | [108] |
Thymus mastichina (L.) L. | 1,8-Cineole (67.4%), Linalool (4.3%), β-Pinene (4.0%), α-Terpineol (3.5%), α-Pinene (3.0%), Sabinene (2.4%) | [116] |
Thymus migricus Klokov et Des.-Shost. | Thymol (44.9%), Geraniol (10.8%), γ-Terpinene (10.3%), Citronellol (8.5%), p-Cymene (7.2%) | [117,118] |
Thymus pulegioides L. | Thymol (26.0%), Carvacrol (21.0%), γ-Terpinene (8.8%), p-Cymene (7.8%), Octan-3-one (3.9%), Camphor (3.9%), β-Bisabolene (3.0%), Borneol (2.9%), Oct-1-en-3-ol (2.0%) | [119] |
Thymus schimperi Ronniger | Carvacrol (13.91–39.07%), Thymol (11.53–34.66%), o-Cymene (18.72–27.06%), γ-Terpinene (4.13–13.73%), Linalool (3.34–3.59%), 3-Octanone (1.05–2.67%), α-Terpinene (1.67–2.37%) | [120] |
Thymus serpyllum L. | Thymol (52.6%), p-Cymene (15.3%), β-Caryophyllene (6.8%), Sabinene hydrate (3.8%), γ-Terpinene (2.9%), Terpinen-4-ol (2.4%) | [68] |
Thymus striatus Vahl. | Thymol (59.5%), γ-Terpinene (11.6%), p-Cymene (6.4%), Carvacrol methyl ether (5.9%), Carvacrol (4.9%), α-Terpinene (3.3%), β-Caryophyllene (2.3%) | [121] |
Thymus vulgaris L. | Carvacrol (3.5–70.3%), Thymol (0.6–51.8%), Borneol (0.0–40.6%), p-Cymene (2.9–38.9%), o-Cymene (0.0–31.7%), α-Terpineol (0.0–19.9%), Linalool (0.0–16.0%), γ-Terpinene (0.3–12.65%), Camphene (0.0–12.3%), 1,8-Cineole (0.0–11.3%), α-Pinene (0.2–6.1%), β-Caryophyllene (0.0–3.5%), Neomenthol (0.0–2.8%), β-Cubebene (0.0–2.4%), Geraniol (0.0–2.32%), Menthone (0.0–2.2%) | [61,64,74,85,87,104,116,122,123,124,125,126] |
Thymus zygis L. | Linalool (5.5–39.7%), Thymol (0.52–39.6%), p-Cymene (2.2–21.2%), Terpinen-4-ol (1.0–11.7%), β-Myrcene (3.0–8.6%), γ-Terpinene (7.6–7.9%), α-Terpinene (1.2–4.2%), β-Caryophyllene (1.6–3.6%), α-Pinene (0.9–3.6%), Limonene (1.7–2.6%), Carvacrol (0.08–2.4%), Terpinolene (0.2–2.0%) | [116,127] |
Vitex agnus-castus L. | Eucalyptol (20.5%), 1,8-Cineole (1.5–19.61%), Bicyclogermacrene (0.0–16.2%), β-Farnesene (0.0–16.1%), Sabinene (0.0–14.57%), Sclarene (0.0–10.9%), α-Pinene (0.9–9.76%), Manool (0.0–8.2%), β-Caryophyllene (3.0–6.6%), β-Caryophyllene oxide (0.0–5.83%), Limonene (0.0–4.89%), Vulgarol B (0.0–4.7%), β-Pinene (0.4–4.4%), α-Terpinyl acetate (1.2–4.21%), β-Sitosterol (3.13%), p-Cymene (0.0–3.11%), Geranyl linalool (0.0–3.1%), β-Phellandrene (0.0–3.0%), Cembrene A (0.7–2.8%), Beyrene (0.0–2.6%), β-Myrcene (trace–2.12%), γ-Elemene (2.11%), s-Cadinol (2.01%) | [51,128,129] |
Zataria multiflora Boiss. | Thymol (25.8–48.4%), Carvacrol (1.5–34.36%), Carvacrol methyl ether (0.0–28.32%), p-Cymene (2.27–13.2%), γ-Terpinene (0.92–10.6%), Linalool (0.9–6.52%), α-Terpinenyl acetate (5.4%), α-Terpineol (0.5–3.69%), α-Pinene (0.02–3.13%), β-Caryophyllene (2.24–3.12%), Carvacrol acetate (0.0–2.26%), Terpinen-4-ol (0.0–2.21%) | [117,130] |
Ziziphora clinopodioides L. | Carvacrol (0.63–74.29%), Thymol (7.28–55.6%), γ-Terpinene (1.54–24.56%), p-Cymene (2.21–10.25%), α-Terpinene (0.39–2.77%) | [131,132] |
Ziziphora tenuior L. | Pulegone (46.8%), p-Menth-3-en-8-ol (12.5%), Isomenthone (6.6%), 8-Hydroxymenthone (6.2%), Isomenthol (4.7%), Limonene (3.2%) | [133] |
To the chemical components most commonly found as the main ingredients in essential oils, among plants presented in Table 2, include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20) (Figure 2). Sesquiterpene β-caryophyllene seems particularly important antifungal component in the Lamiaceae family. Its activity and its derivatives, such as caryophyllene oxide is well known [134,135,136]. According to Bona et al. [137], essential oils containing high concentrations of phenolic monoterpenes (e.g., carvacrol, p-cymene, thymol) have great antifungal activities. Rich in these substances are, among others Origanum and Thymus plants. Important antifungal chemicals often presented in Lamiaceae are also other monoterpenes as alcohol linalool and cyclic 1,8-cineole, limonene, pinenes, and terpinenes [138,139,140,141,142,143,144,145,146]. Table 1 shows that all of these antifungal substances are common in presented plants.
3. Antifungal Activity of Essential Oils of Lamiaceae Family
In Table 3 are shown the antifungal activities of selected Lamiaceae essential oils. More than half of the essential oils have good activity (<1000 µg/mL) against fungi. In some cases are observed significant discrepancies between different studies. An example could be the action of essential oils from Italian Calamintha nepeta against Candida albicans. In the work of Marongiu et al. [39], minimal inhibitory concentrations amounted to 1.25–2.5 µg/mL, while in Božović et al. [40] MICs were between 780 to 12,480 µg/mL. Differences may be related to the different biochemical composition of the examined essential oils. In results presented by Marongiu et al. [39] the main components of essential oils were pulegone (39.9–64.4%), piperitenone oxide (2.5–19.1%) and piperitenone (6.4–7.7%), while in Božović et al. [40] three main substances were pulegone (37.7–84.7%), crysanthenone (1.3–33.9%) and menthone (0.5–35.4%). Some authors have described that the content of active substances varies depending on the season. In studies of Gonçalves et al. [60] in Mentha cervina during the flowering phase in August amount of isomenthone and pulegone in essential oil amounted 8.7% and 75.1% respectively. Simultaneously, in the vegetative phase in February, the content of both components changed significantly and amounted to 77.0% for isomenthone and 12.9% for pulegone. Similarly, Al-Maskri et al. [75] presented essential changes in some compounds of Ocimum basilicum essential oil between winter and summer. In the summer essential oil, there is significantly more of linalool, p-allylanisole and β-farnesene, and at the same time much less content of limonene and 1,8-cineole. In this work, a seasonal variation of chemical composition is directly related to other antifungal activities. It is particularly evident in action against Aspergillus niger, which was lower in the summer season. Zone of growth inhibition (ZOI) for winter essential oil was 21 mm and MIC > 50 µg/mL, while for summer essential oil-ZOI was 13 mm and MIC > 100 µg/mL [75]. Influence on the content of chemical substances in essential oils also has a method of obtaining them. Ćavar et al. [40] compared the composition of oils obtained from Calamintha glandulosa using three methods: Hydrodistillation (HD), steam distillation (SD) and aqueous reflux extraction (ARE). For example, the level of menthone was 3.3% in ARE, 4.7% in HD, and 8.3% in SD method, while for shisofuran was only 0.1% in HD and SD, and even 9.7% in ARE [40]. Additionally, many other factors can affect antimicrobial activity, such as amount and concentration of inoculum, type of culture medium, pH of the medium and incubation time. All these factors can affect the value of MIC [145]. Differences are visible in Table 2. Generally, it can be assumed that the best activity (MICs < 100) have essential oils from Clinopodium spp. (excluding C. nepeta subsp. glandulosum and C. umbrosum), Lavandula spp., Mentha spp. (excluding M. piperita), Thymbra spp., and Thymus spp. (excluding T. migricus and T. vulgaris). The highest values of MICs are presented among others for Aeollanthus suaveolens, Agastache rugosa, Lepechinia mutica, Mentha × piperita, and Salvia sclarea. Simultaneously, some essential oils have a very different activity, and MIC values differ depending on the region, chemical composition, research methodology, etc. Significant variations can be observed even in Ocimum basilicum (MICs 1–10,000), O. sanctum (MICs 0.1–500), Origanum majorana (MICs 0.5–14,400) or in Thymus vulgaris (MICs 0.08–3600).
Table 3.
Source of the Essential Oil | Targeted Fungus | MICs (µg/mL; µl/mL) | Reference(s) |
---|---|---|---|
Aeollanthus suaveolens Mart. ex Spreng. = A. heliotropioides Oliv. | Candida albicans | 1200–5000 | [34] |
Candida glabrata | 5000 | [34] | |
Candida krusei | 2500 | [34] | |
Candida parapsilosis | 2500 | [34] | |
Candida tropicalis | 1200 | [34] | |
Cryptococcus neoformans | 600–5000 | [34] | |
Agastache rugosa (Fisch. and C.A.Mey.) Kuntze | Aspergillus flavus | 10,000 | [153] |
Aspergillus niger | 5000 | [153] | |
Blastoschizomyces capitatus | 5000 | [153] | |
Candida albicans | 28–5000 | [153,154] | |
Candida utilis | 5000 | [153] | |
Candida tropicalis | 5000 | [153] | |
Cryptococcus neoformans | 10,000 | [153] | |
Trichoderma viride | 5000 | [153] | |
Trichophyton erinacei | 780 | [153] | |
Trichophyton mentagrophytes | 3120 | [153] | |
Trichophyton rubrum | 1560 | [153] | |
Trichophyton schoenleinii | 1560 | [153] | |
Trichophyton soudanense | 1560 | [153] | |
Trichophyton tonsurans | 10,000 | [153] | |
Trichosporon mucoides | 5000 | [153] | |
Ballota nigra subsp. foetida (Vis.) Hayek | Alternaria solani | 750 | [37] |
Botrytis cinerea | 600 | [37] | |
Fusarium coeruleum | 350 | [37] | |
Fusarium culmorum | 300 | [37] | |
Fusarium oxysporum | 300 | [37] | |
Fusarium solani | 350 | [37] | |
Fusarium sporotrichioides | 350 | [37] | |
Fusarium tabacinum | 350 | [37] | |
Fusarium verticillioides | 300 | [37] | |
Clinopodium dalmaticum (Benth.) Bräuchler and Heubl = Micromeria dalmatica Benth. | Aspergillus niger | 0.4 | [38] |
Aspergillus ochraceus | 0.4 | [38] | |
Cladosporium cladosporioides | 0.4 | [38] | |
Fusarium tricinctum | 0.4 | [38] | |
Penicilium ochrochloron | 0.4 | [38] | |
Phomopsis helianthi | 0.2 | [38] | |
Trichoderma viride | 0.4 | [38] | |
Clinopodium nepeta subsp. glandulosum (Req.) Govaerts = Calamintha glandulosa (Req.) Bentham = Calamintha officinalis Moench | Aspergillus niger | 1250 | [39] |
Candida albicans | 2500 | [39] | |
Clinopodium nepeta (L.) Kuntze = Calamintha nepeta (L.) Savi | Aspergillus flavus | 1.25–10 | [41] |
Aspergillus fumigatus | 0.64–5 | [41] | |
Aspergillus niger | 0.32–10 | [41] | |
Candida albicans | 1.25–12,480 | [41,42] | |
Candida guillermondii | 1.25–2.5 | [41] | |
Candida krusei | 1.25–2.5 | [41] | |
Candida parapsilosis | 1.25–2.5 | [41] | |
Candida tropicalis | 1.25–2.5 | [41] | |
Cryptococcus neoformans | 0.32–1.25 | [41] | |
Epidermophyton floccosum | 0.64–2.5 | [41] | |
Microsporum canis | 0.64–2.5 | [41] | |
Microsporum gypseum | 1.25–5 | [41] | |
Trichophyton mentagrophytes | 0.64–5 | [41] | |
Trichophyton rubrum | 0.64–5 | [41] | |
Clinopodium thymifolium (Scop.) Kuntze = Micromeria thymifolia (Scop.) Fritsch | Aspergillus niger | 2 | [38] |
Aspergillus ochraceus | 2 | [38] | |
Cladosporium cladosporioides | 2 | [38] | |
Fusarium tricinctum | 2 | [38] | |
Penicillium ochrochloron | 2 | [38] | |
Phomopsis helianthi | 0.4 | [38] | |
Trichoderma viride | 2 | [38] | |
Clinopodium umbrosum (M.Bieb.) Kuntze = Calamintha umbrosa Benth. | Alternaria solani | 3000 | [43] |
Fusarium oxysporum | 2000 | [43] | |
Helminthosporium maydis | 1500 | [43] | |
Dracocephalum heterophyllum Benth. | Alternaria solani | 625 | [155] |
