Skip to main content
Cold Spring Harbor Perspectives in Medicine logoLink to Cold Spring Harbor Perspectives in Medicine
. 2020 Mar;10(3):a035246. doi: 10.1101/cshperspect.a035246

The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia

Francesca Gianni 1, Laura Belver 1, Adolfo Ferrando 1,2,3
PMCID: PMC7050584  PMID: 31570389

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.


T-cell acute lymphoblastic leukemia (T-ALL) is an immature lymphoid tumor characterized by the diffuse infiltration of the bone marrow by malignant hematopoietic cells expressing immature T-cell markers. T-ALL represents 10%–15% of pediatric and 20%–25% of adult ALL cases and is twice more prevalent in males than in females (Dores et al. 2012; Pui et al. 2012). T-ALL patients typically present with elevated white blood cell counts and hematopoietic failure with neutropenia, anemia, and thrombocytopenia and frequently present with mediastinal thymic masses and meningeal infiltration at diagnosis (Greaves et al. 1981; Crist et al. 1988; Garand et al. 1990; Pui et al. 1990; Shuster et al. 1990; Karrman et al. 2009a).

In the early days of combination chemotherapy, T-ALL patients were recognized as a high-risk leukemia group with cure rates of ∼10% (Greaves et al. 1981; Thiel 1985). Subsequently, intensified chemotherapy protocols led to a gradual improvement in outcomes with current cure rates in multicenter trials approaching 90% in children (Pui and Evans 2006; Möricke et al. 2008; Pui et al. 2008; Vrooman and Silverman 2009; Hunger et al. 2012; Conter et al. 2014) and 60% in adults (Huguet et al. 2009; Marks et al. 2009; Stock et al. 2013). However, the prognosis remains dismal for patients who fail to obtain a complete hematologic remission or whose disease relapses after initial response (Uderzo et al. 2000; Einsiedel et al. 2005; Parker et al. 2010; Tallen et al. 2010; Hof et al. 2011; Sutton et al. 2015). Although no standard-of-care savage therapy is available in the refractory setting, some drugs have been recently approved for the treatment of relapsed T-ALL. In particular, single agent nelarabine, a deoxyguanosine analog, showed efficacy in several studies conducted in children and adults (Berg et al. 2005; DeAngelo et al. 2007; Gokbuget et al. 2011). In recent years, many research efforts have been performed to reduce the risk of relapse in T-ALL by improving induction and consolidation therapy. The inclusion of polyethylene glycol–conjugated (PEG) asparaginase and dexamethasone in frontline therapy has been reported to decrease the risk of relapse. Moreover, methotrexate intensification strategies have shown to increase event-free survival (EFS) and overall survival (OS) in T-ALL (Möricke et al. 2016; Winter et al. 2018). In addition, nelarabine is being actively explored in combination with chemotherapy as a frontline treatment in children and adult T-ALL. In the COG trial AALL0434, T-ALL patients receiving nelarabine in addition to the augmented Berlin–Frankfurt–Münster regimen showed a significant improvement in EFS (Dunsmore et al. 2018).

GENETIC AND BIOLOGIC HETEROGENEITY IN T-ALL

T-ALL is a heterogeneous disease resulting from a multistep transformation process in which accumulating genetic alterations disrupt the normal control of cell growth, proliferation, survival, and differentiation during thymocyte development. A hallmark of T-ALL is the interrelationship between key regulators of early T-cell development and T-ALL oncogenic signals. This is best illustrated by the prominent role of NOTCH1, a key factor driving T-cell fate specification and thymocyte development (Radtke et al. 2013), which is activated by oncogenic gain-of-function mutations in >60% of T-ALL cases (Weng et al. 2004). Activating mutations in NOTCH1 in T-ALL frequently co-occur with the loss of the CDKN2A locus (Hebert et al. 1994) and with chromosomal translocations, resulting in the aberrant expression of a diverse group of T-ALL-specific transcription factor oncogenes including (1) basic helix-loop-helix (bHLH) factors such as TAL1 (Begley et al. 1989; Bernard et al. 1990; Chen et al. 1990), TAL2 (Xia et al. 1991), LYL1 (Mellentin et al. 1989), and BHLHB1 (Wang et al. 2000); (2) LIM-only domain (LMO) genes such as LMO1 and LMO2 (McGuire et al. 1989; Boehm et al. 1991; Royer-Pokora et al. 1991); (3) homeobox genes such as TLX1 (Dube et al. 1991; Hatano et al. 1991; Kennedy et al. 1991), TLX3 (Bernard et al. 2001; Ferrando et al. 2002; Su et al. 2006), NKX2.1 (Homminga et al. 2011), NKX2.2 (Homminga et al. 2011), NKX2.5 (Nagel et al. 2003), and HOXA (Soulier et al. 2005); and (4) MYC (Erikson et al. 1986; Finger et al. 1986; Mathieu-Mahul et al. 1986), MYB (Clappier et al. 2007), and SPI1 (Seki et al. 2017). In addition, somatic mutations disrupt transcription factors tumor suppressor genes (e.g., ETV6, RUNX1, GATA3, BCL11B) and epigenetic regulators (e.g., EZH2, SUZ12, PHF6), leading to the activation of oncogenic signaling pathways (Van Vlierberghe et al. 2011a, 2013; Zhang et al. 2012; Neumann et al. 2013). Numerous studies that have explored the effect of these genetic alterations on T-cell development and transformation are reviewed below.

T-ALL is classified into groups characterized by unique gene expression signatures and immunophenotypic profiles that reflect an arrest at different stages of thymocyte development (Ferrando et al. 2002; Soulier et al. 2005; Seki et al. 2017). Early T-cell precursor (ETP) leukemias show a block at the earliest stages of T-cell differentiation (CD4 CD8 double-negative), aberrant expression of myeloid and stem cell markers, and a transcriptional program related to early T-cell precursor cells, hematopoietic stem cells, and myeloid progenitors (Ferrando et al. 2002; Coustan-Smith et al. 2009; Van Vlierberghe et al. 2011a). Early-immature ETP T-ALLs have a lower prevalence of NOTCH1 mutations, rarely have CDKN2A deletions, and are associated with mutations in signaling factors (e.g., NRAS, FLT3), epigenetic regulators (e.g., EZH2, IDH1, IDH2, DNMT3A), and transcription factors governing hematopoietic and T-cell development (e.g., RUNX1, GATA3, ETV6) (Van Vlierberghe et al. 2011a, 2013; Zhang et al. 2012; Neumann et al. 2013). Although ETP T-ALL accounts for ∼10% of pediatric T-ALL cases (Coustan-Smith et al. 2009; Inukai et al. 2012; Allen et al. 2013), it comprises 40%–50% of adult T-ALLs (Van Vlierberghe et al. 2011a, 2013; Allen et al. 2013). Once described as a high-risk group with dismal outcomes and high rates of chemotherapy resistance (Gutierrez et al. 2010a; Van Vlierberghe et al. 2013), ETP T-ALL can be effectively treated using early-response-based intensification (Patrick et al. 2014; Bond et al. 2017). T-ALLs with a characteristic CD1a+, CD4+, and CD8+ immunophenotype, corresponding to the early stages of cortical thymocyte maturation, show a favorable prognosis (Niehues et al. 1999; Wuchter et al. 2002). These leukemias are associated with activation of the TLX1, TLX3, NKX2.1, and NKX2.2 homeobox genes, have the highest prevalence of NOTCH1 mutations, and almost universally harbor deletions of the CDKN2A locus (Ferrando et al. 2002; Homminga et al. 2011). T-ALLs with a more mature, late-cortical-thymocyte immunophenotype with expression of CD4, CD8, and CD3 show activation of the TAL1 transcription factor oncogene (Ferrando et al. 2002). Immunophenotypic and biological differences between ETP-ALL and T-ALL may reflect a different cell of origin for these two subsets. The close relationship of ETP-ALL with hematopoietic stem cell transcriptional signatures, the increased incidence with age, and the common presence of mutations associated with clonal hematopoiesis and myeloid leukemia support that these leukemias may originate from early hematopietic progenitors and may have a preleukemic clonal hematopoiesis phase. In the case of T-ALL tumors, the presence of TCR rearrangements to the TCR loci supports that these alterations occur during thymocyte development and point to an intrathymic progenitor as the presumed cell of origin in this case.

Non-cell-autonomous mechanisms are also relevant for the development of T-ALL. In the bone marrow, T-ALL lymphoblasts establish contacts with vascular endothelial niche cells expressing CXCL12 and are dependent on cues from the microenvironment for cell proliferation and survival (Passaro et al. 2015; Pitt et al. 2015). The disruption of leukemia–stroma cell interactions using CXCR4 antagonists suppresses leukemia-initiating cell activity in vivo and induces disease remission in both mouse models of T-ALL and primary-patient-derived T-ALL xenografts (Passaro et al. 2015; Pitt et al. 2015). Moreover, CD44 is required for the engraftment of preleukemic T cells in the bone marrow, for the bone marrow niche interactions supporting leukemia-initiating cells, and for disease progression in human T-ALL xenografts (García-Peydró et al. 2018).

ONCOGENIC NOTCH1 IN T-ALL

NOTCH1 is a class I transmembrane glycoprotein that functions as a ligand-activated transcription factor. Interaction of NOTCH with delta-like or jagged ligands expressed on the surface of a neighboring cell triggers the cleavage of NOTCH first by the ADAM10 metalloprotease and then by the γ-secretase complex, which releases the active, intracellular portion of NOTCH (ICN) from the membrane. ICN is then translocated to the nucleus where it associates with the RBPJ/CSL DNA-binding protein and activates gene expression via recruitment of mastermind-like coactivators (Bray 2016; Siebel and Lendahl 2017).

Activation of the NOTCH1 receptor in the thymus is required for early T-cell fate specification and thymocyte development (Radtke et al. 1999; Hozumi et al. 2008; Koch et al. 2008; Feyerabend et al. 2009; Germar et al. 2011; Weber et al. 2011). The pathogenic role of NOTCH1 in T-ALL was first identified in rare T-ALLs harboring the t(7;9)(q34;q34.3) chromosomal translocation, which leads to expression of a truncated and constitutively active form of NOTCH1 (Ellisen et al. 1991; Palomero et al. 2006a). An oncogenic role for NOTCH1 in T-ALL was shown by the rapid development of acute leukemia in mice transplanted with hematopoietic progenitors expressing a constitutively active intracellular form of NOTCH1 (Pear et al. 1996). Most commonly, NOTCH1 is activated as a result of somatic mutations that disrupt the negative regulatory region (NRR), an intramolecular lock protecting the extracellular portion of the receptor from cleavage by ADAM10 in the absence of ligand, or from truncation of the NOTCH1 carboxy-terminal PEST domain, which impairs the termination of NOTCH1 signaling through the proteasomal degradation of ICN (Weng et al. 2004; Sulis et al. 2008). In addition, 8%–24% of T-ALLs harbor mutations in the F-box and WD repeat domain containing 7 (FBXW7), which is required for the degradation of ICN (Moberg et al. 2001; Malyukova et al. 2007; O'Neil et al. 2007a; Thompson et al. 2007; Liu et al. 2017). Moreover, cyclin C likely functions in NOTCH1 degradation via phosphorylation of the NOTCH1 ICN domain and as a haploinsufficient T-ALL tumor suppressor in mouse and human leukemia (Li et al. 2014). Disruption of multiple regulatory domains of NOTCH1 provides increased signaling and transformative advantage because 20% of T-ALL patients harbor NOTCH1 NRR mutations co-occurring with either NOTCH1 PEST or FBXW7 mutations (Weng et al. 2004; Mansour et al. 2006; Thompson et al. 2007). In addition, expression of the NOTCH1-ligand DLL4 in the microenvironment may provide paracrine signals for human and mouse T-ALL lymphoblasts (Minuzzo et al. 2015), and its aberrant expression in mouse T-cell precursor cells drives T-cell transformation (Xiong et al. 2013).

Oncogenic Pathways and Effector Mechanisms Controlled by NOTCH1

NOTCH1 promotes leukemic cell growth via direct transcriptional up-regulation of genes that drive anabolic pathways, such as ribosome biosynthesis, protein translation, and nucleotide and amino acid metabolism (Palomero et al. 2006b). NOTCH1 binding in super-enhancers is critical for the dynamic regulation of NOTCH1 target genes (Wang et al. 2014). The MYC oncogene, a direct target of NOTCH1 (Palomero et al. 2006b; Herranz et al. 2014; Yashiro-Ohtani et al. 2014), also promotes cell growth and anabolism in leukemia cells (Palomero et al. 2006b; Sharma et al. 2006; Margolin et al. 2009) and shares multiple target genes with NOTCH1 (Palomero et al. 2006b; Margolin et al. 2009). HES1, a transcriptional repressor downstream from NOTCH1 (Jarriault et al. 1995), promotes T-cell development and NOTCH1-induced leukemogenesis (Tomita et al. 1999; Wendorff et al. 2010), favoring activation of PI3K and NF-κB pathways (Palomero et al. 2008; Espinosa et al. 2010; Wong et al. 2012) via negative regulation of glucocorticoid receptor expression (Real et al. 2009) and by suppression of BBC3 (PUMA)-mediated apoptosis (Schnell et al. 2015). In addition, NOTCH1 promotes a protective stress response in T-ALL via transcriptional up-regulation of heat shock transcription factor 1 (HSF1) and downstream heat shock proteins (Kourtis et al. 2018) and regulates the expression of LUNAR1, a potentially oncogenic T-ALL long noncoding RNA (Trimarchi et al. 2014).

The PI3K-AKT-mTOR signaling pathway is a critical mediator of cytokine-driven cell growth, proliferation, and survival (Vivanco and Sawyers 2002). NOTCH1 induces PI3K-AKT during thymocyte development to regulate cell size, glucose uptake, and glycolysis (Ciofani and Zuniga-Pflucker 2005). Moreover, PTEN, a strong negative regulator of the PI3K-AKT pathway, is transcriptionally down-regulated by HES1 in T-cell progenitors and T-ALL lymphoblasts (Palomero et al. 2007; Wong et al. 2012). NOTCH1 also induces the expression of pre-TCRα (PTCRA) (Reizis and Leder 2002) and other cytokine and growth factor receptors upstream of the PI3K-AKT pathway such as the interleukin 7 receptor α chain (IL7R) (González-García et al. 2009) and IGF1R (Medyouf et al. 2011). Moreover, NOTCH1 can regulate NF-κB activity in T-ALL (Shin et al. 2006; Thompson et al. 2007) and NF-κB activity is strictly required for the generation and maintenance of NOTCH1-induced tumors (Espinosa et al. 2010; D'Altri et al. 2011).

Oncogenic NOTCH1 signaling can directly promote proliferation in T-ALL inducing G1/S cell cycle progression (Dohda et al. 2007; Joshi et al. 2009; Rao et al. 2009) via expression of the cell cycle genes CCND3, CDK4, and CDK6 (Joshi et al. 2009) and down-regulation of the cyclin-dependent kinase inhibitors CDKN2D and CDKN1B (Rao et al. 2009). Moreover, NOTCH1 induces transcription of the S-phase kinase-associated protein 2 (SKP2), a negative regulator of the CDKN1A and CDKN1B cell cycle inhibitor proteins (Dohda et al. 2007).

NOTCH as a Therapeutic Target in T-ALL

The prominent role of NOTCH signaling in T-cell transformation has created major interest in the development of anti-NOTCH1 therapies for T-ALL (Weng et al. 2004). Most notably, γ-secretase inhibitors (GSIs), which block the proteolytic cleavage of NOTCH receptors by the γ-secretase complex precluding the release of intracellular NOTCH1 from the membrane, have been proposed as a potential targeted therapy in T-ALL (Milano et al. 2004; Weng et al. 2004; van Es et al. 2005; Lewis et al. 2007; Paganin and Ferrando 2011). Early on, in vitro studies showed that T-ALL cell lines treated with GSIs show a rapid clearance of intracellular activated NOTCH1 and transcriptional down-regulation of NOTCH1 target genes with G1 cell cycle arrest and a decreased cell size in T-ALL cell lines (Weng et al. 2004; Palomero et al. 2006a,b). In addition, GSI-mediated inhibition of NOTCH1 signaling abolishes the engraftment of primary T-ALL cells in mice and induces significant antitumor responses in NOTCH1-induced mouse T-ALLs (Armstrong et al. 2009; Tatarek et al. 2011) and in primary-patient-derived T-ALL xenografts (Herranz et al. 2015). Moreover, pharmacodynamic studies have documented that GSIs induce NOTCH inhibition in the clinical setting (DeAngelo et al. 2006). However, the clinical development of GSIs as anti-NOTCH1 therapy has been hampered by a paucity of therapeutic responses in early clinical trials and dose-limiting toxicities (DeAngelo et al. 2006; Wei et al. 2010; Takebe et al. 2014). The lack of therapeutic efficacy may reflect in some cases the presence of subclonal NOTCH1 mutations. However, it is also possible that even in the presence of a clonal NOTCH1 mutation T-ALL cells show weak oncogene addiction to NOTCH signaling, primary resistance, or rapid tumor adaptation via activation of parallel signaling pathways or adaptive epigenetic responses. In this regard, mutational loss of PTEN is associated with GSI resistance in human T-ALL cell lines (Palomero et al. 2007) and Pten deletion abrogates the antileukemic response to GSI therapy in mouse models of NOTCH1-induced T-ALL (Herranz et al. 2015). Mechanistically, NOTCH1 inhibition induces suppression of cellular metabolism in Pten-positive cells, whereas Pten loss and consequent activation of the PI3K-AKT pathway activates glycolysis, uncoupling NOTCH1 signaling and leukemia cell growth (Herranz et al. 2015). Similarly, aberrant expression of MYC can overcome the growth suppressing effects of NOTCH inhibition in some tumors (Weng et al. 2006) and mutations in FBXW7 are highly prevalent in GSI-resistant cell lines (O'Neil et al. 2007a; Thompson et al. 2007). In addition, T-ALL cell lines seem to contain small populations of GSI-tolerant “persister” cells with distinct transcriptional programs and chromatin compaction, supporting an epigenetic mechanism of adaptation to NOTCH1 inhibition (Knoechel et al. 2014).

