Abstract
Recombination is widespread among RNA viruses, but many molecular mechanisms of this phenomenon are still poorly understood. It was believed until recently that the only possible mechanism of RNA recombination is replicative template switching, with synthesis of a complementary strand starting on one viral RNA molecule and being completed on another. The newly synthesized RNA is a primary recombinant molecule in this case. Recent studies have revealed other mechanisms of replicative RNA recombination. In addition, recombination between the genomes of RNA viruses can be nonreplicative, resulting from a joining of preexisting parental molecules. Recombination is a potent tool providing for both the variation and conservation of the genome in RNA viruses. Replicative and nonreplicative mechanisms may contribute differently to each of these evolutionary processes. In the form of trans splicing, nonreplicative recombination of cell RNAs plays an important role in at least some organisms. It is conceivable that RNA recombination continues to contribute to the evolution of DNA genomes.
Key words: viruses, RNA genome, recombination, nonreplicative recombination, evolution
Footnotes
__________
Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 618–632.
Original Russian Text Copyright © 2005 by Gmyl, Agol.
REFERENCES
- 1.Domingo E., Escarmis C., Menendez-Arias L., Holland J.J. Viral quasi-species and fitness variations. In: Domingo E., Webster R.G., Holland J.J., editors. Origin and Evolution of Viruses. San Diego: Academic; 1999. pp. 141–161. [Google Scholar]
- 2.Domingo E., Baranowski E., Escarmis C., Sobrino F., Holland J.J. Error frequencies of picornavirus RNA polymerases: evolutionary implications for virus populations. In: Semler B.L., Wimmer E., editors. Molecular biology of picornaviruses. Washington: ASM; 2002. pp. 285–298. [Google Scholar]
- 3.Sierra S., Davila M., Lowenstein P.R., Domingo E. Response of foot-and-mouth disease virus to increased mutagenesis: Influence of viral load and fitness in loss of infectivity. J. Virol. 2000;74:8316–8323. doi: 10.1128/JVI.74.18.8316-8323.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Crotty S., Cameron C.E., Andino R. RNA virus error catastrophe: Direct molecular test by using ribavirin. Proc. Natl. Acad. Sci. USA. 2001;98:6895–6900. doi: 10.1073/pnas.111085598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Cole C.N., Smoler D., Wimmer E., Baltimore D. Defective interfering particles of poliovirus: 1. Isolation and physical properties. J. Virol. 1971;7:478–485. doi: 10.1128/jvi.7.4.478-485.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Monroe S.S., Schlesinger S. Common and distinct region of defective-interfering RNAs of Sindbis virus. J. Virol. 1984;49:865–872. doi: 10.1128/jvi.49.3.865-872.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kuge S., Saito I., Nomoto A. Primary structure of poliovirus defective-interfering particle genomes and possible generation mechanisms of the particles. J. Mol. Biol. 1986;192:473–487. doi: 10.1016/0022-2836(86)90270-6. [DOI] [PubMed] [Google Scholar]
- 8.Gmyl A.P., Pilipenko E.V., Maslova S.V., Belov G.A., Agol V.I. Functional and genetic plasticities of the poliovirus genome: Quasi-infectious RNAs modified in the 5′-untranslated region yield a variety of pseudorevertants. J. Virol. 1993;67:6309–6316. doi: 10.1128/jvi.67.10.6309-6316.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Pilipenko E.V., Gmyl A.P., Maslova S.V., Svitkin Y.V., Sinyakov A.N., Agol V.I. A prokaryotic-like cis-element in the cap-independent internal initiation of translation on picornavirus RNA. Cell. 1992;68:119–131. doi: 10.1016/0092-8674(92)90211-T. [DOI] [PubMed] [Google Scholar]
- 10.Pilipenko E.V., Gmyl A.P., Maslova S.V., Khitrina E.V., Agol V.I. Attenuation of Theiler’s murine encephalomyelitis virus by modifications of the oligopyrimidine/AUG tandem, a host-dependent translational cis-element. J. Virol. 1995;69:864–870. doi: 10.1128/jvi.69.2.864-870.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Pilipenko E.V., Viktorova E.G., Khitrina E.V., Maslova S.V., Jarousse N., Brahic M., Agol V.I. Distinct attenuation phenotypes caused by mutations in the translational starting window of Theiler’s murine encephalomyelitis virus. J. Virol. 1999;73:3190–3196. doi: 10.1128/jvi.73.4.3190-3196.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Forss S., Strebel K., Beck E., Schaller H. Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res. 1984;12:6587–6601. doi: 10.1093/nar/12.16.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Pilipenko E.V., Blinov V.M., Agol V.I. Gross rearrangements within the 5′-untranslated region of the picornaviral genomes. Nucleic Acids Res. 1990;18:3371–3375. doi: 10.1093/nar/18.11.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Hirst G.K. Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harbor Symp. Quant. Biol. 1962;27:303–309. doi: 10.1101/sqb.1962.027.001.028. [DOI] [PubMed] [Google Scholar]