Candida albicans | 625–1000 | [44,155] | |
Epidermophyton floccosum | 2500 | [155] | |
Fusarium semitectum | 313 | [155] | |
Hymenocrater longiflorus Benth. | Aspergillus niger | 480 | [45] |
Candida albicans | 240 | [45] | |
Hyptis ovalifolia Benth. | Microsporum canis | 15.6–1000 | [46,156] |
Microsporum gypseum | 7.8–1000 | [46,156] | |
Trichophyton mentagrophytes | 15.6–1000 | [46,156] | |
Trichophyton rubrum | 7.8–1000 | [46,156] | |
Hyssopus officinalis L. | Aspergillus niger | 52,200 | [47] |
Aspergillus ochraceus | 26,100 | [47] | |
Aspergillus versicolor | 10,440 | [47] | |
Candida albicans | 128–1000 | [44,48] | |
Candida glabrata | 512–1024 | [48] | |
Candida krusei | 128–256 | [48] | |
Candida parapsilosis | 256–512 | [48] | |
Candida tropicalis | 512–1024 | [48] | |
Cladosporium cladosporioides | 10,440 | [47] | |
Cladosporium fulvum | 26,100 | [47] | |
Penicillium funiculosum | 52,200 | [47] | |
Penicillium ochrochloron | 26,100 | [47] | |
Trichoderma viride | 10,440 | [47] | |
Lavandula angustifolia Mill. | Candida albicans | 0.125–512 | [50,51,157] |
Malassezia furfur | >4 | [49] | |
Trichophyton rubrum | 1–512 | [49,51] | |
Trichosporon beigelii | 2 | [49] | |
Lavandula multifida L. | Aspergillus flavus | 0.64 | [52] |
Aspergillus fumigatus | 0.32 | [52] | |
Aspergillus niger | 0.32 | [52] | |
Candida albicans | 0.32 | [52] | |
Candida guilliermondii | 0.32 | [52] | |
Candida krusei | 0.64 | [52] | |
Candida parapsilosis | 0.32 | [52] | |
Candida tropicalis | 0.32 | [52] | |
Cryptococcus neoformans | 0.16 | [52] | |
Epidermophyton floccosum | 0.16 | [52] | |
Microsporum canis | 0.16 | [52] | |
Microsporum gypseum | 0.16 | [52] | |
Trichophyton mentagrophytes | 0.16 | [52] | |
Trichophyton mentagrophytes var. interdigitale | 0.16 | [52] | |
Trichophyton rubrum | 0.16 | [52] | |
Trichophyton verrucosum | 0.16 | [52] | |
Lavandula pedunculata (Miller) Cav. | Aspergillus flavus | 5–10 | [53] |
Aspergillus fumigatus | 2.5–5 | [53] | |
Aspergillus niger | 5 | [53] | |
Candida albicans | 2.5 | [53] | |
Candida guillermondii | 1.25 | [53] | |
Candida krusei | 1.25–2.5 | [53] | |
Candida parapsilosis | 2.5–5 | [53] | |
Candida tropicalis | 1.25–2.5 | [53] | |
Cryptococcus neoformans | 0.32–1.25 | [53] | |
Epidermophyton floccosum | 0.32–0.64 | [53] | |
Microsporum canis | 0.32–1.25 | [53] | |
Microsporum gypseum | 0.64–2.5 | [53] | |
Trichophyton mentagrophytes | 0.64–1.25 | [53] | |
Trichophyton rubrum | 0.32–1.25 | [53] | |
Lavandula stoechas L. | Aspergillus flavus | 1.25–10 | [54] |
Aspergillus fumigatus | 0.64–1.25 | [54] | |
Aspergillus niger | 0.32–1.25 | [54] | |
Candida albicans | 0.64–512 | [51,54] | |
Candida guillermondii | 1.25 | [54] | |
Candida krusei | 2.5 | [54] | |
Candida parapsilosis | 2.5 | [54] | |
Candida tropicalis | 2.5 | [54] | |
Cryptococcus neoformans | 0.64 | [54] | |
Epidermophyton floccosum | 0.16–0.32 | [54] | |
Microsporum canis | 0.16–0.64 | [54] | |
Microsporum gypseum | 0.32–0.64 | [54] | |
Trichophyton mentagrophytes | 0.32–0.64 | [54] | |
Trichophyton mentagrophytes var. interdigitale | 0.16–0.64 | [54] | |
Trichophyton rubrum | 0.16–256 | [51,54] | |
Trichophyton verrucosum | 0.32 | [54] | |
Lavandula viridis L’Her. | Aspergillus flavus | 5 | [55] |
Aspergillus fumigatus | 2.5 | [55] | |
Aspergillus niger | 2.5 | [55] | |
Candida albicans | 1.25–2.5 | [55] | |
Candida guillermondii | 0.64–1.25 | [55] | |
Candida krusei | 1.25–2.5 | [55] | |
Candida parapsilosis | 1.25 | [55] | |
Candida tropicalis | 1.25–2.5 | [55] | |
Cryptococcus neoformans | 0.64 | [55] | |
Epidermophyton floccosum | 0.32 | [55] | |
Microsporum canis | 0.32 | [55] | |
Microsporum gypseum | 0.64 | [55] | |
Trichophyton mentagrophytes | 0.32–0.64 | [55] | |
Trichophyton mentagrophytes var. interdigitale | 0.32–0.64 | [55] | |
Trichophyton rubrum | 0.32 | [55] | |
Trichophyton verrucosum | 0.32 | [55] | |
Lepechinia mutica (Benth.) Epling | Candida albicans | >9000 | [56] |
Fusarium graminearum | >9000 | [56] | |
Microsporum canis | 2200–4500 | [56] | |
Pyricularia oryzae | >9000 | [56] | |
Trichophyton rubrum | 2200–4500 | [56] | |
Marrubium vulgare L. | Aspergillus niger | >1180 | [58] |
Botrytis cinerea | >1100 | [58] | |
Fusarium solani | >1190 | [58] | |
Penicillium digitatum | >1120 | [58] | |
Melissa officinalis L. | Aspergillus niger | 313 | [158] |
Candida albicans | 30–313 | [59,158] | |
Cryptococcus neoformans | 78 | [158] | |
Epidermophyton floccosum | 30 | [59] | |
Microsporum canis | 30 | [59] | |
Penicillium verrucosum | 125 | [159] | |
Trichophyton mentagrophytes var. mentagrophytes | 15 | [59] | |
Trichophyton rubrum | 15 | [59] | |
Trichophyton tonsurans | 15 | [59] | |
Mentha cervina L. | Aspergillus flavus | 2.5–5 | [60] |
Aspergillus fumigatus | 1.25–2.5 | [60] | |
Aspergillus niger | 1.25–2.5 | [60] | |
Candida albicans | 1.25–2.5 | [60] | |
Candida guillermondii | 1.25–2.5 | [60] | |
Candida krusei | 1.25–2.5 | [60] | |
Candida parapsilosis | 1.25–2.5 | [60] | |
Candida tropicalis | 1.25–2.5 | [60] | |
Cryptococcus neoformans | 1.25 | [60] | |
Epidermophyton floccosum | 0.64–1.25 | [60] | |
Microsporum canis | 1.25 | [60] | |
Microsporum gypseum | 1.25–2.5 | [60] | |
Trichophyton mentagrophytes | 1.25–2.5 | [60] | |
Trichophyton rubrum | 1.25 | [60] | |
Mentha × piperita L. | Aspergillus flavus | 1450–5000 | [62,64] |
Aspergillus niger | 625–10,000 | [64,158] | |
Aspergillus parasiticus | 2500 | [64] | |
Candida albicans | 225–1125 | [63,158,160] | |
Candida glabrata | 225 | [62] | |
Candida tropicalis | 225–230 | [62] | |
Cryptococcus neoformans | 313 | [158] | |
Fusarium oxysporum | 125 | [161] | |
Penicillium chrysogenum | 1250 | [64] | |
Penicillium minioluteum | 2050–2200 | [62] | |
Penicillium oxalicum | 1300–2050 | [62] | |
Penicillium verrucosum | 2500 | [90] | |
Mentha pulegium L. | Aspergillus niger | 0.25–1.25 | [65,162] |
Aspergillus flavus | 1.25 | [162] | |
Aspergillus fumigatus | 1.25 | [162] | |
Candida albicans | 0.94–3.75 | [65,66,162,163] | |
Candida bracarensis | 3.75 | [163] | |
Candida guillermondii | 1.25 | [162] | |
Candida krusei | 0.94–1.25 | [162,163] | |
Candida parapsilosis | 1.25 | [162] | |
Candida tropicalis | 1.25 | [162] | |
Cryptococcus neoformans | 0.64 | [162] | |
Epidermophyton floccosum | 1.25 | [162] | |
Microsporum canis | 1.25 | [162] | |
Microsporum gypseum | 1.25–2.5 | [162] | |
Saccharomyces cervisiae | <0.3–0.94 | [66,163] | |
Trichophyton mentagrophytes | 1.25–2.5 | [162] | |
Trichophyton mentagrophytes var. interdigitale | 2.5 | [162] | |
Trichophyton rubrum | 1.25 | [162] | |
Trichophyton verrucosum | 1.25 | [162] | |
Mentha requienii Bentham | Alternaria spp. | >40 | [67] |
Aspergillus fumigatus | >60 | [67] | |
Candida albicans | 0.94–40 | [67,163] | |
Candida bracarensis | 3.75 | [163] | |
Candida krusei | 0.94 | [163] | |
Fusarium spp. | >40 | [67] | |
Penicillum spp. | >60 | [67] | |
Rhodotorula spp. | 45 | [67] | |
Saccharomyces cerevisiae | 0.94 | [163] | |
Mentha spicata L. | Aspergillus flavus | 1.25 | [162] |
Aspergillus fumigatus | 0.64 | [162] | |
Aspergillus niger | 0.64–313 | [158,162] | |
Candida albicans | 1.25–625 | [51,158,162] | |
Candida guillermondii | 1.25 | [162] | |
Candida krusei | 1.25 | [162] | |
Candida parapsilosis | 1.25 | [162] | |
Candida tropicalis | 1.25 | [162] | |
Cryptococcus neoformans | 0.32–313 | [158,162] | |
Epidermophyton floccosum | 0.64 | [162] | |
Fusarium graminearum | 2.5 | [164] | |
Fusarium moniliforme | 2.5 | [164] | |
Malassezia furfur | >4 | [49] | |
Microsporum canis | 0.64–2 | [68,162] | |
Microsporum gypseum | 0.64–3 | [162] | |
Penicillium corylophilum | 0.625 | [165] | |
Penicillium expansum | 2.5 | [164] | |
Trichophyton erinacei | 3 | [68] | |
Trichophyton mentagrophytes | 0.64–3 | [68,162] | |
Trichophyton mentagrophytes var. interdigitale | 0.64 | [162] | |
Trichophyton rubrum | 0.25–512 | [49,51,162] | |
Trichophyton terrestre | 3 | [68] | |
Trichophyton verrucosum | 0.32 | [162] | |
Trichosporon beigelii | 0.25 | [49] | |
Mentha suaveolens Ehrh. | Candida albicans | 0.34–1250 | [69,71,166] |
Candida glabrata | 0.69–2.77 | [69] | |
Cryptococcus neoformans | 300 | [167] | |
Microsporum canis | 1250 | [167] | |
Microsporum gypseum | 1250 | [167] | |
Trichophyton mentagrophytes | 600–1250 | [167] | |
Trichophyton rubrum | 5000 | [167] | |
Trichophyton violaceum | 600 | [167] | |
Micromeria albanica (Griseb. ex K. Maly) Silic | Aspergillus niger | 0.2 | [38] |
Aspergillus ochraceus | 0.2 | [38] | |
Cladosporium cladosporioides | 0.2 | [38] | |
Fusarium tricinctum | 0.4 | [38] | |
Penicilium ochrochloron | 0.2 | [38] | |
Phomopsis helianthi | 0.2 | [38] | |
Trichoderma viride | 0.4 | [38] | |
Moluccella spinosa L. | Aspergillus niger | 50 | [72] |
Candida albicans | 100 | [72] | |
Fusarium oxysporum | 100 | [72] | |
Nepeta ciliaris Benth. = Nepeta leucophylla Benth. | Alternaria solani | 3000 | [43] |
Candida albicans | 0.78 | [168] | |
Fusarium oxysporum | 1000 | [43] | |
Trichophyton rubrum | 0.19 | [168] | |
Helminthosporium maydis | 1500 | [43] | |
Nepeta clarkei Hook. f. | Alternaria solani | 3000 | [43] |
Fusarium oxysporum | 2000 | [43] | |
Helminthosporium maydis | 2000 | [43] | |
Ocimum basilicum L. | Aspergillus flavus | 10,000 | [64] |
Aspergillus fumigatus | >50 | [75] | |
Aspergillus niger | >50–10,000 | [64,75,158] | |
Aspergillus parasiticus | 5000 | [64] | |
Candida albicans | 30–625 | [73,74,158] | |
Candida guilliermondii | 3.125–6.25 | [76] | |
Cryptococcus neoformans | 313–1250 | [158,169] | |
Debaryomyces hansenii | 6.25 | [76] | |
Epidermophyton floccosum | 15 | [74] | |
Microsporum canis | 1–15.2 | [68,74] | |
Microsporum gypseum | 3 | [68] | |
Penicillium chrysogenum | 10,000 | [64] | |
Penicillium italicum | >50 | [75] | |
Rhizopus stolonifer | >50 | [75] | |
Rhodotorula glutinis | 86 | [73] | |
Trichophyton erinacei | 2.5 | [68] | |
Trichophyton mentagrophytes | 2.5–8.3 | [68,74] | |
Trichophyton terrestre | 3 | [68] | |
Saccharomyces cerevisiae | 28 | [73] | |
Schizosaccharomyces pombe | 86 | [73] | |
Trichophyton rubrum | 8.3 | [74] | |
Trichophyton tonsurans | 8 | [74] | |
Yarrowia lypolytica | 57 | [73] | |
Ocimum × africanum Lour. = Ocimum × citriodorum | Candida guilliermondii | 3.125 | [76] |
Debaryomyces hansenii | 1.56 | [76] | |
Ocimum campechianum Mill. = Ocimum micranthum Willd. | Candida albicans | 69 | [73] |
Rhodotorula glutinis | 139 | [73] | |
Saccharomyces cerevisiae | 69 | [73] | |
Schizosaccharomyces pombe | 104 | [73] | |
Yarrowia lypolytica | 69 | [73] | |
Ocimum forskolei Benth. | Candida albicans | 35.3–8600 | [77,170] |
Ocimum gratissimum L. | Aspergillus fumigatus | >1000 | [78] |
Candida albicans | 350–1500 | [78,171] | |
Candida krusei | 750 | [171] | |
Candida parapsilosis | 380 | [171] | |