A second hurdle in the clinical development of GSIs is the development of dose-limiting on-target gastrointestinal toxicity as observed in a phase I clinical trials (DeAngelo et al. 2006; Papayannidis et al. 2015). GSI-induced gastrointestinal toxicity is characterized by secretory goblet cell metaplasia which results in malabsorption syndrome and diarrhea (Milano et al. 2004; van Es et al. 2005; Real et al. 2009; Wei et al. 2010). This phenotype results directly from the inhibition of NOTCH signaling in the intestinal epithelium as shown by genetic inactivation of Rbpj (van Es et al. 2005) or dual suppression of Notch1 and Notch2 in the gut (Riccio et al. 2008). Four different γ-secretase complexes contain one nicastrin and one presenilin enhancer-2 subunits that combine with a different APH-1 protein (either APH-1A or APH-1B) and a presenilin protein (PSEN, either PSEN1 or PSEN2). It has recently been shown that T-ALL specifically express PSEN1-containing-γ-secretase-complexes. Genetic deletion or pharmacological inhibition of PSEN1 impairs leukemia development and prolongs survival avoiding gut toxicities in vivo (Habets et al. 2019). Alternatively, the use of combination treatments with synergistic antileukemic effects offer the opportunity to obtain strong antitumor responses with lower toxicity. In this regard, metabolomic profiling of T-ALL cells in the context of NOTCH1 inhibition and Pten loss has defined a critical role for glutaminolysis in NOTCH1-induced leukemia cell growth, and small-molecule glutaminase inhibitors show strongly synergistic antitumor effects in combination with GSIs (Herranz et al. 2015). Moreover, genetic suppression of autophagy increases the antitumor effects of NOTCH inhibition in mouse models of NOTCH1-induced T-ALL (Herranz et al. 2015). In addition, GSIs show increased antitumor activity in combination with cyclin-dependent kinase inhibitors (Rao et al. 2009), histone deacetylase inhibitors (Sanda et al. 2010), proteasome inhibitors (Sanda et al. 2010), drugs targeting NF-κB signaling (Thompson et al. 2007), inhibitors of the PI3K-AKT-mTOR pathway (Chan et al. 2007; Palomero et al. 2007; Cullion et al. 2009; Sanda et al. 2010), and in the context of protein phosphatase 2A (PP2A) inhibition with perphenazine (Gutierrez et al. 2014). However, the most direct venue toward the development of a highly active and well-tolerated anti-NOTCH1 therapy in the clinic is the combination of GSIs with glucocorticoids (Real et al. 2009; Samon et al. 2012). Glucocorticoids induce apoptosis in lymphoid progenitor cells and are an essential component of ALL therapy (Inaba and Pui 2010). Early studies suggested an interaction between NOTCH1 signaling and glucocorticoid-induced apoptosis by showing that NOTCH1 activation can impair glucocorticoid-induced cell death in thymocytes (Deftos et al. 1998). Conversely, blocking NOTCH1 signaling with GSIs can reverse glucocorticoid resistance in T-ALLs (Real et al. 2009; Samon et al. 2012). The interaction between GSIs and glucocorticoids is mediated by release of the inhibitory effect of the NOTCH1-HES1 transcriptional axis on glucocorticoid receptor auto up-regulation, a critical amplification loop required for effective glucocorticoid-induced apoptosis (Real et al. 2009). Most notably, the combination of a GSI plus glucocorticoids is not only highly synergistic and active against glucocorticoid resistant leukemia models in vivo, but it also results in abrogation of GSI-induced gut toxicity (Real et al. 2009; Samon et al. 2012).

In addition to GSIs, inhibitors of sarco/endoplasmic reticulum calcium ATPase (SERCA) channels, stapled peptides targeting the NOTCH transcriptional complex, and NOTCH1-specific inhibitory antibodies have been proposed as alternative anti-NOTCH1 therapies for the treatment of T-ALL (Moellering et al. 2009; Wu et al. 2010; Roti et al. 2013; Sharma et al. 2015). SERCA inhibitors abrogate NOTCH signaling by interfering with the maturation and activity of leukemia-associated mutant forms of NOTCH1 and show on-target antileukemic effects in human T-ALL cell lines (Roti et al. 2013). SAHM1, a synthetic, cell-permeable, stabilized α-helical peptide binds to the NOTCH–RBPJ transactivation complex and prevents the recruitment of the MAML1 coactivator, thus blocking NOTCH-mediated transcription (Moellering et al. 2009). Therapeutically, SAHM1 induced strong antileukemic effects in human T-ALL cell lines and NOTCH-induced mouse leukemias without apparent gastrointestinal toxicity (Moellering et al. 2009). Finally, antibodies against the negative regulatory region of NOTCH1 (NRR1) have been shown to specifically block NOTCH1 signaling and inhibit growth in T-ALL cell lines and xenograft models with only minor changes in the intestine, suggesting that antibody-based selective inhibition of NOTCH1 could be effective and devoid of intestinal toxicity (Aste-Amezaga et al. 2010; Wu et al. 2010; Agnusdei et al. 2014; Gordon and Aster 2014; Sharma et al. 2015).

GENETIC DISRUPTION OF CELL CYCLE CONTROL

The loss of cell cycle control is a hallmark of cancer (Hanahan and Weinberg 2011). Deletions of the CDKN2A locus are observed in >70% of T-ALLs (Hebert et al. 1994; Ferrando et al. 2002) and cause the loss of the tumor suppressors P16/INK4, which inhibits G1-S cell cycle progression, and of P14/ARF, which mediates cell cycle arrest and apoptosis in response to cellular stress (Kamijo et al. 1998; Zhang et al. 1998). Deletions in the cell cycle regulator RB1, which encodes a master regulator of cell cycle progression (Mullighan et al. 2007; Van Vlierberghe et al. 2013), and CDKN1B, which encodes p27Kip1, an inhibitor of cyclin E-CDK2 and cyclin D-CDK4 complexes (Remke et al. 2009), can be found in ∼15% of T-ALL cases (Liu et al. 2017). Moreover, 6% of T-ALLs harbor activating mutations in CCND3, which regulates the G1/S transition (Liu et al. 2017). Finally, the t(12;14)(p13;q11) and t(7;12)(q34;p13) translocations are present in ∼3% of T-ALLs and promote cell cycle progression by driving aberrantly high levels of CCND2 expression (Clappier et al. 2006).

T-ALL TRANSCRIPTION FACTOR ONCOGENES

Oncogenic class II bHLH transcription factors, such as TAL1, TAL2, LYL1, and the LIM-only domain factors LMO1 and LMO2, are aberrantly expressed in ∼60% of T-ALLs (Ferrando et al. 2002). TAL1 up-regulation characterizes 30%–40% of T-ALLs and can be driven by both interchromosomal and intrachromosomal rearrangements that place it under the control of T-cell-specific regulatory sequences in the TCRA/D locus (Begley et al. 1989; Bernard et al. 1990; Chen et al. 1990) or the SCL/TAL1 interrupting locus (STIL), a TAL1 neighbor gene (Aplan et al. 1990). In addition, precise heterozygous somatic mutations create de novo binding motifs for the MYB transcription factor and result in an active 5′ enhancer driving monoallelic up-regulation of TAL1 (Mansour et al. 2014; Navarro et al. 2015). More rarely, the TAL1-related genes LYL1, TAL2, and BHLHB1 are aberrantly expressed when chromosomal translocations reposition them close to TCR-loci enhancers (Mellentin et al. 1989; Xia et al. 1991; Wang et al. 2000; Homminga et al. 2012). Notably, forced expression of TAL1 in T-cell precursors induces T-ALL in mouse models (Condorelli et al. 1996; Kelliher et al. 1996).

TAL1 transcriptional targets with T-ALL oncogenic potential include TRIB2 (Tan et al. 2016), NKX3.1 (Kusy et al. 2010), microRNA 223 (MIR223) (Mansour et al. 2013), and GTPase of immunity-associated protein (GIMAP) (Liau et al. 2017). Moreover, TAL1 and its binding partners GATA3 and RUNX1 form a positive autoregulatory loop involving activation of MYB that drives the initiation and maintenance of a leukemogenic transcriptional program (Sanda et al. 2012). Furthermore, the TAL1 target gene ARID5B encodes an epigenetic regulator that directly up-regulates MYC, promotes the TAL1-mediated oncogenic transcriptional program, and induces T-cell tumor formation in zebrafish (Leong et al. 2017).

The LIM-only domain factors LMO1 and LMO2 are overexpressed in 10% of T-ALL cases as a result of the t(11;14)(p15;q11) and t(11;14)(p13;q11) chromosomal translocations, respectively (McGuire et al. 1989; Boehm et al. 1991; Royer-Pokora et al. 1991). LMO1 up-regulation is also driven by a promoter mutation upstream of LMO1 that creates a new MYB binding site in 2% of T-ALLs (Li et al. 2017). LMO2 up-regulation is found in 3%–5% of T-ALLs as a result of noncoding mutations in the LMO2 promoter, which create putative binding sites for MYB, ETS1, or RUNX1 (Rahman et al. 2017) and in up to 5% of T-ALLs because of small chromosomal deletions in the vicinity of the LMO2 locus (Van Vlierberghe et al. 2006; Van Vlierberghe et al. 2008a). LMO proteins do not interact directly with DNA but form transcriptional complexes with TAL1 and other bHLH factors (Larson et al. 1996), and the oncogenic activity of Lmo1 or Lmo2 expression in transgenic mice (Fisch et al. 1992; McGuire et al. 1992) is markedly enhanced by Tal1 (Larson et al. 1996; Aplan et al. 1997; Tremblay et al. 2010).

Mechanistically, aberrant expression of the LMO genes confers properties of self-renewal to T cells. This has been observed in mouse T-cell precursors overexpressing Lmo2, and thymocytes from Tal1-Lmo1 double-transgenic mice, which show up-regulation of a stem cell–like transcriptional program linked with increased self-renewal (McCormack et al. 2013; Gerby et al. 2014). Immature ETP T-ALLs, which characteristically express high levels of LMO2 and LYL1, also show this stem cell–like signature (Ferrando et al. 2002; McCormack et al. 2010). Moreover, genetic suppression of Lyl1 in Lmo2-expressing transgenic mice suppressed LMO2-induced stem cell–like gene expression programs, inhibited self-renewal, and precluded the development of ETP-like T-ALL (McCormack et al. 2013). Aberrant expression of LMO2 by retroviral insertion underlies the accidental development of T-ALL in X-linked severe-combined immunodeficiency patients undergoing retrovirus-based gene therapy to restore IL-2 receptor γ chain deficiency (Hacein-Bey-Abina et al. 2003, 2008; Howe et al. 2008).

Homeobox Transcription Factor Oncogenes

Homeobox genes encode for a group of strongly conserved transcription factors involved in cell lineage specification, body patterning, and embryonic organogenesis. Deregulated expression of the HOXA9 and HOXA10 genes can be found in ∼3% of T-ALLs harboring chromosomal translocations and inversions that relocate the HOXA paralog gene cluster closer to the TCRB and TCRG loci (Soulier et al. 2005; Speleman et al. 2005). Moreover, aberrant expression of HOXA genes is common in early-immature ETP T-ALLs (Ferrando et al. 2002, 2003; Asnafi et al. 2003; Soulier et al. 2005; Van Vlierberghe et al. 2008b) and is characteristic of T-ALLs harboring KMT2-MLLT1 (MLL-ENL) (Tkachuk et al. 1992; Chervinsky et al. 1995; Rubnitz et al. 1996), PICALM-MLLT10 (Dreyling et al. 1996; Carlson et al. 2000; Asnafi et al. 2003; Soulier et al. 2005), and SET-NUP214 (Van Vlierberghe et al. 2008b) fusion oncogenes. In mouse models, HOXA9 expression and activating Jak3 mutations induce accelerated development of leukemia and are linked to enhanced STAT5 transcriptional activity (de Bock et al. 2018).

Chromosomal rearrangements that drive aberrant T-cell expression of the NK-L subclass of HOX transcription factor genes, including TLX1, TLX2, NKX2-1, NKX2-2, and NKX2-5, are commonly associated with T-ALL. The t(10;14)(q24;q11) rearrangement (Dube et al. 1991; Hatano et al. 1991; Kennedy et al. 1991; Lu et al. 1991; Dear et al. 1993) places TLX1 under the control of TCRA/D gene enhancers and results in TLX1 overexpression in 5%–10% of pediatric and 30% of adult T-ALLs (Ferrando et al. 2002, 2004). The t(5;14)(q35;q32) translocation places TLX3 under the control of T-cell regulatory elements near the BCL11B locus (Bernard et al. 2001) and is present in 20%–25% of pediatric and 5% of adult T-ALLs (Bernard et al. 2001; Ballerini et al. 2002; Ferrando et al. 2002, 2004; Asnafi et al. 2005). NKX2-1- and NKX2-2-rearranged leukemias are found in ∼5% of pediatric T-ALLs (Homminga et al. 2011), and chromosomal translocations involving NKX2-5 have been reported in sporadic T-ALLs (Nagel et al. 2003; Przybylski et al. 2006). TLX1-expressing human T-ALLs are distinguished by arrest at the cortical stage of thymocyte development, which may result from disruption of VDJ recombination by TLX1 binding to TCRA enhancer sequences (Dadi et al. 2012). Expression of TLX1 in the mouse thymus leads to T-ALL with Bcl11b and Notch1 mutations (De Keersmaecker et al. 2010; Rakowski et al. 2011). Notably, human and mouse TLX1-expressing T-cell tumors share a transcriptional program and have a defective mitotic checkpoint, and TLX1 can promote aneuploidy during T-cell transformation (Chen et al. 2010; De Keersmaecker et al. 2010).

T-ALLs harboring NK-L homeobox gene rearrangements show unique similarities. Both TLX1 and TLX3 normally down-regulate a large number of overlapping T-ALL tumor suppressor genes including BCL11B, PHF6, RUNX1, and WT1 (Della Gatta et al. 2012). In addition, TLX1- and TLX3-rearranged T-ALLs frequently harbor loss-of-function mutations in the BCL11B, WT1, and PHF6 tumor suppressor genes and the presence of the NUP214-ABL1 fusion oncogene (Graux et al. 2004; Tosello et al. 2009; De Keersmaecker et al. 2010; Van Vlierberghe et al. 2010). Similarly, NKX2-1- and NKX2-2-rearranged leukemias show a TLX-1-like gene expression signature and developmental arrest (Homminga et al. 2011).

MYC

The MYC oncogene encodes a basic helix-loop-helix leucine zipper transcription factor that functions as a key master regulator of cell growth and proliferation and is broadly involved in the pathogenesis of human cancer (Dang 2012; Stine et al. 2015). MYC is important for thymocyte development (Dose et al. 2006) and the control of cell growth downstream from NOTCH1 and pre-TCR signaling (Dose et al. 2006). The rare (<1%) T-ALL chromosomal translocation t(8;14)(q24;q11) places the MYC locus under the control of TCRA/D enhancer elements (Erikson et al. 1986; Finger et al. 1986; Mathieu-Mahul et al. 1986) and leads to its overexpression in developing T cells. MYC oncogenic activity in T-ALL has been shown in mouse and zebrafish leukemia models in which it drives cell growth and proliferation and confers leukemia-initiating activity (Langenau et al. 2003; King et al. 2013). In addition, NOTCH1 signaling up-regulates MYC expression (Palomero et al. 2006b; Sharma et al. 2006), and MYC is a mediator of NOTCH1-induced transformation (Palomero et al. 2006b; Sharma et al. 2006). Mechanistically, NOTCH1 controls MYC via N-Me, a T-cell-specific long-range distal MYC enhancer (Herranz et al. 2014; Yashiro-Ohtani et al. 2014) essential for T-cell leukemogenesis and targeted by focal chromosomal duplications in ∼5% of T-ALL cases (Herranz et al. 2014). Of note, and similar to NOTCH1, the MYC protein is targeted for proteasomal degradation by FBXW7 (Welcker et al. 2004; Yada et al. 2004), and T-ALL-associated FBXW7 mutations increase both NOTCH1 and MYC protein levels (O'Neil et al. 2007a; Thompson et al. 2007). Ultimately, NOTCH1 and MYC collaborate to activate a common transcriptional program controlling leukemia cell growth and metabolism (Palomero et al. 2006b; Margolin et al. 2009).