- 15.Ledinko N. Genetic recombination with poliovirus type 1. Studies of crosses between a normal horse serum-resistant mutant and several guanidine-resistant mutants of the same strain. Virology. 1963;20:107–119. doi: 10.1016/0042-6822(63)90145-4. [DOI] [PubMed] [Google Scholar]
- 16.Pringle C.R. Evidence of genetic recombination in foot-and-mouth disease virus. Virology. 1965;25:48–54. doi: 10.1016/0042-6822(65)90250-3. [DOI] [PubMed] [Google Scholar]
- 17.Cooper P.D. A genetic map of poliovirus temperature-sensitive mutants. Virology. 1968;35:584–596. doi: 10.1016/0042-6822(68)90287-0. [DOI] [PubMed] [Google Scholar]
- 18.Romanova L.I., Tolskaya E.A., Kolesnikova M.S., Agol V.I. Biochemical evidence for intertypic genetic recombination of polioviruses. FEBS Lett. 1980;118:109–112. doi: 10.1016/0014-5793(80)81229-4. [DOI] [PubMed] [Google Scholar]
- 19.Tolskaya E.A., Romanova L.I., Kolesnikova M.S., Agol V.I. Intertypic recombination in poliovirus: Genetic and biochemical studies. Virology. 1983;124:121–132. doi: 10.1016/0042-6822(83)90295-7. [DOI] [PubMed] [Google Scholar]
- 20.King A.M.Q., McCahon D., Slade W.R., Newman J.W.I. Recombination in RNA. Cell. 1982;29:921–928. doi: 10.1016/0092-8674(82)90454-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.King A.M.Q., McCahon D., Saunders K., Newman J.W.I., Slade W.R. Multiple sites of recombination within the RNA genome of foot-and-mouth disease virus. Virus Res. 1985;3:373–384. doi: 10.1016/0168-1702(85)90437-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Romanova L.I., Viktorova, Tolskaya E.A., Kolesnikova M.S., Agol V.I. Analysis of oligonucleotide maps as a method for identifying intertypic recombination in poliovirus. Mol. Genet. Mikrobiol. Virusol. 1983;7:41–43. [Google Scholar]
- 23.Romanova L.I., Viktorova, Tolskaya E.A., Kolesnikova M.S., Guseva E.A., Agol V.I. The primary structure of crossover region in the genome of two intertypic polyovirus recombinants. Bioorg. Khim. 1985;11:1685–1687. [PubMed] [Google Scholar]
- 24.Romanova L.I., Blinov V.M., Tolskaya E.A., Viktorova E.G., Kolesnikova M.S., Guseva E.A., Agol V.I. The primary structure of crossover regions of intertypic poliovirus recombinants: A model of recombination between RNA genomes. Virology. 1986;155:202–213. doi: 10.1016/0042-6822(86)90180-7. [DOI] [PubMed] [Google Scholar]
- 25.Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Cooper P.D. Genetics of picornaviruses. In: Fraenkel-Conrat H., Wagner R.R., editors. Comprehensive Virology. N.Y.: Plenum; 1977. pp. 133–208. [Google Scholar]
- 27.Agol V.I., Tolskaya E.A. Recombination between RNA genomes. Mol. Biol. 1988;22:293–302. [PubMed] [Google Scholar]
- 28.Lai M.M.C. RNA recombination in animal and plant viruses. Microbiol. Rev. 1992;56:61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Agol V.I. Recombination and other genomic rearrangements in picornaviruses. Semin. Virol. 1997;8:1–9. doi: 10.1006/smvy.1997.0112. [DOI] [Google Scholar]
- 30.Worobey M., Holmes E.C. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 1999;80:2535–2543. doi: 10.1099/0022-1317-80-10-2535. [DOI] [PubMed] [Google Scholar]
- 31.Chare E.R., Gould E.A., Holmes E.C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA virus. J. Gen. Virol. 2003;88:2691–2703. doi: 10.1099/vir.0.19277-0. [DOI] [PubMed] [Google Scholar]
- 32.Nagy P.D., Simon A.E. New insights into the mechanisms of RNA recombination. Virology. 1997;235:1–9. doi: 10.1006/viro.1997.8681. [DOI] [PubMed] [Google Scholar]
- 33.Alejska M., Kurzyniska-Kokorniak A., Broda M., Kierzek R., Figlerowicz M. How RNA viruses exchange their genetic material. Acta Biochim. Pol. 2001;48:391–407. [PubMed] [Google Scholar]
- 34.Mindich L., Qiao X., Onodera S., Gottlieb P., Strassman J. Heterologous recombination in the double-stranded RNA bacteriophage phi 6. J. Virol. 1992;66:2605–2610. doi: 10.1128/jvi.66.5.2605-2610.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Chetverin A.B. Recombination in bacteriophage Qβ its satellite RNAs: The in vivo and in vitro studies. Semin. Virol. 1997;8:121–129. doi: 10.1006/smvy.1997.0113. [DOI] [Google Scholar]
- 36.Twiddy S.S., Holmes E.C. The extent of homologous recombination in members of the genus Flavivirus. J. Gen. Virol. 2003;84:429–440. doi: 10.1099/vir.0.18660-0. [DOI] [PubMed] [Google Scholar]
- 37.Dahourou G., Guillot S., Le Gall O., Crainic R. Genetic recombination in wild-type poliovirus. J. Gen. Virol. 2002;83:3103–3110. doi: 10.1099/0022-1317-83-12-3103. [DOI] [PubMed] [Google Scholar]