Candida tropicalis | 1500 | [171] | |
Cryptococcus neoformans | 250–300 | [78,79] | |
Fusarium oxysporum f. sp. cubense | 62.5 | [80] | |
Fusarium oxysporum f. sp. lycopersici | 31.25 | [80] | |
Fusarium oxysporum f. sp. tracheiphilum | 62.5 | [80] | |
Fusarium solani | 62.5 | [80] | |
Macrophomina phaseolina | 62.5–125 | [80] | |
Malassezia pachydermatis | 300 | [78] | |
Microsporum canis | 200–500 | [78,172] | |
Microsporum gypseum | 150–250 | [78,172] | |
Rhizoctonia solani | 31.25 | [80] | |
Scopulariopsis brevicaulis | 400 | [78] | |
Trichophyton interdigitale | 250 | [78] | |
Trichophyton mentagrophytes | 200–250 | [78,172] | |
Trichophyton rubrum | 150–250 | [78,172] | |
Ocimum tenuiflorum L. = Ocimum sanctum L. | Aspergillus flavus | 300 | [83] |
Candida albicans | 0.1–300 | [81,82] | |
Candida glabrata | 0.15–300 | [81,82] | |
Candida krusei | 0.35–450 | [81,82] | |
Candida parapsilosis | 0.25–500 | [81,82] | |
Candida tropicalis | 0.1–300 | [81,82] | |
Origanum compactum Benth. | Alternaria alternata | 300 | [84] |
Bipolaris oryzae | 300 | [84] | |
Fusarium equiseti | 300 | [84] | |
Fusarium graminearum | 300 | [84] | |
Fusarium verticillioides | 300 | [84] | |
Origanum majorana L. | Aspergillus flavus | 450–650 | [62] |
Aspergillus niger | 625 | [158] | |
Botrytis cinerea | 5000 | [87] | |
Candida albicans | 625 | [158] | |
Cryptococcus neoformans | 313 | [158] | |
Fusarium delphinoides | 1800–14,400 | [85] | |
Fusarium incarnatum-equiseti | 450–3600 | [85] | |
Fusarium napiforme | 3600–14,400 | [85] | |
Fusarium oxysporum | 900–3600 | [85] | |
Fusarium solani | 900–3600 | [85] | |
Fusarium verticillioides | 14,400 | [85] | |
Microsporum canis | 0.5 | [68] | |
Microsporum gypseum | 2 | [68] | |
Penicillium expansum | 10,000 | [87] | |
Penicillium minioluteum | 400–500 | [62] | |
Penicillium oxalicum | 350–400 | [62] | |
Sporothrix brasiliensis | ≤2250–9000 | [86] | |
Sporothrix schenckii | ≤2250–9000 | [86] | |
Trichophyton erinacei | 1 | [68] | |
Trichophyton mentagrophytes | 1.5 | [68] | |
Trichophyton terrestre | 2 | [68] | |
Origanum vulgare L. | Aspergillus flavus | 0.64–2500 | [64,89,91] |
Aspergillus fumigatus | 0.32–0.64 | [89] | |
Aspergillus niger | 0.32–623 | [62,89,91,158] | |
Aspergillus ochraceus | 470 | [91] | |
Aspergillus parasiticus | 2500 | [64] | |
Candida albicans | 0.32–700 | [74,88,89,91,158] | |
Candida glabrata | 350 | [88] | |
Candida guillermondii | 0.64–1.25 | [89] | |
Candida krusei | 0.64–700 | [88,89] | |
Candida parapsilosis | 0.64–170 | [88,89] | |
Candida tropicalis | 0.32–700 | [88,89] | |
Cladosporium sp. | 0.05–0.3 | [173] | |
Cryptococcus neoformans | 0.16–78 | [89,158] | |
Epidermophyton floccosum | 0.32–2 | [74,89] | |
Fusarium sp. | 0.1–0.5 | [173] | |
Malassezia furfur | 1–780 | [49,174] | |
Microsporum canis | 0.025–2 | [68,74,89] | |
Microsporum gypseum | 0.025–1.25 | [68,89] | |
Penicillium sp. | 0.1–0.5 | [173] | |
Penicillium chrysogenum | 625 | [64] | |
Penicillium corylophilum | 0.625 | [165] | |
Penicillium funiculosum | 610 | [91] | |
Penicillium ochrochloron | 710 | [91] | |
Penicillium verrucosum | 1.1719 | [90,91] | |
Trichophyton mentagrophytes | 0.32–1.25 | [74,89] | |
Trichophyton rubrum | 0.16–1.25 | [49,74,89] | |
Trichophyton tonsurans | 1 | [74] | |
Trichosporon beigelii | 0.25 | [49] | |
Trichophyton erinacei | 0.5 | [68] | |
Trichophyton mentagrophytes | 0.5 | [68] | |
Trichophyton terrestre | 0.25 | [68] | |
Pogostemon cablin (Blanco) Benth. | Aspergillus flavus | >1500 | [92] |
Aspergillus niger | 156 | [158] | |
Aspergillus oryzae | >1500 | [92] | |
Candida albicans | 32–625 | [158,175] | |
Candida krusei | 64–257 | [175] | |
Candida tropicalis | 32–257 | [175] | |
Cryptococcus neoformans | 20 | [158] | |
Pogostemon heyneanus Benth. | Candida albicans | 6000 | [176] |
Candida glabrata | 6000 | [176] | |
Candida tropicalis | 10,000 | [176] | |
Premna microphylla Turcz. | Aspergillus niger | >500 | [94] |
Candida albicans | >500 | [94] | |
Fusarium oxysporum | >500 | [94] | |
Rosmarinus officinalis L. | Aspergillus flavus | 330 | [91] |
Aspergillus ochraceus | 590 | [91] | |
Aspergillus niger | 380–10,000 | [91,98,158] | |
Botrytis cinerea | 2500 | [87] | |
Candida albicans | 30.2–1000 | [51,91,96,98,158] | |
Cryptococcus neoformans | 313 | [158] | |
Epidermophyton floccosum | 30 | [96] | |
Microsporum canis | 2.5–30.2 | [68,96] | |
Microsporum gypseum | 2.5 | [68] | |
Penicillium expansum | 5000 | [87] | |
Penicillium ochrochloron | 470 | [91] | |
Penicillium funiculosum | 570 | [91] | |
Trichophyton erinacei | 1.5 | [68] | |
Trichophyton mentagrophytes | 5–15.3 | [68,96] | |
Trichophyton rubrum | 15–256 | [51,96] | |
Trichophyton terrestre | 5 | [68] | |
Trichophyton tonsurans | 15.2 | [96] | |
Salvia fruticosa Miller | Candida albicans | 512 | [51] |
Fusarium oxysporum f. sp. dianthi | >2000 | [99] | |
Fusarium proliferatum | >2000 | [99] | |
Fusarium solani f. sp. cucurbitae | >2000 | [99] | |
Malassezia furfur | >4 | [99] | |
Rhizoctonia solani | >2000 | [99] | |
Sclerotinia sclerotiorum | >2000 | [99] | |
Trichophyton rubrum | 2–256 | [49,99] | |
Trichosporon beigelii | 4 | [49] | |
Salvia mirzayanii Rech. f. and Esfand | Candida albicans | 0.5–2 | [100] |
Candida krusei | 1 | [100] | |
Candida dubliniensis | 0.06–0.5 | [100] | |
Candida glabrata | 0.06–1 | [100] | |
Candida parapsilosis | 0.25–1 | [100] | |
Candida tropicalis | 0.25–2 | [100] | |
Trichosporon sp. | 1 | [100] | |
Salvia officinalis L. | Aspergillus flavus | 5–10 | [101] |
Aspergillus fumigatus | 2.5–5 | [101] | |
Aspergillus niger | 5–1250 | [101,158] | |
Candida albicans | 2.5–2780 | [96,101,158,177] | |
Candida guillermondii | 1.25–2.5 | [101] | |
Candida krusei | 2.5–5 | [101] | |
Candida parapsilosis | 5 | [101] | |
Candida tropicalis | 5 | [101] | |
Cryptococcus neoformans | 0.64–625 | [101,158] | |
Epidermophyton floccosum | 0.64–100 | [96,101] | |
Microsporum canis | 1.25–100.2 | [96,101] | |
Microsporum gypseum | 1.25–2.5 | [101] | |
Trichophyton mentagrophytes | 1.25–60 | [96,101] | |
Trichophyton mentagrophytes var. interdigitale | 1.25 | [101] | |
Trichophyton rubrum | 0.64–60 | [96,101] | |
Trichophyton tonsurans | 60 | [96] | |
Trichophyton verrucosum | 1.25–2.5 | [101] | |
Salvia sclarea L. | Aspergillus niger | 1250 | [158] |
Candida albicans | 1250 | [158] | |
Cryptococcus neoformans | 313 | [158] | |
Fusarium delphinoides | 1800–3600 | [85] | |
Fusarium incarnatum-equiseti | 1800–3600 | [85] | |
Fusarium napiforme | 1800–3600 | [85] | |
Fusarium oxysporum | 1800–3600 | [85] | |
Fusarium solani | 3600–7200 | [85] | |
Fusarium verticillioides | 1800 | [85] | |
Satureja hortensis L. | Alternaria alternata | 62.5 | [103] |
Aspergillus flavus | 31.25–500 | [103,104,117] | |
Aspergillus niger | 471 | [117] | |
Aspergillus ochraceus | 423 | [117] | |
Aspergillus parasiticus | 373 | [117] | |
Aspergillus terreus | 389 | [117] | |
Aspergillus variecolor | 125 | [103] | |
Candida albicans | 200–400 | [103,178] | |
Fusarium culmorum | 125 | [103] | |
Fusarium oxysporum | 250 | [103] | |
Microsporum canis | 62.5 | [103] | |
Moniliania fructicola | 31.25 | [103] | |
Penicillium spp. | 125 | [103] | |
Rhizoctonia solani | 125 | [103] | |
Rhizopus spp. | 250 | [103] | |
Sclerotinia minor | 250 | [103] | |
Sclerotinia sclerotiorum | 125 | [103] | |
Trichophyton mentagrophytes | 62.5 | [103] | |
Trichophyton rubrum | 31.25 | [103] | |
Satureja montana L. | Microsporum canis | 0.5 | [68] |
Microsporum gypseum | 2 | [68] | |
Trichophyton erinacei | 2 | [68] | |
Trichophyton mentagrophytes | 2 | [68] | |
Trichophyton terrestre | 3 | [68] | |
Satureja thymbra L. | Aspergillus flavus | 25 | [105] |
Aspergillus fumigatus | 1.25–25 | [105,179] | |
Aspergillus niger | 2.5–25 | [105,179] | |
Aspergillus ochraceus | 2.5–25 | [105,179] | |
Aspergillus versicolor | 1.25 | [179] | |
Candida albicans | 25–128 | [51,105] | |
Penicillium funiculosum | 2.5–25 | [105,179] | |
Penicillium ochrochloron | 1–1.25 | [105,179] | |
Trichoderma viride | 1.25–25 | [105,179] | |
Trichophyton rubrum | 128 | [51] | |
Stachys cretica L. | Candida albicans | 625 | [106] |
Stachys officinalis (L.) Trevis | Aspergillus niger | 2500 | [107] |
Candida albicans | 5000 | [107] | |
Stachys pubescens Ten. | Alternaria alternata | 1 | [108] |
Aspergillus flavus | 0–5 | [108] | |
Fusarium oxysporum | 1 | [108] | |
Teucrium sauvagei Le Houerou | Aspergillus fumigatus | >1000 | [109] |
Candida albicans | >1000 | [109] | |
Cryptococcus neoformans | >1000 | [109] | |
Epidermophyton floccosum | 850 | [109] | |
Microsporum canis | 800 | [109] | |
Microsporum gypseum | 900 | [109] | |
Scopulariopsis brevicaulis | >1000 | [109] | |
Scytalidium dimidiatum | >1000 | [109] | |
Trichophyton mentagrophytes var. interdigitale | 950 | [109] | |
Trichophyton mentagrophytes var. mentagrophytes | 900 | [109] | |
Trichophyton rubrum | 800 | [109] | |
Trichophyton soudanense | 800 | [109] | |
Teucrium yemense Deflers. | Aspergillus niger | 313 | [77] |
Botrytis cinerea | 313 | [77] | |
Candida albicans | 1250 | [77] | |
Thymbra capitata (L.) Cav. = Thymus capitatus (L.) Hoffmanns. and Link = Coridothymus capitatus (L.) Rchb.f. Solms | Aspergillus flavus | 0.32 | [111] |
Aspergillus fumigatus | 0.16–0.32 | [111] | |
Aspergillus niger | 0.1–0.16 | [111,180] | |
Aspergillus oryzae | 0.2 | [180] | |
Candida albicans | 0.16–128 | [51,110,111,112] | |
Candida glabrata | 0.32 | [111,112] | |
Candida guilliermondii | 0.16–0.32 | [111,112] | |
Candida krusei | 0.32 | [111] | |
Candida parapsilosis | 0.32 | [111,112] | |
Candida tropicalis | 0.32 | [111,112] | |
Epidermophyton floccosum | 0.08 | [111] | |
Fusarium solani | 0.2 | [180] | |
Microsporum canis | 0.08 | [111] | |
Microsporum gypseum | 0.08 | [111] | |
Penicillium digitatum | 0.5 | [180] | |
Trichophyton mentagrophytes | 0.08 | [111] | |
Trichophyton rubrum | 0.16–64 | [51,111] | |
Thymbra spicata L. | Aspergillus fumigatus | 0.3 | [179] |
Aspergillus niger | 0.6 | [179] | |
Aspergillus versicolor | 0.3 | [179] | |
Aspergillus ochraceus | 0.6 | [179] | |
Candida albicans | 1.12–3750 | [51,113,114] | |
Candida krusei | 1.12 | [114] | |
Candida parapsilosis | 0.6–1.12 | [114] | |
Penicillium funiculosum | 0.3 | [179] | |
Penicillium ochrochloron | 0.3 | [179] | |
Trichoderma viride | 0.3 | [179] | |
Trichophyton rubrum | 64 | [51] | |
Thymus bovei Benth. | Candida albicans | 250 | [115] |
Thymus daenensis Celak. | Alternaria alternata | >8 | [108] |
Aspergillus flavus | 1 | [108] | |
Fusarium oxysporum | 4 | [108] | |
Thymus kotschyanus Boiss. and Hohen. | Alternaria alternata | 1 | [108] |
Aspergillus flavus | 0.5 | [108] | |
Fusarium oxysporum | 0–5 | [108] | |
Thymus mastichina (L.) L. | Candida albicans | 1.25–2.5 | [116] |
Candida glabrata | 1.25–1.5 | [116] | |
Candida guilliermondii | 1.25 | [116] | |