MYB

The MYB oncogene encodes a leucine zipper transcription factor activated in rare cases of T-ALL harboring the t(6;7)(q23;q32) chromosomal translocation via its translocation to the vicinity of the TCRB locus (Clappier et al. 2007). MYB-translocated cases are frequently found in children under the age of 2 and show a marked increase in the expression of proliferation and mitosis genes (Clappier et al. 2007). In addition, focal duplications of the MYB locus driving increased MYB expression are found in ∼10% of T-ALLs in both children and adults (Lahortiga et al. 2007; O'Neil et al. 2007b), and mutations leading to increased MYB activity occur in ∼19% of T-ALL cases (Liu et al. 2017). MYB can be also up-regulated via direct transcriptional activation by TAL1 (Sanda et al. 2012) and via posttranslational up-regulation by the TAL1/miR-223/FBXW7 regulatory axis (Mansour et al. 2013) or as a result of down-regulation of MYB-targeting microRNAs (Sanghvi et al. 2014; Mets et al. 2015).

SPI1

The SPI1 gene encodes an ETS-family transcription factor and master regulator of hematopoietic development also known as PU.1 (Burda et al. 2010). Recurrent chromosomal rearrangements involving SPI1 are present in 4% of pediatric T-ALLs with a double-negative or CD8-single-positive immunophenotype (Seki et al. 2017). These rearrangements juxtapose SPI1 to the TCF7 (TCF7-SPI1) and the STMN1 (STMN1-SPI1) loci causing increased expression of PU.1 (Seki et al. 2017). T-ALLs with SPI1 rearrangements have a distinct gene expression signature and poor prognosis (Seki et al. 2017).

TRANSCRIPTION FACTOR TUMOR SUPPRESSOR GENES

Mutations and deletions involving transcription factors tumor suppressors are frequently found in T-ALL. Mutations in ETV6, RUNX1, and GATA3 are associated with early immature ETP T-ALLs (Van Vlierberghe et al. 2011a; Zhang et al. 2012), and mutations in BCL11B, LEF1, and WT1 are predominantly found in early cortical T-ALLs, frequently in association with TLX1 and TLX3 translocations (De Keersmaecker et al. 2010; Gutierrez et al. 2010b; Della Gatta et al. 2012).

ETV6

The ETV6 gene encodes an ETS family transcriptional repressor strictly required for the development of hematopoietic stem cells (Wang et al. 1998; Hock et al. 2004). Dominant-negative forms of ETV6 arising from amino- or carboxy-terminal truncating mutations are found in 13% of T-ALLs (Van Vlierberghe et al. 2011a).

RUNX1

The RUNX1 tumor suppressor gene encodes a master regulator transcription factor with prominent roles in hematopoietic development (Okuda et al. 1996; Cai et al. 2000). Somatic mutations in RUNX1 are found in ∼5% of T-ALLs, typically in the immature ETP group (Della Gatta et al. 2012; Zhang et al. 2012; Grossmann et al. 2013; Van Vlierberghe et al. 2013). Germline heterozygous mutations in RUNX1 are found in families affected with FPDMM (platelet disorder, familial, with associated myeloid malignancy; OMIM ID #601399), a leukemia predisposition syndrome characterized by a moderate decrease in platelet numbers and an increased risk of acute myeloid leukemia (Song et al. 1999) and T-ALL (Owen et al. 2008; Preudhomme et al. 2009; Nishimoto et al. 2010).

GATA3

The GATA3 gene, which encodes an important transcriptional regulator of T-cell development and differentiation (Ting et al. 1996; Ho et al. 2009; Scripture-Adams et al. 2014) shows recurrent mutations in ETP ALL frequently involving R276, which disrupt the zinc finger DNA-binding domain (Zhang et al. 2012).

BCL11B

BCL11B encodes a zinc finger transcription factor that is mutated and deleted in mouse thymic lymphomas induced by γ-radiation (Wakabayashi et al. 2003a) and in T-ALL tumors arising in Atm-deficient (Ehrlich et al. 2014) and TLX1 transgenic mice (De Keersmaecker et al. 2010). In human T-ALL, BCL11B mutations are present in ∼10% of cases (De Keersmaecker et al. 2010; Gutierrez et al. 2011), frequently in combination with TLX1 and TLX3 translocations (Liu et al. 2017). Bcl11b inactivation in mouse T-cell progenitors results in early arrest at the DN2-DN3 stage of differentiation (Wakabayashi et al. 2003b; Ikawa et al. 2010; Li et al. 2010a) and promotes aberrant self-renewal activity (Ikawa et al. 2010) and features of natural killer T cells (Li et al. 2010a,b).

LEF1

LEF1 is a member of the lymphoid enhancer factor/T-cell factor (LEF/TCF) family of transcription factors that are critical mediators of WNT signaling (Brantjes et al. 2001). In the absence of WNT activation, LEF/TCFs block the expression of WNT target genes (Brantjes et al. 2001). However, on WNT activation, LEF/TCFs associate with active nuclear β-catenin to induce the expression of WNT target genes (van Noort and Clevers 2002). Mutations and monoallelic or biallelic deletions in the LEF1 gene are present in ∼15% of T-ALL cases (Gutierrez et al. 2010b). Notably, T-ALLs with LEF1 inactivation show high levels of MYC expression and a characteristic differentiation arrest at the early cortical thymocyte stage of differentiation (Gutierrez et al. 2010b).

WT1

Deletions and mutations in the Wilms Tumor 1 (WT1) tumor suppressor gene are present in ∼10% of T-ALLs and also in acute myeloid leukemias (Tosello et al. 2009; Heesch et al. 2010; Renneville et al. 2010; Neumann et al. 2015). T-ALL-associated WT1 mutations are predominantly heterozygous frameshift mutations resulting in truncation of its carboxy-terminal zinc finger domains and are frequently associated with oncogenic expression of the TLX1, TLX3, or HOXA oncogenes (Tosello et al. 2009; Renneville et al. 2010). In T-ALL, WT1 mutations are enriched in relapsed series and have been associated with inferior relapse-free survival (Bordin et al. 2018). Moreover, WT1 loss confers resistance to DNA damaging agents via attenuation of TP53-induced apoptotic factors and up-regulation of the anti-apoptotic factor XIAP (Bordin et al. 2018).

GENETIC ALTERATIONS IN EPIGENETIC REGULATORS

Epigenetic regulators and chromatin modifiers are recurrently mutated in T-ALL. These include PHF6 (Van Vlierberghe et al. 2010), the PRC2 complex genes EZH2, EED, and SUZ12 (Ntziachristos et al. 2012; Zhang et al. 2012), and the KDM6A histone demethylase (Ntziachristos et al. 2014; Van der Meulen et al. 2015). In addition, mutations in IDH1, IDH2, and DNMT3A can be specifically found in the context of ETP T-ALL (Van Vlierberghe et al. 2011a; Zhang et al. 2012).

PHF6

The plant homeodomain (PHD)-like finger 6 (PHF6) gene is inactivated by mutations and deletions in ∼20% of T-ALL cases (Van Vlierberghe et al. 2010; Van Vlierberghe et al. 2011b), 20%–25% of mixed phenotype acute leukemia with ETP and T/myeloid characteristics (Alexander et al. 2018), and ∼3% of acute myeloid leukemias (Van Vlierberghe et al. 2011b; Patel et al. 2012; Welch et al. 2012). Germline PHF6 mutations are pathogenic in Börjeson–Forssman–Lehmann syndrome (BFLS; OMIM 301900), a rare X-linked disorder associated with intellectual disability, distinctive facial features, truncal obesity, and gynecomastia (Lower et al. 2002; Gecz et al. 2006). Interestingly, somatic mutations in the PHF6 gene, located on Xq26, are mostly found in male T-ALL patients (Van Vlierberghe et al. 2011b). Moreover, PHF6 may function as a initiating tumor suppressor as suggested by a case of T-ALL arising in a male BFLS patient (Chao et al. 2010) and by the identification of PHF6 mutations in clonal hemopoiesis (Yoshizato et al. 2015; Abelson et al. 2018). Consistently, in a mouse model of NOTCH1-induced T-ALL, loss of Phf6 enhances tumor initiation, leukemia-initiating cell activity, represents an early event during T-ALL transformation and leads to increased self-renewal in mouse hematopoietic stem cells (Wendorff et al. 2018). Phf6-null hematopoietic stem cells are more quiescent, less prone to stress-induced activation, and confer increased hematopoietic recovery after chemotherapy (Wendorff et al. 2018). Mechanistically, PHF6 is a nucleolar protein and may function in chromatin remodeling and transcriptional regulation via interaction with the NurD nucleosome repositioning and histone deacetylation complex (Todd and Picketts 2012; Liu et al. 2015); however, it is also involved in ribosome biogenesis (Wang et al. 2013; Zhang et al. 2013) via interaction with the PAF1 transcription elongation complex (Zhang et al. 2013) and with UBF, implicated in the control of RNA polymerase I activity and ribosomal DNA (rDNA) transcription.

EZH2, EED, and SUZ12

The EZH2, EED, and SUZ12 genes encode members of the Polycomb repressive complex 2 (PRC2), a major epigenetic regulator that mediates transcriptional repression via deposition of the H3K27me3 epigenetic mark (Cao et al. 2002; Czermin et al. 2002). Loss-of-function mutations in these genes are observed in up to 25% of T-ALLs and comprise up to 42% of ETP T-ALLs (Ntziachristos et al. 2012; Zhang et al. 2012). Conditional knockout of Ezh2 in early hematopoietic progenitors induces γδ T-cell leukemia in mice (Simon et al. 2012), and concomitant deletion of Runx1 and Ezh2 induces mouse ETP T-ALL tumors in cooperation with oncogenic FLT3 (Booth et al. 2018). PRC2 mutations have been proposed to promote T-cell transformation through increased expression and activation of FLT3 (Zhang et al. 2018) and enhanced NOTCH1 transcriptional activity (Ntziachristos et al. 2012) and may be associated with inferior response to chemotherapy (Aries et al. 2018).

KDM6A

The KDM6A gene (also known as UTX) encodes a H3K27me3 histone demethylase (Agger et al. 2007; Lan et al. 2007) that is mutated in 5%–15% of T-ALLs and functions as a tumor suppressor gene (Ntziachristos et al. 2014; Van der Meulen et al. 2015). T-ALL-associated KMD6A mutations are typically located in the catalytic domain, which seems to be critical for leukemia initiation and maintenance (Van der Meulen et al. 2015).

ONCOGENIC ACTIVATION OF SIGNALING PATHWAYS

In addition to genetic lesions affecting transcription factors and chromatin regulators, genes encoding critical components of signaling pathways are frequently mutated in T-ALL.

PI3K-AKT

Thymocytes are dependent on the activity of PI3Kγ and PI3Kδ for cell growth, proliferation, and survival (Webb et al. 2005; Swat et al. 2006; Ji et al. 2007), and signaling mutations in T-ALL target and activate the PI3K-AKT-mTOR signaling pathway in ∼30% of cases (Liu et al. 2017). The most frequent alteration in this pathway affects the PTEN tumor suppressor gene through loss-of-function mutations and deletions in 10%–15% of T-ALLs (Palomero et al. 2007; Mendes et al. 2014), which could be associated with a poor prognosis (Paganin et al. 2018).

Loss of PTEN results in constitutive activation of the AKT-mTOR signaling axis, which directs multiple effectors to promote cell cycle progression, survival, glycolysis and protein biosynthesis (Stambolic et al. 1998; Cully et al. 2006). Pten heterozygous knockout mice develop lymphoid hyperplasia, T-ALL, and multiple solid tumors with loss of heterozygosity for the wild-type allele (Di Cristofano et al. 1998; Suzuki et al. 1998; Di Cristofano et al. 1999). Selective inactivation of Pten in hematopoietic progenitors (Yilmaz et al. 2006; Zhang et al. 2006) or in early or late thymic populations induces T-ALL (Hagenbeek et al. 2004; Hagenbeek and Spits 2008), similar to activated AKT (Mao et al. 2007). Consistently, inhibition of the PI3K/AKT/mTOR axis induces apoptosis and suppresses the growth of T-ALL in mouse models, cell lines and primary human T-ALL xenografts (Evangelisti et al. 2011; Subramaniam et al. 2012; Piovan et al. 2013; Dail et al. 2014).

In addition, activating mutations in the PI3K–AKT pathway that are detected at a lower frequency in T-ALL are found in AKT1, PI3K catalytic and regulatory subunit genes, PIKC3A, and PIK3CD (Gutierrez et al. 2009; Zuurbier et al. 2012; Liu et al. 2017). Moreover, the t(X;7)(q22;q34) and t(X;14)(q22;q11.2) translocations induce overexpression of IRS4 (Karrman et al. 2009b; Kang et al. 2012), a signaling factor that activates AKT (Uchida et al. 2000). Importantly, inhibition of the PI3K/AKT/mTOR axis induces apoptosis and suppresses the growth of T-ALL in mouse models, cell lines and primary human T-ALL xenografts (Evangelisti et al. 2011; Subramaniam et al. 2012; Piovan et al. 2013; Dail et al. 2014) thus representing a potential therapeutic opportunity for T-ALL patients. Notably, PTEN loss and AKT activation can also induce glucocorticoid resistance in mouse models of T-ALL (Piovan et al. 2013), and PTEN mutations are associated with primary glucocorticoid resistance in the clinic (Bandapalli et al. 2013). Mechanistically, AKT1 can phosphorylate the glucocorticoid receptor protein thereby blocking glucocorticoid-induced nuclear localization, and mTOR activation increases the expression of MCL1, an anti-apoptotic factor that antagonizes glucocorticoid-induced cell death (Wei et al. 2006). Consequently, PI3K–AKT–mTOR inhibition can effectively reverse glucocorticoid resistance in T-ALL (Wei et al. 2006; Subramaniam et al. 2012; Piovan et al. 2013; Burke et al. 2015).

IL7 Receptor and JAK-STAT Signaling

Activation of the JAK–STAT pathway by the interleukin-7 receptor (IL7R) supports the growth, proliferation, and survival of early T-cell progenitors (Mazzucchelli and Durum 2007). Aberrant JAK signaling was first linked to T-ALL via the t(9;12)(p24;p13) translocation, a rare rearrangement encoding the constitutively active ETV6-JAK2 kinase fusion oncoprotein (Lacronique et al. 1997). The JAK–STAT pathway is activated in 25% of T-ALLs, because of mutations in IL7R, JAK1, JAK3, and STAT5 (Liu et al. 2017), and predominantly in ETP T-ALLs, in which these mutations are found in 47% of cases (Zhang et al. 2012). T-ALL-associated IL7R mutations are located in the extracellular juxtamembrane-transmembrane region and lead to increased dimerization and receptor activation (Shochat et al. 2011, 2014; Zenatti et al. 2011). In addition, loss-of-function mutations in dynamin-2 (DNM2) impairs clathrin-mediated endocytosis of IL7R, causing increased IL7R surface density and enhanced IL-7 signaling in leukemic stem cells (Tremblay et al. 2016). Expression of mutant IL7R in combination with mutant NOTCH1 accelerates leukemia development in mice (Yokoyama et al. 2013), and IL7R activating mutations generate ETP T-ALL when expressed in thymocytes from p19/Arf knockout animals (Treanor et al. 2014). IL7R mutations are prevalent in ETP T-ALL cases (Zhang et al. 2012,) and ETP T-ALLs show hyperactivation of STAT5 in response to interleukin-7 (Maude et al. 2015). Moreover, chromosomal rearrangements of ZEB2, which encodes a zinc finger E-box-binding transcription factor (Goossens et al. 2015) are found in ETP-ALL, and Zeb2 overexpression in mice induces ETP-like leukemia with transcriptional activation of IL7R and increased JAK/STAT signaling (Goossens et al. 2015).

Activating mutations in JAK1 and JAK3 are found in 10% of T-ALL cases (Flex et al. 2008; Zhang et al. 2012; De Keersmaecker et al. 2013). Jak3 mutant alleles induce T-ALL in mice albeit with long latency (Degryse et al. 2014), and treatment of these tumors with a selective JAK3 inhibitor reduces white blood cell counts and induces apoptosis in T-ALL lymphoblasts (Degryse et al. 2014). Interestingly, pharmacologic inhibition of JAK1/2 shows therapeutic activity in ETP T-ALL primary patient xenografts in vivo irrespective of JAK/STAT pathway mutations (Maude et al. 2015).

Additional mutations that affect the JAK/STAT signaling pathway are frequently found in T-ALL. Activating mutations in the STAT5B gene, which encodes a downstream effector of JAK1 and JAK3, have been reported in 5%–10% of T-ALLs (Bandapalli et al. 2014; Kontro et al. 2014). Genetic inactivation of PTPN2, encoding a tyrosine phosphatase that negatively regulates the STAT proteins, is found in ∼6% of T-ALL cases (Kleppe et al. 2011). In addition, loss-of-function mutations in SH2B adaptor protein 3 (SH2B3), a gene that encodes a negative regulator of IL-7-mediated JAK/STAT5 signaling, are found in sporadic cases of T-ALL (Zhang et al. 2012; Perez-Garcia et al. 2013). In this context, preclinical studies have shown that JAK-STAT inhibition can induce antitumor effects in T-ALL animal models (Maude et al. 2015; Degryse et al. 2018a). Interestingly, ruxolitinib, a JAK1/2 inhibitor, showed broad antileukemic activity in xenograft models of ETP ALL, suggesting broad addiction to JAK-STAT signaling in these tumors (Maude et al. 2015). In addition, inhibition of ERK, PI3K and BCL2 in JAK3-mutant T-ALL cells increased the efficacy of JAK inhibitor treatment in these tumors (Degryse et al. 2018b).

