Abstract
The neutralizing epitope (K-COE) of the spike protein from a Korean strain of porcine epidemic diarrhea virus (PEDV) has been shown to prevent and foster an immune response to PED, when orally adjusted. The cell surface of the budding yeast,Saccharomyces cerevisiae, was engineered to anchor the K-COE on the outer layer of the cell, and consequently, the altered yeast was applied as a dietary complement for animal feed, with immunogenic functions. In this study, the K-COE gene (K-COE) of the Korean strain of PEDV with the signal peptide of rice amylase 1A (Ramy 1A), was fused with the gene encoding the carboxyterminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin, a mating associated protein that is anchored covalently to the cell wall. The glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter was selected in order to direct the expression of the fusion construct, and the resulting recombinant plasmid was then introduced intoS. cerevisiae. The surface display of K-COE was visualized via confocal microscopy using a polyclonal antibody against K-COE as the primary antibody, and FITC (fluorescein isothiocyanate)-conjugated goat anti-mouse IgG as the secondary antibody. The display of the K-COE on the cell surface was further verified via Western blot analysis using the cell wall fraction after the administration of α-1,3-glucanase/PNGase F/β-mannosidase treatment.
Keywords: surface display, porcine epidemic diarrhea virus, Saccharomyces cerevisiae
References
- 1.Egberink H. F., Ederveen J., Callebaut P., Horzinek M. C. Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777. Am. J. Vet. Res. 1988;49:1320–1324. [PubMed] [Google Scholar]
- 2.Pensaert M. B., de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch. Virol. 1978;58:243–247. doi: 10.1007/BF01317606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wood E. N. An apparently new syndrome of porcine epidemic diarrhea. Vet. Rec. 1977;100:243–244. doi: 10.1136/vr.100.12.243. [DOI] [PubMed] [Google Scholar]
- 4.Chae C., Kim O., Choi C., Min K., Cho W. S., Kim J., Tai J. H. Prevalence of porcine epidemic diarrhea virus and transmissible gastroenteritis virus infection in Korean pigs. Vet. Rec. 2000;147:606–608. doi: 10.1136/vr.147.21.606. [DOI] [PubMed] [Google Scholar]
- 5.Jimenez G., Castro J. M., del Pozzo M., Correa I., de la Torre J., Enjuanes L. Identification of a coronavirus inducing porcine gastroenteritis in Spain. Proc. Int. Pig Vet. Soc. Congr. 1986;9:186–186. [Google Scholar]
- 6.Pensaert M. B. Procine epidemic diarrhea. In: Straw B. E., D'Allaire S., Mengeling W. L., Taylor D. I., editors. Diseases of Swine. Iowa, USA: Iowa University Press; 1999. pp. 179–185. [Google Scholar]
- 7.Ducatelle R., Coussement W., Pensaert M., de Bouck P., Hoorens J. In vivo morphogenesis of a new porcine enteric coronavirus, CV777. Arch Virol. 1981;68:35–44. doi: 10.1007/BF01315165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Knuchel M., Ackermann M., Muller H. K., Kihm U. An ELISA for detection of antibodies against porcine epidemic diarrhea virus (PEDV) based on the specific solubility of the viral surface glycoprotein. Vet. Microbiol. 1992;32:117–134. doi: 10.1016/0378-1135(92)90100-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Duarte M., Laude H. Sequence of the spike protein of the porcine epidemic diarrhoea virus. J. Gen. Virol. 1994;75:1195–1200. doi: 10.1099/0022-1317-75-5-1195. [DOI] [PubMed] [Google Scholar]
- 10.Chang S. H., Bae J. L., Kang T. J., Kim J., Chung G. H., Lim C. W., Laude H., Yang M. S., Jang Y. S. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol. Cells. 2002;14:295–299. [PubMed] [Google Scholar]