Candida krusei | 1.25–2.5 | [116] | |
Candida parapsilosis | 2.5–5 | [116] | |
Candida tropicalis | 2.5–10 | [116] | |
Thymus migricus Klokov et Des.-Shost. | Aspergillus flavus | 452 | [117] |
Aspergillus niger | 460 | [117] | |
Aspergillus ochraceus | 430 | [117] | |
Aspergillus parasiticus | 581 | [117] | |
Aspergillus terreus | 447 | [117] | |
Thymus pulegioides L. | Aspergillus flavus | 0.32 | [119] |
Aspergillus fumigatus | 0.16 | [119] | |
Aspergillus niger | 0.32 | [119] | |
Candida albicans | 0.32–0.64 | [119] | |
Candida glabrata | 0.32–0.64 | [119] | |
Candida guilliermondii | 0.32 | [119] | |
Candida krusei | 0.32–0.64 | [119] | |
Candida parapsilosis | 0.64 | [119] | |
Candida tropicalis | 0.32–0.64 | [119] | |
Epidermophyton floccosum | 0.16 | [119] | |
Microsporum canis | 0.16 | [119] | |
Microsporum gypseum | 0.16 | [119] | |
Trichophyton mentagrophytes | 0.16 | [119] | |
Trichophyton rubrum | 0.32 | [119] | |
Thymus schimperi Ronninger | Aspergillus minutus | 0.512–2 | [120] |
Aspergillus niger | 0.16 | [181] | |
Aspergillus tubingensis | 1–4 | [120] | |
Beauveria bassiana | 0.128–1 | [120] | |
Candida albicans | 0.16 | [181] | |
Microsporum spp. | 0.08 | [181] | |
Microsporum gypseum | 0.128–1 | [120] | |
Penicillium chrysogenum | 0.512–2 | [120] | |
Rhodotorula spp. | 0.08 | [181] | |
Tricophyton spp. | 0.08–0.31 | [181] | |
Verticillium sp. | 0.512–2 | [120] | |
Thymus serpyllum L. | Aspergillus carbonarius | 1.25 | [182] |
Aspergillus ochraceus | 0.625 | [182] | |
Aspergillus niger | 2.5 | [182] | |
Microsporum canis | 0.025 | [68] | |
Microsporum gypseum | 0.25 | [68] | |
Trichophyton erinacei | 0.1 | [68] | |
Trichophyton mentagrophytes | 0.2 | [68] | |
Trichophyton terrestre | 0.1 | [68] | |
Thymus striatus Vahl. | Alternaria alternata | 1 | [121] |
Aspergillus flavus | 1.5 | [121] | |
Aspergillus niger | 1 | [121] | |
Aspergillus ochraceus | 1 | [121] | |
Aspergillus terreus | 1 | [121] | |
Aspergillus versicolor | 1 | [121] | |
Cladosporium cladosporioides | 0.5 | [121] | |
Epidermophyton floccosum | 1 | [121] | |
Microsporum canis | 1.5 | [121] | |
Penicillium funiculosum | 2 | [121] | |
Penicillium ochrochloron | 2 | [121] | |
Phomopsis helianthi | 0.5 | [121] | |
Trichoderma viride | 2 | [121] | |
Trichophyton mentagrophytes | 1 | [121] | |
Thymus vulgaris L. | Absidia spp. | 7 ± 4 | [122] |
Alternaria spp. | 9.4 ± 4.5 | [122] | |
Alternaria alternata | 4.7–500 | [122,183] | |
Aspergillus spp. | 3.2 | [122] | |
Aspergillus flavus | 9.35–1500 | [64,104,122,125,184] | |
Aspergillus fumigatus | 144–1000 | [124,184] | |
Aspergillus niger | 9.35–1250 | [64,122,158,184] | |
Aspergillus ochraceus | 2.5–750 | [164,184] | |
Aspergillus parasiticus | 1250 | [64] | |
Aspergillus sulphureus | 10.88 ± 3.1 | [122] | |
Aspergillus versicolor | 9.6 ± 9.25 | [122] | |
Botrytis cinerea | 312 | [87] | |
Candida albicans | 0.16–313 | [73,74,116,158] | |
Candida glabrata | 0.16–0.32 | [116] | |
Candida krusei | 0.08–0.16 | [116] | |
Candida guillermondii | 0.16 | [116] | |
Candida parapsilosis | 0.16–0.32 | [116] | |
Candida tropicalis | 0.16–0.32 | [116] | |
Chaetomium globosum | 1.6 | [122] | |
Cladosporium spp. | 12.8 | [122] | |
Cladosporium sphaerospermum | 19.6 | [122] | |
Cryptococcus neoformans | 78 | [158] | |
Epidermophyton floccosum | 4 | [74] | |
Fusarium spp. | 62.5 | [185] | |
Fusarium delphinoides | 900–1800 | [85] | |
Fusarium incarnatum-equiseti | 450–3600 | [85] | |
Fusarium napiforme | 900 | [85] | |
Fusarium oxysporum | 5–900 | [85,126] | |
Fusarium solani | 1800–3600 | [85] | |
Fusarium verticillioides | 900 | [85] | |
Malassezia furfur | 920 | [174] | |
Microsporum canis | 2.2 | [74] | |
Mortierella spp. | 250 | [185] | |
Mucor spp. | 50.2 ± 8.4 | [122] | |
Penicilium spp. | 18.95–500 | [122,185] | |
Penicilium brevicompactum | 19.6 | [122] | |
Penicillium chrysogenum | 312.5–1750 | [64,184] | |
Penicilium chrysogenum | 19.6 | [122] | |
Penicillium citrinum | 1250 | [184] | |
Penicillium expansum | 625 | [87] | |
Penicillium griseofulvum | 19.6 | [122] | |
Rhizopus spp. | 12.6 | [122] | |
Rhodotorula glutinis | 72 | [73] | |
Rhizopus oryzae | 256–512 | [123] | |
Saccharomyces cerevisiae | 72 | [73] | |
Schizosaccharomyces pombe | 36 | [73] | |
Stachybotrys chartarum | 6.2 | [122] | |
Trichoderma spp. | 16.8 | [122] | |
Trichophyton mentagrophytes | 2.2 | [74] | |
Trichophyton rubrum | 2–72 | [74,124] | |
Trichophyton tonsurans | 2.2 | [74] | |
Ulocladium spp. | 5.45 ± 1.5 | [122] | |
Yarrowia lypolytica | 36 | [73] | |
Thymus zygis L. | Candida albicans | 0.16–0.32 | [116] |
Candida glabrata | 0.32 | [116] | |
Candida krusei | 0.16–0.32 | [116] | |
Candida guillermondii | 0.16 | [116] | |
Candida parapsilosis | 0.32 | [116] | |
Candida tropicalis | 0.16–0.32 | [116] | |
Penicillium corylophilum | 0.3125–0.625 | [165] | |
Vitex agnus-castus L. | Candida albicans | 0.53–512 | [51,129] |
Candida dubliniensis | 0.27 | [129] | |
Candida famata | 2.13 | [129] | |
Candida glabrata | 0.27 | [129] | |
Candida krusei | 0.27 | [129] | |
Candida lusitaniae | 2.13 | [129] | |
Candida parapsilosis | 1.06 | [129] | |
Candida tropicalis | 0.13 | [129] | |
Epidermophyton floccosum | 0.64–2.5 | [128] | |
Microsporum canis | 0.64–5 | [128] | |
Microsporum gypseum | 1.25–10 | [128] | |
Trichophyton mentagrophytes | 1.25–10 | [128] | |
Trichophyton rubrum | 0.64–512 | [51,128] | |
Zataria multiflora Boiss. | Aspergillus flavus | 358 | [117] |
Aspergillus niger | 358 | [117] | |
Aspergillus ochraceus | 341 | [117] | |
Aspergillus parasiticus | 367 | [117] | |
Aspergillus terreus | 447 | [117] | |
Microsporum canis | 0.125–0.25 | [130] | |
Microsporum gypseum | 0.03–0.06 | [130] | |
Trichophyton mentagrophytes | 0.03 | [130] | |
Trichophyton rubrum | 0.03–0.06 | [130] | |
Trichophyton schoenleinii | 0.125–0.6 | [130] | |
Ziziphora clinopodioides Lam. | Aspergillus flavus | 48.82 | [184,186] |
Aspergillus fumigatus | 1750 | [184] | |
Aspergillus niger | 3000 | [184] | |
Aspergillus ochraceus | 1500 | [184] | |
Aspergillus parasiticus | 48.82 | [186] | |
Penicillium chrysogenum | 3000 | [184] | |
Penicillium citrinum | 1750 | [184] | |
Ziziphora tenuior L. | Aspergillus flavus | 1.25 | [133] |
Aspergillus fumigatus | 0.64 | [133] | |
Aspergillus niger | 0.64 | [133] | |
Candida albicans | 1.25 | [133] | |
Candida guillermondii | 1.25 | [133] | |
Candida krusei | 1.25 | [133] | |
Candida parapsilosis | 1.25 | [133] | |
Candida tropicalis | 1.25 | [133] | |
Cryptococcus neoformans | 0.16 | [133] | |
Epidermophyton floccosum | 0.64 | [133] | |
Microsporum canis | 0.64–1.25 | [133] | |
Microsporum gypseum | 1.25 | [133] | |
Trichophyton mentagrophytes | 1.25 | [133] | |
Trichophyton mentagrophytes var. interdigitale | 1.254 | [133] | |
Trichophyton rubrum | 0.64 | [133] | |
Trichophyton verrucosum | 0.64 | [133] |
The mode of action of essential oils is multidirectional. Essential oils lead to disruption of the cell wall and cell membrane through a permeabilization process. The lipophilic compounds of essential oils can pass through the cell wall and damage polysaccharides, fatty acids, and phospholipids, eventually making them permeable [146,147]. Change of the permeability for H+ and K+ cations affects cellular pH and damage of cellular organelles [148,149]. Additionally, essential oils inhibit the synthesis of fungal DNA, RNA, proteins, and polysaccharides [150]. Essential oils can also disintegrate mitochondrial membrane [151,152]. It has also been shown that essential oil from Thymus vulgaris inhibits the production of aflatoxins by Aspergillus flavus and leads to the reduction of ergosterol production [123].
4. Essential Oils of Lamiaceae Plants in Cosmetics and Medicines
Some essential oils of Lamiaceae family plants and/or their components are commonly used in cosmetics and less often in medicine. Essential oils from Thymus vulgaris, Origanum vulgare, Rosmarinus officinalis, Calamintha officinalis, Salvia officinalis, or Lavandula officinalis are in cosmetic formulations as natural preservatives [187]. Lavandula angustifolia oil is commonly used as a fragrance in cosmetics, soaps, perfumes and pharmaceutical products. It also acts as an anti-inflammatory, and is calming, headache relieving, is a sedative and is skin healing. Essential oils from Lavandula hybrida and L. angustifolia also have anti-louse activity. Compounds (essential oils and mainly menthol) extracted from Mentha piperita are commonly used as a fragrance in soaps, cosmetics and as well as in the kitchen as a spice and refreshing products. Moreover, they are often found in chewing gums, toothpastes, and mouthwashes. For medical use, it can be taken orally in gastrointestinal complications. Rosmarinus officinalis essential oil is often an ingredient as a fragrance in cosmetics, soaps, bath salts and oils, gels and ointments. It is widely used for hair care and hair-loss treatment because it promotes hair growth and helps against dandruff [188]. In medicine, essential oils from Lamiaceae family are used in aromatherapy (Salvia sclarea, Lavandula officinalis, Mentha piperita, Rosmarinus officinalis) [189], sinusitis (Lavandula officinalis, Thymus vulgaris) [190], and in upper respiratory tract for treatment of catarrh (Mentha piperita, Mentha arvensis, Thymus spp.) [191]. Both essential oils from Lamiaceae plants and mono-substances are used in toothpastes and mouthwashes. In many of these the following chemicals, like limonene, linalool, menthol, and thymol, are presented as flavorings and fragrances [192,193]. Additionally, in some toothpastes are essential oils, e.g., in “Parodontax®” occurs Salvia officinalis oil, Mentha piperita oil, and Mentha arvensis oil; in “Lacalut Active Herbal” is Mentha arvensis oil, Thymus vulgaris oil, and Salvia officinalis oil, while in “Signal Family Herbal Fresh” are oils from Mentha piperita and Salvia officinalis [194]. Literature data confirm a strong antifungal effect against C. albicans and anti-inflammatory activity of “Parodontax” toothpaste [195,196]. Besides toothpastes, also some medicines used to rinse the oral cavity or throat contain a large number of essential oils. Mention may be made of “Salviasept” having in its composition the oils from Mentha × piperita, Thymus vulgaris, Thymus zygis, Origanum majorana, and Salvia officinalis or “Dentosept Complex” containing oils from Mentha piperita, Thymus vulgaris, Salvia sp., Lavandula sp., and Eucalyptus globulus. Among the antifungal medicines in “Acerin Talk” antifungal foot deodorant are present Lavandula sp. oil, menthol, linalool, limonene, and geraniol, while in “Podoflex Tincture” for nails mucosis occur among others oils from Salvia sclarea and Lavandula angustifolia and mono-substances current in Lamiaceae plants: geraniol, limonene, linalool, citral, and eugenol [194].