ABL1-Fusion Oncogenic Kinases

About 6% of T-ALLs show rearrangements of the tyrosine kinase gene ABL1 resulting in expression of the NUP214-ABL1 fusion oncogene (Graux et al. 2004, 2009). T-ALL-associated ABL1 rearrangements also generate the EML1-ABL1 (De Keersmaecker et al. 2005) and ETV6-ABL1 (Van Limbergen et al. 2001) fusion genes. NUP214-ABL1 is almost exclusively found in TLX1 and TLX3 T-ALLs (Graux et al. 2004), and NUP214-ABL1 cooperates with TLX1 in a mouse model of T-ALL (Vanden Bempt et al. 2018). Interestingly, this group of leukemias, although not linked with a poor prognosis, shows in vitro sensitivity to different tyrosine kinase inhibitors (TKIs) (Quintas-Cardama et al. 2008). In addition, a few case reports have shown that the use of TKIs in relapsed patients harboring ABL1-fusions can induce complete or partial responses, at least temporarily (Deenik et al. 2009; Clarke et al. 2011; Chen et al. 2017), supporting the relevance of testing the activity of TKI therapy in clinical trials.

RAS–MAPK Signaling

Activating mutations in the HRAS and KRAS oncogenes have been described in 10%–15% of T-ALLs and are particularly prevalent in ETP T-ALL (Bar-Eli et al. 1989; Zhang et al. 2012; Van Vlierberghe et al. 2013; Liu et al. 2017). In addition, cryptic deletions and/or mutations in the neurofibromatosis type 1 (NF1) gene, which encodes a key negative regulator of Ras signaling, occur in 3% of T-ALL cases (Balgobind et al. 2008).

RIBOSOMAL PROTEIN MUTATIONS AND THE ROLE OF TRANSLATION IN T-ALL

One of the most intriguing findings of genomic profiling studies in T-ALL is the identification of recurrent mutations in ribosomal protein genes—in particular, RPL10, RPS5, and RPL11 (De Keersmaecker et al. 2013; Tzoneva et al. 2013). RPL10 mutations are present in 5%–10% of pediatric T-ALLs, with the recurrent RPL10 R98S allele accounting for the majority (De Keersmaecker et al. 2013). This alteration up-regulates JAK-STAT signaling components thereby driving hyper-activation of the JAK–STAT pathway following cytokine stimulation (Girardi et al. 2018). RPL10 mutations may also confer a survival advantage via a specific increase in IRES-mediated translation of the anti-apoptotic factor B-cell lymphoma 2 (BCL-2) (Kampen et al. 2019). The CNOT3 gene, which encodes a component of the CCR4-NOT deadenylase complex, a master regulator of translation and mRNA stability (Bartlam and Yamamoto 2010), is mutated in ∼8% of adult T-ALL cases (De Keersmaecker et al. 2013). Finally, the del(6q) chromosomal deletion, found in 30% of TAL1-expressing T-ALLs, leads to inactivation of two genes, SYNCRIP (encoding hnRNP-Q) and SNHG5 (small nucleolar RNA host gene 5), which affect ribosomal functions, translation programs, and mitochondrial respiration (Gachet et al. 2018).

CLOSING REMARKS

The identification and mechanistic dissection of genetic alterations driving malignant transformation in T-ALL illustrates how oncogenic processes hijack the developmental programs that regulate self-renewal, lineage specification, proliferation, survival, and differentiation. Much work is yet needed to fully understand the role of autocrine and paracrine signals, tumor-microenvironment interactions, and the cross talk between different genetic and epigenetic driver alterations in the pathogenesis of T-ALL. Advanced mouse models, in vitro organoid-like culture platforms, and detailed characterization of primary patient sample–derived xenografts are called to close this gap. A thorough understanding of the genetic, transcriptional, developmental, and metabolic programs underlying the development and maintenance of T-ALL will likely offer new opportunities for the rational design of tailored therapies for this disease. Finally, it should not escape our attention that orthogonal therapeutic approaches such as emerging opportunities in immunotherapy may soon transform the treatment of this disease. Thus, chimeric antigen receptor (CAR) T cells targeting CD7 engineered via CRISPR knockout of this T-cell antigen (Cooper et al. 2018) and CAR T cells selectively directed against T-cells expressing a C1 TCRB constant chain (Maciocia et al. 2017) show remarkable activity in preclinical models of T-ALL. Moreover, CD3 activating antibodies elicit strong TCR signals in T-ALLs with surface TCR expression inducing a negative-selection-like programmed cell death mechanism (Trinquand et al. 2016).

Footnotes

Editors: Michael G. Kharas, Ross L. Levine, and Ari M. Melnick

Additional Perspectives on Leukemia and Lymphoma: Molecular and Therapeutic Insights available at www.perspectivesinmedicine.org

