Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005;19(1):77–87. doi: 10.1007/s10557-005-6900-8

Rethinking the Renin-Angiotensin System and Its Role in Cardiovascular Regulation

Pasquale Pagliaro 1,2,, Claudia Penna 1
PMCID: PMC7087601  PMID: 15883759

Abstract

Angiotensin-converting enzyme (ACE) plays a pivotal role in the renin-angiotensin system (RAS) and ACE-inhibitors are widely used in several clinical conditions, including hypertension and heart failure. Recently, a homologue of ACE, ACE2 has been discovered. Both ACE and ACE2 are emerging as key enzymes of the RAS, where ACE2 may play a role as negative regulator of ACE. Moreover, ACE2 appears to be an important enzyme outside the classical RAS, as it hydrolyzes apelins, dynorphin A 1-13, des-Arg-bradykinin and other peptide substrates. The precise interplay between tissue ACE, ACE2, and their substrates and by-products are presently still unclear.

ACE-inhibitors reduce angiotensin II formation and bradykinin degradation, but do not inhibit ACE2 activity. Moreover, ACE-inhibitors differ in their affinity for tissue ACE, and it has been suggested that tissue ACE affinity might be responsible for some of the beneficial properties of these drugs. ACE-inhibitors also increase nitric oxide availability, and activate several kinases that may regulate protein synthesis by interacting with the nucleus of the cells (outside-in signaling). The outside-in signaling may also be activated by bradykinin itself. Although, the precise significance of the outside-in signaling is still unclear, this new role of ACE-inhibitors may represent a discriminant factor versus angiotensin II receptors antagonists.

This mini review will summarize some new aspects concerning the recently discovered biological functions of RAS and in particular of ACE, ACE2 and ACE-inhibitors in cardiovascular system.

Key Words: angiotensin-converting enzyme (ACE), ACE-associated kinases, ACE-inhibitors, Bradykinin, renin-angiotensin system