5. Conclusions
More than half of the essential oils from Lamiaceae family plants have good antifungal activity (MICs < 1000 µg/mL). The microbiological data indicate that they could be used alone or in combination with antifungal drugs in the treatment of fungal infections, especially of the skin and mucous membranes. Some essential oils and their components extracted from Lamiaceae plants are used in cosmetics and medicines. Essential oils may be of future relevance in the treatment of multi-drug resistant fungi.
Funding
This research received no external funding.
Conflicts of Interest
The author declares no conflict of interest.
References
- 1.Brown G.D., Denning D.W., Gow N.A., Levitz S.M., Netea M.G., White T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012;4 doi: 10.1126/scitranslmed.3004404. [DOI] [PubMed] [Google Scholar]
- 2.White T.C., Findley K., Dawson T.L., Jr., Scheynius A., Boekhout T., Cuomo C.A., Xu J., Saunders C.W. Fungi on the skin: Dermatophytes and Malassezia. Cold Spring Harb. Perspect. Med. 2014;4 doi: 10.1101/cshperspect.a019802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi. 2017;3:57. doi: 10.3390/jof3040057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Park B.J., Wannemuehler K.A., Marston B.J., Govender N., Pappas P.G., Chiller T.M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23:525–530. doi: 10.1097/QAD.0b013e328322ffac. [DOI] [PubMed] [Google Scholar]
- 5.Drgona L., Khachatryan A., Stephens J., Charbonneau C., Kantecki M., Haider S., Barnes R. Clinical and economic burden of invasive fungal diseases in Europe: Focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33:7–21. doi: 10.1007/s10096-013-1944-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Murray P.R., Rosenthal K.S., Pfaller M.A. Medical Microbiology. 7th ed. Saunders; Philadelphia, PA, USA: 2013. Section 6. Mycology; pp. 605–711. [Google Scholar]
- 7.Reddy K.R. Fungal infections (Mycoses): Dermatophytoses (Tinea, Ringworm) J. Gandaki Med. Coll. Nepal. 2017;10 doi: 10.3126/jgmcn.v10i1.17901. [DOI] [Google Scholar]
- 8.Lortholary O., Desnos-Ollivier M., Sitbon K., Fontanet A., Bretagne S., Dromer F. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: A prospective multicenter study involving 2,441 patients. Antimicrob. Agents Chemother. 2011;55:532–538. doi: 10.1128/AAC.01128-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Alexander B.D., Johnson M.D., Pfeiffer C.D., Jiménez-Ortigosa C., Catania J., Booker R., Castanheira M., Messer S.A., Perlin D.S., Pfaller M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013;56:1724–1732. doi: 10.1093/cid/cit136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Arendrup M.C., Perlin D.S. Echinocandin resistance: An emerging clinical problem? Curr. Opin. Infect. Dis. 2014;27:484–492. doi: 10.1097/QCO.0000000000000111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Van der Linden J.W., Arendrup M.C., Warris A., Lagrou K., Pelloux H., Hauser P.M., Chryssanthou E., Mellado E., Kidd S.E., Tortorano A.M., et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015;21:1041–1044. doi: 10.3201/eid2106.140717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Pfaller M.A., Diekema D.J. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004;42:4419–4431. doi: 10.1128/JCM.42.10.4419-4431.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Perlin D.S., Rautemaa-Richardson R., Alastruey-Izquierdo A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017;17:e383–e392. doi: 10.1016/S1473-3099(17)30316-X. [DOI] [PubMed] [Google Scholar]
- 14.Krcmery V., Jr., Spanik S., Kunova A., Trupl J. Breakthrough fungemia appearing during empiric therapy with amphotericin B. Chemotherapy. 1997;43:367–370. doi: 10.1159/000239591. [DOI] [PubMed] [Google Scholar]
- 15.Hull C.M., Bader O., Parker J.E., Weig M., Gross U., Warrilow A.G., Kelly D.E., Kelly S.L. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob. Agents Chemother. 2012;56:6417–6421. doi: 10.1128/AAC.01145-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Woods R.A., Bard M., Jackson I.E., Drutz D.J. Resistance to polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with an amphotericin B-resistant funguria. J. Infect. Dis. 1974;129:53–58. doi: 10.1093/infdis/129.1.53. [DOI] [PubMed] [Google Scholar]
- 17.Satoh K., Makimura K., Hasumi Y., Nishiyama Y., Uchida K., Yamaguchi H. Candida auris sp. nov, a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2009;53:41–44. doi: 10.1111/j.1348-0421.2008.00083.x. [DOI] [PubMed] [Google Scholar]
- 18.Tracking Candida Auris. [(accessed on 9 September 2019)];2019 Case Count Updated as of July 31. CDC. Available online: https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html.
- 19.Lockhart S.R., Etienne K.A., Vallabhaneni S., Farooqi J., Chowdhary A., Govender N.P., Colombo A.L., Calvo B., Cuomo C.A., Desjardins C.A., et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017;64:134–140. doi: 10.1093/cid/ciw691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Friedman D.Z.P., Schwartz I.S. Emerging fungal infections: New patients, new patterns, and new pathogens. J. Fungi. 2019;5:67. doi: 10.3390/jof5030067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Hata D.J., Humphries R., Lockhart S.R., College of American Pathologists Microbiology Committee Candida auris: An emerging yeast pathogen posing distinct challenges for laboratory diagnostics, treatment, and infection prevention. Arch. Pathol. Lab. Med. 2019 doi: 10.5858/arpa.2018-0508-RA. [DOI] [PubMed] [Google Scholar]
- 22.Clinical and Laboratory Standards Institute . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast. 3rd ed. Approved Standard, CLSI document M27-A3, Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008. [Google Scholar]
- 23.Clinical and Laboratory Standards Institute . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. 2nd ed. Approved Standard, CLSI document M38-A2, Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008. [Google Scholar]
- 24.Przybyłek I., Karpiński T.M. Antibacterial properties of propolis. Molecule. 2019;24:47. doi: 10.3390/molecules24112047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Ramasubramania Raja R. Medicinally potential plants of Labiatae (Lamiaceae) family: An overview. Res. J. Med. Plant. 2012;6:203–213. [Google Scholar]
- 26.Carović-Stanko K., Petek M., Grdiša M., Pintar J., Bedeković D., Herak Ćustić M., Satovic Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016;34:377–390. doi: 10.17221/504/2015-CJFS. [DOI] [Google Scholar]
- 27.Radulović N.S., Blagojević P.D., Stojanović-Radić Z.Z., Stojanowić N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem. 2013;20:932–952. [PubMed] [Google Scholar]
- 28.Vainstein A., Lewinsohn E., Pichersky E., Weiss D. Floral fragrance. New inroads into an old commodity. Plant Physiol. 2001;127:1383–1389. doi: 10.1104/pp.010706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.De Groot A.C., Schmidt E. Essential oils, Part III: Chemical composition. Dermatitis. 2016;27:161–619. doi: 10.1097/DER.0000000000000193. [DOI] [PubMed] [Google Scholar]
- 30.Piątkowska E., Rusiecka-Ziółkowska J. Influence of essential oils on infectious agents. Adv. Clin. Exp. Med. 2016;25:989–995. doi: 10.17219/acem/31287. [DOI] [PubMed] [Google Scholar]
- 31.Dhifi W., Bellili S., Jazi S., Bahloul N., Mnif W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines. 2016;3:25. doi: 10.3390/medicines3040025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.The Plant List. [(accessed on 12 September 2019)]; Available online: http://www.theplantlist.org.
- 33.PubChem. [(accessed on 23 September 2019)]; Available online: https://pubchem.ncbi.nlm.nih.gov.
- 34.Ngo Mback M.N., Agnaniet H., Nguimatsia F., Jazet Dongmo P.M., Hzounda Fokou J.B., Bakarnga-Via I., Fekam Boyom F., Menut C. Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay. J. Mycol. Med. 2016;26:233–243. doi: 10.1016/j.mycmed.2016.04.003. [DOI] [PubMed] [Google Scholar]
- 35.Ivanov I.G., Vrancheva R.Z., Petkova N.T., Tumbarski Y., Dincheva I.N., Badjakov I.K. Phytochemical compounds of anise hyssop (Agastache foeniculum) and antibacterial, antioxidant, and acetylcholinesterase inhibitory properties of its essential oil. J. Appl. Pharmac. Sci. 2019;9:72–78. [Google Scholar]
- 36.Li H.Q., Liu Q.Z., Liu Z.L., Du S.S., Deng Z.W. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules. 2013;18:4170–4180. doi: 10.3390/molecules18044170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Fraternale D., Ricci D. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp foetida collected at flowering and fruiting times. Nat. Prod. Commun. 2014;9:1015–1018. doi: 10.1177/1934578X1400900733. [DOI] [PubMed] [Google Scholar]
- 38.Marinković B., Marin P.D., Knezević-Vukcević J., Soković M.D., Brkić D. Activity of essential oils of three Micromeria species (Lamiaceae) against micromycetes and bacteria. Phytother. Res. 2002;16:336–339. doi: 10.1002/ptr.893. [DOI] [PubMed] [Google Scholar]
- 39.Monforte M.T., Tzakou O., Nostro A., Zimbalatti V., Galati E.M. Chemical composition and biological activities of Calamintha officinalis Moench essential oil. J. Med. Food. 2011;14:297–303. doi: 10.1089/jmf.2009.0191. [DOI] [PubMed] [Google Scholar]
- 40.Ćavar S., Vidic D., Maksimović M. Volatile constituents, phenolic compounds, and antioxidant activity of Calamintha glandulosa (Req.) Bentham. J. Sci. Food Agric. 2013;93:1758–1764. doi: 10.1002/jsfa.5967. [DOI] [PubMed] [Google Scholar]
- 41.Marongiu B., Piras A., Porcedda S., Falconieri D., Maxia A., Gonçalves M.J., Cavaleiro C., Salgueiro L. Chemical composition and biological assays of essential oils of Calamintha nepeta (L.) Savi subsp. nepeta (Lamiaceae) Nat. Prod. Res. 2010;24:1734–1742. doi: 10.1080/14786410903108944. [DOI] [PubMed] [Google Scholar]
- 42.Božović M., Garzoli S., Sabatino M., Pepi F., Baldisserotto A., Andreotti E., Romagnoli C., Mai A., Manfredini S., Ragno R. Essential oil extraction, chemical analysis and anti-Candida activity of Calamintha nepeta (L.) Savi subsp. landulosa (Req.) Ball—New approaches. Molecules. 2017;22:203. doi: 10.3390/molecules22020203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Kumar V., Mathela C.S., Tewari A.K., Bisht K.S. In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi. Pestic. Biochem. Physiol. 2014;114:67–71. doi: 10.1016/j.pestbp.2014.07.001. [DOI] [PubMed] [Google Scholar]
- 44.Stappen I., Wanner J., Tabanca N., Wedge D.E., Ali A., Kaul V.K., Lal B., Jaitak V., Gochev V.K., Schmidt E., et al. Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya. Nat. Prod. Commun. 2015;10:133–138. doi: 10.1177/1934578X1501000131. [DOI] [PubMed] [Google Scholar]
- 45.Ahmadi F., Sadeghi S., Modarresi M., Abiri R., Mikaeli A. Chemical composition, in vitro anti-microbial, antifungal an d antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem. Toxicol. 2010;48:1137–1144. doi: 10.1016/j.fct.2010.01.028. [DOI] [PubMed] [Google Scholar]
- 46.De Oliveira C.M.A., Silva M.R.R., Kato L., da Silva C.C., Ferreira H.D., Souza L.K.H. Chemical composition and antifungal activity of the essential oil of Hyptis ovalifolia Benth. (Lamiaceae) J. Braz. Chem. Soc. 2004;15:756–759. doi: 10.1590/S0103-50532004000500023. [DOI] [Google Scholar]
- 47.Džamić A.M., Soković M.D., Novaković M., Jadranin M., Ristić M.S., Tešević V., Marin P.D. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Ind. Crops Prod. 2013;51:401–407. [Google Scholar]
- 48.Hristova Y., Wanner J., Jirovetz L., Stappen I., Iliev I., Gochev V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol. Biotechnol. Equip. 2015;29:592–601. doi: 10.1080/13102818.2015.1020341. [DOI] [Google Scholar]
- 49.Adam K., Sivropoulou A., Kokkini S., Lanaras T., Arsenakis M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998;46:1739–1745. [Google Scholar]
- 50.D’Auria F.D., Tecca M., Strippoli V., Salvatore G., Battinelli L., Mazzanti G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med. Mycol. 2005;43:391–396. doi: 10.1080/13693780400004810. [DOI] [PubMed] [Google Scholar]