- 11.Kang T. J., Seo J. E., Kim D. H., Kim T. G., Jang Y. S., Yang M. S. Cloning and sequence analysis of the Korean strain of spike gene of porcine epidemic diarrhea virus and expression of its neutralizing epitope in plants. Protein Expr. Purif. 2005;41:378–383. doi: 10.1016/j.pep.2005.02.018. [DOI] [PubMed] [Google Scholar]
- 12.Bae J. L., Lee J. G., Kang T. J., Jang H. S., Jang Y. S., Yang M. S. Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine. 2003;21:4052–4058. doi: 10.1016/S0264-410X(03)00360-8. [DOI] [PubMed] [Google Scholar]
- 13.Service R. F. Triggering the first line of defense. Science. 1994;265:1522–1524. doi: 10.1126/science.8079164. [DOI] [PubMed] [Google Scholar]
- 14.Walker R. I. New strategies for using mucosal vaccination to achieve more effective immunization. Vaccine. 1994;12:387–400. doi: 10.1016/0264-410X(94)90112-0. [DOI] [PubMed] [Google Scholar]
- 15.McFarland L. V., Bernasconi P. Saccharomyces boulardii: a review of an innovative biotherapeutic agent. Microb. Ecol. Health Dis. 1993;6:157–171. doi: 10.3109/08910609309141323. [DOI] [Google Scholar]
- 16.Corthier G., Lucas F., Jouvert S., Castex F. Effect of oralSaccharomyces boulardii treatment on the activity ofClostridium difficile toxins in mouse digestive tract. Toxicon. 1992;30:1583–1589. doi: 10.1016/0041-0101(92)90030-9. [DOI] [PubMed] [Google Scholar]
- 17.Berg R., Bernasconi P., Fowler D., Gautreaux M. Inhibition ofCandida albicans translocation from the gastrointestinal tract of mice by oral administration ofSaccharomyces boulardii. J. Infect. Dis. 1993;168:1314–1318. doi: 10.1093/infdis/168.5.1314. [DOI] [PubMed] [Google Scholar]
- 18.Schellenberg D., Bonington A., Champion C. M., Lancaster R., Webb S., Main J. Treatment ofClostridium difficile diarrhoea with brewer's yeast. Lancet. 1994;343:171–172. doi: 10.1016/S0140-6736(94)90960-1. [DOI] [PubMed] [Google Scholar]
- 19.Fattal-German M., Bizzini B. Assessment of the anti-viral effect of a short-term oral treatment of mice with liveSaccharomyces cerevisiae cells. Dev. Biol. Stand. 1992;77:115–120. [PubMed] [Google Scholar]
- 20.Colby D. W., Kellogg B. A., Graff C. P., Yeung Y. A., Swers J. S., Wittrup K. D. Engineering antibody affinity by yeast surface display. Methods Enzymol. 2004;388:348–358. doi: 10.1016/S0076-6879(04)88027-3. [DOI] [PubMed] [Google Scholar]
- 21.Kondo A., Ueda M. Yeast cell-surface display—applications of molecular display. Appl. Microbiol. Biotechnol. 2004;64:28–40. doi: 10.1007/s00253-003-1492-3. [DOI] [PubMed] [Google Scholar]
- 22.Schreuder M. P., Deen C., Boersma W. J. A., Pouwels P. H., Klis F. M. Yeast expressing hepatitis B virus surface antigen determinants on its surface: implications for a possible oral vaccine. Vaccine. 1996;14:383–388. doi: 10.1016/0264-410X(95)00206-G. [DOI] [PubMed] [Google Scholar]
- 23.In M. J., Kim D. C., Chae H. J. Downstream process for the production of yeast extract using brewer's yeast cells. Biotechnol. Bioprocess Eng. 2005;10:85–90. doi: 10.1007/BF02931188. [DOI] [Google Scholar]
- 24.Chen L. J., Xu Y. L., Bai F. W., Anderson W. A., Moo-Young M. Observed quasi-steady kinetics of yeast cell growth and ethanol formation under very high gravity fermentation condition. Biotechnol. Bioprocess Eng. 2005;10:115–121. doi: 10.1007/BF02932580. [DOI] [Google Scholar]
- 25.Nagahisa K., Nakajima T., Yoshikawa K., Hirasawa T., Katakura Y., Furusawa C., Shioya S., Shimizu H. DNA microarray analysis onSaccharomyces cerevisiae under high carbon dioxide concentration in fermentation process. Biotechnol. Bioprocess Eng. 2005;10:451–461. doi: 10.1007/BF02989828. [DOI] [Google Scholar]