- 38.Lindberg A.M., Andersson P., Savolainen C., Mulders M.N., Hovi T. Evolution of the genome of Human enterovirus B: Incongruence between phylogenies of the VP1 and 3CD regions indicates frequent recombination within the species. J. Gen. Virol. 2003;84:1223–1235. doi: 10.1099/vir.0.18971-0. [DOI] [PubMed] [Google Scholar]
- 39.Lukashev A.N., Lashkevich V.A., Ivanova O.E., Koroleva G.A., Hinkkanen A.E., Ilonen J. Recombination in circulating enteroviruses. J. Virol. 2003;77:10423–10431. doi: 10.1128/JVI.77.19.10423-10431.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Lukashev A.N., Lashkevich V.A., Koroleva G.A., Ilonen J., Hinkkanen A.E. Recombination in uveitis-causing enterovirus strains. J. Gen. Virol. 2004;85:463–470. doi: 10.1099/vir.0.19469-0. [DOI] [PubMed] [Google Scholar]
- 41.Oberste M.S., Penaranda S., Pallansch M.A. RNA recombination plays a major role in genomic change during circulation of coxsackie B viruses. J. Virol. 2004;78:2948–2955. doi: 10.1128/JVI.78.6.2948-2955.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Oberste M.S., Maher K., Pallansch M.A. Evidence for frequent recombination within species human enterovirus B based incomplete genomic sequences of all thirty-seven serotypes. J. Virol. 2004;78:855–867. doi: 10.1128/JVI.78.2.855-867.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Oberste M.S., Penaranda S., Maher K., Pallansch M.A. Complete genome sequences of all members of the species Human enterovirus A. J. Gen. Virol. 2004;85:1597–1607. doi: 10.1099/vir.0.79789-0. [DOI] [PubMed] [Google Scholar]
- 44.Tang R.S., Barton D.J., Flanegan J.B., Kirkegaard K. Poliovirus RNA recombination in cell-free extracts. RNA. 1997;3:624–633. [PMC free article] [PubMed] [Google Scholar]
- 45.Duggal R., Cuconati A., Gromeier M., Wimmer E. Genetic recombination of poliovirus in a cell-free systems. Proc. Natl. Acad. Sci. USA. 1997;94:13786–13791. doi: 10.1073/pnas.94.25.13786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Nagy P.D., Zhang C., Simon A.E. Dissecting RNA recombination in vitro: Role of RNA sequences and the viral replicase. EMBO J. 1998;17:2392–2403. doi: 10.1093/emboj/17.8.2392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Cheng C.P., Nagy P.D. Mechanism of RNA recombination in carmo-and tombusviruses: Evidence for template switching by the RNA-dependent RNA polymerase in vitro. J. Virol. 2003;77:12033–12047. doi: 10.1128/JVI.77.22.12033-12047.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Kim M.J., Kao C. Factors regulating template switch in vitro by viral RNA-dependent RNA polymerases: Implications for RNA-RNA recombination. Proc. Natl. Acad. Sci. USA. 2001;98:4972–4977. doi: 10.1073/pnas.081077198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Cooper P.D., Steiner-Pryor A., Scotti P.D., Delong D. On the nature of poliovirus genetic recombinants. J. Gen. Virol. 1974;23:41–49. doi: 10.1099/0022-1317-23-1-41. [DOI] [PubMed] [Google Scholar]
- 50.Chetverin A.B. The puzzle of RNA recombination. FEBS Lett. 1999;460:1–5. doi: 10.1016/S0014-5793(99)01282-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Chetverin A.B. A new look on RNA recombination. Mol. Biol. 1999;33:985–996. [PubMed] [Google Scholar]
- 52.Nagy P.D., Dzianott A., Ahlquist P., Bujarski J.J. Mutations in the helicase-like domain of protein 1a alter the sites of RNA-RNA recombination in brome mosaic virus. J. Virol. 1995;69:2547–2556. doi: 10.1128/jvi.69.4.2547-2556.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Figlerowicz M., Nagy P.D., Bujarski J.J. A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in RNA virus. Proc. Natl. Acad. Sci. USA. 1997;94:2073–2078. doi: 10.1073/pnas.94.5.2073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Figlerowicz M., Nagy P.D., Tang N., Kao C.C., Bujarski J.J. Mutations in the N terminus of the brome mosaic virus polymerase affect genetic RNA-RNA recombination. J. Virol. 1998;72:9192–9200. doi: 10.1128/jvi.72.11.9192-9200.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Arnold J.J., Cameron C.E. Poliovirus RNA-dependent RNA polymerase (3Dpol) is sufficient for template switching in vitro. J. Biol. Chem. 1999;274:2706–2716. doi: 10.1074/jbc.274.5.2706. [DOI] [PubMed] [Google Scholar]