- 51.Khoury M., Stien D., Eparvier V., Ouaini N., El Beyrouthy M. Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. Evid. Based Compl. Altern. Med. 2016;2016 doi: 10.1155/2016/2547169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Zuzarte M., Vale-Silva L., Gonçalves M.J., Cavaleiro C., Vaz S., Canhoto J., Pinto E., Salgueiro L. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:1359–1366. doi: 10.1007/s10096-011-1450-4. [DOI] [PubMed] [Google Scholar]
- 53.Zuzarte M., Gonçalves M.J., Cavaleiro C., Dinis A.M., Canhoto J.M., Salgueiro L.R. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav. Chem. Biodivers. 2009;6:1283–1292. doi: 10.1002/cbdv.200800170. [DOI] [PubMed] [Google Scholar]
- 54.Zuzarte M., Gonçalves M.J., Cruz M.T., Cavaleiro C., Canhoto J., Vaz S., Pinto E., Salgueiro L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem. 2012;135:1505–1510. doi: 10.1016/j.foodchem.2012.05.090. [DOI] [PubMed] [Google Scholar]
- 55.Zuzarte M., Gonçalves M.J., Cavaleiro C., Canhoto J., Vale-Silva L., Silva M.J., Pinto E., Salgueiro L. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Her. J. Med. Microbiol. 2011;60:612–618. doi: 10.1099/jmm.0.027748-0. [DOI] [PubMed] [Google Scholar]
- 56.Ramírez J., Gilardoni G., Jácome M., Montesinos J., Rodolfi M., Guglielminetti M.L., Cagliero C., Bicchi C., Vidari G. Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant Lepechinia mutica Benth (Lamiaceae) Chem. Biodivers. 2017;14:e1700292. doi: 10.1002/cbdv.201700292. [DOI] [PubMed] [Google Scholar]
- 57.Ramírez J., Gilardoni G., Ramón E., Tosi S., Picco A.M., Bicchi C., Vidari G. Phytochemical study of the Ecuadorian species Lepechinia mutica (Benth.) Epling and high antifungal activity of carnosol against Pyricularia oryzae. Pharmaceuticals. 2018;11:33. doi: 10.3390/ph11020033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Zarai Z., Kadri A., Ben Chobba I., Ben Mansour R., Bekir A., Mejdoub H., Gharsallah N. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 2011;10:161. doi: 10.1186/1476-511X-10-161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Mimica-Dukic N., Bozin B., Sokovic M., Simin N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004;52:2485–2489. doi: 10.1021/jf030698a. [DOI] [PubMed] [Google Scholar]
- 60.Gonçalves M.J., Vicente A.M., Cavaleiro C., Salgueiro L. Composition and antifungal activity of the essential oil of Mentha cervina from Portugal. Nat. Prod. Res. 2007;21:867–871. doi: 10.1080/14786410701482244. [DOI] [PubMed] [Google Scholar]
- 61.Soković M.D., Vukojević J., Marin P.D., Brkić D.D., Vajs V., van Griensven L.J. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14:238–249. doi: 10.3390/molecules14010238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Camiletti B.X., Asensio C.M., Pecci Mde L., Lucini E.I. Natural control of corn postharvest fungi Aspergillus flavus and Penicillium sp. using essential oils from plants grown in Argentina. J. Food Sci. 2014;79:M2499–M2506. doi: 10.1111/1750-3841.12700. [DOI] [PubMed] [Google Scholar]
- 63.Samber N., Khan A., Varma A., Manzoor N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol. 2015;53:1496–1504. doi: 10.3109/13880209.2014.989623. [DOI] [PubMed] [Google Scholar]
- 64.Hossain F., Follett P., Dang Vu K., Harich M., Salmieri S., Lacroix M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 2016;53:24–30. doi: 10.1016/j.fm.2015.08.006. [DOI] [PubMed] [Google Scholar]
- 65.Mahboubi M., Haghi G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008;119:325–327. doi: 10.1016/j.jep.2008.07.023. [DOI] [PubMed] [Google Scholar]
- 66.Abdelli M., Moghrani H., Aboun A., Maachi R. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind. Crops Prod. 2016;94:197–205. doi: 10.1016/j.indcrop.2016.08.042. [DOI] [Google Scholar]
- 67.Chessa M., Sias A., Piana A., Mangano G.S., Petretto G.L., Masia M.D., Tirillini B., Pintore G. Chemical composition and antibacterial activity of the essential oil from Mentha requienii Bentham. Nat. Prod. Res. 2013;27:93–99. doi: 10.1080/14786419.2012.658798. [DOI] [PubMed] [Google Scholar]
- 68.Nardoni S., Giovanelli S., Pistelli L., Mugnaini L., Profili G., Pisseri F., Mancianti F. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat. Prod. Commun. 2015;10:1473–1478. doi: 10.1177/1934578X1501000840. [DOI] [PubMed] [Google Scholar]
- 69.Oumzil H., Ghoulami S., Rhajaoui M., Ilidrissi A., Fkih-Tetouani S., Faid M., Benjouad A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002;16:727–731. doi: 10.1002/ptr.1045. [DOI] [PubMed] [Google Scholar]
- 70.El-Kashoury S.A., El-Askary H.I., Kandil Z.A., Salem M.A. Chemical composition of the essential oil and botanical study of the flowers of Mentha suaveolens. Pharm. Biol. 2014;52:688–697. doi: 10.3109/13880209.2013.865239. [DOI] [PubMed] [Google Scholar]
- 71.Garzoli S., Pirolli A., Vavala E., Di Sotto A., Sartorelli G., Božović M., Angiolella L., Mazzanti G., Pepi F., Ragno R. Multidisciplinary approach to determine the optimal time and period for extracting the essential oil from Mentha suaveolens Ehrh. Molecules. 2015;20:9640–9655. doi: 10.3390/molecules20069640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Casiglia S., Jemia M.B., Riccobono L., Bruno M., Scandolera E., Senatore F. Chemical composition of the essential oil of Moluccella spinosa L. (Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles. Nat. Prod. Res. 2015;29:1201–1206. doi: 10.1080/14786419.2014.995654. [DOI] [PubMed] [Google Scholar]
- 73.Sacchetti G., Medici A., Maietti S., Radice M., Muzzoli M., Manfredini S., Braccioli E., Bruni R. Composition and functional properties of the essential oil of amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J. Agric. Food Chem. 2004;52:3486–3491. doi: 10.1021/jf035145e. [DOI] [PubMed] [Google Scholar]
- 74.Bozin B., Mimica-Dukic N., Simin N., Anackov G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006;54:1822–1828. doi: 10.1021/jf051922u. [DOI] [PubMed] [Google Scholar]
- 75.Al-Maskri A.Y., Hanif M.A., Al-Maskari M.Y., Abraham A.S., Al-sabahi J.N., Al-Mantheri O. Essential oil from Ocimum basilicum (Omani Basil): A desert crop. Nat. Prod. Commun. 2011;6:1487–1490. [PubMed] [Google Scholar]
- 76.Avetisyan A., Markosian A., Petrosyan M., Sahakyan N., Babayan A., Aloyan S., Trchounian A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement Altern. Med. 2017;17:60. doi: 10.1186/s12906-017-1587-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Ali N.A.A., Chhetri B.K., Dosoky N.S., Shari K., Al-Fahad A.J.A., Wessjohann L., Setzer W.N. Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines. 2017;4:17. doi: 10.3390/medicines4020017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Dubey N.K., Tiwari T.N., Mandin D., Andriamboavonjy H., Chaumont J.P. Antifungal properties of Ocimum gratissimum essential oil (ethyl cinnamate chemotype) Fitoterapia. 2000;71:567–569. doi: 10.1016/S0367-326X(00)00206-9. [DOI] [PubMed] [Google Scholar]
- 79.Lemos Jde A., Passos X.S., Fernandes Ode F., Paula J.R., Ferri P.H., Souza L.K., Lemos Ade A., Silva Mdo R. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans. Mem. Inst. Oswaldo Cruz. 2005;100:55–58. doi: 10.1590/S0074-02762005000100011. [DOI] [PubMed] [Google Scholar]
- 80.Mohr F.B., Lermen C., Gazim Z.C., Gonçalves J.E., Alberton O. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil. Genet. Mol. Res. 2017;16 doi: 10.4238/gmr16019542. [DOI] [PubMed] [Google Scholar]
- 81.Amber K., Aijaz A., Immaculata X., Luqman K.A., Nikhat M. Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine. 2010;17:921–925. doi: 10.1016/j.phymed.2010.02.012. [DOI] [PubMed] [Google Scholar]
- 82.Khan A., Ahmad A., Akhtar F., Yousuf S., Xess I., Khan L.A., Manzoor N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010;161:816–823. doi: 10.1016/j.resmic.2010.09.008. [DOI] [PubMed] [Google Scholar]
- 83.Kumar A., Shukla R., Singh P., Dubey N.K. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol. 2010;48:539–543. doi: 10.1016/j.fct.2009.11.028. [DOI] [PubMed] [Google Scholar]
- 84.Santamarina M.P., Roselló J., Sempere F., Giménez S., Blázquez M.A. Commercial Origanum compactum Benth. and Cinnamomum zeylanicum Blume essential oils against natural mycoflora in Valencia rice. Nat. Prod. Res. 2015;29:2215–2258. doi: 10.1080/14786419.2014.1002406. [DOI] [PubMed] [Google Scholar]
- 85.Homa M., Fekete I.P., Böszörményi A., Singh Y.R., Selvam K.P., Shobana C.S., Manikandan P., Kredics L., Vágvölgyi C., Galgóczy L. Antifungal effect of essential oils against Fusarium keratitis isolates. Planta Med. 2015;81:1277–1284. doi: 10.1055/s-0035-1546272. [DOI] [PubMed] [Google Scholar]
- 86.Waller S.B., Madrid I.M., Ferraz V., Picoli T., Cleff M.B., de Faria R.O., Meireles M.C., de Mello J.R. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil. Braz. J. Microbiol. 2016;47:896–901. doi: 10.1016/j.bjm.2016.07.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Nikkhah M., Hashemi M., Habibi Najafi M.B., Farhoosh R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int. J. Food Microbiol. 2017;257:285–294. doi: 10.1016/j.ijfoodmicro.2017.06.021. [DOI] [PubMed] [Google Scholar]
- 88.Rosato A., Vitali C., Piarulli M., Mazzotta M., Argentieri M.P., Mallamaci R. In vitro synergic efficacy of the combination of Nystatin with the essential oils of Origanum vulgare and Pelargonium graveolens against some Candida species. Phytomedicine. 2009;16:972–975. doi: 10.1016/j.phymed.2009.02.011. [DOI] [PubMed] [Google Scholar]
- 89.Vale-Silva L., Silva M.J., Oliveira D., Gonçalves M.J., Cavaleiro C., Salgueiro L., Pinto E. Correlation of the chemical composition of essential oils from Origanum vulgare subsp. virens with their in vitro activity against pathogenic yeasts and filamentous fungi. J. Med. Microbiol. 2012;61:252–260. doi: 10.1099/jmm.0.036988-0. [DOI] [PubMed] [Google Scholar]
- 90.Jeršek B., Poklar Ulrih N., Skrt M., Gavarić N., Božin B., Smole Možina S. Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum. Arhiv Higijenu i Toksikologiju. 2014;65:199–208. doi: 10.2478/10004-1254-65-2014-2486. [DOI] [PubMed] [Google Scholar]
- 91.Elansary H.O., Abdelgaleil S.A.M., Mahmoud E.A., Yessoufou K., Elhindi K., El-Hendawy S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement Altern. Med. 2018;18:214. doi: 10.1186/s12906-018-2262-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Kocevski D., Du M., Kan J., Jing C., Lačanin I., Pavlović H. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species. J. Food Sci. 2013;78:M731–M737. doi: 10.1111/1750-3841.12118. [DOI] [PubMed] [Google Scholar]
- 93.Murugan R., Mallavarapu G.R., Padmashree K.V., Rao R.R., Livingstone C. Volatile oil composition of Pogostemon heyneanus and comparison of its composition with patchouli oil. Nat. Prod. Commun. 2010;5:1961–1964. doi: 10.1177/1934578X1000501228. [DOI] [PubMed] [Google Scholar]
- 94.Zhang H.Y., Gao Y., Lai P.X. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of essential oil from Premna microphylla Turczaninow. Molecules. 2017;22:381. doi: 10.3390/molecules22030381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Angioni A., Barra A., Cereti E., Barile D., Coïsson J.D., Arlorio M., Dessi S., Coroneo V., Cabras P. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J. Agric. Food Chem. 2004;52:3530–3535. doi: 10.1021/jf049913t. [DOI] [PubMed] [Google Scholar]
- 96.Bozin B., Mimica-Dukic N., Samojlik I., Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007;55:7879–7885. doi: 10.1021/jf0715323. [DOI] [PubMed] [Google Scholar]
- 97.Ozcan M.M., Chalchat J.C. Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int. J. Food Sci. Nutr. 2008;59:691–698. doi: 10.1080/09637480701777944. [DOI] [PubMed] [Google Scholar]
- 98.Jiang Y., Wu N., Fu Y.J., Wang W., Luo M., Zhao C.J., Zu Y.G., Liu X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011;32:63–68. doi: 10.1016/j.etap.2011.03.011. [DOI] [PubMed] [Google Scholar]
- 99.Pitarokili D., Tzakou O., Loukis A., Harvala C. Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J. Agric. Food Chem. 2003;51:3294–3301. doi: 10.1021/jf0211534. [DOI] [PubMed] [Google Scholar]