- 26.Hwang S. Y., Yoo C. H., Jeon J. Y., Choi S. C., Lee E. K. Quantitative assay of hepatitis B surface antigen by using surface plasmon resonance biosensor. Biotechnol. Bioprocess Eng. 2005;10:309–314. doi: 10.1007/BF02931847. [DOI] [Google Scholar]
- 27.Sambrook J., Fritsch E. F., Maniatis T. Molecular Cloning: ALaboratory Manual. 2nd ed. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press; 1989. [Google Scholar]
- 28.Shon J. H., Choi E. S., Chung B. H., Youn D. J., Seo J. H., Rhee S. K. Process development of the production of recombinant hirudin inSaccharomyces cerevisiae: from upstream to downstream. Process Biochem. 1995;30:653–660. doi: 10.1016/0032-9592(94)00062-M. [DOI] [Google Scholar]
- 29.Kim M. J., Kwon T. H., Jang Y. S., Yang M. S., Kim D. H. Expression of murine GM-CSF in recombinantAspergillus niger. J. Microbiol. Biotechnol. 2000;10:287–292. [Google Scholar]
- 30.Park E. H., Shin Y. M., Lim Y. Y., Kwon T. H., Kim D. H., Yang M. S. Expression of glucose oxidase by using recombinant yeast. J. Biotechnol. 2000;81:35–44. doi: 10.1016/S0168-1656(00)00266-2. [DOI] [PubMed] [Google Scholar]
- 31.Park S. M., Mo A. Y., Jang Y. S., Lee J. H., Yang M. S., Kim D. H. Expression of a functional human tumor necrosis factor-α (hTNF-α) in, yeastSaccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 2004;9:292–296. doi: 10.1007/BF02942346. [DOI] [Google Scholar]
- 32.Shin Y. M., Kwon T. H., Kim K. S., Chae K. S., Kim D. H., Kim J. H., Yang M. S. Enhanced iron uptake ofSaccharomyces cerevisiae by heterologous expression of a tadpole ferritin gene. Appl. Environ. Microbiol. 2001;67:1280–1283. doi: 10.1128/AEM.67.3.1280-1283.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Ge L., Rudolph P. Simultaneous introduction of multiple mutations using overlap extension PCR. Biotechniques. 1997;22:28–30. doi: 10.2144/97221bm03. [DOI] [PubMed] [Google Scholar]
- 34.Lim Y. Y., Park E. H., Kim J. H., Park S. M., Jang H. S., Park Y. J., Yoon S. W., Yang M. S., Kim D. H. Enhanced and targeted expression of fungal phytase inSaccharomyces cerevisiae. J. Microbiol. Biotechnol. 2001;11:915–921. [Google Scholar]
- 35.Mo A. Y., Park S. M., Kim Y. S., Yang M. S., Kim D. H. Expression of fungal phytase on the cell surface ofSaccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 2005;10:576–581. doi: 10.1007/BF02932297. [DOI] [Google Scholar]
- 36.Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 1983;153:163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Pringle J. R., Preston R. A., Adams A. E., Stearns T., Drubin D. G., Haarer B. K., Jones E. W. Fluorescence microscopy methods for yeast. Methods Cell Biol. 1989;31:357–435. doi: 10.1016/S0091-679X(08)61620-9. [DOI] [PubMed] [Google Scholar]
- 38.Loeper J., Louérat-Oriou B., Duport C., Pompon D. Yeast expressed cytochrome P450 2D6 (CYP2D6) exposed on the external face of plasma membrane is functionally competent. Mol. Pharmacol. 1998;54:8–13. doi: 10.1124/mol.54.1.8. [DOI] [PubMed] [Google Scholar]
- 39.Murai T., Ueda M., Yamamura M., Atomi H., Shibasaki Y., Kamasawa N., Osumi M., Amachi T., Tanaka A. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol. 1997;63:1362–1366. doi: 10.1128/aem.63.4.1362-1366.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Huang D., Shusta E. V. Secretion and surface display of green fluorescent protein using the yeastSaccharomyces cerevisiae. Biotechnol. Prog. 2005;21:349–357. doi: 10.1021/bp0497482. [DOI] [PubMed] [Google Scholar]
- 41.Shibasaki S., Ueda M., Iizuka T., Hirayama M., Ikeda Y., Kamasawa N., Osumi M., Tanaka A. Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface ofSaccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl. Microbiol. Biotechnol. 2001;55:471–475. doi: 10.1007/s002530000539. [DOI] [PubMed] [Google Scholar]