References

  1. Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, Barda N, Zuzarte PC, Heisler L, Sundaravadanam Y, et al. 2018. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559: 400–404. 10.1038/s41586-018-0317-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K. 2007. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449: 731–734. 10.1038/nature06145 [DOI] [PubMed] [Google Scholar]
  3. Agnusdei V, Minuzzo S, Frasson C, Grassi A, Axelrod F, Satyal S, Gurney A, Hoey T, Seganfreddo E, Basso G, et al. 2014. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia 28: 278–288. 10.1038/leu.2013.183 [DOI] [PubMed] [Google Scholar]
  4. Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK, Xu B, Payne-Turner D, Yoshihara H, Loh ML, Horan J, et al. 2018. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 562: 373–379. 10.1038/s41586-018-0436-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allen A, Sireci A, Colovai A, Pinkney K, Sulis M, Bhagat G, Alobeid B. 2013. Early T-cell precursor leukemia/lymphoma in adults and children. Leukemia Res 37: 1027–1034. 10.1016/j.leukres.2013.06.010 [DOI] [PubMed] [Google Scholar]
  6. Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR. 1990. Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 250: 1426–1429. 10.1126/science.2255914 [DOI] [PubMed] [Google Scholar]
  7. Aplan PD, Jones CA, Chervinsky DS, Zhao X, Ellsworth M, Wu C, McGuire EA, Gross KW. 1997. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J 16: 2408–2419. 10.1093/emboj/16.9.2408 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Aries IM, Bodaar K, Karim SA, Chonghaile TN, Hinze L, Burns MA, Pfirrmann M, Degar J, Landrigan JT, Balbach S, et al. 2018. PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. J Exp Med 215: 3094–3114. 10.1084/jem.20180570 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Armstrong F, Brunet de la Grange P, Gerby B, Rouyez MC, Calvo J, Fontenay M, Boissel N, Dombret H, Baruchel A, Landman-Parker J, et al. 2009. NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 113: 1730–1740. 10.1182/blood-2008-02-138172 [DOI] [PubMed] [Google Scholar]
  10. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C, Garand R, Lafage-Pochitaloff M, Delabesse E, Buzyn A, et al. 2003. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage. Blood 102: 1000–1006. 10.1182/blood-2002-09-2913 [DOI] [PubMed] [Google Scholar]
  11. Asnafi V, Buzyn A, Thomas X, Huguet F, Vey N, Boiron JM, Reman O, Cayuela JM, Lheritier V, Vernant JP, et al. 2005. Impact of TCR status and genotype on outcome in adult T-cell acute lymphoblastic leukemia: A LALA-94 study. Blood 105: 3072–3078. 10.1182/blood-2004-09-3666 [DOI] [PubMed] [Google Scholar]
  12. Aste-Amezaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M, Huang L, Vitelli S, Vo KT, Haytko P, et al. 2010. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS ONE 5: e9094 10.1371/journal.pone.0009094 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Balgobind BV, Van Vlierberghe P, van den Ouweland AM, Beverloo HB, Terlouw-Kromosoeto JN, van Wering ER, Reinhardt D, Horstmann M, Kaspers GJ, Pieters R, et al. 2008. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 111: 4322–4328. 10.1182/blood-2007-06-095075 [DOI] [PubMed] [Google Scholar]
  14. Ballerini P, Blaise A, Busson-Le Coniat M, Su XY, Zucman-Rossi J, Adam M, van den Akker J, Perot C, Pellegrino B, Landman-Parker J, et al. 2002. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood 100: 991–997. 10.1182/blood-2001-11-0093 [DOI] [PubMed] [Google Scholar]
  15. Bandapalli OR, Zimmermann M, Kox C, Stanulla M, Schrappe M, Ludwig WD, Koehler R, Muckenthaler MU, Kulozik AE. 2013. NOTCH1 activation clinically antagonizes the unfavorable effect of PTEN inactivation in BFM-treated children with precursor T-cell acute lymphoblastic leukemia. Haematologica 98: 928–936. 10.3324/haematol.2012.073585 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bandapalli OR, Schuessele S, Kunz JB, Rausch T, Stutz AM, Tal N, Geron I, Gershman N, Izraeli S, Eilers J, et al. 2014. The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse. Haematologica 99: e188–e192. 10.3324/haematol.2014.104992 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bar-Eli M, Ahuja H, Foti A, Cline MJ. 1989. N-RAS mutations in T-cell acute lymphocytic leukaemia: Analysis by direct sequencing detects a novel mutation. Br J Haematol 72: 36–39. 10.1111/j.1365-2141.1989.tb07648.x [DOI] [PubMed] [Google Scholar]
  18. Bartlam M, Yamamoto T. 2010. The structural basis for deadenylation by the CCR4-NOT complex. Protein Cell 1: 443–452. 10.1007/s13238-010-0060-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J, Hershfield MS, Haynes BF, Cohen DI, Waldmann TA, et al. 1989. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci 86: 2031–2035. 10.1073/pnas.86.6.2031 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Berg SL, Blaney SM, Devidas M, Lampkin TA, Murgo A, Bernstein M, Billett A, Kurtzberg J, Reaman G, Gaynon P, et al. 2005. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: A report from the Children's Oncology Group. J Clin Oncol 23: 3376–3382. 10.1200/JCO.2005.03.426 [DOI] [PubMed] [Google Scholar]
  21. Bernard O, Guglielmi P, Jonveaux P, Cherif D, Gisselbrecht S, Mauchauffe M, Berger R, Larsen CJ, Mathieu-Mahul D. 1990. Two distinct mechanisms for the SCL gene activation in the t(1;14) translocation of T-cell leukemias. Genes Chromosomes Cancer 1: 194–208. 10.1002/gcc.2870010303 [DOI] [PubMed] [Google Scholar]
  22. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R, Nguyen Khac F, Mercher T, Penard-Lacronique V, Pasturaud P, et al. 2001. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15: 1495–1504. 10.1038/sj.leu.2402249 [DOI] [PubMed] [Google Scholar]
  23. Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH. 1991. The rhombotin family of cysteine-rich LIM-domain oncogenes: Distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci 88: 4367–4371. 10.1073/pnas.88.10.4367 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bond J, Graux C, Lhermitte L, Lara D, Cluzeau T, Leguay T, Cieslak A, Trinquand A, Pastoret C, Belhocine M, et al. 2017. Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: A Group for Research on Adult Acute Lymphoblastic Leukemia Study. J Clin Oncol 35: 2683–2691. 10.1200/JCO.2016.71.8585 [DOI] [PubMed] [Google Scholar]
  25. Booth CAG, Barkas N, Neo WH, Boukarabila H, Soilleux EJ, Giotopoulos G, Farnoud N, Giustacchini A, Ashley N, Carrelha J, et al. 2018. Ezh2 and Runx1 mutations collaborate to initiate lympho-myeloid leukemia in early thymic progenitors. Cancer Cell 33: 274–291.e278. 10.1016/j.ccell.2018.01.006 [DOI] [PubMed] [Google Scholar]
  26. Bordin F, Piovan E, Masiero E, Ambesi-Impiombato A, Minuzzo S, Bertorelle R, Sacchetto V, Pilotto G, Basso G, Zanovello P, et al. 2018. WT1 loss attenuates the TP53-induced DNA damage response in T-cell acute lymphoblastic leukemia. Haematologica 103: 266–277. 10.3324/haematol.2017.170431 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Brantjes H, Roose J, van De Wetering M, Clevers H. 2001. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res 29: 1410–1419. 10.1093/nar/29.7.1410 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bray SJ. 2016. Notch signalling in context. Nat Rev Mol Cell Biol 17: 722–735. 10.1038/nrm.2016.94 [DOI] [PubMed] [Google Scholar]
  29. Burda P, Laslo P, Stopka T. 2010. The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia 24: 1249–1257. 10.1038/leu.2010.104 [DOI] [PubMed] [Google Scholar]
  30. Burke MJ, Verneris MR, Le Rademacher J, He W, Abdel-Azim H, Abraham AA, Auletta JJ, Ayas M, Brown VI, Cairo MS, et al. 2015. Transplant outcomes for children with T cell acute lymphoblastic leukemia in second remission: A report from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 21: 2154–2159. 10.1016/j.bbmt.2015.08.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, Downing RJ, Dzierzak E. 2000. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 13: 423–431. 10.1016/S1074-7613(00)00042-X [DOI] [PubMed] [Google Scholar]
  32. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. 2002. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043. 10.1126/science.1076997 [DOI] [PubMed] [Google Scholar]
  33. Carlson KM, Vignon C, Bohlander S, Martinez-Climent JA, Le Beau MM, Rowley JD. 2000. Identification and molecular characterization of CALM/AF10 fusion products in T cell acute lymphoblastic leukemia and acute myeloid leukemia. Leukemia 14: 100–104. 10.1038/sj.leu.2401629 [DOI] [PubMed] [Google Scholar]
  34. Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ. 2007. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 110: 278–286. 10.1182/blood-2006-08-039883 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Chao MM, Todd MA, Kontny U, Neas K, Sullivan MJ, Hunter AG, Picketts DJ, Kratz CP. 2010. T-cell acute lymphoblastic leukemia in association with Börjeson-Forssman-Lehmann syndrome due to a mutation in PHF6. Pediatr Blood Cancer 55: 722–724. 10.1002/pbc.22574 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Chen Q, Yang CY, Tsan JT, Xia Y, Ragab AH, Peiper SC, Carroll A, Baer R. 1990. Coding sequences of the tal-1 gene are disrupted by chromosome translocation in human T cell leukemia. J Exp Med 172: 1403–1408. 10.1084/jem.172.5.1403 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Chen E, Huang X, Zheng Y, Li YJ, Chesney A, Ben-David Y, Yang E, Hough MR. 2010. Phosphorylation of HOX11/TLX1 on threonine-247 during mitosis modulates expression of cyclin B1. Mol Cancer 9: 246 10.1186/1476-4598-9-246 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Chen Y, Zhang L, Huang J, Hong X, Zhao J, Wang Z, Zhang K. 2017. Dasatinib and chemotherapy in a patient with early T-cell precursor acute lymphoblastic leukemia and NUP214-ABL1 fusion: A case report. Exp Ther Med 14: 3979–3984. 10.3892/etm.2017.5046 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Chervinsky DS, Sait SN, Nowak NJ, Shows TB, Aplan PD. 1995. Complex MLL rearrangement in a patient with T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 14: 76–84. 10.1002/gcc.2870140114 [DOI] [PubMed] [Google Scholar]
  40. Ciofani M, Zuniga-Pflucker JC. 2005. Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism. Nat Immunol 6: 881–888. 10.1038/ni1234 [DOI] [PubMed] [Google Scholar]
  41. Clappier E, Cuccuini W, Cayuela JM, Vecchione D, Baruchel A, Dombret H, Sigaux F, Soulier J. 2006. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia 20: 82–86. 10.1038/sj.leu.2404008 [DOI] [PubMed] [Google Scholar]
  42. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA, Langerak AW, Montpellier B, Nadel B, Walrafen P, et al. 2007. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110: 1251–1261. 10.1182/blood-2006-12-064683 [DOI] [PubMed] [Google Scholar]
  43. Clarke S, O'Reilly J, Romeo G, Cooney J. 2011. NUP214-ABL1 positive T-cell acute lymphoblastic leukemia patient shows an initial favorable response to imatinib therapy post relapse. Leuk Res 35: e131–e133. 10.1016/j.leukres.2011.03.025 [DOI] [PubMed] [Google Scholar]
  44. Condorelli GL, Facchiano F, Valtieri M, Proietti E, Vitelli L, Lulli V, Huebner K, Peschle C, Croce CM. 1996. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res 56: 5113–5119. [PubMed] [Google Scholar]
  45. Conter V, Valsecchi MG, Parasole R, Putti MC, Locatelli F, Barisone E, Lo Nigro L, Santoro N, Aricò M, Ziino O, et al. 2014. Childhood high-risk acute lymphoblastic leukemia in first remission: Results after chemotherapy or transplant from the AIEOP ALL 2000 study. Blood 123: 1470–1478. 10.1182/blood-2013-10-532598 [DOI] [PubMed] [Google Scholar]
  46. Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, Rettig MP, Wang B, Eissenberg LG, Ghobadi A, et al. 2018. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 32: 1970–1983. 10.1038/s41375-018-0065-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, Cheng C, Su X, Rubnitz JE, Basso G, et al. 2009. Early T-cell precursor leukaemia: A subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10: 147–156. 10.1016/S1470-2045(08)70314-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Crist WM, Shuster JJ, Falletta J, Pullen DJ, Berard CW, Vietti TJ, Alvarado CS, Roper MA, Prasthofer E, Grossi CE. 1988. Clinical features and outcome in childhood T-cell leukemia-lymphoma according to stage of thymocyte differentiation: A Pediatric Oncology Group Study. Blood 72: 1891–1897. [PubMed] [Google Scholar]
  49. Cullion K, Draheim KM, Hermance N, Tammam J, Sharma VM, Ware C, Nikov G, Krishnamoorthy V, Majumder PK, Kelliher MA. 2009. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood 113: 6172–6181. 10.1182/blood-2008-02-136762 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Cully M, You H, Levine AJ, Mak TW. 2006. Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6: 184–192. 10.1038/nrc1819 [DOI] [PubMed] [Google Scholar]
  51. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. 2002. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185–196. 10.1016/S0092-8674(02)00975-3 [DOI] [PubMed] [Google Scholar]
  52. Dadi S, Le Noir S, Payet-Bornet D, Lhermitte L, Zacarias-Cabeza J, Bergeron J, Villarese P, Vachez E, Dik WA, Millien C, et al. 2012. TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression. Cancer Cell 21: 563–576. 10.1016/j.ccr.2012.02.013 [DOI] [PubMed] [Google Scholar]
  53. D'Altri T, Gonzalez J, Aifantis I, Espinosa L, Bigas A. 2011. Hes1 expression and CYLD repression are essential events downstream of Notch1 in T-cell leukemia. Cell Cycle 10: 1031–1036. 10.4161/cc.10.7.15067 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Dail M, Wong J, Lawrence J, O'Connor D, Nakitandwe J, Chen SC, Xu J, Lee LB, Akagi K, Li Q, et al. 2014. Loss of oncogenic Notch1 with resistance to a PI3K inhibitor in T-cell leukaemia. Nature 513: 512–516. 10.1038/nature13495 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Dang CV. 2012. MYC on the path to cancer. Cell 149: 22–35. 10.1016/j.cell.2012.03.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. DeAngelo DJ, Stone RM, Silverman LB, Stock W, Attar EC, Fearen I, Dallob A, Matthews C, Stone J, Freedman S, et al. 2006. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J Clin Oncol 24: 6585. [Google Scholar]
  57. DeAngelo DJ, Yu D, Johnson JL, Coutre SE, Stone RM, Stopeck AT, Gockerman JP, Mitchell BS, Appelbaum FR, Larson RA. 2007. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood 109: 5136–5142. 10.1182/blood-2006-11-056754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Dear TN, Sánchez-García I, Rabbitts TH. 1993. The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc Natl Acad Sci 90: 4431–4435. 10.1073/pnas.90.10.4431 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. de Bock CE, Demeyer S, Degryse S, Verbeke D, Sweron B, Gielen O, Vandepoel R, Vicente C, Vanden Bempt M, Dagklis A, et al. 2018. HOXA9 cooperates with activated JAK/STAT signaling to drive leukemia development. Cancer Discov 8: 616–631. 10.1158/2159-8290.CD-17-0583 [DOI] [PubMed] [Google Scholar]
  60. Deenik W, Beverloo HB, van der Poel-van de Luytgaarde SC, Wattel MM, van Esser JW, Valk PJ, Cornelissen JJ. 2009. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia 23: 627–629. 10.1038/leu.2008.318 [DOI] [PubMed] [Google Scholar]
  61. Deftos ML, He YW, Ojala EW, Bevan MJ. 1998. Correlating notch signaling with thymocyte maturation. Immunity 9: 777–786. 10.1016/S1074-7613(00)80643-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Degryse S, de Bock CE, Cox L, Demeyer S, Gielen O, Mentens N, Jacobs K, Geerdens E, Gianfelici V, Hulselmans G, et al. 2014. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood 124: 3092–3100. 10.1182/blood-2014-04-566687 [DOI] [PubMed] [Google Scholar]
  63. Degryse S, Bornschein S, de Bock CE, Leroy E, Vanden Bempt M, Demeyer S, Jacobs K, Geerdens E, Gielen O, Soulier J, et al. 2018a. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL. Blood 131: 421–425. 10.1182/blood-2017-07-797597 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Degryse S, de Bock CE, Demeyer S, Govaerts I, Bornschein S, Verbeke D, Jacobs K, Binos S, Skerrett-Byrne DA, Murray HC, et al. 2018b. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32: 788–800. 10.1038/leu.2017.276 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. De Keersmaecker K, Graux C, Odero MD, Mentens N, Somers R, Maertens J, Wlodarska I, Vandenberghe P, Hagemeijer A, Marynen P, et al. 2005. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). Blood 105: 4849–4852. 10.1182/blood-2004-12-4897 [DOI] [PubMed] [Google Scholar]
  66. De Keersmaecker K, Real PJ, Gatta GD, Palomero T, Sulis ML, Tosello V, Van Vlierberghe P, Barnes K, Castillo M, Sole X, et al. 2010. The TLX1 oncogene drives aneuploidy in T cell transformation. Nat Med 16: 1321–1327. 10.1038/nm.2246 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, Gianfelici V, Geerdens E, Clappier E, Porcu M, et al. 2013. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 45: 186–190. 10.1038/ng.2508 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Della Gatta G, Palomero T, Perez-Garcia A, Ambesi-Impiombato A, Bansal M, Carpenter ZW, De Keersmaecker K, Sole X, Xu L, Paietta E, et al. 2012. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med 18: 436–440. 10.1038/nm.2610 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. 1998. Pten is essential for embryonic development and tumour suppression. Nat Genet 19: 348–355. 10.1038/1235 [DOI] [PubMed] [Google Scholar]
  70. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. 1999. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285: 2122–2125. 10.1126/science.285.5436.2122 [DOI] [PubMed] [Google Scholar]
  71. Dohda T, Maljukova A, Liu L, Heyman M, Grandér D, Brodin D, Sangfelt O, Lendahl U. 2007. Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp Cell Res 313: 3141–3152. 10.1016/j.yexcr.2007.04.027 [DOI] [PubMed] [Google Scholar]
  72. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. 2012. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood 119: 34–43. 10.1182/blood-2011-04-347872 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Dose M, Khan I, Guo Z, Kovalovsky D, Krueger A, von Boehmer H, Khazaie K, Gounari F. 2006. c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood 108: 2669–2677. 10.1182/blood-2006-02-005900 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK. 1996. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci 93: 4804–4809. 10.1073/pnas.93.10.4804 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Dube ID, Kamel-Reid S, Yuan CC, Lu M, Wu X, Corpus G, Raimondi SC, Crist WM, Carroll AJ, Minowada J, et al. 1991. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood 78: 2996–3003. [PubMed] [Google Scholar]
  76. Dunsmore KP, Winter S, Devidas M, Wood BL, Esiashvili N, Eisenberg N, Briegel N, Hayashi RJ, Gastier-Foster JM, Carroll AJ, et al. 2018. COG AALL0434: A randomized trial testing nelarabine in newly diagnosed T-cell malignancy. J Clin Oncol 36: 10500 10.1200/JCO.2018.36.15_suppl.10500 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Ehrlich LA, Yang-Iott K, Bassing CH. 2014. Tcrδ translocations that delete the Bcl11b haploinsufficient tumor suppressor gene promote atm-deficient T cell acute lymphoblastic leukemia. Cell Cycle 13: 3076–3082. 10.4161/15384101.2014.949144 [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Einsiedel HG, von Stackelberg A, Hartmann R, Fengler R, Schrappe M, Janka-Schaub G, Mann G, Hahlen K, Gobel U, Klingebiel T, et al. 2005. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: Results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 23: 7942–7950. 10.1200/JCO.2005.01.1031 [DOI] [PubMed] [Google Scholar]
  79. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J. 1991. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661. 10.1016/0092-8674(91)90111-B [DOI] [PubMed] [Google Scholar]
  80. Erikson J, Finger L, Sun L, ar-Rushdi A, Nishikura K, Minowada J, Finan J, Emanuel BS, Nowell PC, Croce CM. 1986. Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. Science 232: 884–886. 10.1126/science.3486470 [DOI] [PubMed] [Google Scholar]