- 100.Zomorodian K., Moein M., Pakshir K., Karami F., Sabahi Z. Chemical composition and antimicrobial activities of the essential oil from Salvia mirzayanii leaves. J. Evid. Based Complementary Altern. Med. 2017;22:770–776. doi: 10.1177/2156587217717414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Abu-Darwish M.S., Cabral C., Ferreira I.V., Gonçalves M.J., Cavaleiro C., Cruz M.T., Al-bdour T.H., Salgueiro L. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. BioMed Res. Int. 2013;2013 doi: 10.1155/2013/538940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Yuce E., Yildirim N., Yildirim N.C., Paksoy M.Y., Bagci E. Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey. Cell. Mol. Biol. 2014;60:1–5. [PubMed] [Google Scholar]
- 103.Güllüce M., Sökmen M., Daferera D., Ağar G., Ozkan H., Kartal N., Polissiou M., Sökmen A., Sahin F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003;51:3958–3965. doi: 10.1021/jf0340308. [DOI] [PubMed] [Google Scholar]
- 104.Omidbeygi M., Barzegar M., Hamidi Z., Naghdibadi H. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control. 2007;18:1518–1523. doi: 10.1016/j.foodcont.2006.12.003. [DOI] [Google Scholar]
- 105.Giweli A., Džamić A.M., Soković M., Ristić M.S., Marin P.D. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules. 2012;17:4836–4850. doi: 10.3390/molecules17054836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Serbetçi T., Demirci B., Güzel C.B., Kültür S., Ergüven M., Başer K.H. Essential oil composition, antimicrobial and cytotoxic activities of two endemic Stachys cretica subspecies (Lamiaceae) from Turkey. Nat. Prod. Commun. 2010;5:1369–1374. doi: 10.1177/1934578X1000500907. [DOI] [PubMed] [Google Scholar]
- 107.Lazarević J.S., Đorđević A.S., Kitić D.V., Zlatković B.K., Stojanović G.S. Chemical composition and antimicrobial activity of the essential oil of Stachys officinalis (L.) Trevis. (Lamiaceae) Chem. Biodivers. 2013;10:1335–1349. doi: 10.1002/cbdv.201200332. [DOI] [PubMed] [Google Scholar]
- 108.Mohammadi A., Nazari H., Imani S., Amrollahi H. Antifungal activities and chemical composition of some medicinal plants. J. Mycol. Med. 2014;24:e1–e8. doi: 10.1016/j.mycmed.2014.02.006. [DOI] [PubMed] [Google Scholar]
- 109.Salah K.B., Mahjoub M.A., Chaumont J.P., Michel L., Millet-Clerc J., Chraeif I., Ammar S., Mighri Z., Aouni M. Chemical composition and in vitro antifungal and antioxidant activity of the essential oil and methanolic extract of Teucrium sauvagei Le Houerou. Nat. Prod. Res. 2006;20:1089–1097. doi: 10.1080/14786410600704748. [DOI] [PubMed] [Google Scholar]
- 110.Goren A.C., Bilsel G., Bilsel M., Demir H., Kocabaş E.E. Analysis of essential oil of Coridothymus capitatus (L.) and its antibacterial and antifungal activity. Zeitschrift für Naturforschung C. 2003;58:687–690. doi: 10.1515/znc-2003-9-1016. [DOI] [PubMed] [Google Scholar]
- 111.Salgueiro L.R., Pinto E., Gonçalves M.J., Pina-Vaz C., Cavaleiro C., Rodrigues A.G., Palmeira A., Tavares C., Costa-de-Oliveira S., Martinez-de-Oliveira J. Chemical composition and antifungal activity of the essential oil of Thymbra capitata. Planta Med. 2004;70:572–575. doi: 10.1055/s-2004-827162. [DOI] [PubMed] [Google Scholar]
- 112.Palmeira-de-Oliveira A., Gaspar C., Palmeira-de-Oliveira R., Silva-Dias A., Salgueiro L., Cavaleiro C., Pina-Vaz C., Martinez-de-Oliveira J., Queiroz J.A., Rodrigues A.G. The anti-Candida activity of Thymbra capitata essential oil: Effect upon pre-formed biofilm. J. Ethnopharmacol. 2012;140:379–383. doi: 10.1016/j.jep.2012.01.029. [DOI] [PubMed] [Google Scholar]
- 113.Kiliç T. Analysis of essential oil composition of Thymbra spicata var. spicata: Antifungal, antibacterial and antimycobacterial activities. Z. Naturforsch. C. 2006;61:324–328. doi: 10.1515/znc-2006-5-604. [DOI] [PubMed] [Google Scholar]
- 114.Unlü M., Vardar-Unlü G., Vural N., Dönmez E., Ozbaş Z.Y. Chemical composition, antibacterial and antifungal activity of the essential oil of Thymbra spicata L. from Turkey. Nat. Prod. Res. 2009;23:572–579. doi: 10.1080/14786410802312316. [DOI] [PubMed] [Google Scholar]
- 115.Jaradat N., Adwan L., Kaibni S., Shraim N., Zaid A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement Altern. Med. 2016;16:418. doi: 10.1186/s12906-016-1408-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Pina-Vaz C., Gonçalves Rodrigues A., Pinto E., Costa-de-Oliveira S., Tavares C., Salgueiro L., Cavaleiro C., Gonçalves M.J., Martinez-de-Oliveira J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad Dermatol. Venereol. 2004;18:73–78. doi: 10.1111/j.1468-3083.2004.00886.x. [DOI] [PubMed] [Google Scholar]
- 117.Alizadeh A., Zamani E., Sharaifi R., Javan-Nikkhah M., Nazari S. Antifungal activity of some essential oils against toxigenic Aspergillus species. Commun. Agric. Appl. Biol. Sci. 2010;75:761–767. [PubMed] [Google Scholar]
- 118.Alizadeh A., Sharaifi R., Javan-Nikkhah M., Sedaghat N. Survey of Thymus migricus essential oil on aflatoxin inhibition in Aspergillus flavus. Commun. Agric. Appl. Biol. Sci. 2010;75:769–776. [PubMed] [Google Scholar]
- 119.Pinto E., Pina-Vaz C., Salgueiro L., Gonçalves M.J., Costa-de-Oliveira S., Cavaleiro C., Palmeira A., Rodrigues A., Martinez-de-Oliveira J. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2006;55:1367–1373. doi: 10.1099/jmm.0.46443-0. [DOI] [PubMed] [Google Scholar]
- 120.Pagiotti R., Angelini P., Rubini A., Tirillini B., Granetti B., Venanzoni R. Identification and characterisation of human pathogenic filamentous fungi and susceptibility to Thymus schimperi essential oil. Mycoses. 2011;54:e364–e376. doi: 10.1111/j.1439-0507.2010.01926.x. [DOI] [PubMed] [Google Scholar]
- 121.Couladis M., Tzakou O., Kujundzic S., Sokovic M., Mimica-Dukic N. Chemical analysis and antifungal activity of Thymus striatus. Phytother. Res. 2004;18:40–42. doi: 10.1002/ptr.1353. [DOI] [PubMed] [Google Scholar]
- 122.Segvić Klarić M., Kosalec I., Mastelić J., Piecková E., Pepeljnak S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007;44:36–42. doi: 10.1111/j.1472-765X.2006.02032.x. [DOI] [PubMed] [Google Scholar]
- 123.De Lira Mota K.S., de Oliveira Pereira F., de Oliveira W.A., Lima I.O., de Oliveira Lima E. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules. 2012;17:14418–14433. doi: 10.3390/molecules171214418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Khan M.S., Ahmad I., Cameotra S.S. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp. Braz. J. Microbiol. 2014;45:523–531. doi: 10.1590/S1517-83822014000200021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Kohiyama C.Y., Yamamoto Ribeiro M.M., Mossini S.A., Bando E., Bomfim Nda S., Nerilo S.B., Rocha G.H., Grespan R., Mikcha J.M., Machinski M., Jr. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link. Food Chem. 2015;173:1006–1010. doi: 10.1016/j.foodchem.2014.10.135. [DOI] [PubMed] [Google Scholar]
- 126.Divband K., Shokri H., Khosravi A.R. Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strains. Microb. Pathog. 2017;104:1–5. doi: 10.1016/j.micpath.2017.01.011. [DOI] [PubMed] [Google Scholar]
- 127.Lagha R., Ben Abdallah F., Al-Sarhan B.O., Al-Sodany Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against Escherichia coli isolated from UTI patients. Molecules. 2019;24:1161. doi: 10.3390/molecules24061161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Marongiu B., Piras A., Porcedda S., Falconieri D., Goncalves M.J., Salgueiro L., Maxia A., Lai R. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2. Nat. Prod. Res. 2010;24:569–579. doi: 10.1080/14786410902899915. [DOI] [PubMed] [Google Scholar]
- 129.Asdadi A., Hamdouch A., Oukacha A., Moutaj R., Gharby S., Harhar H., El Hadek M., Chebli B., Idrissi Hassani L.M. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. J. Mycol. Med. 2015;25:e118–e127. doi: 10.1016/j.mycmed.2015.10.005. [DOI] [PubMed] [Google Scholar]
- 130.Mahboubi M., Heidary Tabar R., Mahdizadeh E. The anti-dermatophyte activity of Zataria multiflora essential oils. J. Mycol. Med. 2017;27:232–237. doi: 10.1016/j.mycmed.2017.03.001. [DOI] [PubMed] [Google Scholar]
- 131.Shahbazi Y. Chemical compositions, antioxidant and antimicrobial properties of Ziziphora clinopodioides Lam. essential oils collected from different parts of Iran. J. Food Sci. Technol. 2017;54:3491–3503. doi: 10.1007/s13197-017-2806-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Mohammadifard F., Alimohammadi S. Chemical composition and role of opioidergic system in antinociceptive effect of Ziziphora clinopodioides essential oil. Basic Clin. Neurosci. 2018;9:357–366. doi: 10.32598/bcn.9.5.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Abu-Darwish M.S., Cabral C., Gonçalves M.J., Cavaleiro C., Cruz M.T., Paoli M., Tomi F., Efferth T., Salgueiro L. Ziziphora tenuior L. essential oil from Dana Biosphere Reserve (Southern Jordan); Chemical characterization and assessment of biological activities. J. Ethnopharmacol. 2016;194:963–970. doi: 10.1016/j.jep.2016.10.076. [DOI] [PubMed] [Google Scholar]
- 134.Yang D., Michel L., Chaumont J.P., Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999;148:79–82. doi: 10.1023/A:1007178924408. [DOI] [PubMed] [Google Scholar]
- 135.Dahham S.S., Tabana Y.M., Iqbal M.A., Ahamed M.B., Ezzat M.O., Majid A.S., Majid A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015;20:11808–11829. doi: 10.3390/molecules200711808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Selestino Neta M.C., Vittorazzi C., Guimarães A.C., Martins J.D., Fronza M., Endringer D.C., Scherer R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm. Biol. 2017;55:190–197. doi: 10.1080/13880209.2016.1254251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Bona E., Cantamessa S., Pavan M., Novello G., Massa N., Rocchetti A., Berta G., Gamalero E. Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? J. Appl. Microbiol. 2016;121:1530–1545. doi: 10.1111/jam.13282. [DOI] [PubMed] [Google Scholar]
- 138.Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., Mete E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008;99:8788–8795. doi: 10.1016/j.biortech.2008.04.048. [DOI] [PubMed] [Google Scholar]
- 139.Marei G.I.K., Abdel Rasoul M.A., Abdelgaleil S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochem. Physiol. 2012;103:56–61. doi: 10.1016/j.pestbp.2012.03.004. [DOI] [Google Scholar]
- 140.Abbaszadeh S., Sharifzadeh A., Shokri H., Khosravi A.R., Abbaszadeh A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Med. 2014;24:e51–e56. doi: 10.1016/j.mycmed.2014.01.063. [DOI] [PubMed] [Google Scholar]
- 141.Rivera-Yañez C.R., Terrazas L.I., Jimenez-Estrada M., Campos J.E., Flores-Ortiz C.M., Hernandez L.B., Cruz-Sanchez T., Garrido-Fariña G.I., Rodriguez-Monroy M.A., Canales-Martinez M.M. Anti-Candida activity of Bursera morelensis Ramirez essential oil and two compounds, α-pinene and γ-terpinene—an in vitro study. Molecules. 2017;22:95. doi: 10.3390/molecules22122095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.de Oliveira Lima M.I., Araújo de Medeiros A.C., Souza Silva K.V., Cardoso G.N., de Oliveira Lima E., de Oliveira Pereira F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017;27:195–202. doi: 10.1016/j.mycmed.2017.01.011. [DOI] [PubMed] [Google Scholar]
- 143.de Macêdo Andrade A.C., Rosalen P.L., Freires I.A., Scotti L., Scotti M.T., Aquino S.G., de Castro R.D. Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Curr. Top. Med. Chem. 2018;18:2481–2490. doi: 10.2174/1568026618666181115103104. [DOI] [PubMed] [Google Scholar]
- 144.Wang K., Jiang S., Pu T., Fan L., Su F., Ye M. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat. Prod. Res. 2019;33:1423–1430. doi: 10.1080/14786419.2017.1419232. [DOI] [PubMed] [Google Scholar]
- 145.Shi Y., Si H., Wang P., Chen S., Shang S., Song Z., Wang Z., Liao S. Derivatization of natural compound β-pinene enhances its in vitro antifungal activity against plant pathogens. Molecules. 2019;24:3144. doi: 10.3390/molecules24173144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Wojtunik-Kulesza K.A., Kasprzak K., Oniszczuk T., Oniszczuk A. Natural monoterpenes: Much more than only a scent. Chem. Biodiv. 2019;16:e19004. doi: 10.1002/cbdv.201900434. [DOI] [PubMed] [Google Scholar]