- 56.Flanegan J.B., Baltimore D. Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A) Proc. Natl. Acad. Sci. USA. 1977;74:3677–3680. doi: 10.1073/pnas.74.9.3677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Dmitrieva T.M., Norkina K.B., Agol V.I. Encephalomyocarditis virus RNA polymerase preparations, with and without RNA helicase activity. J. Virol. 1991;65:2714–2717. doi: 10.1128/jvi.65.5.2714-2717.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Cho M.W., Richards O.S., Dmitrieva T.M., Agol V.I., Ehrenfeld E. RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3Dpol. J. Virol. 1993;67:3010–3018. doi: 10.1128/jvi.67.6.3010-3018.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Zhong W., Ferrari E., Lesburg C.A., Maag D., Ghosh S.K.B., Cameron C.E., Lau J. Y.N. Template/primer requirements and single nucleotide incorporation by hepatitis C virus nonstructural protein 5B polymerase. J. Virol. 2000;74:9134–9143. doi: 10.1128/JVI.74.19.9134-9143.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Chetverin A.B., Kopein D.S., Chetverina H.V., Demidenko A.A., Ugarov V.I. 2005. Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. J. Biol. Chem.280, in press (published online December 17, 2004 as doi:10.1074 / jbc.M412684200). [DOI] [PubMed]
- 61.Tolskaya E.A., Romanova L.I., Blinov V.M., Viktorova E.G., Sinyakov A.N., Kolesnikova M.S., Agol V.I. Studies on the recombination between RNA genomes of poliovirus: The primary structure and non-random distribution of crossover regions in the genomes of intertypic poliovirus recombinants. Virology. 1987;161:54–62. doi: 10.1016/0042-6822(87)90170-X. [DOI] [PubMed] [Google Scholar]
- 62.Nagy P.D., Bujarski J.J. Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc. Natl. Acad. Sci. USA. 1993;90:6390–6394. doi: 10.1073/pnas.90.14.6390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Figlerowicz M. Role RNA structure in nonhomologous recombination between genomic molecules of brome mosaic virus. Nucleic Acids Res. 2000;28:1714–1723. doi: 10.1093/nar/28.8.1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.King A.M. Preferred sites of recombination in poliovirus RNA: an analysis of 40 intertypic crossover sequences. Nucleic Acids Res. 1988;16:1705–1723. doi: 10.1093/nar/16.24.11705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Nagy P.D., Bujarski J.J. Homologous RNA recombination in brome mosaic virus: AU-rich sequence decreases the accuracy of crossovers. J. Virol. 1996;70:415–426. doi: 10.1128/jvi.70.1.415-426.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Pilipenko E.V., Gmyl A.P., Agol V.I. A model for rearrangements in RNA genomes. Nucleic Acids Res. 1995;23:1870–1875. doi: 10.1093/nar/23.11.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Jarvis T.C., Kirkegaard K. The polymerase in its labyrinth: Mechanisms and implications of RNA recombination. Trends Genet. 1991;7:186–191. doi: 10.1016/0168-9525(91)90434-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Kassavetis G.A., Geiduschek E.P. RNA polymerase marching backward. Science. 1993;259:944–945. doi: 10.1126/science.7679800. [DOI] [PubMed] [Google Scholar]
- 69.Komissarova N., Kashlev M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl. Acad. Sci. USA. 1997;94:1755–1760. doi: 10.1073/pnas.94.5.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Cascone P.J., Haydar T.F., Simon A.E. Sequences and structures required for recombination between virus-associated RNAs. Science. 1993;260:801–805. doi: 10.1126/science.8484119. [DOI] [PubMed] [Google Scholar]
- 71.Wierzchoslawski R., Dzianott A., Kunimalayan S., Bujarski J.J. A transcriptionally active subgenomic promoter supports homologous crossovers in a plus-strand RNA virus. J. Virol. 2003;77:6769–6776. doi: 10.1128/JVI.77.12.6769-6776.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Wierzchoslawski R., Dzianott A., Bujarski J. Dissecting the requirement for subgenomic promoter sequences by RNA recombination of brome mosaic virus in vivo: evidence for functional separation of transcription and recombination. J. Virol. 2004;78:8552–8564. doi: 10.1128/JVI.78.16.8552-8564.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Suzuki M., Hibi T., Masuta C. RNA recombination between cucumoviruses: Possible role of predicted stem-loop structures and an internal subgenomic promoter-like motif. Virology. 2003;306:77–86. doi: 10.1016/S0042-6822(02)00050-8. [DOI] [PubMed] [Google Scholar]
- 74.Hajjou M., Hill K.R., Subramaniam S.V., Hu J.Y., Raju R. Nonhomologous RNA-RNA recombination events at the 3′ nontranslated region of Sindbis virus genome: hot spots and utilization of nonviral sequences. J. Virol. 1996;70:5153–5164. doi: 10.1128/jvi.70.8.5153-5164.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Zhang X., Lai M.M. C. Unusual heterogeneity of leader-mRNA fusion in a murine coronavirus: Implications for the mechanism of RNA transcription and recombination. J. Virol. 1994;68:6626–6633. doi: 10.1128/jvi.68.10.6626-6633.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Lai M.M.C., Holmes K.V. Coronaviridae: The viruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. 4th ed. Philadelphia: Lippincott, Williams and Wilkins; 2001. pp. 1163–1185. [Google Scholar]