  81. Espinosa L, Cathelin S, D'Altri T, Trimarchi T, Statnikov A, Guiu J, Rodilla V, Ingles-Esteve J, Nomdedeu J, Bellosillo B, et al. 2010. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell 18: 268–281. 10.1016/j.ccr.2010.08.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Evangelisti C, Ricci F, Tazzari P, Tabellini G, Battistelli M, Falcieri E, Chiarini F, Bortul R, Melchionda F, Pagliaro P, et al. 2011. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia 25: 781–791. 10.1038/leu.2011.20 [DOI] [PubMed] [Google Scholar]
  83. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, et al. 2002. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1: 75–87. 10.1016/S1535-6108(02)00018-1 [DOI] [PubMed] [Google Scholar]
  84. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ, Look AT. 2003. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: Dominance of HOX dysregulation. Blood 102: 262–268. 10.1182/blood-2002-10-3221 [DOI] [PubMed] [Google Scholar]
  85. Ferrando AA, Neuberg DS, Dodge RK, Paietta E, Larson RA, Wiernik PH, Rowe JM, Caligiuri MA, Bloomfield CD, Look AT. 2004. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 363: 535–536. 10.1016/S0140-6736(04)15542-6 [DOI] [PubMed] [Google Scholar]
  86. Feyerabend TB, Terszowski G, Tietz A, Blum C, Luche H, Gossler A, Gale NW, Radtke F, Fehling HJ, Rodewald HR. 2009. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30: 67–79. 10.1016/j.immuni.2008.10.016 [DOI] [PubMed] [Google Scholar]
  87. Finger LR, Harvey RC, Moore RC, Showe LC, Croce CM. 1986. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science 234: 982–985. 10.1126/science.3490692 [DOI] [PubMed] [Google Scholar]
  88. Fisch P, Boehm T, Lavenir I, Larson T, Arno J, Forster A, Rabbitts TH. 1992. T-cell acute lymphoblastic lymphoma induced in transgenic mice by the RBTN1 and RBTN2 LIM-domain genes. Oncogene 7: 2389–2397. [PubMed] [Google Scholar]
  89. Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L, Ariola C, Fodale V, Clappier E, Paoloni F, et al. 2008. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 205: 751–758. 10.1084/jem.20072182 [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Gachet S, El-Chaar T, Avran D, Genesca E, Catez F, Quentin S, Delord M, Therizols G, Briot D, Meunier G, et al. 2018. Deletion 6q drives T-cell leukemia progression by ribosome modulation. Cancer Discov 8: 1614–1631. 10.1158/2159-8290.CD-17-0831 [DOI] [PubMed] [Google Scholar]
  91. Garand R, Vannier JP, Bene MC, Faure G, Favre M, Bernard A. 1990. Comparison of outcome, clinical, laboratory, and immunological features in 164 children and adults with T-ALL. The groupe d'etude immunologique des leucemies. Leukemia 4: 739–744. [PubMed] [Google Scholar]
  92. García-Peydró M, Fuentes P, Mosquera M, García-León MJ, Alcain J, Rodriguez A, García de Miguel P, Menéndez P, Weijer K, Spits H, et al. 2018. The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. J Clin Invest 128: 2802–2818. 10.1172/JCI92981 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Gecz J, Turner G, Nelson J, Partington M. 2006. The Börjeson–Forssman–Lehman syndrome (BFLS, MIM #301900). Eur J Hum Genet 14: 1233–1237. 10.1038/sj.ejhg.5201639 [DOI] [PubMed] [Google Scholar]
  94. Gerby B, Tremblay CS, Tremblay M, Rojas-Sutterlin S, Herblot S, Hebert J, Sauvageau G, Lemieux S, Lecuyer E, Veiga DF, et al. 2014. SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 10: e1004768 10.1371/journal.pgen.1004768 [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Germar K, Dose M, Konstantinou T, Zhang J, Wang H, Lobry C, Arnett KL, Blacklow SC, Aifantis I, Aster JC, et al. 2011. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc Natl Acad Sci 108: 20060–20065. 10.1073/pnas.1110230108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Girardi T, Vereecke S, Sulima SO, Khan Y, Fancello L, Briggs JW, Schwab C, Op de Beeck J, Verbeeck J, Royaert J, et al. 2018. The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling. Leukemia 32: 809–819. 10.1038/leu.2017.225 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Gokbuget N, Basara N, Baurmann H, Beck J, Bruggemann M, Diedrich H, Guldenzoph B, Hartung G, Horst HA, Huttmann A, et al. 2011. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood 118: 3504–3511. 10.1182/blood-2011-01-329441 [DOI] [PubMed] [Google Scholar]
  98. González-García S, García-Peydró M, Martin-Gayo E, Ballestar E, Esteller M, Bornstein R, de la Pompa JL, Ferrando AA, Toribio ML. 2009. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7Rα gene expression in early human thymopoiesis and leukemia. J Exp Med 206: 779–791. 10.1084/jem.20081922 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, Taghon T, Tremblay CS, Costa M, Farhang Ghahremani M, et al. 2015. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun 6: 5794 10.1038/ncomms6794 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Gordon WR, Aster JC. 2014. Application and evaluation of anti-Notch antibodies to modulate Notch signaling. Methods Mol Biol 1187: 323–333. 10.1007/978-1-4939-1139-4_24 [DOI] [PubMed] [Google Scholar]
  101. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, Vermeesch JR, Stul M, Dutta B, Boeckx N, et al. 2004. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 36: 1084–1089. 10.1038/ng1425 [DOI] [PubMed] [Google Scholar]
  102. Graux C, Stevens-Kroef M, Lafage M, Dastugue N, Harrison CJ, Mugneret F, Bahloula K, Struski S, Gregoire MJ, Nadal N, et al. 2009. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia 23: 125–133. 10.1038/leu.2008.278 [DOI] [PubMed] [Google Scholar]
  103. Greaves MF, Janossy G, Peto J, Kay H. 1981. Immunologically defined subclasses of acute lymphoblastic leukaemia in children: Their relationship to presentation features and prognosis. Br J Haematol 48: 179–197. 10.1111/j.1365-2141.1981.tb02704.x [DOI] [PubMed] [Google Scholar]
  104. Grossmann V, Haferlach C, Weissmann S, Roller A, Schindela S, Poetzinger F, Stadler K, Bellos F, Kern W, Haferlach T, et al. 2013. The molecular profile of adult T-cell acute lymphoblastic leukemia: Mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer 52: 410–422. 10.1002/gcc.22039 [DOI] [PubMed] [Google Scholar]
  105. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau LA, Winter SS, et al. 2009. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114: 647–650. 10.1182/blood-2009-02-206722 [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Gutierrez A, Dahlberg SE, Neuberg DS, Zhang J, Grebliunaite R, Sanda T, Protopopov A, Tosello V, Kutok J, Larson RS, et al. 2010a. Absence of biallelic TCRγ deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol 28: 3816–3823. 10.1200/JCO.2010.28.3390 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Gutierrez A, Sanda T, Ma W, Zhang J, Grebliunaite R, Dahlberg S, Neuberg D, Protopopov A, Winter SS, Larson RS, et al. 2010b. Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood 115: 2845–2851. 10.1182/blood-2009-07-234377 [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Gutierrez A, Kentsis A, Sanda T, Holmfeldt L, Chen SC, Zhang J, Protopopov A, Chin L, Dahlberg SE, Neuberg DS, et al. 2011. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 118: 4169–4173. 10.1182/blood-2010-11-318873 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Gutierrez A, Pan L, Groen RW, Baleydier F, Kentsis A, Marineau J, Grebliunaite R, Kozakewich E, Reed C, Pflumio F, et al. 2014. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 124: 644–655. 10.1172/JCI65093 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, et al. 2019. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med 11 10.1126/scitranslmed.aau6246 [DOI] [PubMed] [Google Scholar]
  111. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, et al. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419. 10.1126/science.1088547 [DOI] [PubMed] [Google Scholar]
  112. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118: 3132–3142. 10.1172/JCI35700 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Hagenbeek TJ, Spits H. 2008. T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia 22: 608–619. 10.1038/sj.leu.2405056 [DOI] [PubMed] [Google Scholar]
  114. Hagenbeek TJ, Naspetti M, Malergue F, Garcon F, Nunes JA, Cleutjens KB, Trapman J, Krimpenfort P, Spits H. 2004. The loss of PTEN allows TCRαβ lineage thymocytes to bypass IL-7 and pre-TCR-mediated signaling. J Exp Med 200: 883–894. 10.1084/jem.20040495 [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: The next generation. Cell 144: 646–674. 10.1016/j.cell.2011.02.013 [DOI] [PubMed] [Google Scholar]
  116. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ. 1991. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253: 79–82. 10.1126/science.1676542 [DOI] [PubMed] [Google Scholar]
  117. Hebert J, Cayuela JM, Berkeley J, Sigaux F. 1994. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 84: 4038–4044. [PubMed] [Google Scholar]
  118. Heesch S, Goekbuget N, Stroux A, Tanchez JO, Schlee C, Burmeister T, Schwartz S, Blau O, Keilholz U, Busse A, et al. 2010. Prognostic implications of mutations and expression of the Wilms tumor 1 (WT1) gene in adult acute T-lymphoblastic leukemia. Haematologica 95: 942–949. 10.3324/haematol.2009.016386 [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, Xu L, Castillo-Martin M, Llobet-Navas D, Cordon-Cardo C, et al. 2014. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med 20: 1130–1137. 10.1038/nm.3665 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Herranz D, Ambesi-Impiombato A, Sudderth J, Sanchez-Martin M, Belver L, Tosello V, Xu L, Wendorff AA, Castillo M, Haydu JE, et al. 2015. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med 21: 1182–1189. 10.1038/nm.3955 [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Ho IC, Tai TS, Pai SY. 2009. GATA3 and the T-cell lineage: Essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 9: 125–135. 10.1038/nri2476 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Hock H, Meade E, Medeiros S, Schindler JW, Valk PJ, Fujiwara Y, Orkin SH. 2004. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev 18: 2336–2341. 10.1101/gad.1239604 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Hof J, Krentz S, van Schewick C, Korner G, Shalapour S, Rhein P, Karawajew L, Ludwig WD, Seeger K, Henze G, et al. 2011. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 29: 3185–3193. 10.1200/JCO.2011.34.8144 [DOI] [PubMed] [Google Scholar]
  124. Homminga I, Pieters R, Langerak Anton W, de Rooi J, Stubbs A, Verstegen M, Vuerhard M, Buijs-Gladdines J, Kooi C, Klous P, et al. 2011. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19: 484–497. 10.1016/j.ccr.2011.02.008 [DOI] [PubMed] [Google Scholar]
  125. Homminga I, Vuerhard MJ, Langerak AW, Buijs-Gladdines J, Pieters R, Meijerink JP. 2012. Characterization of a pediatric T-cell acute lymphoblastic leukemia patient with simultaneous LYL1 and LMO2 rearrangements. Haematologica 97: 258–261. 10.3324/haematol.2011.051722 [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, et al. 2008. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118: 3143–3150. 10.1172/JCI35798 [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Hozumi K, Mailhos C, Negishi N, Hirano K, Yahata T, Ando K, Zuklys S, Hollander GA, Shima DT, Habu S. 2008. Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med 205: 2507–2513. 10.1084/jem.20080134 [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Huguet F, Leguay T, Raffoux E, Thomas X, Beldjord K, Delabesse E, Chevallier P, Buzyn A, Delannoy A, Chalandon Y, et al. 2009. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: The GRAALL-2003 study. J Clin Oncol 27: 911–918. 10.1200/JCO.2008.18.6916 [DOI] [PubMed] [Google Scholar]
  129. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, Reaman GH, Carroll WL. 2012. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children's oncology group. J Clin Oncol 30: 1663–1669. 10.1200/JCO.2011.37.8018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Ikawa T, Hirose S, Masuda K, Kakugawa K, Satoh R, Shibano-Satoh A, Kominami R, Katsura Y, Kawamoto H. 2010. An essential developmental checkpoint for production of the T cell lineage. Science 329: 93–96. 10.1126/science.1188995 [DOI] [PubMed] [Google Scholar]
  131. Inaba H, Pui CH. 2010. Glucocorticoid use in acute lymphoblastic leukemia: Comparison of prednisone and dexamethasone. Lancet Oncol 11: 1096–1106. 10.1016/S1470-2045(10)70114-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Inukai T, Kiyokawa N, Campana D, Coustan-Smith E, Kikuchi A, Kobayashi M, Takahashi H, Koh K, Manabe A, Kumagai M, et al. 2012. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: Results of the Tokyo Children's Cancer Study Group Study L99-15. Br J Haematol 156: 358–365. 10.1111/j.1365-2141.2011.08955.x [DOI] [PubMed] [Google Scholar]
  133. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. 1995. Signalling downstream of activated mammalian Notch. Nature 377: 355–358. 10.1038/377355a0 [DOI] [PubMed] [Google Scholar]
  134. Ji H, Rintelen F, Waltzinger C, Bertschy Meier D, Bilancio A, Pearce W, Hirsch E, Wymann MP, Ruckle T, Camps M, et al. 2007. Inactivation of PI3Kγ and PI3Kδ distorts T-cell development and causes multiple organ inflammation. Blood 110: 2940–2947. 10.1182/blood-2007-04-086751 [DOI] [PubMed] [Google Scholar]
  135. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC, Sicinski P, Fauq A, Golde TE, Osborne BA. 2009. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 113: 1689–1698. 10.1182/blood-2008-03-147967 [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. 1998. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci 95: 8292–8297. 10.1073/pnas.95.14.8292 [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Kampen KR, Sulima SO, Verbelen B, Girardi T, Vereecke S, Rinaldi G, Verbeeck J, Op de Beeck J, Uyttebroeck A, Meijerink JPP, et al. 2019. The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL. Leukemia 33: 319–332. 10.1038/s41375-018-0176-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Kang DH, Kim SH, Jun JW, Lee YW, Shin HB, Ahn JY, Hong DS, Lee YK, Jeon BR. 2012. Simultaneous translocation of both TCR loci (14q11) with rare partner loci (Xq22 and 12p13) in a case of T-lymphoblastic leukemia. Ann Lab Med 32: 220–224. 10.3343/alm.2012.32.3.220 [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Karrman K, Forestier E, Heyman M, Andersen MK, Autio K, Blennow E, Borgström G, Ehrencrona H, Golovleva I, Heim S, et al. 2009a. Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: Rare T-cell receptor gene rearrangements are associated with poor outcome. Genes Chromosomes Cancer 48: 795–805. 10.1002/gcc.20684 [DOI] [PubMed] [Google Scholar]
  140. Karrman K, Kjeldsen E, Lassen C, Isaksson M, Davidsson J, Andersson A, Hasle H, Fioretos T, Johansson B. 2009b. The t(X;7)(q22;q34) in paediatric T-cell acute lymphoblastic leukaemia results in overexpression of the insulin receptor substrate 4 gene through illegitimate recombination with the T-cell receptor beta locus. Br J Haematol 144: 546–551. 10.1111/j.1365-2141.2008.07453.x [DOI] [PubMed] [Google Scholar]
  141. Kelliher MA, Seldin DC, Leder P. 1996. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIα. EMBO J 15: 5160–5166. 10.1002/j.1460-2075.1996.tb00900.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Kennedy MA, Gonzalez-Sarmiento R, Kees UR, Lampert F, Dear N, Boehm T, Rabbitts TH. 1991. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci 88: 8900–8904. 10.1073/pnas.88.20.8900 [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J, Vakoc C, et al. 2013. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153: 1552–1566. 10.1016/j.cell.2013.05.041 [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Kleppe M, Soulier J, Asnafi V, Mentens N, Hornakova T, Knoops L, Constantinescu S, Sigaux F, Meijerink JP, Vandenberghe P, et al. 2011. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood 117: 7090–7098. 10.1182/blood-2010-10-314286 [DOI] [PubMed] [Google Scholar]
  145. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, et al. 2014. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 46: 364–370. 10.1038/ng.2913 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M, Manley NR, Duarte A, MacDonald HR, Radtke F. 2008. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205: 2515–2523. 10.1084/jem.20080829 [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Kontro M, Kuusanmäki H, Eldfors S, Burmeister T, Andersson EI, Bruserud Ø, Brümmendorf TH, Edgren H, Gjertsen BT, Itälä-Remes M, et al. 2014. Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia. Leukemia 28: 1738–1742. 10.1038/leu.2014.89 [DOI] [PubMed] [Google Scholar]
  148. Kourtis N, Lazaris C, Hockemeyer K, Balandran JC, Jimenez AR, Mullenders J, Gong Y, Trimarchi T, Bhatt K, Hu H, et al. 2018. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 24: 1157–1166. 10.1038/s41591-018-0105-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Kusy S, Gerby B, Goardon N, Gault N, Ferri F, Gerard D, Armstrong F, Ballerini P, Cayuela JM, Baruchel A, et al. 2010. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia. J Exp Med 207: 2141–2156. 10.1084/jem.20100745 [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J, et al. 1997. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278: 1309–1312. 10.1126/science.278.5341.1309 [DOI] [PubMed] [Google Scholar]
  151. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F, Mentens N, Beverloo HB, Pieters R, Speleman F, et al. 2007. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 39: 593–595. 10.1038/ng2025 [DOI] [PubMed] [Google Scholar]
  152. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E, et al. 2007. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449: 689–694. 10.1038/nature06192 [DOI] [PubMed] [Google Scholar]
  153. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, et al. 2003. Myc-induced T cell leukemia in transgenic zebrafish. Science 299: 887–890. 10.1126/science.1080280 [DOI] [PubMed] [Google Scholar]
  154. Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I, Nottage K, Rabbitts TH. 1996. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J 15: 1021–1027. 10.1002/j.1460-2075.1996.tb00439.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Leong WZ, Tan SH, Ngoc PCT, Amanda S, Yam AWY, Liau WS, Gong Z, Lawton LN, Tenen DG, Sanda T. 2017. ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis. Genes Dev 31: 2343–2360. 10.1101/gad.302646.117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Lewis HD, Leveridge M, Strack PR, Haldon CD, O'Neil J, Kim H, Madin A, Hannam JC, Look AT, Kohl N, et al. 2007. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14: 209–219. 10.1016/j.chembiol.2006.12.010 [DOI] [PubMed] [Google Scholar]
  157. Li L, Leid M, Rothenberg EV. 2010a. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329: 89–93. 10.1126/science.1188989 [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Li P, Burke S, Wang J, Chen X, Ortiz M, Lee SC, Lu D, Campos L, Goulding D, Ng BL, et al. 2010b. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329: 85–89. 10.1126/science.1188063 [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour MR, Liu L, Wang H, King B, Shaik S, et al. 2014. Cyclin C is a haploinsufficient tumour suppressor. Nature cell biology 16: 1080–1091. 10.1038/ncb3046 [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, Leon T, Fielding A, Tan SH, Sanda T, Weintraub AS, et al. 2017. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia 31: 2057–2064. 10.1038/leu.2017.75 [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Liau WS, Tan SH, Ngoc PCT, Wang CQ, Tergaonkar V, Feng H, Gong Z, Osato M, Look AT, Sanda T. 2017. Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Leukemia 31: 1798–1807. 10.1038/leu.2016.392 [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Liu Z, Li F, Zhang B, Li S, Wu J, Shi Y. 2015. Structural basis of plant homeodomain finger 6 (PHF6) recognition by the retinoblastoma binding protein 4 (RBBP4) component of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 290: 6630–6638. 10.1074/jbc.M114.610196 [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, et al. 2017. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 49: 1211–1218. 10.1038/ng.3909 [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Lower KM, Turner G, Kerr BA, Mathews KD, Shaw MA, Gedeon AK, Schelley S, Hoyme HE, White SM, Delatycki MB, et al. 2002. Mutations in PHF6 are associated with Börjeson-Forssman-Lehmann syndrome. Nat Genet 32: 661–665. 10.1038/ng1040 [DOI] [PubMed] [Google Scholar]