References

  • 1.Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275:33238–33243. doi: 10.1074/jbc.M002615200. [DOI] [PubMed] [Google Scholar]
  • 2.Rastaldo R, Paolocci N, Chiribiri A, Penna C, Gattullo D, Pagliaro P. Cytochrome P-450 metabolite of arachidonic acid mediates bradykinin-induced negative inotropic effect. Am J Physiol Heart Circ Physiol. 2001;280:H2823–2832. doi: 10.1152/ajpheart.2001.280.6.H2823. [DOI] [PubMed] [Google Scholar]
  • 3.Kohlstedt K, Shoghi F, Muller-Esterl W, Busse R, Fleming I. CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. Circ Res. 2002;91:749–756. doi: 10.1161/01.res.0000038114.17939.c8. [DOI] [PubMed] [Google Scholar]
  • 4.Kohlstedt K, Busse R, Fleming I. Signaling via the Angiotensin-Converting Enzyme Enhances the Expression of Cyclooxygenase-2 in Endothelial Cells. Hypertension. 2005;45:126–132. doi: 10.1161/01.HYP.0000150159.48992.11. [DOI] [PubMed] [Google Scholar]
  • 5.Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I. Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res. 2004;94:60–67. doi: 10.1161/01.RES.0000107195.13573.E4. [DOI] [PubMed] [Google Scholar]
  • 6.Ng KK, Vane JR. Fate of angiotensin I in the circulation. Nature. 1968;218:144–150. doi: 10.1038/218144a0. [DOI] [PubMed] [Google Scholar]
  • 7.Ng KK, Vane JR. The conversion of angiotensin I to angiotensin II in vivo. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;259:188–189. doi: 10.1007/BF00537778. [DOI] [PubMed] [Google Scholar]
  • 8.Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn AO. Localization of angiotensin converting enzyme in rat heart. Circ Res. 1991;68:141–149. doi: 10.1161/01.res.68.1.141. [DOI] [PubMed] [Google Scholar]
  • 9.Falkenhahn M, Franke F, Bohle RM, et al. Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Hypertension. 1995;25:219–226. doi: 10.1161/01.hyp.25.2.219. [DOI] [PubMed] [Google Scholar]
  • 10.Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res. 1991;69:475–482. doi: 10.1161/01.res.69.2.475. [DOI] [PubMed] [Google Scholar]
  • 11.Schunkert H, Ingelfinger JR, Hirsch AT, et al. Evidence for tissue-specific activation of renal angiotensinogen mRNA expression in chronic stable experimental heart failure. J Clin Invest. 1992;90:1523–1529. doi: 10.1172/JCI116020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Leri A, Claudio PP, Li Q, et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest. 1998;101:1326–1342. doi: 10.1172/JCI316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996;97:1916–1923. doi: 10.1172/JCI118623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gattullo D, Pagliaro P, Marsh NA, Losano G. New insights into nitric oxide and coronary circulation. Life Sci. 1999;65:2167–2174. doi: 10.1016/s0024-3205(99)00299-4. [DOI] [PubMed] [Google Scholar]
  • 15.Hokimoto S, Yasue H, Fujimoto K, et al. Expression of angiotensin-converting enzyme in remaining viable myocytes of human ventricles after myocardial infarction. Circulation. 1996;94:1513–1518. doi: 10.1161/01.cir.94.7.1513. [DOI] [PubMed] [Google Scholar]
  • 16.de Lannoy LM, Danser AH, Bouhuizen AM, Saxena PR, Schalekamp MA. Localization and production of angiotensin II in the isolated perfused rat heart. Hypertension. 1998;31:1111–1117. doi: 10.1161/01.hyp.31.5.1111. [DOI] [PubMed] [Google Scholar]
  • 17.Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990;265:22348–22357. [PubMed] [Google Scholar]
  • 18.Ruzicka M, Skarda V, Leenen FH. Effects of ACE inhibitors on circulating versus cardiac angiotensin II in volume overload-induced cardiac hypertrophy in rats. Circulation. 1995;92:3568–3573. doi: 10.1161/01.cir.92.12.3568. [DOI] [PubMed] [Google Scholar]