- 77.Duggal R., Wimmer E. Genetic recombination of poliovirus in vitro and in vivo: temperature-dependent alteration of crossover sites. Virology. 1999;258:30–41. doi: 10.1006/viro.1999.9703. [DOI] [PubMed] [Google Scholar]
- 78.Chetverin A.B., Chetverina H.V., Demidenko A.A., Ugarov V.I. Nonhomologous RNA recombination in a cell-free system: Evidence for a transesterification mechanism guided by secondary structure. Cell. 1997;88:503–513. doi: 10.1016/S0092-8674(00)81890-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Chetverin A.B., Chetverina H.V., Munishkin A.V. On the nature of spontaneous RNA synthesis by Qβ replicase. J. Mol. Biol. 1991;222:3–9. doi: 10.1016/0022-2836(91)90729-P. [DOI] [PubMed] [Google Scholar]
- 80.Chetverina H.V., Chetverin A.B. Cloning of RNA molecules in vitro. Nucleic Acids Res. 1993;21:2349–2353. doi: 10.1093/nar/21.10.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Chetverina H.V., Demidenko A.A., Ugarov V.I., Chetverin A.B. Spontaneous rearrangements in RNA sequences. FEBS Lett. 1999;450:89–94. doi: 10.1016/S0014-5793(99)00469-X. [DOI] [PubMed] [Google Scholar]
- 82.Agol V. I. Picornavirus genome: An overview. In: Semler B.L., Wimmer E., editors. Molecular Biology of Picornaviruses. Washington: ASM; 2002. pp. 127–148. [Google Scholar]
- 83.Ehrenfeld E., Teterina N. Initiation of translation of picornavirus RNAs: Structure and function of the internal ribosome entry site. In: Semler B. L., Wimmer E., editors. Molecular Biology of Picornaviruses. Washington: ASM; 2002. pp. 159–169. [Google Scholar]
- 84.Agol V.I. Translational control of picornavirus phenotype. Mol. Biol. 2001;35:691–701. doi: 10.1023/A:1010531228348. [DOI] [PubMed] [Google Scholar]
- 85.Paul A. Possible unifying mechanism of picornavirus genome replication. In: Semler B.L., Wimmer E., editors. Molecular Biology of Picornaviruses. Washington: ASM; 2002. pp. 227–246. [Google Scholar]
- 86.Gmyl A.P., Belousov E.V., Maslova S.V., Khitrina E.V., Chetverin A. B., Agol V.I. Nonreplicative RNA recombination in poliovirus. J. Virol. 1999;73:8958–8965. doi: 10.1128/jvi.73.11.8958-8965.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Kuge S., Nomoto A. Construction of viable deletion and insertion mutants of the Sabin strain of type 1 poliovirus: Function of the 5′ noncoding sequence in viral replication. J. Virol. 1987;61:1478–1487. doi: 10.1128/jvi.61.5.1478-1487.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Iizuka N., Kohara M., Hagino-Yamagishi K., Abe S., Komatsu T., Tago K., Arita M., Nomoto A. Construction of less neurovirulent polioviruses by introducing deletions into the 5′ noncoding sequence of the genome. J. Virol. 1989;63:5354–5365. doi: 10.1128/jvi.63.12.5354-5363.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Slobodskaya O.R., Gmyl A.P., Maslova S.V., Tolskaya E.A., Viktorova E.G., Agol V.I. Poliovirus neurovirulence depends on the presence of a cryptic AUG upstream of the initiator codon. Virology. 1996;221:141–150. doi: 10.1006/viro.1996.0360. [DOI] [PubMed] [Google Scholar]
- 90.Gmyl A.P., Korshenko S.A., Belousov E.V., Khitrina E.V., Agol V.I. Nonreplicative homologous RNA recombination: promiscuous joining of RNA pieces? RNA. 2003;9:1221–1223. doi: 10.1261/rna.5111803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Abelson J., Trotta C. R., Li H. tRNA splicing. J. Biol. Chem. 1998;273:12685–12688. doi: 10.1074/jbc.273.21.12685. [DOI] [PubMed] [Google Scholar]
- 92.Reid C.E., Lazinski D.W. A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc. Natl. Acad. Sci. USA. 2000;97:424–429. doi: 10.1073/pnas.97.1.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Ho C.K., Shuman S. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc. Natl. Acad. Sci. USA. 2002;99:12709–12714. doi: 10.1073/pnas.192184699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Salgia S.R., Singh S.K., Gurha P., Gupta R. Two reactions of Haloferax volcanii RNA splicing enzymes: Joining of exons and circularization of introns. RNA. 2003;9:319–330. doi: 10.1261/rna.2118203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Cruz-Reyes J., Zhelonkina A.G., Huang C.E., Sollner-Webb B. Distinct functions of two RNA ligases in active Trypanosoma brucei RNA editing complexes. Mol. Cell. Biol. 2002;22:4652–4660. doi: 10.1128/MCB.22.13.4652-4660.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Simpson L., Sbicego S., Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: A complex business. RNA. 2003;9:265–276. doi: 10.1261/rna.2178403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Filipowicz W., Shatkin A.J. Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell. 1983;32:547–557. doi: 10.1016/0092-8674(83)90474-9. [DOI] [PubMed] [Google Scholar]