  165. Lu M, Gong ZY, Shen WF, Ho AD. 1991. The tcl-3 proto-oncogene altered by chromosomal translocation in T-cell leukemia codes for a homeobox protein. EMBO J 10: 2905–2910. 10.1002/j.1460-2075.1991.tb07840.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Maciocia PM, Wawrzyniecka PA, Philip B, Ricciardelli I, Akarca AU, Onuoha SC, Legut M, Cole DK, Sewell AK, Gritti G, et al. 2017. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nat Med 23: 1416–1423. 10.1038/nm.4444 [DOI] [PubMed] [Google Scholar]
  167. Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Corcoran M, Heyman M, Spruck C, Grander D, Lendahl U, Sangfelt O. 2007. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 67: 5611–5616. 10.1158/0008-5472.CAN-06-4381 [DOI] [PubMed] [Google Scholar]
  168. Mansour MR, Linch DC, Foroni L, Goldstone AH, Gale RE. 2006. High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 20: 537–539. 10.1038/sj.leu.2404101 [DOI] [PubMed] [Google Scholar]
  169. Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CH, et al. 2013. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med 210: 1545–1557. 10.1084/jem.20122516 [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, Etchin J, Lawton L, Sallan SE, Silverman LB, et al. 2014. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346: 1373–1377. 10.1126/science.1259037 [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Mao C, Tili EG, Dose M, Haks MC, Bear SE, Maroulakou I, Horie K, Gaitanaris GA, Fidanza V, Ludwig T, et al. 2007. Unequal contribution of Akt isoforms in the double-negative to double-positive thymocyte transition. J Immunol 178: 5443–5453. 10.4049/jimmunol.178.9.5443 [DOI] [PubMed] [Google Scholar]
  172. Margolin AA, Palomero T, Sumazin P, Califano A, Ferrando AA, Stolovitzky G. 2009. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc Natl Acad Sci 106: 244–249. 10.1073/pnas.0806445106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G, Ferrando A, Fielding AK, Goldstone AH, Ketterling RP, et al. 2009. T-cell acute lymphoblastic leukemia in adults: Clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood 114: 5136–5145. 10.1182/blood-2009-08-231217 [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Mathieu-Mahul D, Sigaux F, Zhu C, Bernheim A, Mauchauffe M, Daniel MT, Berger R, Larsen CJ. 1986. A t(8;14)(q24;q11) translocation in a T-cell leukemia (L1-ALL) with c-myc and TcR-α chain locus rearrangements. Int J Cancer 38: 835–840. 10.1002/ijc.2910380609 [DOI] [PubMed] [Google Scholar]
  175. Maude SL, Dolai S, Delgado-Martin C, Vincent T, Robbins A, Selvanathan A, Ryan T, Hall J, Wood AC, Tasian SK, et al. 2015. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood 125: 1759–1767. 10.1182/blood-2014-06-580480 [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Mazzucchelli R, Durum SK. 2007. Interleukin-7 receptor expression: Intelligent design. Nat Rev Immunol 7: 144–154. 10.1038/nri2023 [DOI] [PubMed] [Google Scholar]
  177. McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH, Jane SM, Curtis DJ. 2010. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 327: 879–883. 10.1126/science.1182378 [DOI] [PubMed] [Google Scholar]
  178. McCormack MP, Shields BJ, Jackson JT, Nasa C, Shi W, Slater NJ, Tremblay CS, Rabbitts TH, Curtis DJ. 2013. Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL. Blood 122: 2093–2103. 10.1182/blood-2012-09-458570 [DOI] [PubMed] [Google Scholar]
  179. McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O'Brien SJ, Korsmeyer SJ. 1989. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 9: 2124–2132. 10.1128/MCB.9.5.2124 [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. McGuire EA, Rintoul CE, Sclar GM, Korsmeyer SJ. 1992. Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol Cell Biol 12: 4186–4196. 10.1128/MCB.12.9.4186 [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O, Trumpp A, Pflumio F, Carboni J, Gottardis M, et al. 2011. High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med 208: 1809–1822. 10.1084/jem.20110121 [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Mellentin JD, Smith SD, Cleary ML. 1989. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58: 77–83. 10.1016/0092-8674(89)90404-2 [DOI] [PubMed] [Google Scholar]
  183. Mendes RD, Sarmento LM, Canté-Barrett K, Zuurbier L, Buijs-Gladdines JG, Póvoa V, Smits WK, Abecasis M, Yunes JA, Sonneveld E, et al. 2014. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood 124: 567–578. 10.1182/blood-2014-03-562751 [DOI] [PubMed] [Google Scholar]
  184. Mets E, Van der Meulen J, Van Peer G, Boice M, Mestdagh P, Van de Walle I, Lammens T, Goossens S, De Moerloose B, Benoit Y, et al. 2015. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia. Leukemia 29: 798–806. 10.1038/leu.2014.276 [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ. 2004. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82: 341–358. 10.1093/toxsci/kfh254 [DOI] [PubMed] [Google Scholar]
  186. Minuzzo S, Agnusdei V, Pusceddu I, Pinazza M, Moserle L, Masiero M, Rossi E, Crescenzi M, Hoey T, Ponzoni M, et al. 2015. DLL4 regulates NOTCH signaling and growth of T acute lymphoblastic leukemia cells in NOD/SCID mice. Carcinogenesis 36: 115–121. 10.1093/carcin/bgu223 [DOI] [PubMed] [Google Scholar]
  187. Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK. 2001. Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413: 311–316. 10.1038/35095068 [DOI] [PubMed] [Google Scholar]
  188. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE. 2009. Direct inhibition of the NOTCH transcription factor complex. Nature 462: 182–188. 10.1038/nature08543 [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Möricke A, Reiter A, Zimmermann M, Gadner H, Stanulla M, Dordelmann M, Loning L, Beier R, Ludwig WD, Ratei R, et al. 2008. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: Treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111: 4477–4489. 10.1182/blood-2007-09-112920 [DOI] [PubMed] [Google Scholar]
  190. Möricke A, Zimmermann M, Valsecchi MG, Stanulla M, Biondi A, Mann G, Locatelli F, Cazzaniga G, Niggli F, Aricò M, et al. 2016. Dexamethasone vs prednisone in induction treatment of pediatric ALL: Results of the randomized trial AIEOP-BFM ALL 2000. Blood 127: 2101–2112. 10.1182/blood-2015-09-670729 [DOI] [PubMed] [Google Scholar]
  191. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB, et al. 2007. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446: 758–764. 10.1038/nature05690 [DOI] [PubMed] [Google Scholar]
  192. Nagel S, Kaufmann M, Drexler HG, MacLeod RA. 2003. The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 63: 5329–5334. [PubMed] [Google Scholar]
  193. Navarro JM, Touzart A, Pradel LC, Loosveld M, Koubi M, Fenouil R, Le Noir S, Maqbool MA, Morgado E, Gregoire C, et al. 2015. Site- and allele-specific Polycomb dysregulation in T-cell leukaemia. Nat Commun 6: 6094 10.1038/ncomms7094 [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Neumann M, Heesch S, Schlee C, Schwartz S, Gokbuget N, Hoelzer D, Konstandin NP, Ksienzyk B, Vosberg S, Graf A, et al. 2013. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood 121: 4749–4752. 10.1182/blood-2012-11-465138 [DOI] [PubMed] [Google Scholar]
  195. Neumann M, Vosberg S, Schlee C, Heesch S, Schwartz S, Gokbuget N, Hoelzer D, Graf A, Krebs S, Bartram I, et al. 2015. Mutational spectrum of adult T-ALL. Oncotarget 6: 2754–2766. 10.18632/oncotarget.2218 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Niehues T, Kapaun P, Harms DO, Burdach S, Kramm C, Korholz D, Janka-Schaub G, Gobel U. 1999. A classification based on T cell selection-related phenotypes identifies a subgroup of childhood T-ALL with favorable outcome in the COALL studies. Leukemia 13: 614–617. 10.1038/sj.leu.2401382 [DOI] [PubMed] [Google Scholar]
  197. Nishimoto N, Imai Y, Ueda K, Nakagawa M, Shinohara A, Ichikawa M, Nannya Y, Kurokawa M. 2010. T cell acute lymphoblastic leukemia arising from familial platelet disorder. Int J Hematol 92: 194–197. 10.1007/s12185-010-0612-y [DOI] [PubMed] [Google Scholar]
  198. Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, Ferres-Marco D, da Ros V, Tang Z, Siegle J, et al. 2012. Genetic inactivation of the Polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18: 298–301. 10.1038/nm.2651 [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, Loizou E, Holmfeldt L, Strikoudis A, King B, et al. 2014. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514: 513–517. 10.1038/nature13605 [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, et al. 2007a. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med 204: 1813–1824. 10.1084/jem.20070876 [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. O'Neil J, Tchinda J, Gutierrez A, Moreau L, Maser RS, Wong KK, Li W, McKenna K, Liu XS, Feng B, et al. 2007b. Alu elements mediate MYB gene tandem duplication in human T-ALL. J Exp Med 204: 3059–3066. 10.1084/jem.20071637 [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330. 10.1016/S0092-8674(00)80986-1 [DOI] [PubMed] [Google Scholar]
  203. Owen CJ, Toze CL, Koochin A, Forrest DL, Smith CA, Stevens JM, Jackson SC, Poon MC, Sinclair GD, Leber B, et al. 2008. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood 112: 4639–4645. 10.1182/blood-2008-05-156745 [DOI] [PubMed] [Google Scholar]
  204. Paganin M, Ferrando A. 2011. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev 25: 83–90. 10.1016/j.blre.2010.09.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Paganin M, Grillo MF, Silvestri D, Scapinello G, Buldini B, Cazzaniga G, Biondi A, Valsecchi MG, Conter V, te Kronnie G, et al. 2018. The presence of mutated and deleted PTEN is associated with an increased risk of relapse in childhood T cell acute lymphoblastic leukaemia treated with AIEOP-BFM ALL protocols. Br J Haematol 182: 705–711. 10.1111/bjh.15449 [DOI] [PubMed] [Google Scholar]
  206. Palomero T, Barnes KC, Real PJ, Glade Bender JL, Sulis ML, Murty VV, Colovai AI, Balbin M, Ferrando AA. 2006a. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to γ-secretase inhibitors. Leukemia 20: 1279–1287. 10.1038/sj.leu.2404258 [DOI] [PubMed] [Google Scholar]
  207. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, Barnes KC, O'Neil J, Neuberg D, Weng AP, et al. 2006b. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci 103: 18261–18266. 10.1073/pnas.0606108103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, et al. 2007. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13: 1203–1210. 10.1038/nm1636 [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Palomero T, Dominguez M, Ferrando AA. 2008. The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 7: 965–970. 10.4161/cc.7.8.5753 [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Papayannidis C, DeAngelo DJ, Stock W, Huang B, Shaik MN, Cesari R, Zheng X, Reynolds JM, English PA, Ozeck M, et al. 2015. A Phase 1 study of the novel γ-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J 5: e350 10.1038/bcj.2015.80 [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, Ancliff P, Morgan M, Masurekar A, Goulden N, et al. 2010. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): An open-label randomised trial. Lancet 376: 2009–2017. 10.1016/S0140-6736(10)62002-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Passaro D, Irigoyen M, Catherinet C, Gachet S, Da Costa De Jesus C, Lasgi C, Tran Quang C, Ghysdael J. 2015. CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell 27: 769–779. 10.1016/j.ccell.2015.05.003 [DOI] [PubMed] [Google Scholar]
  213. Patel JL, Smith LM, Anderson J, Abromowitch M, Campana D, Jacobsen J, Lones MA, Gross TG, Cairo MS, Perkins SL. 2012. The immunophenotype of T-lymphoblastic lymphoma in children and adolescents: A Children's Oncology Group report. Br J Haematol 159: 454–461. 10.1111/bjh.12042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, Jenkinson S, Hough R, Vora A. 2014. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol 166: 421–424. 10.1111/bjh.12882 [DOI] [PubMed] [Google Scholar]
  215. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, Baltimore D. 1996. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183: 2283–2291. 10.1084/jem.183.5.2283 [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Perez-Garcia A, Ambesi-Impiombato A, Hadler M, Rigo I, LeDuc CA, Kelly K, Jalas C, Paietta E, Racevskis J, Rowe JM, et al. 2013. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood 122: 2425–2432. 10.1182/blood-2013-05-500850 [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Piovan E, Yu J, Tosello V, Herranz D, Ambesi-Impiombato A, Da Silva AC, Sanchez-Martin M, Perez-Garcia A, Rigo I, Castillo M, et al. 2013. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 24: 766–776. 10.1016/j.ccr.2013.10.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, Sanchez-Martin M, Tsirigos A, Littman DR, Ferrando AA, et al. 2015. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27: 755–768. 10.1016/j.ccell.2015.05.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Preudhomme C, Renneville A, Bourdon V, Philippe N, Roche-Lestienne C, Boissel N, Dhedin N, André JM, Cornillet-Lefebvre P, Baruchel A, et al. 2009. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood 113: 5583–5587. 10.1182/blood-2008-07-168260 [DOI] [PubMed] [Google Scholar]
  220. Przybylski GK, Dik WA, Grabarczyk P, Wanzeck J, Chudobska P, Jankowski K, von Bergh A, van Dongen JJ, Schmidt CA, Langerak AW. 2006. The effect of a novel recombination between the homeobox gene NKX2-5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2-5 gene. Haematologica 91: 317–321. [PubMed] [Google Scholar]
  221. Pui CH, Evans WE. 2006. Treatment of acute lymphoblastic leukemia. N Engl J Med 354: 166–178. 10.1056/NEJMra052603 [DOI] [PubMed] [Google Scholar]
  222. Pui CH, Behm FG, Singh B, Schell MJ, Williams DL, Rivera GK, Kalwinsky DK, Sandlund JT, Crist WM, Raimondi SC. 1990. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 75: 174–179. [PubMed] [Google Scholar]
  223. Pui CH, Robison LL, Look AT. 2008. Acute lymphoblastic leukaemia. Lancet 371: 1030–1043. 10.1016/S0140-6736(08)60457-2 [DOI] [PubMed] [Google Scholar]
  224. Pui CH, Mullighan CG, Evans WE, Relling MV. 2012. Pediatric acute lymphoblastic leukemia: Where are we going and how do we get there? Blood 120: 1165–1174. 10.1182/blood-2012-05-378943 [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Quintas-Cardama A, Tong W, Manshouri T, Vega F, Lennon PA, Cools J, Gilliland DG, Lee F, Cortes J, Kantarjian H, et al. 2008. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia 22: 1117–1124. 10.1038/leu.2008.80 [DOI] [PubMed] [Google Scholar]
  226. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, Aguet M. 1999. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10: 547–558. 10.1016/S1074-7613(00)80054-0 [DOI] [PubMed] [Google Scholar]
  227. Radtke F, MacDonald HR, Tacchini-Cottier F. 2013. Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol 13: 427–437. 10.1038/nri3445 [DOI] [PubMed] [Google Scholar]
  228. Rahman S, Magnussen M, Leon TE, Farah N, Li Z, Abraham BJ, Alapi KZ, Mitchell RJ, Naughton T, Fielding AK, et al. 2017. Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia. Blood 129: 3221–3226. 10.1182/blood-2016-09-742148 [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Rakowski LA, Lehotzky EA, Chiang MY. 2011. Transient responses to NOTCH and TLX1/HOX11 inhibition in T-cell acute lymphoblastic leukemia/lymphoma. PLoS One 6: e16761 10.1371/journal.pone.0016761 [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Rao SS, O'Neil J, Liberator CD, Hardwick JS, Dai X, Zhang T, Tyminski E, Yuan J, Kohl NE, Richon VM, et al. 2009. Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res 69: 3060–3068. 10.1158/0008-5472.CAN-08-4295 [DOI] [PubMed] [Google Scholar]
  231. Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E, Sulis ML, Barnes K, Sawai C, Homminga I, et al. 2009. γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 15: 50–58. 10.1038/nm.1900 [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Reizis B, Leder P. 2002. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 16: 295–300. 10.1101/gad.960702 [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Remke M, Pfister S, Kox C, Toedt G, Becker N, Benner A, Werft W, Breit S, Liu S, Engel F, et al. 2009. High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-β and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood 114: 1053–1062. 10.1182/blood-2008-10-186536 [DOI] [PubMed] [Google Scholar]
  234. Renneville A, Kaltenbach S, Clappier E, Collette S, Micol JB, Nelken B, Lepelley P, Dastugue N, Benoit Y, Bertrand Y, et al. 2010. Wilms tumor 1 (WT1) gene mutations in pediatric T-cell malignancies. Leukemia 24: 476–480. 10.1038/leu.2009.221 [DOI] [PubMed] [Google Scholar]
  235. Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F. 2008. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9: 377–383. 10.1038/embor.2008.7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Roti G, Carlton A, Ross KN, Markstein M, Pajcini K, Su AH, Perrimon N, Pear WS, Kung AL, Blacklow SC, et al. 2013. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell 23: 390–405. 10.1016/j.ccr.2013.01.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Royer-Pokora B, Loos U, Ludwig WD. 1991. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 6: 1887–1893. [PubMed] [Google Scholar]
  238. Rubnitz JE, Behm FG, Curcio-Brint AM, Pinheiro RP, Carroll AJ, Raimondi SC, Shurtleff SA, Downing JR. 1996. Molecular analysis of t(11;19) breakpoints in childhood acute leukemias. Blood 87: 4804–4808. [PubMed] [Google Scholar]
  239. Samon JB, Castillo-Martin M, Hadler M, Ambesi-Impiobato A, Paietta E, Racevskis J, Wiernik PH, Rowe JM, Jakubczak J, Randolph S, et al. 2012. Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther 11: 1565–1575. 10.1158/1535-7163.MCT-11-0938 [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Sanda T, Li X, Gutierrez A, Ahn Y, Neuberg DS, O'Neil J, Strack PR, Winter CG, Winter SS, Larson RS, et al. 2010. Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 115: 1735–1745. 10.1182/blood-2009-07-235143 [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, Ma W, Tatarek J, Ahn Y, Kelliher MA, et al. 2012. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 22: 209–221. 10.1016/j.ccr.2012.06.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Sanghvi VR, Mavrakis KJ, Van der Meulen J, Boice M, Wolfe AL, Carty M, Mohan P, Rondou P, Socci ND, Benoit Y, et al. 2014. Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia. Sci Signal 7: ra111 10.1126/scisignal.2005500 [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Schnell SA, Ambesi-Impiombato A, Sanchez-Martin M, Belver L, Xu L, Qin Y, Kageyama R, Ferrando AA. 2015. Therapeutic targeting of HES1 transcriptional programs in T-ALL. Blood 125: 2806–2814. 10.1182/blood-2014-10-608448 [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Scripture-Adams DD, Damle SS, Li L, Elihu KJ, Qin S, Arias AM, Butler RR III, Champhekar A, Zhang JA, Rothenberg EV. 2014. GATA-3 dose-dependent checkpoints in early T cell commitment. J Immunol 193: 3470–3491. 10.4049/jimmunol.1301663 [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Seki M, Kimura S, Isobe T, Yoshida K, Ueno H, Nakajima-Takagi Y, Wang C, Lin L, Kon A, Suzuki H, et al. 2017. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat Genet 49: 1274–1281. 10.1038/ng.3900 [DOI] [PubMed] [Google Scholar]
  246. Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L, Krishnamoorthy V, Bhasin M, Capobianco AJ, Kelliher MA. 2006. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. MolCell Biol 26: 8022–8031. 10.1128/MCB.01091-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Sharma A, Gadkari RA, Ramakanth SV, Padmanabhan K, Madhumathi DS, Devi L, Appaji L, Aster JC, Rangarajan A, Dighe RR. 2015. A novel monoclonal antibody against Notch1 targets leukemia-associated mutant Notch1 and depletes therapy resistant cancer stem cells in solid tumors. Sci Rep 5: 11012 10.1038/srep11012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA. 2006. Notch1 augments NF-κB activity by facilitating its nuclear retention. EMBO J 25: 129–138. 10.1038/sj.emboj.7600902 [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te Kronnie G, Cario G, Cazzaniga G, Kulozik AE, Stanulla M, et al. 2011. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 208: 901–908. 10.1084/jem.20110580 [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Shochat C, Tal N, Gryshkova V, Birger Y, Bandapalli OR, Cazzaniga G, Gershman N, Kulozik AE, Biondi A, Mansour MR, et al. 2014. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 124: 106–110. 10.1182/blood-2013-10-529685 [DOI] [PubMed] [Google Scholar]