  • 19.Lee YA, Liang CS, Lee MA, Lindpaintner K. Local stress, not systemic factors, regulate gene expression of the cardiac renin-angiotensin system in vivo: A comprehensive study of all its components in the dog. Proc Natl Acad Sci USA. 1996;93:11035–11040. doi: 10.1073/pnas.93.20.11035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  • 21.Pfeifer M, Bruckschlegel G, Holmer SR, Paul M, Riegger AJ, Schunkert H. Reciprocal regulation of pulmonary and cardiac angiotensin-converting enzyme in rats with severe left ventricular hypertrophy. Cardiovasc Res. 1998;38:125–132. doi: 10.1016/s0008-6363(97)00298-8. [DOI] [PubMed] [Google Scholar]
  • 22.Lowes BD, Minobe W, Abraham WT, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest. 1997;100:2315–2324. doi: 10.1172/JCI119770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Pinto YM, van Gilst WH, Kingma JH, Schunkert H. Deletion-type allele of the angiotensin-converting enzyme gene is associated with progressive ventricular dilation after anterior myocardial infarction. Captopril and Thrombolysis Study Investigators. J Am Coll Cardiol. 1995;25:1622–1626. doi: 10.1016/0735-1097(95)00090-q. [DOI] [PubMed] [Google Scholar]
  • 24.Ohmichi N, Iwai N, Maeda K, et al. Genetic basis of left ventricular remodeling after myocardial infarction. Int J Cardiol. 1996;53:265–272. doi: 10.1016/0167-5273(96)02562-4. [DOI] [PubMed] [Google Scholar]
  • 25.Turner ST, Boerwinkle E, Sing CF. Context-dependent associations of the ACE I/D polymorphism with blood pressure. Hypertension. 1999;34:773–778. doi: 10.1161/01.hyp.34.4.773. [DOI] [PubMed] [Google Scholar]
  • 26.Pfohl M, Koch M, Prescod S, Haase KK, Haring HU, Karsch KR. Angiotensin I-converting enzyme gene polymorphism, coronary artery disease and myocardial infarction. An angiographically controlled study. Eur Heart J. 1999;20:1318–1325. doi: 10.1053/euhj.1999.1543. [DOI] [PubMed] [Google Scholar]
  • 27.Davies CH, Davia K, Bennett JG, Pepper JR, Poole-Wilson PA, Harding SE. Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation. 1995;92:2540–2549. doi: 10.1161/01.cir.92.9.2540. [DOI] [PubMed] [Google Scholar]
  • 28.Frey N, Olson EN. Cardiac hypertrophy: The good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79. doi: 10.1146/annurev.physiol.65.092101.142243. [DOI] [PubMed] [Google Scholar]
  • 29.Schluter KD, Wollert KC. Synchronization and integration of multiple hypertrophic pathways in the heart. Cardiovasc Res. 2004;63:367–372. doi: 10.1016/j.cardiores.2004.06.012. [DOI] [PubMed] [Google Scholar]
  • 30.Thomas WG, Brandenburger Y, Autelitano DJ, Pham T, Qian H, Hannan RD. Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ Res. 2002;90:135–142. doi: 10.1161/hh0202.104109. [DOI] [PubMed] [Google Scholar]
  • 31.Rocic P, Govindarajan G, Sabri A, Lucchesi PA. A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am J Physiol Cell Physiol. 2001;280:C90–C99. doi: 10.1152/ajpcell.2001.280.1.C90. [DOI] [PubMed] [Google Scholar]
  • 32.Daub H, Weiss FU, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996;379:557–560. doi: 10.1038/379557a0. [DOI] [PubMed] [Google Scholar]
  • 33.Seta K, Nanamori M, Modrall JG, Neubig RR, Sadoshima J. AT1 receptor mutant lacking heterotrimeric G protein coupling activates the Src-Ras-ERK pathway without nuclear translocation of ERKs. J Biol Chem. 2002;277:9268–9277. doi: 10.1074/jbc.M109221200. [DOI] [PubMed] [Google Scholar]
  • 34.Xia Y, Karmazyn M. Obligatory role for endogenous endothelin in mediating the hypertrophic effects of phenylephrine and angiotensin II in neonatal rat ventricular myocytes: Evidence for two distinct mechanisms for endothelin regulation. J Pharmacol Exp Ther. 2004;310:43–51. doi: 10.1124/jpet.104.065185. [DOI] [PubMed] [Google Scholar]
  • 35.Pellieux C, Foletti A, Peduto G, et al. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest. 2001;108:1843–1851. doi: 10.1172/JCI13627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Packer M. The impossible task of developing a new treatment for heart failure. J Card Fail. 2002;8:193–196. doi: 10.1054/jcaf.2002.128001. [DOI] [PubMed] [Google Scholar]
  • 37.Remme WJ. Pharmacological modulation of cardiovascular remodeling: A guide to heart failure therapy. Cardiovasc Drugs Ther. 2003;17:349–360. doi: 10.1023/a:1027351808326. [DOI] [PubMed] [Google Scholar]