- 98.Filipowicz W., Konarska M., Gross H.J., Shatkin A.J. RNA 3′-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract. Nucleic Acids Res. 1983;11:1405–1418. doi: 10.1093/nar/11.5.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Lindenbach B.D., Rice C.M. Flaviviridae: the viruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. 4th ed. Philadelphia: Lippincott, Williams and Wilkins; 2001. pp. 991–1041. [Google Scholar]
- 100.Meyers G., Thiel H.-J. Molecular characterization of pestiviruses. Adv. Virus Res. 1996;47:53–118. doi: 10.1016/s0065-3527(08)60734-4. [DOI] [PubMed] [Google Scholar]
- 101.Gallei A., Pankraz A., Thiel H.-J., Becher P. RNA recombination in vivo in the absence of viral replication. J. Virol. 2004;78:6271–6281. doi: 10.1128/JVI.78.12.6271-6281.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Reed R. Mechanisms of fidelity in pre-mRNA splicing. Current Opin. Cell Biol. 2000;12:340–345. doi: 10.1016/S0955-0674(00)00097-1. [DOI] [PubMed] [Google Scholar]
- 103.Doudna J.A., Cech T.R. The chemical repertoire of natural ribozymes. Nature. 2002;418:222–228. doi: 10.1038/418222a. [DOI] [PubMed] [Google Scholar]
- 104.Singh R. RNA-protein interactions that regulate pre-mRNA splicing. Gene Expr. 2002;10:79–92. [PMC free article] [PubMed] [Google Scholar]
- 105.Maniatis T., Tasic B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature. 2002;418:236–243. doi: 10.1038/418236a. [DOI] [PubMed] [Google Scholar]
- 106.Liang X.-H., Haritan A., Uliel S., Michaeli S. Trans and cis splicing in Trypanosomatids: Mechanism, factors, and regulation. Eukaryotic Cell. 2003;2:830–840. doi: 10.1128/EC.2.5.830-840.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Sullenger B.A., Cech T.R. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature. 1994;371:619–622. doi: 10.1038/371619a0. [DOI] [PubMed] [Google Scholar]
- 108.Jin Tang J., Breaker R.R. Structural diversity of self-cleaving ribozymes. Proc. Natl. Acad. Sci. USA. 2000;97:5784–5789. doi: 10.1073/pnas.97.11.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Hegg L.A., Fedor M.J. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. Biochemistry. 1995;34:15813–15828. doi: 10.1021/bi00048a027. [DOI] [PubMed] [Google Scholar]
- 110.Hertel K.J., Uhlenbeck O.C. The internal equilibrium of the hammerhead ribozyme reaction. Biochemistry. 1995;34:1744–1749. doi: 10.1021/bi00005a031. [DOI] [PubMed] [Google Scholar]
- 111.Bartel D.P., Szostak J.W. Isolation of new ribozymes from a large pool of random sequences. Science. 1993;261:1411–1418. doi: 10.1126/science.7690155. [DOI] [PubMed] [Google Scholar]
- 112.Landweber L.F., Pokrovskaya I.D. Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: The spandrels of RNA evolution. Proc. Natl. Acad. Sci. USA. 1999;96:173–178. doi: 10.1073/pnas.96.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Robertson M.P., Ellington A.D. Design and optimization of effector activated ribozyme ligases. Nucleic Acids Res. 2000;28:1751–1759. doi: 10.1093/nar/28.8.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Lan N., Howrey R.P., Lee S.-W., Smith C.A., Sullenger B.A. Ribozyme-mediated repair of sickle β-globin mRNAs in erythrocyte precursors. Science. 1998;280:1593–1596. doi: 10.1126/science.280.5369.1593. [DOI] [PubMed] [Google Scholar]
- 115.Ayre B.G., Kohler U., Goodman H.M., Haseloff J. Design of highly specific cytotoxins by using trans-splicing ribozymes. Proc. Natl. Acad. Sci. USA. 1999;96:3507–3512. doi: 10.1073/pnas.96.7.3507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Watanabe T., Sullenger B.A. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl. Acad. Sci. USA. 2000;97:8490–8494. doi: 10.1073/pnas.150104097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Mikheeva S., Jarrell K.A. Use of engineered ribozymes to catalyze chimeric gene assembly. Proc. Natl. Acad. Sci. USA. 1996;93:7486–7490. doi: 10.1073/pnas.93.15.7486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Morl M., Schmelzer C. Group II intron RNA-catalyzed recombination of RNA in vitro. Nucleic Acids Res. 1990;18:6545–6551. doi: 10.1093/nar/18.22.6545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Riley C.A., Lehman N. Generalized RNA-directed recombination of RNA. Chem. Biol. 2003;10:1233–1243. doi: 10.1016/j.chembiol.2003.11.015. [DOI] [PubMed] [Google Scholar]
- 120.Woodson S.A., Cech T.R. Reverse self-splicing of the Tetrahymena group I intron: Implication for the directionality of splicing and for intron transposition. Cell. 1989;57:335–345. doi: 10.1016/0092-8674(89)90971-9. [DOI] [PubMed] [Google Scholar]