  251. Shuster JJ, Falletta JM, Pullen DJ, Crist WM, Humphrey GB, Dowell BL, Wharam MD, Borowitz M. 1990. Prognostic factors in childhood T-cell acute lymphoblastic leukemia: A Pediatric Oncology Group study. Blood 75: 166–173. [PubMed] [Google Scholar]
  252. Siebel C, Lendahl U. 2017. Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97: 1235–1294. 10.1152/physrev.00005.2017 [DOI] [PubMed] [Google Scholar]
  253. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S, Boucher G, Chagnon P, Drouin S, Lambert R, et al. 2012. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev 26: 651–656. 10.1101/gad.186411.111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, et al. 1999. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166–175. 10.1038/13793 [DOI] [PubMed] [Google Scholar]
  255. Soulier J, Clappier E, Cayuela JM, Regnault A, García-Peydró M, Dombret H, Baruchel A, Toribio ML, Sigaux F. 2005. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 106: 274–286. 10.1182/blood-2004-10-3900 [DOI] [PubMed] [Google Scholar]
  256. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B, Van Roy N, Vandesompele J, Graux C, Uyttebroeck A, et al. 2005. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 19: 358–366. 10.1038/sj.leu.2403657 [DOI] [PubMed] [Google Scholar]
  257. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39. 10.1016/S0092-8674(00)81780-8 [DOI] [PubMed] [Google Scholar]
  258. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. 2015. MYC, metabolism, and cancer. Cancer Discov 5: 1024–1039. 10.1158/2159-8290.CD-15-0507 [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Stock W, Johnson JL, Stone RM, Kolitz JE, Powell BL, Wetzler M, Westervelt P, Marcucci G, DeAngelo DJ, Vardiman JW, et al. 2013. Dose intensification of daunorubicin and cytarabine during treatment of adult acute lymphoblastic leukemia: Results of Cancer and Leukemia Group B Study 19802. Cancer 119: 90–98. 10.1002/cncr.27617 [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Su XY, Della-Valle V, Andre-Schmutz I, Lemercier C, Radford-Weiss I, Ballerini P, Lessard M, Lafage-Pochitaloff M, Mugneret F, Berger R, et al. 2006. HOX11L2/TLX3 is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5;14)(q35;q32). Blood 108: 4198–4201. 10.1182/blood-2006-07-032953 [DOI] [PubMed] [Google Scholar]
  261. Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K, Kashishian A, Thompson MA, Castillo M, Cordon-Cardo C, et al. 2012. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 21: 459–472. 10.1016/j.ccr.2012.02.029 [DOI] [PubMed] [Google Scholar]
  262. Sulis ML, Williams O, Palomero T, Tosello V, Pallikuppam S, Real PJ, Barnes K, Zuurbier L, Meijerink JP, Ferrando AA. 2008. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood 112: 733–740. 10.1182/blood-2007-12-130096 [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Sutton R, Shaw PJ, Venn NC, Law T, Dissanayake A, Kilo T, Haber M, Norris MD, Fraser C, Alvaro F, et al. 2015. Persistent MRD before and after allogeneic BMT predicts relapse in children with acute lymphoblastic leukaemia. Br J Haematol 168: 395–404. 10.1111/bjh.13142 [DOI] [PubMed] [Google Scholar]
  264. Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del Barco Barrantes I, Ho A, Wakeham A, Itie A, Khoo W, et al. 1998. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8: 1169–1178. 10.1016/S0960-9822(07)00488-5 [DOI] [PubMed] [Google Scholar]
  265. Swat W, Montgrain V, Doggett TA, Douangpanya J, Puri K, Vermi W, Diacovo TG. 2006. Essential role of PI3Kδ and PI3Kγ in thymocyte survival. Blood 107: 2415–2422. 10.1182/blood-2005-08-3300 [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Takebe N, Nguyen D, Yang SX. 2014. Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacol Ther 141: 140–149. 10.1016/j.pharmthera.2013.09.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Tallen G, Ratei R, Mann G, Kaspers G, Niggli F, Karachunsky A, Ebell W, Escherich G, Schrappe M, Klingebiel T, et al. 2010. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: Results of trial ALL-REZ BFM 90. J Clin Oncol 28: 2339–2347. 10.1200/JCO.2009.25.1983 [DOI] [PubMed] [Google Scholar]
  268. Tan SH, Yam AW, Lawton LN, Wong RW, Young RA, Look AT, Sanda T. 2016. TRIB2 reinforces the oncogenic transcriptional program controlled by the TAL1 complex in T-cell acute lymphoblastic leukemia. Leukemia 30: 959–962. 10.1038/leu.2015.195 [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Tatarek J, Cullion K, Ashworth T, Gerstein R, Aster JC, Kelliher MA. 2011. Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. Blood 118: 1579–1590. 10.1182/blood-2010-08-300343 [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Thiel E. 1985. Cell surface markers in leukemia: Biological and clinical correlations. Crit Rev Oncol Hematol 2: 209–260. 10.1016/S1040-8428(85)80003-2 [DOI] [PubMed] [Google Scholar]
  271. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, Ferrando A, Aifantis I. 2007. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204: 1825–1835. 10.1084/jem.20070872 [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Ting CN, Olson MC, Barton KP, Leiden JM. 1996. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384: 474–478. 10.1038/384474a0 [DOI] [PubMed] [Google Scholar]
  273. Tkachuk DC, Kohler S, Cleary ML. 1992. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71: 691–700. 10.1016/0092-8674(92)90602-9 [DOI] [PubMed] [Google Scholar]
  274. Todd MA, Picketts DJ. 2012. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. J Proteome Res 11: 4326–4337. 10.1021/pr3004369 [DOI] [PubMed] [Google Scholar]
  275. Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R. 1999. The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 13: 1203–1210. 10.1101/gad.13.9.1203 [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Tosello V, Mansour MR, Barnes K, Paganin M, Sulis ML, Jenkinson S, Allen CG, Gale RE, Linch DC, Palomero T, et al. 2009. WT1 mutations in T-ALL. Blood 114: 1038–1045. 10.1182/blood-2008-12-192039 [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T, Chen SC, Mullighan CG, Sorrentino BP. 2014. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med 211: 701–713. 10.1084/jem.20122727 [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hebert J, Perreault C, Hoang T. 2010. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 24: 1093–1105. 10.1101/gad.1897910 [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Tremblay CS, Brown FC, Collett M, Saw J, Chiu SK, Sonderegger SE, Lucas SE, Alserihi R, Chau N, Toribio ML, et al. 2016. Loss-of-function mutations of dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia 30: 1993–2001. 10.1038/leu.2016.100 [DOI] [PubMed] [Google Scholar]
  280. Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A, Aifantis I. 2014. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell 158: 593–606. 10.1016/j.cell.2014.05.049 [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Trinquand A, dos Santos NR, Tran Quang C, Rocchetti F, Zaniboni B, Belhocine M, de Costa de Jesus C, Lhermitte L, Tesio M, Dussiot M, et al. 2016. Triggering the TCR developmental checkpoint activates a therapeutically targetable tumor suppressive pathway in T-cell leukemia. Cancer Discov 6: 972–985. 10.1158/2159-8290.CD-15-0675 [DOI] [PubMed] [Google Scholar]
  282. Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe JM, Tallman MS, et al. 2013. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 19: 368–371. 10.1038/nm.3078 [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Uchida T, Myers MJ, White MF. 2000. IRS-4 mediates protein kinase B signaling during insulin stimulation without promoting antiapoptosis. Mol Cell Biol 20: 126–138. 10.1128/MCB.20.1.126-138.2000 [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Uderzo C, Dini G, Locatelli F, Miniero R, Tamaro P. 2000. Treatment of childhood acute lymphoblastic leukemia after the first relapse: Curative strategies. Haematologica 85: 47–53. [PubMed] [Google Scholar]
  285. Vanden Bempt M, Demeyer S, Broux M, De Bie J, Bornschein S, Mentens N, Vandepoel R, Geerdens E, Radaelli E, Bornhauser BC, et al. 2018. Cooperative enhancer activation by TLX1 and STAT5 drives development of NUP214-ABL1/TLX1-positive T cell acute lymphoblastic leukemia. Cancer Cell 34: 271–285.e277. 10.1016/j.ccell.2018.07.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, Rondou P, Rosen M, Pieters T, Vandenberghe P, et al. 2015. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 125: 13–21. 10.1182/blood-2014-05-577270 [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, et al. 2005. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435: 959–963. 10.1038/nature03659 [DOI] [PubMed] [Google Scholar]
  288. Van Limbergen H, Beverloo HB, van Drunen E, Janssens A, Hahlen K, Poppe B, Van Roy N, Marynen P, De Paepe A, Slater R, et al. 2001. Molecular cytogenetic and clinical findings in ETV6/ABL1-positive leukemia. Genes Chromosomes Cancer 30: 274–282. [DOI] [PubMed] [Google Scholar]
  289. van Noort M, Clevers H. 2002. TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev Biol 244: 1–8. 10.1006/dbio.2001.0566 [DOI] [PubMed] [Google Scholar]
  290. Van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J, Passier M, van Wering ER, Veerman AJ, Kamps WA, et al. 2006. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 108: 3520–3529. 10.1182/blood-2006-04-019927 [DOI] [PubMed] [Google Scholar]
  291. Van Vlierberghe P, Beverloo HB, Buijs-Gladdines J, van Wering ER, Horstmann M, Pieters R, Meijerink JP. 2008a. Monoallelic or biallelic LMO2 expression in relation to the LMO2 rearrangement status in pediatric T-cell acute lymphoblastic leukemia. Leukemia 22: 1434–1437. 10.1038/sj.leu.2405063 [DOI] [PubMed] [Google Scholar]
  292. Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ, Stubbs A, Cools J, Nagata K, Fornerod M, et al. 2008b. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 111: 4668–4680. 10.1182/blood-2007-09-111872 [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Van Vlierberghe P, Palomero T, Khiabanian H, Van der Meulen J, Castillo M, Van Roy N, De Moerloose B, Philippé J, González-García S, Toribio ML, et al. 2010. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet 42: 338–342. 10.1038/ng.542 [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Van Vlierberghe P, Ambesi-Impiombato A, Perez-Garcia A, Haydu JE, Rigo I, Hadler M, Tosello V, Della Gatta G, Paietta E, Racevskis J, et al. 2011a. ETV6 mutations in early immature human T cell leukemias. J Exp Med 208: 2571–2579. 10.1084/jem.20112239 [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Van Vlierberghe P, Patel J, Abdel-Wahab O, Lobry C, Hedvat CV, Balbin M, Nicolas C, Payer AR, Fernandez HF, Tallman MS, et al. 2011b. PHF6 mutations in adult acute myeloid leukemia. Leukemia 25: 130–134. 10.1038/leu.2010.247 [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Van Vlierberghe P, Ambesi-Impiombato A, De Keersmaecker K, Hadler M, Paietta E, Tallman MS, Rowe JM, Forne C, Rue M, Ferrando AA. 2013. Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. Blood 122: 74–82. 10.1182/blood-2013-03-491092 [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Vivanco I, Sawyers CL. 2002. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer 2: 489–501. 10.1038/nrc839 [DOI] [PubMed] [Google Scholar]
  298. Vrooman LM, Silverman LB. 2009. Childhood acute lymphoblastic leukemia: Update on prognostic factors. Curr Opin Pediatr 21: 1–8. 10.1097/MOP.0b013e32831f1f24 [DOI] [PubMed] [Google Scholar]
  299. Wakabayashi Y, Inoue J, Takahashi Y, Matsuki A, Kosugi-Okano H, Shinbo T, Mishima Y, Niwa O, Kominami R. 2003a. Homozygous deletions and point mutations of the Rit1/Bcl11b gene in γ-ray induced mouse thymic lymphomas. Biochem Biophys Res Commun 301: 598–603. 10.1016/S0006-291X(02)03069-3 [DOI] [PubMed] [Google Scholar]
  300. Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, Hitomi J, Yamamoto T, Utsuyama M, Niwa O, et al. 2003b. Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nat Immunol 4: 533–539. 10.1038/ni927 [DOI] [PubMed] [Google Scholar]
  301. Wang LC, Swat W, Fujiwara Y, Davidson L, Visvader J, Kuo F, Alt FW, Gilliland DG, Golub TR, Orkin SH. 1998. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev 12: 2392–2402. 10.1101/gad.12.15.2392 [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Wang J, Jani-Sait SN, Escalon EA, Carroll AJ, de Jong PJ, Kirsch IR, Aplan PD. 2000. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci 97: 3497–3502. 10.1073/pnas.97.7.3497 [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Wang J, Leung JW, Gong Z, Feng L, Shi X, Chen J. 2013. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. J Biol Chem 288: 3174–3183. 10.1074/jbc.M112.414839 [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Wang H, Zang C, Taing L, Arnett KL, Wong YJ, Pear WS, Blacklow SC, Liu XS, Aster JC. 2014. NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc Natl Acad Sci 111: 705–710. 10.1073/pnas.1315023111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Webb LM, Vigorito E, Wymann MP, Hirsch E, Turner M. 2005. Cutting edge: T cell development requires the combined activities of the p110γ and p110δ catalytic isoforms of phosphatidylinositol 3-kinase. J Immunol 175: 2783–2787. 10.4049/jimmunol.175.5.2783 [DOI] [PubMed] [Google Scholar]
  306. Weber BN, Chi AW, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O, Bhandoola A. 2011. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476: 63–68. 10.1038/nature10279 [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, Opferman JT, Sallan SE, den Boer ML, Pieters R, et al. 2006. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10: 331–342. 10.1016/j.ccr.2006.09.006 [DOI] [PubMed] [Google Scholar]
  308. Wei P, Walls M, Qiu M, Ding R, Denlinger RH, Wong A, Tsaparikos K, Jani JP, Hosea N, Sands M, et al. 2010. Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther 9: 1618–1628. 10.1158/1535-7163.MCT-10-0034 [DOI] [PubMed] [Google Scholar]
  309. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, et al. 2012. The origin and evolution of mutations in acute myeloid leukemia. Cell 150: 264–278. 10.1016/j.cell.2012.06.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  310. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE. 2004. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci 101: 9085–9090. 10.1073/pnas.0402770101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Wendorff AA, Koch U, Wunderlich FT, Wirth S, Dubey C, Brüning JC, MacDonald HR, Radtke F. 2010. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 33: 671–684. 10.1016/j.immuni.2010.11.014 [DOI] [PubMed] [Google Scholar]
  312. Wendorff AA, Quinn SA, Rashkovan M, Madubata CJ, Ambesi-Impiombato A, Litzow MR, Tallman MS, Paietta E, Paganin M, Basso G, et al. 2018. Phf6 loss enhances HSC self-renewal driving tumor initiation and leukemia stem cell activity in T-ALL. Cancer Discov 9: 436–451. 10.1158/2159-8290.CD-18-1005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  313. Weng AP, Ferrando AA, Lee W, Morris J, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. 2004. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271. 10.1126/science.1102160 [DOI] [PubMed] [Google Scholar]
  314. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, et al. 2006. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20: 2096–2109. 10.1101/gad.1450406 [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N, Chen Z, Eisenberg N, Briegel N, Hayashi RJ, Gastier-Foster JM, et al. 2018. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: Results From the Children's Oncology Group AALL0434 Methotrexate Randomization. J Clin Oncol 36: 2926–2934. 10.1200/JCO.2018.77.7250 [DOI] [PMC free article] [PubMed] [Google Scholar]
  316. Wong GW, Knowles GC, Mak TW, Ferrando AA, Zuñiga-Pflücker JC. 2012. HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRβ-selected mouse thymocytes. Blood 120: 1439–1448. 10.1182/blood-2011-12-395319 [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, et al. 2010. Therapeutic antibody targeting of individual Notch receptors. Nature 464: 1052–1057. 10.1038/nature08878 [DOI] [PubMed] [Google Scholar]
  318. Wuchter C, Ruppert V, Schrappe M, Dorken B, Ludwig WD, Karawajew L. 2002. In vitro susceptibility to dexamethasone- and doxorubicin-induced apoptotic cell death in context of maturation stage, responsiveness to interleukin 7, and early cytoreduction in vivo in childhood T-cell acute lymphoblastic leukemia. Blood 99: 4109–4115. 10.1182/blood.V99.11.4109 [DOI] [PubMed] [Google Scholar]
  319. Xia Y, Brown L, Yang CY, Tsan JT, Siciliano MJ, Espinosa R III, Le Beau MM, Baer RJ. 1991. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci 88: 11416–11420. 10.1073/pnas.88.24.11416 [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. Xiong H, Maraver A, Latkowski JA, Henderson T, Schlessinger K, Ding Y, Shen J, Tadokoro CE, Lafaille JJ. 2013. Characterization of two distinct lymphoproliferative diseases caused by ectopic expression of the Notch ligand DLL4 on T cells. PLoS ONE 8: e84841 10.1371/journal.pone.0084841 [DOI] [PMC free article] [PubMed] [Google Scholar]
  321. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI. 2004. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23: 2116–2125. 10.1038/sj.emboj.7600217 [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Yashiro-Ohtani Y, Wang H, Zang C, Arnett KL, Bailis W, Ho Y, Knoechel B, Lanauze C, Louis L, Forsyth KS, et al. 2014. Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc Natl Acad Sci 111: E4946–E4953. 10.1073/pnas.1407079111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  323. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ. 2006. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441: 475–482. 10.1038/nature04703 [DOI] [PubMed] [Google Scholar]
  324. Yokoyama K, Yokoyama N, Izawa K, Kotani A, Harashima A, Hozumi K, Tojo A. 2013. In vivo leukemogenic potential of an interleukin 7 receptor α chain mutant in hematopoietic stem and progenitor cells. Blood 122: 4259–4263. 10.1182/blood-2012-08-451278 [DOI] [PubMed] [Google Scholar]
  325. Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, Townsley D, Sato-Otsubo A, Sato Y, Liu D, Suzuki H, et al. 2015. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 373: 35–47. 10.1056/NEJMoa1414799 [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, Tritapoe J, Hixon JA, Silveira AB, Cardoso BA, et al. 2011. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 43: 932–939. 10.1038/ng.924 [DOI] [PMC free article] [PubMed] [Google Scholar]
  327. Zhang Y, Xiong Y, Yarbrough WG. 1998. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734. 10.1016/S0092-8674(00)81401-4 [DOI] [PubMed] [Google Scholar]
  328. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, et al. 2006. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441: 518–522. 10.1038/nature04747 [DOI] [PubMed] [Google Scholar]
  329. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M, et al. 2012. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481: 157–163. 10.1038/nature10725 [DOI] [PMC free article] [PubMed] [Google Scholar]
  330. Zhang C, Mejia LA, Huang J, Valnegri P, Bennett EJ, Anckar J, Jahani-Asl A, Gallardo G, Ikeuchi Y, Yamada T, et al. 2013. The X-linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain. Neuron 78: 986–993. 10.1016/j.neuron.2013.04.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  331. Zhang J, Zhang Y, Zhang M, Liu C, Liu X, Yin J, Wu P, Chen X, Yang W, Zhang L, et al. 2018. FLT3 pathway is a potential therapeutic target for PRC2-mutated T-cell acute lymphoblastic leukemia. Blood 132: 2520–2524. 10.1182/blood-2018-04-845628 [DOI] [PubMed] [Google Scholar]
  332. Zuurbier L, Petricoin EF III, Vuerhard MJ, Calvert V, Kooi C, Buijs-Gladdines JG, Smits WK, Sonneveld E, Veerman AJ, Kamps WA, et al. 2012. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica 97: 1405–1413. 10.3324/haematol.2011.059030 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cold Spring Harbor Perspectives in Medicine are provided here courtesy of Cold Spring Harbor Laboratory Press

RESOURCES