  • 38.Flather MD, Yusuf S, Kober L, et al. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: A systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet. 2000;355:1575–1581. doi: 10.1016/s0140-6736(00)02212-1. [DOI] [PubMed] [Google Scholar]
  • 39.Ohta T, Hasebe N, Tsuji S, et al. Unequal effects of renin-angiotensin system inhibitors in acute cardiac dysfunction induced by isoproterenol. Am J Physiol Heart Circ Physiol. 2004;287:H2914–H2921. doi: 10.1152/ajpheart.00221.2004. [DOI] [PubMed] [Google Scholar]
  • 40.Fox KM. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: Randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study) Lancet. 2003;362:782–788. doi: 10.1016/s0140-6736(03)14286-9. [DOI] [PubMed] [Google Scholar]
  • 41.Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:145–153. doi: 10.1056/NEJM200001203420301. [DOI] [PubMed] [Google Scholar]
  • 42.Remme WJ. Should ACE inhibition always be first-line therapy in heart failure? Lessons from the CARMEN Study. Cardiovasc Drugs Ther. 2003;17:107–109. doi: 10.1023/a:1025324516325. [DOI] [PubMed] [Google Scholar]
  • 43.Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA. 1982;79:3310–3314. doi: 10.1073/pnas.79.10.3310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Fleischmann EH, Schmieder RE. Are all antihypertensive drug classes equal in reducing left ventricular hypertrophy? Curr Cardiol Rep. 2002;4:474–478. doi: 10.1007/s11886-002-0109-2. [DOI] [PubMed] [Google Scholar]
  • 45.Eichhorn EJ, Bristow MR. Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation. 1996;94:2285–2296. doi: 10.1161/01.cir.94.9.2285. [DOI] [PubMed] [Google Scholar]
  • 46.Dzau VJ, Bernstein K, Celermajer D, et al. The relevance of tissue angiotensin-converting enzyme: Manifestations in mechanistic and endpoint data. Am J Cardiol. 2001;88:1L–20L. doi: 10.1016/s0002-9149(01)01878-1. [DOI] [PubMed] [Google Scholar]
  • 47.Dzau VJ, Bernstein K, Celermajer D, et al. Pathophysiologic and therapeutic importance of tissue ACE: A consensus report. Cardiovasc Drugs Ther. 2002;16:149–160. doi: 10.1023/a:1015709617405. [DOI] [PubMed] [Google Scholar]
  • 48.Sauer WH, Baer JT, Berlin JA, Kimmel SE. Class effect of angiotensin-converting enzyme inhibitors on prevention of myocardial infarction. Am J Cardiol. 2004;94:1171–1173. doi: 10.1016/j.amjcard.2004.07.087. [DOI] [PubMed] [Google Scholar]
  • 49.Fabris B, Chen BZ, Pupic V, Perich R, Johnston CI. Inhibition of angiotensin-converting enzyme (ACE) in plasma and tissue. J Cardiovasc Pharmacol. 1990;15(Suppl 2):S6–S13. doi: 10.1097/00005344-199000152-00003. [DOI] [PubMed] [Google Scholar]
  • 50.Kinoshita A, Urata H, Bumpus FM, Husain A. Measurement of angiotensin I converting enzyme inhibition in the heart. Circ Res. 1993;73:51–60. doi: 10.1161/01.res.73.1.51. [DOI] [PubMed] [Google Scholar]
  • 51.Yagil C, Sapojnikov M, Kreutz R, Zurcher H, Ganten D, Yagil Y. Role of chromosome X in the Sabra rat model of salt-sensitive hypertension. Hypertension. 1999;33:261–265. doi: 10.1161/01.hyp.33.1.261. [DOI] [PubMed] [Google Scholar]
  • 52.Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–828. doi: 10.1038/nature00786. [DOI] [PubMed] [Google Scholar]
  • 53.Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1–E9. doi: 10.1161/01.res.87.5.e1. [DOI] [PubMed] [Google Scholar]
  • 54.Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532:107–110. doi: 10.1016/s0014-5793(02)03640-2. [DOI] [PubMed] [Google Scholar]
  • 55.Komatsu T, Suzuki Y, Imai J, et al. Molecular cloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE2) DNA Seq. 2002;13:217–220. doi: 10.1080/1042517021000021608. [DOI] [PubMed] [Google Scholar]
  • 56.Warner FJ, Smith AI, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2: A molecular and cellular perspective. Cell Mol Life Sci. 2004;61:2704–2713. doi: 10.1007/s00018-004-4240-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Chen AA, Barnes G, Foti A, Nolin E, Lewitzsky S, Metivier J. Two single nucleotide polymorphisms in theACE2 locus are associated with cardiovascular disease. Gen Epidem. 2002;23:272. [Google Scholar]