- 121.Morl M., Schmelzer C. Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro. Cell. 1990;60:629–636. doi: 10.1016/0092-8674(90)90666-3. [DOI] [PubMed] [Google Scholar]
- 122.Roman J., Woodson S.A. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Proc. Natl. Acad. Sci. USA. 1998;95:2134–2139. doi: 10.1073/pnas.95.5.2134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Landthaler M., Shub D.A. Unexpected abundance of self-splicing group I introns in the genome of bacteriophage Twort: Introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc. Natl. Acad. Sci. USA. 1999;96:7005–7010. doi: 10.1073/pnas.96.12.7005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Edgell D.R., Belfort M., Shub D.A. Barriers to Intron promiscuity in bacteria. J. Bacteriol. 2000;182:5281–5289. doi: 10.1128/JB.182.19.5281-5289.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Garcia-Blanco M.A. Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing. J. Clin. Invest. 2003;112:474–480. doi: 10.1172/JCI200319462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Long M.B., Jones J.P., III, Sullenger B.A., Byun J. Ribozyme-mediated revision of RNA and DNA. J. Clin. Invest. 2003;112:312–318. doi: 10.1172/JCI200319386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Ryu K.-J., Kim J.-H., Lee S.-W. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol. Ther. 2003;7:386–395. doi: 10.1016/S1525-0016(02)00063-1. [DOI] [PubMed] [Google Scholar]
- 128.Carpenter C.D., Simon A.E. In vivo restoration of biologically active 3′ ends of virus-associated RNAs by nonhomologous RNA recombination and replacement of a terminal motif. J. Virol. 1996;70:478–486. doi: 10.1128/jvi.70.1.478-486.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Chao L. Evolution of sex and the molecular clock in RNA viruses. Gene. 1997;205:301–308. doi: 10.1016/S0378-1119(97)00405-8. [DOI] [PubMed] [Google Scholar]
- 130.Agol V.I. Picornavirus genetics: An overview. In: Semler B.L., Wimmer E., editors. Molecular Biology of Picornaviruses. Washington: ASM; 2002. pp. 269–284. [Google Scholar]
- 131.Bujarski J.J., Kaesberg P. Genetic recombination between RNA components of a multipartite plant virus. Nature. 1986;321:528–531. doi: 10.1038/321528a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Simon A.E., Nagy P.D. RNA recombination in turnip crinkle virus: Its role in formation of chimeric RNAs, multimers, and in 3′-end repair. Semin. Virol. 1996;7:373–379. doi: 10.1006/smvy.1996.0045. [DOI] [Google Scholar]
- 133.Guan H., Simon A.E. Polymerization of nontemplate bases before transcription initiation at the 3′ ends of templates by RNA-dependent RNA polymerase: An activity involved in 3′ end repair of viral RNAs. Proc. Natl. Acad. Sci. USA. 2000;97:12451–12456. doi: 10.1073/pnas.97.23.12451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Nagy P.D., Bujarski J.J. Efficient system of homologous RNA recombination in brome mosaic virus: Sequence and structure requirements and accuracy of crossovers. J. Virol. 1995;69:131–140. doi: 10.1128/jvi.69.1.131-140.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Dolja V.V., Carrington J.C. Evolution of positive-strand RNA viruses. Semin. Virol. 1992;3:315–326. [Google Scholar]
- 136.Dolja V.V., Karasev A.V., Koonin E.V. Molecular biology and evolution of closteroviruses: Sophisticated buildup of large RNA genomes. Ann. Rev. Phytopathol. 1994;32:261–285. doi: 10.1146/annurev.py.32.090194.001401. [DOI] [Google Scholar]
- 137.Cammack N., Phillips A., Dunn G., Patel V., Minor P.D. Intertypic genomic rearrangements of poliovirus strains in vaccines. Virology. 1988;167:507–514. [PubMed] [Google Scholar]
- 138.Cuervo N.S., Guillot S., Romanenkova N., Cochi S.L., Combiescu M., Aubert-Combiescu A., Seghier M., Caro V., Crainic R., Delpeyroux F. Genomic features of intertypic recombinant Sabin poliovirus strains excreted by primary vaccinees. J. Virol. 2001;75:5740–5751. doi: 10.1128/JVI.75.13.5740-5751.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Lipskaya G.Yu., Muzychenko A.R., Kutitova O.K., Maslova S.V., Equestre M., Drozdov S.G., Perez Bercoff R., Agol V.I. Frequent isolation of intertypic poliovirus recombinants with serotype 2 specificity from vaccine-associated polio cases. J. Med. Virol. 1991;35:290–296. doi: 10.1002/jmv.1890350415. [DOI] [PubMed] [Google Scholar]
- 140.Furione M., Guillot S., Otelea D., Balanant J., Candrea A., Crainic R. Polioviruses with natural recombinant genomes isolated from vaccine-associated paralytic poliomyelitis. Virology. 1993;196:199–208. doi: 10.1006/viro.1993.1468. [DOI] [PubMed] [Google Scholar]