- 147.Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. [DOI] [PubMed] [Google Scholar]
- 148.Helal G.A., Sarhan M.M., Abu Shahla A.N.K., Abou El-Khair E.K. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain. J. Basic Microbiol. 2006;46:456–469. doi: 10.1002/jobm.200510106. [DOI] [PubMed] [Google Scholar]
- 149.Rammanee K., Hongpattarakere T. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technol. 2011;4:1050–1059. doi: 10.1007/s11947-010-0507-1. [DOI] [Google Scholar]
- 150.Hyldgaard M., Mygind T., Meyer R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012;3:1–24. doi: 10.3389/fmicb.2012.00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Basak S., Guha P. A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. J. Food Sci. Technol. 2018;55:4701–4710. doi: 10.1007/s13197-018-3394-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Tariq S., Wani S., Rasool W., Shafi K., Bhat M.A., Prabhakar A., Shalla A.H., Rather M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019;134 doi: 10.1016/j.micpath.2019.103580. [DOI] [PubMed] [Google Scholar]
- 153.Shin S., Kang C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 2003;36:111–115. doi: 10.1046/j.1472-765X.2003.01271.x. [DOI] [PubMed] [Google Scholar]
- 154.Gong H., Li S., He L., Kasimu R. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China. BMC Complement Altern. Med. 2017;17:95. doi: 10.1186/s12906-017-1605-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Zhang C., Li H., Yun T., Fu Y., Liu C., Gong B., Neng B. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Tibetan herbal medicine Dracocephalum heterophyllum Benth. Nat. Prod. Res. 2008;22:1–11. doi: 10.1080/14786410701619076. [DOI] [PubMed] [Google Scholar]
- 156.Souza L.K., de Oliveira C.M., Ferri P.H., de Oliveira Júnior J.G., de Souza Júnior A.H., Fernandes Ode F., Silva Mdo R. Antimicrobial activity of Hyptis ovalifolia towards dermatophytes. Memórias do Instituto Oswaldo Cruz. 2003;98:963–965. doi: 10.1590/S0074-02762003000700018. [DOI] [PubMed] [Google Scholar]
- 157.Dolatabadi S., Salari Z., Mahboubi M. Antifungal effects of Ziziphora tenuior, Lavandula angustifolia, Cuminum cyminum essential oils against clinical isolates of Candida albicans from women suffering from vulvovaginal candidiasis. Infect. 2019;23:222–226. doi: 10.22354/in.v23i3.784. [DOI] [Google Scholar]
- 158.Powers C.N., Osier J.L., McFeeters R.L., Brazell C.B., Olsen E.L., Moriarity D.M., Satyal P., Setzer W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules. 2018;23:1549. doi: 10.3390/molecules23071549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Ozcakmak S., Dervisoglu M., Yilmaz A. Antifungal activity of lemon balm and sage essential oils on the growth of ochratoxigenic Penicillium verrucosum. Afr. J. Microbiol. Res. 2012;6:3079–3084. doi: 10.5897/AJMR12.569. [DOI] [Google Scholar]
- 160.Tyagi A.K., Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement Altern. Med. 2010;10:65. doi: 10.1186/1472-6882-10-65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Sharma A., Rajendran S., Srivastava A., Sharma S., Kundu B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017;123:308–313. doi: 10.1016/j.jbiosc.2016.09.011. [DOI] [PubMed] [Google Scholar]
- 162.Piras A., Porcedda S., Falconieri D., Maxia A., Gonçalves M., Cavaleiro C., Salgueiro L. Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia island (Italy) Nat. Prod. Res. 2019 doi: 10.1080/14786419.2019.1610755. [DOI] [PubMed] [Google Scholar]
- 163.Fancello F., Zara S., Petretto G.L., Chessa M., Addis R., Rourke J.P., Pintore G. Essential oils from three species of Mentha harvested in Sardinia: Chemical characterization and evaluation of their biological activity. Int. J. Food Prop. 2017;20:1751–1761. doi: 10.1080/10942912.2017.1354020. [DOI] [Google Scholar]
- 164.Houicher A., Hechachna H., Teldji H., Ozogul F. In vitro study of the antifungal activity of essential oils obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat. Food Nutr. Agric. 2016;8:99–106. doi: 10.2174/2212798408666160927124014. [DOI] [PubMed] [Google Scholar]
- 165.Ji H., Kim H., Beuchat L.R., Ryu J.H. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. Int. J. Food Microbiol. 2019;291:104–110. doi: 10.1016/j.ijfoodmicro.2018.11.023. [DOI] [PubMed] [Google Scholar]
- 166.Pietrella D., Angiolella L., Vavala E., Rachini A., Mondello F., Ragno R., Bistoni F., Vecchiarelli A. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement Altern. Med. 2011;11:18. doi: 10.1186/1472-6882-11-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Angiolella L., Vavala E., Sivric S., D’Auria F.D., Ragno R. In vitro activity of Mentha suaveolens essential oil against Cryptococcus neoformans and dermatophytes. Int. J. Essent. Oil Ther. 2010;4:35–36. [Google Scholar]
- 168.Bisht D.S., Padalia R.C., Singh L., Pande V., Lal P., Mathela C.S. Constituents and antimicrobial activity of the essential oils of six Himalayan Nepeta species. J. Serb. Chem. Soc. 2010;75:739–747. doi: 10.2298/JSC091106052B. [DOI] [Google Scholar]
- 169.Cardoso N.N., Alviano C.S., Blank A.F., Arrigoni-Blank M.F., Romanos M.T., Cunha M.M., da Silva A.J., Alviano D.S. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: Mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil. Pharm. Biol. 2017;55:1380–1388. doi: 10.1080/13880209.2017.1302483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170.Al-Hajj N.Q.M., Wang H.X., Ma C., Lou Z., Bashari M., Thabit R. Antimicrobial and antioxidant activities of the essential oils of some aromatic medicinal plants (Pulicaria inuloides-Asteraceae and Ocimum forskolei-Lamiaceae) Trop. J. Pharmaceut. Res. 2014;13:1287–1293. doi: 10.4314/tjpr.v13i8.13. [DOI] [Google Scholar]
- 171.Nakamura C.V., Ishida K., Faccin L.C., Filho B.P., Cortez D.A., Rozental S., de Souza W., Ueda-Nakamura T. In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Res. Microbiol. 2004;155:579–586. doi: 10.1016/j.resmic.2004.04.004. [DOI] [PubMed] [Google Scholar]
- 172.Silva M.R., Oliveira J.G., Jr., Fernandes O.F., Passos X.S., Costa C.R., Souza L.K., Lemos J.A., Paula J.R. Antifungal activity of Ocimum gratissimum towards dermatophytes. Mycoses. 2005;48:172–175. doi: 10.1111/j.1439-0507.2005.01100.x. [DOI] [PubMed] [Google Scholar]
- 173.Bedoya-Serna C.M., Dacanal G.C., Fernandes A.M., Pinho S.C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: In vitro study and application in Minas Padrão cheese. Braz. J. Microbiol. 2018;49:929–935. doi: 10.1016/j.bjm.2018.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Vinciguerra V., Rojas F., Tedesco V., Giusiano G., Angiolella L. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res. 2018;33:3273–3277. doi: 10.1080/14786419.2018.1468325. [DOI] [PubMed] [Google Scholar]
- 175.Wang G.S., Deng J.H., Ma Y.H., Shi M., Li B. Mechanisms, clinically curative effects, and antifungal activities of cinnamon oil and pogostemon oil complex against three species of Candida. J. Tradit. Chin. Med. 2012;32:19–24. doi: 10.1016/S0254-6272(12)60026-0. [DOI] [PubMed] [Google Scholar]
- 176.Farisa Banu S., Rubini D., Shanmugavelan P., Murugan R., Gowrishankar S., Karutha Pandian S., Nithyanand P. Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species. J. Mycol. Med. 2018;28:332–339. doi: 10.1016/j.mycmed.2018.02.012. [DOI] [PubMed] [Google Scholar]
- 177.Sookto T., Srithavaj T., Thaweboon S., Thaweboon B., Shrestha B. In vitro effects of Salvia officinalis L. essential oil on Candida albicans. Asian Pac. J. Trop. Biomed. 2013;3:376–380. doi: 10.1016/S2221-1691(13)60080-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Sharifzadeh A., Khosravi A.R., Ahmadian S. Chemical composition and antifungal activity of Satureja hortensis L. essentiall oil against planktonic and biofilm growth of Candida albicans isolates from buccal lesions of HIV(+) individuals. Microb. Pathog. 2016;96:1–9. doi: 10.1016/j.micpath.2016.04.014. [DOI] [PubMed] [Google Scholar]
- 179.Marković T., Chatzopoulou P., Šiljegović J., Nikolić M., Glamočlija J., Ćirić A., Soković M. Chemical analysis and antimicrobial activities of the essential oils of Satureja thymbra L. and Thymbra spicata L. and their main components. Arch. Biol. Sci. Belgrade. 2011;63:457–464. doi: 10.2298/ABS1102457M. [DOI] [Google Scholar]
- 180.Tabti L., Dib Mel A., Gaouar N., Samira B., Tabti B. Antioxidant and antifungal activity of extracts of the aerial parts of Thymus capitatus (L.) Hoffmanns against four phytopathogenic fungi of Citrus sinensis. Jundishapur J. Nat. Pharm. Prod. 2014;9:49–54. doi: 10.17795/jjnpp-13972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Nasir M., Tafess K., Abate D. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complement Altern. Med. 2015;15:260. doi: 10.1186/s12906-015-0784-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Sokolić-Mihalak D., Frece J., Slavica A., Delaš F., Pavlović H., Markov K. The effects of wild thyme (Thymus serpyllum L.) essential oil components against ochratoxin-producing Aspergilli. Arhiv za Higijenu i Toksikologiju. 2012;63:457–462. doi: 10.2478/10004-1254-63-2012-2309. [DOI] [PubMed] [Google Scholar]
- 183.Perina F.J., Amaral D.C., Fernandes R.S., Labory C.R., Teixeira G.A., Alves E. Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: Effects on growth, viability, early infection and cellular mode of action. Pest Manag. Sci. 2015;71:1371–1378. doi: 10.1002/ps.3933. [DOI] [PubMed] [Google Scholar]
- 184.Sharifzadeh A., Javan A.J., Shokri H., Abbaszadeh S., Keykhosravy K. Evaluation of antioxidant and antifungal properties of the traditional plants against foodborne fungal pathogens. J. Mycol. Med. 2016;26:e11–e17. doi: 10.1016/j.mycmed.2015.11.002. [DOI] [PubMed] [Google Scholar]
- 185.Liu J., Sui G., He Y., Liu D., Yan J., Liu S., Qin W. Prolonging storage time of baby ginger by using a sand-based storage medium and essential oil treatment. J. Food Sci. 2014;79:M593–M599. doi: 10.1111/1750-3841.12384. [DOI] [PubMed] [Google Scholar]
- 186.Moghadam H.D., Sani A.M., Sangatash M.M. Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain. Toxicol. Ind. Health. 2016;32:493–499. doi: 10.1177/0748233713503375. [DOI] [PubMed] [Google Scholar]
- 187.Dreger M., Wielgus K. Application of essential oils as natural cosmetic preservatives. Herba Pol. 2013;59:142–156. doi: 10.2478/hepo-2013-0030. [DOI] [Google Scholar]
- 188.Sarkic A., Stappen I. Essential oils and their single compounds in cosmetics—A critical review. Cosmetics. 2018;5:11. doi: 10.3390/cosmetics5010011. [DOI] [Google Scholar]
- 189.Ali B., Al-Wabel N.A., Shams S., Ahamad A., Khan S.A., Anwar F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015;5:601–611. doi: 10.1016/j.apjtb.2015.05.007. [DOI] [Google Scholar]
- 190.Helms S., Miller A.L. Natural treatment of chronic rhinosinusitis. Altern. Med. Rev. 2006;11:196–207. [PubMed] [Google Scholar]
- 191.Schilcher H. Efficient phytotherapy. Herbal medicines in the upper respiratory tract for catarrh. Herba Pol. 2000;46:52–57. [Google Scholar]
- 192.Vranic E., Lacević A., Mehmedagić A., Uzunovic A. Formulation ingredients for toothpastes and mouthwashes. Bosnian J. Basic Med. Sci. 2004;4:51–58. doi: 10.17305/bjbms.2004.3362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Guven Y., Ustun N., Tuna E.B., Aktoren O. Antimicrobial effect of newly formulated toothpastes and a mouthrinse on specific microorganisms: An in vitro study. Eur. J. Dent. 2019;13:172–177. doi: 10.1055/s-0039-1695655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 194.DOZ Pharmacy. [(accessed on 17 December 2019)]; Available online: https://www.doz.pl/
- 195.Ehlers V., Helm S., Kasaj A., Willershausen B. The effect of Parodontax® on the MMP-8 concentration in gingivitis patients. Schweiz Monatsschr. Zahnmed. 2011;121:1041–1051. [PubMed] [Google Scholar]
- 196.Adwan G., Salameh Y., Adwan K., Barakat A. Assessment of antifungal activity of herbal and conventional toothpastes against clinical isolates of Candida albicans. Asian Pac. J. Trop. Biomed. 2012;2:375–379. doi: 10.1016/S2221-1691(12)60059-8. [DOI] [PMC free article] [PubMed] [Google Scholar]