  • 58.Iyer SN, Averill DB, Chappell MC, Yamada K, Allred AJ, Ferrario CM. Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension. 2000;36:417–422. doi: 10.1161/01.hyp.36.3.417. [DOI] [PubMed] [Google Scholar]
  • 59.Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension. 2002;39:799–802. doi: 10.1161/hy0302.104673. [DOI] [PubMed] [Google Scholar]
  • 60.Huang L, Sexton DJ, Skogerson K, et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem. 2003;278:15532–15540. doi: 10.1074/jbc.M212934200. [DOI] [PubMed] [Google Scholar]
  • 61.Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: Genomics and pharmacology. Trends Pharmacol Sci. 2002;23:177–183. doi: 10.1016/s0165-6147(00)01994-5. [DOI] [PubMed] [Google Scholar]
  • 62.Krege JH, John SW, Langenbach LL, et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995;375:146–148. doi: 10.1038/375146a0. [DOI] [PubMed] [Google Scholar]
  • 63.Oudit GY, Crackower MA, Backx PH, Penninger JM. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc Med. 2003;13:93–101. doi: 10.1016/s1050-1738(02)00233-5. [DOI] [PubMed] [Google Scholar]
  • 64.Allred AJ, Donoghue M, Acton S, Coffman TM. Regulation of blood pressure by the angiotensin converting en-zyme homologue ACE2. Am J Nephrol. 2002;13:52A. [Google Scholar]
  • 65.Yagil Y, Yagil C. Hypothesis: ACE2 modulates blood pressure in the mammalian organism. Hypertension. 2003;41:871–873. doi: 10.1161/01.HYP.0000063886.71596.C8. [DOI] [PubMed] [Google Scholar]
  • 66.Murphy AM, Kogler H, Georgakopoulos D, et al. Transgenic mouse model of stunned myocardium. Science. 2000;287:488–491. doi: 10.1126/science.287.5452.488. [DOI] [PubMed] [Google Scholar]
  • 67.Guy JL, Jackson RM, Acharya KR, Sturrock ED, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2 (ACE2): Comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry. 2003;42:13185–13192. doi: 10.1021/bi035268s. [DOI] [PubMed] [Google Scholar]
  • 68.Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277:14838–14843. doi: 10.1074/jbc.M200581200. [DOI] [PubMed] [Google Scholar]
  • 69.Bedendi I, Alloatti G, Marcantoni A, et al. Cardiac effects of ghrelin and its endogenous derivatives des-octanoyl ghrelin and des-Gln14-ghrelin. Eur J Pharmacol. 2003;476:87–95. doi: 10.1016/s0014-2999(03)02083-1. [DOI] [PubMed] [Google Scholar]
  • 70.Tatemoto K, Takayama K, Zou MX, et al. The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept. 2001;99:87–92. doi: 10.1016/s0167-0115(01)00236-1. [DOI] [PubMed] [Google Scholar]
  • 71.De Mota N, Reaux-Le Goazigo A, El Messari S, et al. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA. 2004;101:10464–10469. doi: 10.1073/pnas.0403518101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Szokodi I, Tavi P, Foldes G, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res. 2002;91:434–440. doi: 10.1161/01.res.0000033522.37861.69. [DOI] [PubMed] [Google Scholar]
  • 73.Berry MF, Pirolli TJ, Jayasankar V, et al. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation. 2004;110(11 Suppl 1):II187–II193. doi: 10.1161/01.CIR.0000138382.57325.5c. [DOI] [PubMed] [Google Scholar]
  • 74.Hosoya M, Kawamata Y, Fukusumi S, et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem. 2000;275:21061–21067. doi: 10.1074/jbc.M908417199. [DOI] [PubMed] [Google Scholar]
  • 75.Ishida J, Hashimoto T, Hashimoto Y, et al. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem. 2004;279:26274–26279. doi: 10.1074/jbc.M404149200. [DOI] [PubMed] [Google Scholar]
  • 76.Ashley EA, Powers J, Chen M, et al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res. 2005;65:73–82. doi: 10.1016/j.cardiores.2004.08.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637. doi: 10.1002/path.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cardiovascular Drugs and Therapy are provided here courtesy of Nature Publishing Group

RESOURCES