- 141.Georgescu M. M., Balanant J., Macadam A., Otelea D., Combiescu M., Combiescu A.A., Crainic R., Delpeyroux F. Evolution of the Sabin type 1 poliovirus in humans: Characterization of strains isolated from patients with vaccine-associated paralytic poliomyelitis. J. Virol. 1997;71:7758–7768. doi: 10.1128/jvi.71.10.7758-7768.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Kew O.M., Wright P.F., Agol V.I., Delpeyroux F., Shimizu H., Nathanson N., Pallansch M. Circulating vaccine-derived polioviruses: current state of knowledge. Bull. WHO. 2004;82:16–23. [PMC free article] [PubMed] [Google Scholar]
- 143.Raju R., Subramanaim S.V., Hajjou M. Genesis of Sindbis virus by in vitro recombination of nonreplicative RNA precursors. J. Virol. 1995;69:7391–7401. doi: 10.1128/jvi.69.12.7391-7401.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Adams S.D., Tzeng W.-P., Chen M.-H., Frey T.K. Analysis of intermolecular RNA-RNA recombination by rubella virus. Virology. 2003;309:258–271. doi: 10.1016/S0042-6822(03)00064-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Liang Y., Gillam S. Rubella virus RNA replication is cis-preferential and synthesis of negative-and positive-strand RNAs is regulated by the processing of nonstructural protein. Virology. 2001;282:307–319. doi: 10.1006/viro.2001.0862. [DOI] [PubMed] [Google Scholar]
- 146.Tzeng W.P., Chen M.H., Derdeyn C.A., Frey T.K. Rubella virus DI RNAs and replicons: Requirement for nonstructural proteins acting in cis for amplification by helper virus. Virology. 2001;289:63–73. doi: 10.1006/viro.2001.1088. [DOI] [PubMed] [Google Scholar]
- 147.Gorbalenya A. E. Origin of RNA viral genomes: approaching the problem by comparative sequence analysis. In: Gibbs A.J., Calisher C.H., Garcia-Arenal F., editors. Molecular Basis of Virus Evolution. Cambridge: Cambridge Univ. Press; 1995. pp. 49–66. [Google Scholar]
- 148.Meyers G., Tautz N., Dubovi E.J., Thiel H.-J. Viral cytopathogenicity correlated with integration of ubiquitin-coding sequences. Virology. 1991;180:602–616. doi: 10.1016/0042-6822(91)90074-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Becher P., Orlich M., Konig M., Thiel H.-J. Nonhomologous RNA recombination in bovine viral diarrhea virus: Molecular characterization of a variety of subgenomic RNAs isolated during an outbreak of fatal mucosal disease. J. Virol. 1999;73:5646–5653. doi: 10.1128/jvi.73.7.5646-5653.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Qi F., Ridpath J.F., Berry E.S. Insertion of a bovine SMT3B gene in NS4B and duplication of NS3 in a bovine viral diarrhea virus genome correlate with the cytopathogenicity of the virus. Virus Res. 1998;57:1–9. doi: 10.1016/S0168-1702(98)00073-2. [DOI] [PubMed] [Google Scholar]
- 151.Baroth M., Orlich M., Thiel H.-J., Becher P. Insertion of cellular NEDD8 coding sequences in a pestivirus. Virology. 2000;278:456–466. doi: 10.1006/viro.2000.0644. [DOI] [PubMed] [Google Scholar]
- 152.Meyers G., Stoll D., Gunn M. Insertion of a sequence encoding light chain 3 of microtubule-associated proteins 1A and 1B in a pestivirus genome: Connection with virus cytopathogenicity and induction of lethal disease in cattle. J. Virol. 1998;72:4139–4148. doi: 10.1128/jvi.72.5.4139-4148.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Becher P., Thiel H.-J., Collins M., Brownlie J., Orlich M. Cellular sequences in pestivirus genomes encoding gamma-aminobutyric acid receptor-associated protein and Golgi-associated ATPase enhancer of 16 kilo-daltons. J. Virol. 2002;76:13069–13076. doi: 10.1128/JVI.76.24.13069-13076.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Becher P., Orlich M., Thiel H.-J. Ribosomal S27a coding sequences upstream of ubiquitin coding sequences in the genome of a pestivirus. J. Virol. 1998;72:8697–8704. doi: 10.1128/jvi.72.11.8697-8704.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Khatchkian D., Orlich M., Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature. 1989;340:156–157. doi: 10.1038/340156a0. [DOI] [PubMed] [Google Scholar]
- 156.Mayo M.A., Jolly C.A. The 5′-terminal sequence of potato leafroll virus RNA: Evidence of recombination between virus and host RNA. J. Gen. Virol. 1991;72:2591–2595. doi: 10.1099/0022-1317-72-10-2591. [DOI] [PubMed] [Google Scholar]
- 157.Monroe S.S., Schlesinger S. RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5′ ends. Proc. Natl. Acad. Sci. USA. 1983;80:3279–3283. doi: 10.1073/pnas.80.11.3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Munishkin A.V., Voronin L.A., Chetverin A.B. An in vivo recombinant RNA capable of autocatalytic synthesis by Q beta replicase. Nature. 1988;333:473–475. doi: 10.1038/333473a0. [DOI] [PubMed] [Google Scholar]
- 159.Charini W.A., Todd S., Gutman G.A., Semler B.L. Transduction of a human RNA sequence by poliovirus. J. Virol. 1994;68:6547–6552. doi: 10.1128/jvi.68.10.6547-6552.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
